Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion

During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large magni...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 29; no. 1; pp. 39 - 52
Main Authors van der Helm, F.C.T., Veeger, H.E.J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 1996
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large magnitude of muscle activity will be needed to stabilize the shoulder. In addition, the muscular requirements for the minimization of negative power are assumed to be of importance. For such an analysis an inverse dynamic model is required. To utilize an inverse dynamic model of the shoulder mechanism, the trajectories of the upper extremity bones are needed. Since at this stage, dynamic non-invasive measurement techniques of scapular motion are not available, the aim of this study was to record the three-dimensional position of the scapula in static situations with the help of a palpation technique. Positions of the trunk, shoulder girdle and upper extremity, and the surface EMG of ten muscles were recorded simultaneously with forces on the rim on a stationary wheelchair ergometer. Four healthy male subjects participated in the experiment. Five hand positions on the rim and five different load levels per hand position were measured for each subject. A previously developed musculoskeletal model of the shoulder mechanism (Van der Helm, 1994a, J. Biomechanics (bd27)(5) 551–569) was used to calculate muscle forces in an inverse static simulation. The measured EMG and the calculated muscle forces compared well except for three muscles. The moment balance between external sources and muscles around each joint axis of the shoulder mechanism is discussed. Results of the experiment indicate that large muscle contributions are needed for joint stabilization. The experimental results on the scapular motions will, in combination with experimental data collected under dynamic conditions, be used for application of the model to dynamic situations. It is concluded that the musculoskeletal model of the shoulder mechanism can be very useful in studies to determine the contribution of muscles and the mechanical load on morphological structures.
AbstractList During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large magnitude of muscle activity will be needed to stabilize the shoulder. In addition, the muscular requirements for the minimization of negative power are assumed to be of importance. For such an analysis an inverse dynamic model is required. To utilize an inverse dynamic model of the shoulder mechanism, the trajectories of the upper extremity bones are needed. Since at this stage, dynamic non-invasive measurement techniques of scapular motion are not available, the aim of this study was to record the three-dimensional position of the scapula in static situations with the help of a palpation technique. Positions of the trunk, shoulder girdle and upper extremity, and the surface EMG of ten muscles were recorded simultaneously with forces on the rim on a stationary wheelchair ergometer. Four healthy male subjects participated in the experiment. Five hand positions on the rim and five different load levels per hand position were measured for each subject. A previously developed musculoskeletal model of the shoulder mechanism (Van der Helm, 1994a, J. Biomechanics (bd27)(5) 551–569) was used to calculate muscle forces in an inverse static simulation. The measured EMG and the calculated muscle forces compared well except for three muscles. The moment balance between external sources and muscles around each joint axis of the shoulder mechanism is discussed. Results of the experiment indicate that large muscle contributions are needed for joint stabilization. The experimental results on the scapular motions will, in combination with experimental data collected under dynamic conditions, be used for application of the model to dynamic situations. It is concluded that the musculoskeletal model of the shoulder mechanism can be very useful in studies to determine the contribution of muscles and the mechanical load on morphological structures.
During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large magnitude of muscle activity will be needed to stabilize the shoulder. In addition, the muscular requirements for the minimization of negative power are assumed to be of importance. For such an analysis an inverse dynamic model is required. To utilize an inverse dynamic model of the shoulder mechanism, the trajectories of the upper extremity bones are needed. Since at this stage, dynamic non-invasive measurement techniques of scapular motion are not available, the aim of this study was to record the three-dimensional position of the scapula in static situations with the help of a palpation technique. Positions of the trunk, shoulder girdle and upper extremity, and the surface EMG of ten muscles were recorded simultaneously with forces on the rim on a stationary wheelchair ergometer. Four healthy male subjects participated in the experiment. Five hand positions on the rim and five different load levels per hand position were measured for each subject. A previously developed musculoskeletal model of the shoulder mechanism (Van der Helm, 1994a, J. Biomechanics 27(5) 551-569) was used to calculate muscle forces in an inverse static simulation. The measured EMG and the calculated muscle forces compared well except for three muscles. The moment balance between external sources and muscles around each joint axis of the shoulder mechanism is discussed. Results of the experiment indicate that large muscle contributions are needed for joint stabilization. The experimental results on the scapular motions will, in combination with experimental data collected under dynamic conditions, be used for application of the model to dynamic situations. It is concluded that the musculoskeletal model of the shoulder mechanism can be very useful in studies to determine the contribution of muscles and the mechanical load on morphological structures.During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large magnitude of muscle activity will be needed to stabilize the shoulder. In addition, the muscular requirements for the minimization of negative power are assumed to be of importance. For such an analysis an inverse dynamic model is required. To utilize an inverse dynamic model of the shoulder mechanism, the trajectories of the upper extremity bones are needed. Since at this stage, dynamic non-invasive measurement techniques of scapular motion are not available, the aim of this study was to record the three-dimensional position of the scapula in static situations with the help of a palpation technique. Positions of the trunk, shoulder girdle and upper extremity, and the surface EMG of ten muscles were recorded simultaneously with forces on the rim on a stationary wheelchair ergometer. Four healthy male subjects participated in the experiment. Five hand positions on the rim and five different load levels per hand position were measured for each subject. A previously developed musculoskeletal model of the shoulder mechanism (Van der Helm, 1994a, J. Biomechanics 27(5) 551-569) was used to calculate muscle forces in an inverse static simulation. The measured EMG and the calculated muscle forces compared well except for three muscles. The moment balance between external sources and muscles around each joint axis of the shoulder mechanism is discussed. Results of the experiment indicate that large muscle contributions are needed for joint stabilization. The experimental results on the scapular motions will, in combination with experimental data collected under dynamic conditions, be used for application of the model to dynamic situations. It is concluded that the musculoskeletal model of the shoulder mechanism can be very useful in studies to determine the contribution of muscles and the mechanical load on morphological structures.
During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large magnitude of muscle activity will be needed to stabilize the shoulder. In addition, the muscular requirements for the minimization of negative power are assumed to be of importance. For such an analysis an inverse dynamic model is required. To utilize an inverse dynamic model of the shoulder mechanism, the trajectories of the upper extremity bones are needed. Since at this stage, dynamic non-invasive measurement techniques of scapular motion are not available, the aim of this study was to record the three-dimensional position of the scapula in static situations with the help of a palpation technique. Positions of the trunk, shoulder girdle and upper extremity, and the surface EMG of ten muscles were recorded simultaneously with forces on the rim on a stationary wheelchair ergometer. Four healthy male subjects participated in the experiment. Five hand positions on the rim and five different load levels per hand position were measured for each subject. A previously developed musculoskeletal model of the shoulder mechanism (Van der Helm, 1994a, J. Biomechanics 27(5) 551-569) was used to calculate muscle forces in an inverse static simulation. The measured EMG and the calculated muscle forces compared well except for three muscles. The moment balance between external sources and muscles around each joint axis of the shoulder mechanism is discussed. Results of the experiment indicate that large muscle contributions are needed for joint stabilization. The experimental results on the scapular motions will, in combination with experimental data collected under dynamic conditions, be used for application of the model to dynamic situations. It is concluded that the musculoskeletal model of the shoulder mechanism can be very useful in studies to determine the contribution of muscles and the mechanical load on morphological structures.
Author Veeger, H.E.J.
van der Helm, F.C.T.
Author_xml – sequence: 1
  givenname: F.C.T.
  surname: van der Helm
  fullname: van der Helm, F.C.T.
  organization: Man-machine Systems Group, Lab. for Measurement and Control, Department of Mechanical Engineering and Marine Technology. Delft University of Technology, Delft, The Netherlands
– sequence: 2
  givenname: H.E.J.
  surname: Veeger
  fullname: Veeger, H.E.J.
  organization: Faculty of Human Movement Sciences, Free University Amsterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/8839016$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1rFTEUhoNU2tvqP2ghK6mL0UxyJx8uCqX4BQUp1KWETOZMbySTXHNmlP57c72XLlzoJiE5z_uGPKfkKOUEhJy37E3LWvmWMd42hht2abrXrJ5ko56RVauVaLjQ7IisnpATcor4vUJqrcwxOdZamNqxIt_uFoehwdnNwVOXXHzEgDSPdFrQR6BjLh6QhkTnDVDc5CUOUOgEfuNSwIkOSwnpgf7aAMR6FwrdlrxdIoacXpDno4sILw_7Gfn64f39zafm9svHzzfXt41fczE3Sqle-m5Qyvs1aBBScsmY5J6LvtOjgp4zoTjv5WDq0ppOC246J1un2diJM_Jq31uf_rEAznYK6CFGlyAvaFX9rmbMVPDiAC79BIPdljC58mgPPup8vZ_7khELjE9Ey-zOut0ptTul1nT2j3WrauzdXzEfdkZzmosL8X_hq30YqqGfAYpFHyB5GEIBP9shh38X_AY2a5qI
CitedBy_id crossref_primary_10_1152_jn_00799_2004
crossref_primary_10_1016_j_jse_2014_11_040
crossref_primary_10_1590_S1809_29502009000300011
crossref_primary_10_1243_09544119JEIM731
crossref_primary_10_1016_j_clinbiomech_2011_07_011
crossref_primary_10_1016_j_jbiomech_2008_07_032
crossref_primary_10_1016_S0268_0033_99_00093_5
crossref_primary_10_1243_0954411041561027
crossref_primary_10_1016_j_jbiomech_2010_09_029
crossref_primary_10_1243_0954411001535570
crossref_primary_10_1016_j_clinbiomech_2013_03_004
crossref_primary_10_1123_jab_2017_0281
crossref_primary_10_1243_095441103770802577
crossref_primary_10_1007_s00167_007_0318_8
crossref_primary_10_2165_00007256_200131050_00005
crossref_primary_10_1097_00002060_199909000_00006
crossref_primary_10_1080_00140130310001593577
crossref_primary_10_1016_j_jbiomech_2011_02_142
crossref_primary_10_1002_ajpa_22835
crossref_primary_10_1097_01_PHM_0000150792_26793_E9
crossref_primary_10_1016_j_clinbiomech_2005_09_013
crossref_primary_10_1016_j_clinbiomech_2011_05_017
crossref_primary_10_1016_j_clinbiomech_2016_02_003
crossref_primary_10_1016_S0268_0033_02_00008_6
crossref_primary_10_1016_j_imu_2020_100415
crossref_primary_10_1123_jab_28_6_701
crossref_primary_10_1142_S0219519409002948
crossref_primary_10_1016_j_jbiomech_2019_109348
crossref_primary_10_1016_j_jse_2016_07_013
crossref_primary_10_1590_S1413_78522006000100010
crossref_primary_10_1080_10255842_2011_623675
crossref_primary_10_1243_0954411001535660
crossref_primary_10_1109_86_536770
crossref_primary_10_1016_j_jse_2007_12_010
crossref_primary_10_1016_S1297_9562_02_00003_7
crossref_primary_10_1016_S1350_4533_03_00102_4
crossref_primary_10_1038_sj_sc_3101989
crossref_primary_10_1016_j_jbiomech_2006_05_013
crossref_primary_10_1007_s11517_013_1099_5
crossref_primary_10_1016_j_jbiomech_2006_10_037
crossref_primary_10_1080_10255842_2012_719605
crossref_primary_10_1186_s40648_015_0037_8
crossref_primary_10_1098_rsta_2008_0282
crossref_primary_10_1051_matecconf_202235701001
crossref_primary_10_3938_jkps_62_648
crossref_primary_10_1053_apmr_2001_24888
crossref_primary_10_1016_S1350_4533_01_00083_2
crossref_primary_10_1142_S0219519424500520
crossref_primary_10_1589_rika_21_281
crossref_primary_10_1177_1545968308331145
crossref_primary_10_1016_j_jbiomech_2014_05_025
crossref_primary_10_1016_S0169_8141_02_00176_2
crossref_primary_10_1016_S0268_0033_99_00087_X
crossref_primary_10_1310_sci2104_313
crossref_primary_10_3390_app14178076
crossref_primary_10_1016_j_clinbiomech_2004_06_013
crossref_primary_10_1123_jab_2022_0066
crossref_primary_10_1080_0014013031000065619
crossref_primary_10_1097_00003086_199809000_00016
crossref_primary_10_1016_j_jbiomech_2003_08_005
crossref_primary_10_1016_j_jbiomech_2009_02_025
crossref_primary_10_1016_j_medengphy_2023_104003
crossref_primary_10_1016_S0268_0033_01_00029_8
crossref_primary_10_1080_14763141_2016_1216585
crossref_primary_10_1155_2018_2365983
crossref_primary_10_1016_j_clinbiomech_2019_02_002
crossref_primary_10_1123_jab_2012_0083
Cites_doi 10.1007/BF02446151
10.1115/1.2792267
10.1249/00005768-199102000-00019
10.1016/1050-6411(91)90014-V
10.1016/0021-9290(89)90227-3
10.1016/0021-9290(91)90007-A
10.1016/0021-9290(94)90064-7
10.1007/BF00717954
10.1016/0021-9290(94)90065-5
10.1016/S0268-0033(93)90037-I
10.1016/0021-9290(91)90294-W
10.3109/03091909109015443
10.1016/0306-4522(91)90012-D
10.1016/0021-9290(92)90270-B
10.2106/00004623-198769050-00006
10.1016/0021-9290(88)90190-X
ContentType Journal Article
Copyright 1995
Copyright_xml – notice: 1995
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/0021-9290(95)00026-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 52
ExternalDocumentID 8839016
10_1016_0021_9290_95_00026_7
0021929095000267
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
3V.
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AAXUO
ABBQC
ABFNM
ABJNI
ABLVK
ABMAC
ABMZM
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEVXI
AFCTW
AFFDN
AFKRA
AFKWA
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HEE
HMCUK
HMK
HMO
HVGLF
HZ~
H~9
I-F
IHE
J1W
JJJVA
KOM
LCYCR
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
MVM
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
PSQYO
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
VH1
WUQ
X7M
XOL
XPP
YCJ
YQT
Z5R
ZGI
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ALIPV
ANKPU
APXCP
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c423t-777b6c5d77cc4e8e366260062c23b58f7eb203722b6d92b619583295a61a80f53
IEDL.DBID AIKHN
ISSN 0021-9290
IngestDate Thu Jul 10 23:57:44 EDT 2025
Wed Feb 19 02:32:19 EST 2025
Tue Jul 01 02:43:45 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Fri Feb 23 02:32:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Load
Modelling
Shoulder
Muscle force
Wheelchair
Mechanical
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-777b6c5d77cc4e8e366260062c23b58f7eb203722b6d92b619583295a61a80f53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 8839016
PQID 78398009
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_78398009
pubmed_primary_8839016
crossref_primary_10_1016_0021_9290_95_00026_7
crossref_citationtrail_10_1016_0021_9290_95_00026_7
elsevier_sciencedirect_doi_10_1016_0021_9290_95_00026_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1996
1996-1-00
1996-Jan
19960101
PublicationDateYYYYMMDD 1996-01-01
PublicationDate_xml – year: 1996
  text: 1996
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 1996
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fick (BIB4) 1911
Van der Helm, Veeger, Pronk, Woude, Rozendal (BIB20) 1992; 25
Paul (BIB12) 1983
Pronk (BIB13) 1987
Van der Helm (BIB17) 1994; 27
Veeger, Van der Helm, Woude, Pronk, Rozendal (BIB23) 1991; 24
Niesing, Eijskoot, Kranse, Oude, Storm, Veeger, van der Woude, Snijders (BIB11) 1990; 28
Groot, van der Helm, Arwert (BIB5) 1992
Werff, Jonker (BIB27) 1983
Veeger, van der Helm, Rozendal (BIB22) 1993; 8
Veeger, Woude, Rozendal (BIB24) 1991; 23
Marzan, Karara (BIB10) 1975
Van der Helm, Pronk (BIB18) 1995; 117
Van der Helm (BIB16) 1994; 27
Cerquiglini, Figura, Marchetti, Ricci (BIB3) 1981
Groot, Valstar, Arwert (BIB6) 1995
Woude (BIB28) 1989
Van der Helm, Veenbaas (BIB19) 1991; 24
Pronk, Van der Helm (BIB14) 1991; 15
Sie, Waters, Adkins, Gellman (BIB15) 1992; 73
Veeger, Lute, Roeleveld, Woude (BIB21) 1992; 64
An, Kaufman, Chao (BIB1) 1989; 22
Veldpaus, Woltring, Dortmans (BIB26) 1988; 21
Veeger, Woude, Rozendal (BIB25) 1992; 1
Ingen Schenau, van Bobbert, Soest (BIB7) 1990
Jonker (BIB8) 1988
Bayley, Cochran, Sledge (BIB2) 1987; 69-A
Kaufman, An, Litchy, Chao (BIB9) 1991; 40
Fick (10.1016/0021-9290(95)00026-7_BIB4) 1911
Groot (10.1016/0021-9290(95)00026-7_BIB5) 1992
Pronk (10.1016/0021-9290(95)00026-7_BIB14) 1991; 15
Van der Helm (10.1016/0021-9290(95)00026-7_BIB17) 1994; 27
Cerquiglini (10.1016/0021-9290(95)00026-7_BIB3) 1981
Veeger (10.1016/0021-9290(95)00026-7_BIB21) 1992; 64
Veeger (10.1016/0021-9290(95)00026-7_BIB23) 1991; 24
Jonker (10.1016/0021-9290(95)00026-7_BIB8) 1988
Woude (10.1016/0021-9290(95)00026-7_BIB28) 1989
Bayley (10.1016/0021-9290(95)00026-7_BIB2) 1987; 69-A
Ingen Schenau (10.1016/0021-9290(95)00026-7_BIB7) 1990
Sie (10.1016/0021-9290(95)00026-7_BIB15) 1992; 73
Veeger (10.1016/0021-9290(95)00026-7_BIB22) 1993; 8
Van der Helm (10.1016/0021-9290(95)00026-7_BIB16) 1994; 27
Pronk (10.1016/0021-9290(95)00026-7_BIB13) 1987
Van der Helm (10.1016/0021-9290(95)00026-7_BIB19) 1991; 24
Kaufman (10.1016/0021-9290(95)00026-7_BIB9) 1991; 40
Marzan (10.1016/0021-9290(95)00026-7_BIB10) 1975
Veeger (10.1016/0021-9290(95)00026-7_BIB24) 1991; 23
Veldpaus (10.1016/0021-9290(95)00026-7_BIB26) 1988; 21
Paul (10.1016/0021-9290(95)00026-7_BIB12) 1983
Van der Helm (10.1016/0021-9290(95)00026-7_BIB20) 1992; 25
An (10.1016/0021-9290(95)00026-7_BIB1) 1989; 22
Niesing (10.1016/0021-9290(95)00026-7_BIB11) 1990; 28
Werff (10.1016/0021-9290(95)00026-7_BIB27) 1983
Groot (10.1016/0021-9290(95)00026-7_BIB6) 1995
Van der Helm (10.1016/0021-9290(95)00026-7_BIB18) 1995; 117
Veeger (10.1016/0021-9290(95)00026-7_BIB25) 1992; 1
References_xml – volume: 27
  start-page: 527
  year: 1994
  end-page: 550
  ident: BIB17
  article-title: Analysis of the kinematic and dynamic behavior of the shoulder mechanism
  publication-title: J. Biomechanics
– year: 1983
  ident: BIB12
  publication-title: Robot Manipulators: Mathematics, Programming, and Control
– volume: 15
  start-page: 15
  year: 1991
  end-page: 20
  ident: BIB14
  article-title: The palpator: an instrument for measuring the positions of bones in three dimensions
  publication-title: J. Med. Engng Technol
– start-page: 410
  year: 1981
  end-page: 419
  ident: BIB3
  article-title: Biomechanics of wheelchair propulsion
  publication-title: Biomechanics VII-A
– year: 1989
  ident: BIB28
  article-title: Manual wheelchair propulsion: an ergonomic perspective
  publication-title: Doctoral Thesis
– volume: 24
  start-page: 1151
  year: 1991
  end-page: 1163
  ident: BIB19
  article-title: Modelling the mechanical effect of muscles with large attachment sites: application to the shoulder mechanism
  publication-title: J. Biomechanics
– volume: 27
  start-page: 551
  year: 1994
  end-page: 569
  ident: BIB16
  article-title: A finite element musculoskeletal model of the shoulder mechanism
  publication-title: J. Biomechanics
– volume: 1
  start-page: 270
  year: 1992
  end-page: 280
  ident: BIB25
  article-title: Load on the upper extremity in manual wheelchair propulsion
  publication-title: J. Electr. Kinesiol.
– volume: 24
  start-page: 615
  year: 1991
  end-page: 629
  ident: BIB23
  article-title: Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism
  publication-title: J. Biomechanics
– year: 1911
  ident: BIB4
  publication-title: Handbuch der Anatomie und Mechanik der Gelenke Teil 3
– volume: 73
  start-page: 44
  year: 1992
  end-page: 48
  ident: BIB15
  article-title: Upper extremity pain in the postrehabilatation spinal cord patient
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 21
  start-page: 45
  year: 1988
  end-page: 54
  ident: BIB26
  article-title: A least squares algorithm for equiform transformations from spatial marker coordinates
  publication-title: J. Biomechanics
– volume: 23
  start-page: 264
  year: 1991
  end-page: 271
  ident: BIB24
  article-title: Within-cycle characteristics of the wheelchair push in sprinting on a wheelchair ergometer
  publication-title: Med. Sci. Sports Exercise
– volume: 25
  start-page: 129
  year: 1992
  end-page: 144
  ident: BIB20
  article-title: Geometry parameters for musculoskeletal modelling of the shoulder mechanism
  publication-title: J. Biomechanics
– volume: 8
  start-page: 81
  year: 1993
  end-page: 90
  ident: BIB22
  article-title: Orientation of the scapula in a simulated wheelchair push
  publication-title: Clin. Biomech.
– volume: 22
  start-page: 1249
  year: 1989
  end-page: 1256
  ident: BIB1
  article-title: Physiological considerations of muscle force through the elbow joint
  publication-title: J. Biomechanics
– start-page: 1070
  year: 1987
  end-page: 1076
  ident: BIB13
  article-title: Three-dimensional determination of the position of the shoulder girdle during humerus elevation
  publication-title: Proc. 11th ISB-Congr., Biomechanics XI-B
– volume: 28
  start-page: 329
  year: 1990
  end-page: 338
  ident: BIB11
  article-title: Computer-controlled wheelchair ergometer
  publication-title: Med. Biol. Engng Comp.
– year: 1995
  ident: BIB6
  article-title: Velocity effects on the scapulo-humeral rhythm
  publication-title: Clin. Biomechanics
– volume: 117
  start-page: 27
  year: 1995
  end-page: 40
  ident: BIB18
  article-title: Three-dimensional recording and description of motions of the shoulder mechanism
  publication-title: J. Biomech. Engng
– volume: 69-A
  start-page: 676
  year: 1987
  end-page: 678
  ident: BIB2
  article-title: The weight-bearing shoulder
  publication-title: J. Bone Jt Surg
– start-page: 420
  year: 1975
  end-page: 476
  ident: BIB10
  article-title: A computer program for direct linear transformation solution of the colinearity condition, and some applications of it
  publication-title: Proc. Symp. Close-Range Photogrammetric Systems
– start-page: 639
  year: 1990
  end-page: 652
  ident: BIB7
  article-title: The unique action of bi-articular muscles in leg extensions
  publication-title: Multiple Muscle Systems: Biomechanics and Movement Organisation
– volume: 40
  start-page: 781
  year: 1991
  end-page: 792
  ident: BIB9
  article-title: Physiological prediction of muscle forces-I. Theoretical formulation
  publication-title: Neuroscience
– start-page: 381
  year: 1983
  end-page: 400
  ident: BIB27
  article-title: Dynamics of flexible mechanisms
  publication-title: Proc. NATO Advanced Study Inst. on computer Aided Analysis and Optimization of Mechanical System dynamics
– start-page: 78
  year: 1992
  ident: BIB5
  article-title: The effect of the direction of arm force on muscle forces and the configuration of the shoulder mechanism
  publication-title: Proc. 8th Meeting Eur. Soc. Biomechanics
– volume: 64
  start-page: 158
  year: 1992
  end-page: 164
  ident: BIB21
  article-title: Difference in performance between trained and untrained subjects during a 30 seconds sprint test on a wheelchair ergometer
  publication-title: Eur. J. appl. Physiol.
– year: 1988
  ident: BIB8
  article-title: A finite element dynamic analysis of flexible spatial mechanisms and manipulators
  publication-title: Doctoral thesis
– volume: 28
  start-page: 329
  year: 1990
  ident: 10.1016/0021-9290(95)00026-7_BIB11
  article-title: Computer-controlled wheelchair ergometer
  publication-title: Med. Biol. Engng Comp.
  doi: 10.1007/BF02446151
– year: 1911
  ident: 10.1016/0021-9290(95)00026-7_BIB4
– volume: 117
  start-page: 27
  year: 1995
  ident: 10.1016/0021-9290(95)00026-7_BIB18
  article-title: Three-dimensional recording and description of motions of the shoulder mechanism
  publication-title: J. Biomech. Engng
  doi: 10.1115/1.2792267
– volume: 23
  start-page: 264
  issue: 2
  year: 1991
  ident: 10.1016/0021-9290(95)00026-7_BIB24
  article-title: Within-cycle characteristics of the wheelchair push in sprinting on a wheelchair ergometer
  publication-title: Med. Sci. Sports Exercise
  doi: 10.1249/00005768-199102000-00019
– volume: 73
  start-page: 44
  year: 1992
  ident: 10.1016/0021-9290(95)00026-7_BIB15
  article-title: Upper extremity pain in the postrehabilatation spinal cord patient
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 1
  start-page: 270
  issue: 4
  year: 1992
  ident: 10.1016/0021-9290(95)00026-7_BIB25
  article-title: Load on the upper extremity in manual wheelchair propulsion
  publication-title: J. Electr. Kinesiol.
  doi: 10.1016/1050-6411(91)90014-V
– year: 1983
  ident: 10.1016/0021-9290(95)00026-7_BIB12
– volume: 22
  start-page: 1249
  year: 1989
  ident: 10.1016/0021-9290(95)00026-7_BIB1
  article-title: Physiological considerations of muscle force through the elbow joint
  publication-title: J. Biomechanics
  doi: 10.1016/0021-9290(89)90227-3
– volume: 24
  start-page: 1151
  issue: 12
  year: 1991
  ident: 10.1016/0021-9290(95)00026-7_BIB19
  article-title: Modelling the mechanical effect of muscles with large attachment sites: application to the shoulder mechanism
  publication-title: J. Biomechanics
  doi: 10.1016/0021-9290(91)90007-A
– volume: 27
  start-page: 527
  issue: 5
  year: 1994
  ident: 10.1016/0021-9290(95)00026-7_BIB17
  article-title: Analysis of the kinematic and dynamic behavior of the shoulder mechanism
  publication-title: J. Biomechanics
  doi: 10.1016/0021-9290(94)90064-7
– volume: 64
  start-page: 158
  year: 1992
  ident: 10.1016/0021-9290(95)00026-7_BIB21
  article-title: Difference in performance between trained and untrained subjects during a 30 seconds sprint test on a wheelchair ergometer
  publication-title: Eur. J. appl. Physiol.
  doi: 10.1007/BF00717954
– volume: 27
  start-page: 551
  issue: 5
  year: 1994
  ident: 10.1016/0021-9290(95)00026-7_BIB16
  article-title: A finite element musculoskeletal model of the shoulder mechanism
  publication-title: J. Biomechanics
  doi: 10.1016/0021-9290(94)90065-5
– volume: 8
  start-page: 81
  year: 1993
  ident: 10.1016/0021-9290(95)00026-7_BIB22
  article-title: Orientation of the scapula in a simulated wheelchair push
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(93)90037-I
– volume: 24
  start-page: 615
  issue: 7
  year: 1991
  ident: 10.1016/0021-9290(95)00026-7_BIB23
  article-title: Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism
  publication-title: J. Biomechanics
  doi: 10.1016/0021-9290(91)90294-W
– year: 1995
  ident: 10.1016/0021-9290(95)00026-7_BIB6
  article-title: Velocity effects on the scapulo-humeral rhythm
  publication-title: Clin. Biomechanics
– year: 1988
  ident: 10.1016/0021-9290(95)00026-7_BIB8
  article-title: A finite element dynamic analysis of flexible spatial mechanisms and manipulators
– start-page: 78
  year: 1992
  ident: 10.1016/0021-9290(95)00026-7_BIB5
  article-title: The effect of the direction of arm force on muscle forces and the configuration of the shoulder mechanism
– volume: 15
  start-page: 15
  issue: 1
  year: 1991
  ident: 10.1016/0021-9290(95)00026-7_BIB14
  article-title: The palpator: an instrument for measuring the positions of bones in three dimensions
  publication-title: J. Med. Engng Technol
  doi: 10.3109/03091909109015443
– start-page: 410
  year: 1981
  ident: 10.1016/0021-9290(95)00026-7_BIB3
  article-title: Biomechanics of wheelchair propulsion
– start-page: 381
  year: 1983
  ident: 10.1016/0021-9290(95)00026-7_BIB27
  article-title: Dynamics of flexible mechanisms
– volume: 40
  start-page: 781
  issue: 3
  year: 1991
  ident: 10.1016/0021-9290(95)00026-7_BIB9
  article-title: Physiological prediction of muscle forces-I. Theoretical formulation
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(91)90012-D
– year: 1989
  ident: 10.1016/0021-9290(95)00026-7_BIB28
  article-title: Manual wheelchair propulsion: an ergonomic perspective
– volume: 25
  start-page: 129
  issue: 2
  year: 1992
  ident: 10.1016/0021-9290(95)00026-7_BIB20
  article-title: Geometry parameters for musculoskeletal modelling of the shoulder mechanism
  publication-title: J. Biomechanics
  doi: 10.1016/0021-9290(92)90270-B
– start-page: 420
  year: 1975
  ident: 10.1016/0021-9290(95)00026-7_BIB10
  article-title: A computer program for direct linear transformation solution of the colinearity condition, and some applications of it
– volume: 69-A
  start-page: 676
  year: 1987
  ident: 10.1016/0021-9290(95)00026-7_BIB2
  article-title: The weight-bearing shoulder
  publication-title: J. Bone Jt Surg
  doi: 10.2106/00004623-198769050-00006
– volume: 21
  start-page: 45
  year: 1988
  ident: 10.1016/0021-9290(95)00026-7_BIB26
  article-title: A least squares algorithm for equiform transformations from spatial marker coordinates
  publication-title: J. Biomechanics
  doi: 10.1016/0021-9290(88)90190-X
– start-page: 639
  year: 1990
  ident: 10.1016/0021-9290(95)00026-7_BIB7
  article-title: The unique action of bi-articular muscles in leg extensions
– start-page: 1070
  year: 1987
  ident: 10.1016/0021-9290(95)00026-7_BIB13
  article-title: Three-dimensional determination of the position of the shoulder girdle during humerus elevation
SSID ssj0007479
Score 1.763159
Snippet During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 39
SubjectTerms Adult
Arm - physiology
Biomechanical Phenomena
Electromyography
Ergometry
Hand - physiology
Humans
Load
Male
Mechanical
Modelling
Models, Biological
Movement
Muscle Contraction
Muscle force
Muscle, Skeletal - physiology
Pectoralis Muscles - physiology
Rotation
Scapula - physiology
Shoulder
Shoulder - physiology
Shoulder Joint - physiology
Signal Processing, Computer-Assisted
Stress, Mechanical
Thorax - physiology
Wheelchair
Wheelchairs
Title Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion
URI https://dx.doi.org/10.1016/0021-9290(95)00026-7
https://www.ncbi.nlm.nih.gov/pubmed/8839016
https://www.proquest.com/docview/78398009
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7ygJAeSrNJyKZtokMpzUFZvyTZx6UkbFoSKDSQSxCyVmYNWe-y3qXkkt-eGVte0kMI5OKD8MhGM5r5NJoHwDfn4rGRRcILZQOekBgbFwou08Ci-TFJ0fSMvL6Ro9vk1524e5ELQ2GVXve3Or3R1n5k4FdzMC9LyuNGdJIhRKBdLdUmbEdxJlGyt4dXv0c3a32MgNkHeoScCLoEulAO1mM_MnHWTMPVawbqNQDaGKLLT_DRI0g2bH9yDzZc1YP9YYWn5-kj-86amM7GWd6DDy_KDfZg59pfpO_D_Z-VqUtO6USlZcZXJmGzgk1XNU7LEMuiBmFlxRAhsnpCnbDdgk0dZQqX9ZS1-Y3s38S5BxwrF2zeNAMj79sB3F5e_P054r7TArcIp5YIsVUurRgrZW3iUhdLOucEMrJRnIu0UHj-DmIVRbkcZ_igCjVxlAkjQ5MGhYgPYauaVe4ImMyRFNWAQc4koZVpYnBZhVSJs4EReR_ibnm19WXIqRvGg-7izYgpmpiiM6EbpmjVB76mmrdlON54X3Wc0_-Jk0ZL8QblacdojTuNrk9M5WarWivEkgivsz4ctvxf_0makudIHr_7o59ht40GJ9fOF9haLlbuK4KdZX4Cm-dP4YmX6WdLEPXV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5BkXgcEKRUhFd9QAgOJvvwY_dYIaoATSWkVuoFWV7Hq67UbKJsIsSF386M1xvKoarEZQ-W7bU8npnP43kAvPU-n1tVC15rl3BBx9j6VHJVJA7VjxV1qBk5O1XTc_H1Ql5ci4Uht8oo-3uZHqR1bJnE3ZysmobiuBGdlAgRiKuVvgv3BHIvMefH33_dPBAuRzePlFP3IXwuVZNd2_tSfgiTcH2TeroJfgY1dPwEHkf8yI76JT6FO74dwf5Ri3fnxS_2jgWPzmAqH8Gja8kGR3B_Fp_R9-HH963tGk7BRI1jNuYlYcuaLbYdTssQyaL8YE3LEB-y7pLqYPs1W3iKE266BeujG9nPS--vsK1Zs1UoBUa2t2dwfvz57NOUxzoL3CGY2iDA1pVycq61c8IXPld0y0lU5rK8kkWt8fad5DrLKjUv8UP5afKslFaltkhqmR_AXrts_XNgqsKhKAQs0kWkThXC4rZKpYV3iZXVGPJhe42LScipFsaVGbzNiCiGiGJKaQJRjB4D341a9Uk4bumvB8qZfw6TQT1xy8jDgdAG-YweT2zrl9vOaESSCK7LMRz09N-tpCjIbqRe_PdPD-HB9Gx2Yk6-nH57CQ97v3Ay8ryCvc16618j7NlUb8K5_gM8ifaZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-static+analysis+of+muscle+forces+in+the+shoulder+mechanism+during+wheelchair+propulsion&rft.jtitle=Journal+of+biomechanics&rft.au=van+der+Helm%2C+F.C.T.&rft.au=Veeger%2C+H.E.J.&rft.date=1996&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=29&rft.issue=1&rft.spage=39&rft.epage=52&rft_id=info:doi/10.1016%2F0021-9290%2895%2900026-7&rft.externalDocID=0021929095000267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon