Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion
During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large magni...
Saved in:
Published in | Journal of biomechanics Vol. 29; no. 1; pp. 39 - 52 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
1996
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large magnitude of muscle activity will be needed to stabilize the shoulder. In addition, the muscular requirements for the minimization of negative power are assumed to be of importance. For such an analysis an inverse dynamic model is required.
To utilize an inverse dynamic model of the shoulder mechanism, the trajectories of the upper extremity bones are needed. Since at this stage, dynamic non-invasive measurement techniques of scapular motion are not available, the aim of this study was to record the three-dimensional position of the scapula in static situations with the help of a palpation technique. Positions of the trunk, shoulder girdle and upper extremity, and the surface EMG of ten muscles were recorded simultaneously with forces on the rim on a stationary wheelchair ergometer. Four healthy male subjects participated in the experiment. Five hand positions on the rim and five different load levels per hand position were measured for each subject. A previously developed musculoskeletal model of the shoulder mechanism (Van der Helm, 1994a,
J. Biomechanics (bd27)(5) 551–569) was used to calculate muscle forces in an inverse static simulation. The measured EMG and the calculated muscle forces compared well except for three muscles. The moment balance between external sources and muscles around each joint axis of the shoulder mechanism is discussed. Results of the experiment indicate that large muscle contributions are needed for joint stabilization. The experimental results on the scapular motions will, in combination with experimental data collected under dynamic conditions, be used for application of the model to dynamic situations. It is concluded that the musculoskeletal model of the shoulder mechanism can be very useful in studies to determine the contribution of muscles and the mechanical load on morphological structures. |
---|---|
AbstractList | During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large magnitude of muscle activity will be needed to stabilize the shoulder. In addition, the muscular requirements for the minimization of negative power are assumed to be of importance. For such an analysis an inverse dynamic model is required.
To utilize an inverse dynamic model of the shoulder mechanism, the trajectories of the upper extremity bones are needed. Since at this stage, dynamic non-invasive measurement techniques of scapular motion are not available, the aim of this study was to record the three-dimensional position of the scapula in static situations with the help of a palpation technique. Positions of the trunk, shoulder girdle and upper extremity, and the surface EMG of ten muscles were recorded simultaneously with forces on the rim on a stationary wheelchair ergometer. Four healthy male subjects participated in the experiment. Five hand positions on the rim and five different load levels per hand position were measured for each subject. A previously developed musculoskeletal model of the shoulder mechanism (Van der Helm, 1994a,
J. Biomechanics (bd27)(5) 551–569) was used to calculate muscle forces in an inverse static simulation. The measured EMG and the calculated muscle forces compared well except for three muscles. The moment balance between external sources and muscles around each joint axis of the shoulder mechanism is discussed. Results of the experiment indicate that large muscle contributions are needed for joint stabilization. The experimental results on the scapular motions will, in combination with experimental data collected under dynamic conditions, be used for application of the model to dynamic situations. It is concluded that the musculoskeletal model of the shoulder mechanism can be very useful in studies to determine the contribution of muscles and the mechanical load on morphological structures. During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large magnitude of muscle activity will be needed to stabilize the shoulder. In addition, the muscular requirements for the minimization of negative power are assumed to be of importance. For such an analysis an inverse dynamic model is required. To utilize an inverse dynamic model of the shoulder mechanism, the trajectories of the upper extremity bones are needed. Since at this stage, dynamic non-invasive measurement techniques of scapular motion are not available, the aim of this study was to record the three-dimensional position of the scapula in static situations with the help of a palpation technique. Positions of the trunk, shoulder girdle and upper extremity, and the surface EMG of ten muscles were recorded simultaneously with forces on the rim on a stationary wheelchair ergometer. Four healthy male subjects participated in the experiment. Five hand positions on the rim and five different load levels per hand position were measured for each subject. A previously developed musculoskeletal model of the shoulder mechanism (Van der Helm, 1994a, J. Biomechanics 27(5) 551-569) was used to calculate muscle forces in an inverse static simulation. The measured EMG and the calculated muscle forces compared well except for three muscles. The moment balance between external sources and muscles around each joint axis of the shoulder mechanism is discussed. Results of the experiment indicate that large muscle contributions are needed for joint stabilization. The experimental results on the scapular motions will, in combination with experimental data collected under dynamic conditions, be used for application of the model to dynamic situations. It is concluded that the musculoskeletal model of the shoulder mechanism can be very useful in studies to determine the contribution of muscles and the mechanical load on morphological structures.During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large magnitude of muscle activity will be needed to stabilize the shoulder. In addition, the muscular requirements for the minimization of negative power are assumed to be of importance. For such an analysis an inverse dynamic model is required. To utilize an inverse dynamic model of the shoulder mechanism, the trajectories of the upper extremity bones are needed. Since at this stage, dynamic non-invasive measurement techniques of scapular motion are not available, the aim of this study was to record the three-dimensional position of the scapula in static situations with the help of a palpation technique. Positions of the trunk, shoulder girdle and upper extremity, and the surface EMG of ten muscles were recorded simultaneously with forces on the rim on a stationary wheelchair ergometer. Four healthy male subjects participated in the experiment. Five hand positions on the rim and five different load levels per hand position were measured for each subject. A previously developed musculoskeletal model of the shoulder mechanism (Van der Helm, 1994a, J. Biomechanics 27(5) 551-569) was used to calculate muscle forces in an inverse static simulation. The measured EMG and the calculated muscle forces compared well except for three muscles. The moment balance between external sources and muscles around each joint axis of the shoulder mechanism is discussed. Results of the experiment indicate that large muscle contributions are needed for joint stabilization. The experimental results on the scapular motions will, in combination with experimental data collected under dynamic conditions, be used for application of the model to dynamic situations. It is concluded that the musculoskeletal model of the shoulder mechanism can be very useful in studies to determine the contribution of muscles and the mechanical load on morphological structures. During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large magnitude of muscle activity will be needed to stabilize the shoulder. In addition, the muscular requirements for the minimization of negative power are assumed to be of importance. For such an analysis an inverse dynamic model is required. To utilize an inverse dynamic model of the shoulder mechanism, the trajectories of the upper extremity bones are needed. Since at this stage, dynamic non-invasive measurement techniques of scapular motion are not available, the aim of this study was to record the three-dimensional position of the scapula in static situations with the help of a palpation technique. Positions of the trunk, shoulder girdle and upper extremity, and the surface EMG of ten muscles were recorded simultaneously with forces on the rim on a stationary wheelchair ergometer. Four healthy male subjects participated in the experiment. Five hand positions on the rim and five different load levels per hand position were measured for each subject. A previously developed musculoskeletal model of the shoulder mechanism (Van der Helm, 1994a, J. Biomechanics 27(5) 551-569) was used to calculate muscle forces in an inverse static simulation. The measured EMG and the calculated muscle forces compared well except for three muscles. The moment balance between external sources and muscles around each joint axis of the shoulder mechanism is discussed. Results of the experiment indicate that large muscle contributions are needed for joint stabilization. The experimental results on the scapular motions will, in combination with experimental data collected under dynamic conditions, be used for application of the model to dynamic situations. It is concluded that the musculoskeletal model of the shoulder mechanism can be very useful in studies to determine the contribution of muscles and the mechanical load on morphological structures. |
Author | Veeger, H.E.J. van der Helm, F.C.T. |
Author_xml | – sequence: 1 givenname: F.C.T. surname: van der Helm fullname: van der Helm, F.C.T. organization: Man-machine Systems Group, Lab. for Measurement and Control, Department of Mechanical Engineering and Marine Technology. Delft University of Technology, Delft, The Netherlands – sequence: 2 givenname: H.E.J. surname: Veeger fullname: Veeger, H.E.J. organization: Faculty of Human Movement Sciences, Free University Amsterdam, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/8839016$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1rFTEUhoNU2tvqP2ghK6mL0UxyJx8uCqX4BQUp1KWETOZMbySTXHNmlP57c72XLlzoJiE5z_uGPKfkKOUEhJy37E3LWvmWMd42hht2abrXrJ5ko56RVauVaLjQ7IisnpATcor4vUJqrcwxOdZamNqxIt_uFoehwdnNwVOXXHzEgDSPdFrQR6BjLh6QhkTnDVDc5CUOUOgEfuNSwIkOSwnpgf7aAMR6FwrdlrxdIoacXpDno4sILw_7Gfn64f39zafm9svHzzfXt41fczE3Sqle-m5Qyvs1aBBScsmY5J6LvtOjgp4zoTjv5WDq0ppOC246J1un2diJM_Jq31uf_rEAznYK6CFGlyAvaFX9rmbMVPDiAC79BIPdljC58mgPPup8vZ_7khELjE9Ey-zOut0ptTul1nT2j3WrauzdXzEfdkZzmosL8X_hq30YqqGfAYpFHyB5GEIBP9shh38X_AY2a5qI |
CitedBy_id | crossref_primary_10_1152_jn_00799_2004 crossref_primary_10_1016_j_jse_2014_11_040 crossref_primary_10_1590_S1809_29502009000300011 crossref_primary_10_1243_09544119JEIM731 crossref_primary_10_1016_j_clinbiomech_2011_07_011 crossref_primary_10_1016_j_jbiomech_2008_07_032 crossref_primary_10_1016_S0268_0033_99_00093_5 crossref_primary_10_1243_0954411041561027 crossref_primary_10_1016_j_jbiomech_2010_09_029 crossref_primary_10_1243_0954411001535570 crossref_primary_10_1016_j_clinbiomech_2013_03_004 crossref_primary_10_1123_jab_2017_0281 crossref_primary_10_1243_095441103770802577 crossref_primary_10_1007_s00167_007_0318_8 crossref_primary_10_2165_00007256_200131050_00005 crossref_primary_10_1097_00002060_199909000_00006 crossref_primary_10_1080_00140130310001593577 crossref_primary_10_1016_j_jbiomech_2011_02_142 crossref_primary_10_1002_ajpa_22835 crossref_primary_10_1097_01_PHM_0000150792_26793_E9 crossref_primary_10_1016_j_clinbiomech_2005_09_013 crossref_primary_10_1016_j_clinbiomech_2011_05_017 crossref_primary_10_1016_j_clinbiomech_2016_02_003 crossref_primary_10_1016_S0268_0033_02_00008_6 crossref_primary_10_1016_j_imu_2020_100415 crossref_primary_10_1123_jab_28_6_701 crossref_primary_10_1142_S0219519409002948 crossref_primary_10_1016_j_jbiomech_2019_109348 crossref_primary_10_1016_j_jse_2016_07_013 crossref_primary_10_1590_S1413_78522006000100010 crossref_primary_10_1080_10255842_2011_623675 crossref_primary_10_1243_0954411001535660 crossref_primary_10_1109_86_536770 crossref_primary_10_1016_j_jse_2007_12_010 crossref_primary_10_1016_S1297_9562_02_00003_7 crossref_primary_10_1016_S1350_4533_03_00102_4 crossref_primary_10_1038_sj_sc_3101989 crossref_primary_10_1016_j_jbiomech_2006_05_013 crossref_primary_10_1007_s11517_013_1099_5 crossref_primary_10_1016_j_jbiomech_2006_10_037 crossref_primary_10_1080_10255842_2012_719605 crossref_primary_10_1186_s40648_015_0037_8 crossref_primary_10_1098_rsta_2008_0282 crossref_primary_10_1051_matecconf_202235701001 crossref_primary_10_3938_jkps_62_648 crossref_primary_10_1053_apmr_2001_24888 crossref_primary_10_1016_S1350_4533_01_00083_2 crossref_primary_10_1142_S0219519424500520 crossref_primary_10_1589_rika_21_281 crossref_primary_10_1177_1545968308331145 crossref_primary_10_1016_j_jbiomech_2014_05_025 crossref_primary_10_1016_S0169_8141_02_00176_2 crossref_primary_10_1016_S0268_0033_99_00087_X crossref_primary_10_1310_sci2104_313 crossref_primary_10_3390_app14178076 crossref_primary_10_1016_j_clinbiomech_2004_06_013 crossref_primary_10_1123_jab_2022_0066 crossref_primary_10_1080_0014013031000065619 crossref_primary_10_1097_00003086_199809000_00016 crossref_primary_10_1016_j_jbiomech_2003_08_005 crossref_primary_10_1016_j_jbiomech_2009_02_025 crossref_primary_10_1016_j_medengphy_2023_104003 crossref_primary_10_1016_S0268_0033_01_00029_8 crossref_primary_10_1080_14763141_2016_1216585 crossref_primary_10_1155_2018_2365983 crossref_primary_10_1016_j_clinbiomech_2019_02_002 crossref_primary_10_1123_jab_2012_0083 |
Cites_doi | 10.1007/BF02446151 10.1115/1.2792267 10.1249/00005768-199102000-00019 10.1016/1050-6411(91)90014-V 10.1016/0021-9290(89)90227-3 10.1016/0021-9290(91)90007-A 10.1016/0021-9290(94)90064-7 10.1007/BF00717954 10.1016/0021-9290(94)90065-5 10.1016/S0268-0033(93)90037-I 10.1016/0021-9290(91)90294-W 10.3109/03091909109015443 10.1016/0306-4522(91)90012-D 10.1016/0021-9290(92)90270-B 10.2106/00004623-198769050-00006 10.1016/0021-9290(88)90190-X |
ContentType | Journal Article |
Copyright | 1995 |
Copyright_xml | – notice: 1995 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/0021-9290(95)00026-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 52 |
ExternalDocumentID | 8839016 10_1016_0021_9290_95_00026_7 0021929095000267 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 3V. 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AAXUO ABBQC ABFNM ABJNI ABLVK ABMAC ABMZM ABUWG ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEVXI AFCTW AFFDN AFKRA AFKWA AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHJVU AHMBA AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LCYCR LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PQQKQ PROAC PSQYO Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YCJ YQT Z5R ZGI ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ALIPV ANKPU APXCP CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PKN 7X8 |
ID | FETCH-LOGICAL-c423t-777b6c5d77cc4e8e366260062c23b58f7eb203722b6d92b619583295a61a80f53 |
IEDL.DBID | AIKHN |
ISSN | 0021-9290 |
IngestDate | Thu Jul 10 23:57:44 EDT 2025 Wed Feb 19 02:32:19 EST 2025 Tue Jul 01 02:43:45 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Fri Feb 23 02:32:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Load Modelling Shoulder Muscle force Wheelchair Mechanical |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-777b6c5d77cc4e8e366260062c23b58f7eb203722b6d92b619583295a61a80f53 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 8839016 |
PQID | 78398009 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_78398009 pubmed_primary_8839016 crossref_primary_10_1016_0021_9290_95_00026_7 crossref_citationtrail_10_1016_0021_9290_95_00026_7 elsevier_sciencedirect_doi_10_1016_0021_9290_95_00026_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1996 1996-1-00 1996-Jan 19960101 |
PublicationDateYYYYMMDD | 1996-01-01 |
PublicationDate_xml | – year: 1996 text: 1996 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 1996 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fick (BIB4) 1911 Van der Helm, Veeger, Pronk, Woude, Rozendal (BIB20) 1992; 25 Paul (BIB12) 1983 Pronk (BIB13) 1987 Van der Helm (BIB17) 1994; 27 Veeger, Van der Helm, Woude, Pronk, Rozendal (BIB23) 1991; 24 Niesing, Eijskoot, Kranse, Oude, Storm, Veeger, van der Woude, Snijders (BIB11) 1990; 28 Groot, van der Helm, Arwert (BIB5) 1992 Werff, Jonker (BIB27) 1983 Veeger, van der Helm, Rozendal (BIB22) 1993; 8 Veeger, Woude, Rozendal (BIB24) 1991; 23 Marzan, Karara (BIB10) 1975 Van der Helm, Pronk (BIB18) 1995; 117 Van der Helm (BIB16) 1994; 27 Cerquiglini, Figura, Marchetti, Ricci (BIB3) 1981 Groot, Valstar, Arwert (BIB6) 1995 Woude (BIB28) 1989 Van der Helm, Veenbaas (BIB19) 1991; 24 Pronk, Van der Helm (BIB14) 1991; 15 Sie, Waters, Adkins, Gellman (BIB15) 1992; 73 Veeger, Lute, Roeleveld, Woude (BIB21) 1992; 64 An, Kaufman, Chao (BIB1) 1989; 22 Veldpaus, Woltring, Dortmans (BIB26) 1988; 21 Veeger, Woude, Rozendal (BIB25) 1992; 1 Ingen Schenau, van Bobbert, Soest (BIB7) 1990 Jonker (BIB8) 1988 Bayley, Cochran, Sledge (BIB2) 1987; 69-A Kaufman, An, Litchy, Chao (BIB9) 1991; 40 Fick (10.1016/0021-9290(95)00026-7_BIB4) 1911 Groot (10.1016/0021-9290(95)00026-7_BIB5) 1992 Pronk (10.1016/0021-9290(95)00026-7_BIB14) 1991; 15 Van der Helm (10.1016/0021-9290(95)00026-7_BIB17) 1994; 27 Cerquiglini (10.1016/0021-9290(95)00026-7_BIB3) 1981 Veeger (10.1016/0021-9290(95)00026-7_BIB21) 1992; 64 Veeger (10.1016/0021-9290(95)00026-7_BIB23) 1991; 24 Jonker (10.1016/0021-9290(95)00026-7_BIB8) 1988 Woude (10.1016/0021-9290(95)00026-7_BIB28) 1989 Bayley (10.1016/0021-9290(95)00026-7_BIB2) 1987; 69-A Ingen Schenau (10.1016/0021-9290(95)00026-7_BIB7) 1990 Sie (10.1016/0021-9290(95)00026-7_BIB15) 1992; 73 Veeger (10.1016/0021-9290(95)00026-7_BIB22) 1993; 8 Van der Helm (10.1016/0021-9290(95)00026-7_BIB16) 1994; 27 Pronk (10.1016/0021-9290(95)00026-7_BIB13) 1987 Van der Helm (10.1016/0021-9290(95)00026-7_BIB19) 1991; 24 Kaufman (10.1016/0021-9290(95)00026-7_BIB9) 1991; 40 Marzan (10.1016/0021-9290(95)00026-7_BIB10) 1975 Veeger (10.1016/0021-9290(95)00026-7_BIB24) 1991; 23 Veldpaus (10.1016/0021-9290(95)00026-7_BIB26) 1988; 21 Paul (10.1016/0021-9290(95)00026-7_BIB12) 1983 Van der Helm (10.1016/0021-9290(95)00026-7_BIB20) 1992; 25 An (10.1016/0021-9290(95)00026-7_BIB1) 1989; 22 Niesing (10.1016/0021-9290(95)00026-7_BIB11) 1990; 28 Werff (10.1016/0021-9290(95)00026-7_BIB27) 1983 Groot (10.1016/0021-9290(95)00026-7_BIB6) 1995 Van der Helm (10.1016/0021-9290(95)00026-7_BIB18) 1995; 117 Veeger (10.1016/0021-9290(95)00026-7_BIB25) 1992; 1 |
References_xml | – volume: 27 start-page: 527 year: 1994 end-page: 550 ident: BIB17 article-title: Analysis of the kinematic and dynamic behavior of the shoulder mechanism publication-title: J. Biomechanics – year: 1983 ident: BIB12 publication-title: Robot Manipulators: Mathematics, Programming, and Control – volume: 15 start-page: 15 year: 1991 end-page: 20 ident: BIB14 article-title: The palpator: an instrument for measuring the positions of bones in three dimensions publication-title: J. Med. Engng Technol – start-page: 410 year: 1981 end-page: 419 ident: BIB3 article-title: Biomechanics of wheelchair propulsion publication-title: Biomechanics VII-A – year: 1989 ident: BIB28 article-title: Manual wheelchair propulsion: an ergonomic perspective publication-title: Doctoral Thesis – volume: 24 start-page: 1151 year: 1991 end-page: 1163 ident: BIB19 article-title: Modelling the mechanical effect of muscles with large attachment sites: application to the shoulder mechanism publication-title: J. Biomechanics – volume: 27 start-page: 551 year: 1994 end-page: 569 ident: BIB16 article-title: A finite element musculoskeletal model of the shoulder mechanism publication-title: J. Biomechanics – volume: 1 start-page: 270 year: 1992 end-page: 280 ident: BIB25 article-title: Load on the upper extremity in manual wheelchair propulsion publication-title: J. Electr. Kinesiol. – volume: 24 start-page: 615 year: 1991 end-page: 629 ident: BIB23 article-title: Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism publication-title: J. Biomechanics – year: 1911 ident: BIB4 publication-title: Handbuch der Anatomie und Mechanik der Gelenke Teil 3 – volume: 73 start-page: 44 year: 1992 end-page: 48 ident: BIB15 article-title: Upper extremity pain in the postrehabilatation spinal cord patient publication-title: Arch. Phys. Med. Rehabil. – volume: 21 start-page: 45 year: 1988 end-page: 54 ident: BIB26 article-title: A least squares algorithm for equiform transformations from spatial marker coordinates publication-title: J. Biomechanics – volume: 23 start-page: 264 year: 1991 end-page: 271 ident: BIB24 article-title: Within-cycle characteristics of the wheelchair push in sprinting on a wheelchair ergometer publication-title: Med. Sci. Sports Exercise – volume: 25 start-page: 129 year: 1992 end-page: 144 ident: BIB20 article-title: Geometry parameters for musculoskeletal modelling of the shoulder mechanism publication-title: J. Biomechanics – volume: 8 start-page: 81 year: 1993 end-page: 90 ident: BIB22 article-title: Orientation of the scapula in a simulated wheelchair push publication-title: Clin. Biomech. – volume: 22 start-page: 1249 year: 1989 end-page: 1256 ident: BIB1 article-title: Physiological considerations of muscle force through the elbow joint publication-title: J. Biomechanics – start-page: 1070 year: 1987 end-page: 1076 ident: BIB13 article-title: Three-dimensional determination of the position of the shoulder girdle during humerus elevation publication-title: Proc. 11th ISB-Congr., Biomechanics XI-B – volume: 28 start-page: 329 year: 1990 end-page: 338 ident: BIB11 article-title: Computer-controlled wheelchair ergometer publication-title: Med. Biol. Engng Comp. – year: 1995 ident: BIB6 article-title: Velocity effects on the scapulo-humeral rhythm publication-title: Clin. Biomechanics – volume: 117 start-page: 27 year: 1995 end-page: 40 ident: BIB18 article-title: Three-dimensional recording and description of motions of the shoulder mechanism publication-title: J. Biomech. Engng – volume: 69-A start-page: 676 year: 1987 end-page: 678 ident: BIB2 article-title: The weight-bearing shoulder publication-title: J. Bone Jt Surg – start-page: 420 year: 1975 end-page: 476 ident: BIB10 article-title: A computer program for direct linear transformation solution of the colinearity condition, and some applications of it publication-title: Proc. Symp. Close-Range Photogrammetric Systems – start-page: 639 year: 1990 end-page: 652 ident: BIB7 article-title: The unique action of bi-articular muscles in leg extensions publication-title: Multiple Muscle Systems: Biomechanics and Movement Organisation – volume: 40 start-page: 781 year: 1991 end-page: 792 ident: BIB9 article-title: Physiological prediction of muscle forces-I. Theoretical formulation publication-title: Neuroscience – start-page: 381 year: 1983 end-page: 400 ident: BIB27 article-title: Dynamics of flexible mechanisms publication-title: Proc. NATO Advanced Study Inst. on computer Aided Analysis and Optimization of Mechanical System dynamics – start-page: 78 year: 1992 ident: BIB5 article-title: The effect of the direction of arm force on muscle forces and the configuration of the shoulder mechanism publication-title: Proc. 8th Meeting Eur. Soc. Biomechanics – volume: 64 start-page: 158 year: 1992 end-page: 164 ident: BIB21 article-title: Difference in performance between trained and untrained subjects during a 30 seconds sprint test on a wheelchair ergometer publication-title: Eur. J. appl. Physiol. – year: 1988 ident: BIB8 article-title: A finite element dynamic analysis of flexible spatial mechanisms and manipulators publication-title: Doctoral thesis – volume: 28 start-page: 329 year: 1990 ident: 10.1016/0021-9290(95)00026-7_BIB11 article-title: Computer-controlled wheelchair ergometer publication-title: Med. Biol. Engng Comp. doi: 10.1007/BF02446151 – year: 1911 ident: 10.1016/0021-9290(95)00026-7_BIB4 – volume: 117 start-page: 27 year: 1995 ident: 10.1016/0021-9290(95)00026-7_BIB18 article-title: Three-dimensional recording and description of motions of the shoulder mechanism publication-title: J. Biomech. Engng doi: 10.1115/1.2792267 – volume: 23 start-page: 264 issue: 2 year: 1991 ident: 10.1016/0021-9290(95)00026-7_BIB24 article-title: Within-cycle characteristics of the wheelchair push in sprinting on a wheelchair ergometer publication-title: Med. Sci. Sports Exercise doi: 10.1249/00005768-199102000-00019 – volume: 73 start-page: 44 year: 1992 ident: 10.1016/0021-9290(95)00026-7_BIB15 article-title: Upper extremity pain in the postrehabilatation spinal cord patient publication-title: Arch. Phys. Med. Rehabil. – volume: 1 start-page: 270 issue: 4 year: 1992 ident: 10.1016/0021-9290(95)00026-7_BIB25 article-title: Load on the upper extremity in manual wheelchair propulsion publication-title: J. Electr. Kinesiol. doi: 10.1016/1050-6411(91)90014-V – year: 1983 ident: 10.1016/0021-9290(95)00026-7_BIB12 – volume: 22 start-page: 1249 year: 1989 ident: 10.1016/0021-9290(95)00026-7_BIB1 article-title: Physiological considerations of muscle force through the elbow joint publication-title: J. Biomechanics doi: 10.1016/0021-9290(89)90227-3 – volume: 24 start-page: 1151 issue: 12 year: 1991 ident: 10.1016/0021-9290(95)00026-7_BIB19 article-title: Modelling the mechanical effect of muscles with large attachment sites: application to the shoulder mechanism publication-title: J. Biomechanics doi: 10.1016/0021-9290(91)90007-A – volume: 27 start-page: 527 issue: 5 year: 1994 ident: 10.1016/0021-9290(95)00026-7_BIB17 article-title: Analysis of the kinematic and dynamic behavior of the shoulder mechanism publication-title: J. Biomechanics doi: 10.1016/0021-9290(94)90064-7 – volume: 64 start-page: 158 year: 1992 ident: 10.1016/0021-9290(95)00026-7_BIB21 article-title: Difference in performance between trained and untrained subjects during a 30 seconds sprint test on a wheelchair ergometer publication-title: Eur. J. appl. Physiol. doi: 10.1007/BF00717954 – volume: 27 start-page: 551 issue: 5 year: 1994 ident: 10.1016/0021-9290(95)00026-7_BIB16 article-title: A finite element musculoskeletal model of the shoulder mechanism publication-title: J. Biomechanics doi: 10.1016/0021-9290(94)90065-5 – volume: 8 start-page: 81 year: 1993 ident: 10.1016/0021-9290(95)00026-7_BIB22 article-title: Orientation of the scapula in a simulated wheelchair push publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(93)90037-I – volume: 24 start-page: 615 issue: 7 year: 1991 ident: 10.1016/0021-9290(95)00026-7_BIB23 article-title: Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism publication-title: J. Biomechanics doi: 10.1016/0021-9290(91)90294-W – year: 1995 ident: 10.1016/0021-9290(95)00026-7_BIB6 article-title: Velocity effects on the scapulo-humeral rhythm publication-title: Clin. Biomechanics – year: 1988 ident: 10.1016/0021-9290(95)00026-7_BIB8 article-title: A finite element dynamic analysis of flexible spatial mechanisms and manipulators – start-page: 78 year: 1992 ident: 10.1016/0021-9290(95)00026-7_BIB5 article-title: The effect of the direction of arm force on muscle forces and the configuration of the shoulder mechanism – volume: 15 start-page: 15 issue: 1 year: 1991 ident: 10.1016/0021-9290(95)00026-7_BIB14 article-title: The palpator: an instrument for measuring the positions of bones in three dimensions publication-title: J. Med. Engng Technol doi: 10.3109/03091909109015443 – start-page: 410 year: 1981 ident: 10.1016/0021-9290(95)00026-7_BIB3 article-title: Biomechanics of wheelchair propulsion – start-page: 381 year: 1983 ident: 10.1016/0021-9290(95)00026-7_BIB27 article-title: Dynamics of flexible mechanisms – volume: 40 start-page: 781 issue: 3 year: 1991 ident: 10.1016/0021-9290(95)00026-7_BIB9 article-title: Physiological prediction of muscle forces-I. Theoretical formulation publication-title: Neuroscience doi: 10.1016/0306-4522(91)90012-D – year: 1989 ident: 10.1016/0021-9290(95)00026-7_BIB28 article-title: Manual wheelchair propulsion: an ergonomic perspective – volume: 25 start-page: 129 issue: 2 year: 1992 ident: 10.1016/0021-9290(95)00026-7_BIB20 article-title: Geometry parameters for musculoskeletal modelling of the shoulder mechanism publication-title: J. Biomechanics doi: 10.1016/0021-9290(92)90270-B – start-page: 420 year: 1975 ident: 10.1016/0021-9290(95)00026-7_BIB10 article-title: A computer program for direct linear transformation solution of the colinearity condition, and some applications of it – volume: 69-A start-page: 676 year: 1987 ident: 10.1016/0021-9290(95)00026-7_BIB2 article-title: The weight-bearing shoulder publication-title: J. Bone Jt Surg doi: 10.2106/00004623-198769050-00006 – volume: 21 start-page: 45 year: 1988 ident: 10.1016/0021-9290(95)00026-7_BIB26 article-title: A least squares algorithm for equiform transformations from spatial marker coordinates publication-title: J. Biomechanics doi: 10.1016/0021-9290(88)90190-X – start-page: 639 year: 1990 ident: 10.1016/0021-9290(95)00026-7_BIB7 article-title: The unique action of bi-articular muscles in leg extensions – start-page: 1070 year: 1987 ident: 10.1016/0021-9290(95)00026-7_BIB13 article-title: Three-dimensional determination of the position of the shoulder girdle during humerus elevation |
SSID | ssj0007479 |
Score | 1.763159 |
Snippet | During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 39 |
SubjectTerms | Adult Arm - physiology Biomechanical Phenomena Electromyography Ergometry Hand - physiology Humans Load Male Mechanical Modelling Models, Biological Movement Muscle Contraction Muscle force Muscle, Skeletal - physiology Pectoralis Muscles - physiology Rotation Scapula - physiology Shoulder Shoulder - physiology Shoulder Joint - physiology Signal Processing, Computer-Assisted Stress, Mechanical Thorax - physiology Wheelchair Wheelchairs |
Title | Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion |
URI | https://dx.doi.org/10.1016/0021-9290(95)00026-7 https://www.ncbi.nlm.nih.gov/pubmed/8839016 https://www.proquest.com/docview/78398009 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7ygJAeSrNJyKZtokMpzUFZvyTZx6UkbFoSKDSQSxCyVmYNWe-y3qXkkt-eGVte0kMI5OKD8MhGM5r5NJoHwDfn4rGRRcILZQOekBgbFwou08Ci-TFJ0fSMvL6Ro9vk1524e5ELQ2GVXve3Or3R1n5k4FdzMC9LyuNGdJIhRKBdLdUmbEdxJlGyt4dXv0c3a32MgNkHeoScCLoEulAO1mM_MnHWTMPVawbqNQDaGKLLT_DRI0g2bH9yDzZc1YP9YYWn5-kj-86amM7GWd6DDy_KDfZg59pfpO_D_Z-VqUtO6USlZcZXJmGzgk1XNU7LEMuiBmFlxRAhsnpCnbDdgk0dZQqX9ZS1-Y3s38S5BxwrF2zeNAMj79sB3F5e_P054r7TArcIp5YIsVUurRgrZW3iUhdLOucEMrJRnIu0UHj-DmIVRbkcZ_igCjVxlAkjQ5MGhYgPYauaVe4ImMyRFNWAQc4koZVpYnBZhVSJs4EReR_ibnm19WXIqRvGg-7izYgpmpiiM6EbpmjVB76mmrdlON54X3Wc0_-Jk0ZL8QblacdojTuNrk9M5WarWivEkgivsz4ctvxf_0makudIHr_7o59ht40GJ9fOF9haLlbuK4KdZX4Cm-dP4YmX6WdLEPXV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5BkXgcEKRUhFd9QAgOJvvwY_dYIaoATSWkVuoFWV7Hq67UbKJsIsSF386M1xvKoarEZQ-W7bU8npnP43kAvPU-n1tVC15rl3BBx9j6VHJVJA7VjxV1qBk5O1XTc_H1Ql5ci4Uht8oo-3uZHqR1bJnE3ZysmobiuBGdlAgRiKuVvgv3BHIvMefH33_dPBAuRzePlFP3IXwuVZNd2_tSfgiTcH2TeroJfgY1dPwEHkf8yI76JT6FO74dwf5Ri3fnxS_2jgWPzmAqH8Gja8kGR3B_Fp_R9-HH963tGk7BRI1jNuYlYcuaLbYdTssQyaL8YE3LEB-y7pLqYPs1W3iKE266BeujG9nPS--vsK1Zs1UoBUa2t2dwfvz57NOUxzoL3CGY2iDA1pVycq61c8IXPld0y0lU5rK8kkWt8fad5DrLKjUv8UP5afKslFaltkhqmR_AXrts_XNgqsKhKAQs0kWkThXC4rZKpYV3iZXVGPJhe42LScipFsaVGbzNiCiGiGJKaQJRjB4D341a9Uk4bumvB8qZfw6TQT1xy8jDgdAG-YweT2zrl9vOaESSCK7LMRz09N-tpCjIbqRe_PdPD-HB9Gx2Yk6-nH57CQ97v3Ay8ryCvc16618j7NlUb8K5_gM8ifaZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-static+analysis+of+muscle+forces+in+the+shoulder+mechanism+during+wheelchair+propulsion&rft.jtitle=Journal+of+biomechanics&rft.au=van+der+Helm%2C+F.C.T.&rft.au=Veeger%2C+H.E.J.&rft.date=1996&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=29&rft.issue=1&rft.spage=39&rft.epage=52&rft_id=info:doi/10.1016%2F0021-9290%2895%2900026-7&rft.externalDocID=0021929095000267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |