Electrochemical Advanced Oxidation Processes Using Diamond Technology: A Critical Review
Re-evaluation of conventional wastewater treatment processes is of paramount importance to improve the overall quality of our aquatic environment. Electrochemical Advanced Oxidation Processes (EAOPs) are the most promising alternative methods with application in wastewater treatment facilities since...
Saved in:
Published in | Environments (Basel, Switzerland) Vol. 10; no. 2; p. 15 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Re-evaluation of conventional wastewater treatment processes is of paramount importance to improve the overall quality of our aquatic environment. Electrochemical Advanced Oxidation Processes (EAOPs) are the most promising alternative methods with application in wastewater treatment facilities since in situ electrogenerated oxidant agents degrade and mineralize a wide range of water pollutants. Boron-doped diamond (BDD) technology has proven its excellency in the anodic oxidation (AO) of different pollutants. In this work, we describe the use of a systematic literature review (SLR) methodology and a bibliometric analysis tool for the assessment of a representative sample of work (hundreds of publications) concerning the synergism between AO using BDD technology and other oxidation methods. One section of the discussion relates to different techniques used to enhance the AO performance of BDD technology, namely persulfate radicals or ozone and photoelectrocatalysis, whereas the second one considers Fenton-based reactions. A standard synergism effect occurs between AO using BDD technology and the add-ons or the Fenton-based methods, resulting in the enhancement of the degradation and mineralization efficiencies. The future of EAOPs using BDD technology must include renewable energy sources to self-sustain the overall process, and further research on the subject is mandatory to enable the effective acceptance and application of such processes in wastewater remediation facilities. |
---|---|
AbstractList | Re-evaluation of conventional wastewater treatment processes is of paramount importance to improve the overall quality of our aquatic environment. Electrochemical Advanced Oxidation Processes (EAOPs) are the most promising alternative methods with application in wastewater treatment facilities since in situ electrogenerated oxidant agents degrade and mineralize a wide range of water pollutants. Boron-doped diamond (BDD) technology has proven its excellency in the anodic oxidation (AO) of different pollutants. In this work, we describe the use of a systematic literature review (SLR) methodology and a bibliometric analysis tool for the assessment of a representative sample of work (hundreds of publications) concerning the synergism between AO using BDD technology and other oxidation methods. One section of the discussion relates to different techniques used to enhance the AO performance of BDD technology, namely persulfate radicals or ozone and photoelectrocatalysis, whereas the second one considers Fenton-based reactions. A standard synergism effect occurs between AO using BDD technology and the add-ons or the Fenton-based methods, resulting in the enhancement of the degradation and mineralization efficiencies. The future of EAOPs using BDD technology must include renewable energy sources to self-sustain the overall process, and further research on the subject is mandatory to enable the effective acceptance and application of such processes in wastewater remediation facilities. |
Audience | Academic |
Author | Oliveira, Filipe J. Tedim, João Brosler, Priscilla Silva, Rui F. Girão, Ana V. |
Author_xml | – sequence: 1 givenname: Priscilla orcidid: 0000-0002-7925-4470 surname: Brosler fullname: Brosler, Priscilla – sequence: 2 givenname: Ana V. orcidid: 0000-0003-2699-646X surname: Girão fullname: Girão, Ana V. – sequence: 3 givenname: Rui F. orcidid: 0000-0002-2584-1792 surname: Silva fullname: Silva, Rui F. – sequence: 4 givenname: João orcidid: 0000-0002-7584-4641 surname: Tedim fullname: Tedim, João – sequence: 5 givenname: Filipe J. surname: Oliveira fullname: Oliveira, Filipe J. |
BookMark | eNp9kctKAzEUhoMoeH0DFwNu3FRzmUkm7kq9QkGRCu6GTHKmTZlJNJlWfXvT1oUUkSwScr7vcPjPIdp13gFCpwRfMCbxJbilDd514PpIMKYYk2IHHVAs-IBRWe7-eu-jkxjneIWUTDB2gF5vWtB98HoGndWqzYZmqZwGkz1-WqN66132lMoQI8TsJVo3za6t6rwz2QT0zPnWT7-usmE2CrZfd3iGpYWPY7TXqDbCyc99hF5ubyaj-8H48e5hNBwPdE5ZPxC8ZkXNi7rAtC6F0CUxYArOJau5pEbqJlV5rnJcitxII5u8UJQ0OVdFrWt2hM43fd-Cf19A7KvORg1tqxz4RaxoWQpOCMVlQs-20LlfBJemq6gQMpcUU5Koiw01VS1U1jW-D0qnY1YJpewbm_6HIo0viRQiCVcbQQcfY4Cm0rZfJ5dE21YEV6tFVX8tKsn5lvwWbKfC1__aN4EAnSk |
CitedBy_id | crossref_primary_10_1021_acsomega_3c09749 crossref_primary_10_1016_j_diamond_2023_110595 crossref_primary_10_1016_j_jece_2024_112693 crossref_primary_10_1016_j_watres_2024_123026 crossref_primary_10_3390_pr12112486 crossref_primary_10_1016_j_mseb_2024_117560 crossref_primary_10_1016_j_matchemphys_2024_129509 crossref_primary_10_1016_j_coelec_2024_101504 crossref_primary_10_1007_s10311_023_01693_0 crossref_primary_10_1016_j_geogeo_2023_100210 crossref_primary_10_1038_s41598_024_81403_0 crossref_primary_10_3390_environments11110236 crossref_primary_10_1016_j_apmt_2023_101983 crossref_primary_10_1039_D4RA07657E crossref_primary_10_1186_s12995_025_00448_7 crossref_primary_10_1016_j_chemosphere_2024_141519 crossref_primary_10_1016_j_diamond_2025_111964 crossref_primary_10_1016_j_trac_2025_118178 |
Cites_doi | 10.1007/s11192-009-0146-3 10.1016/j.watres.2022.118846 10.1016/S0043-1354(02)00570-5 10.1016/j.chemosphere.2014.07.067 10.1039/C4RA13734E 10.1016/j.seppur.2018.04.021 10.1016/B978-0-12-813160-2.00014-6 10.1016/j.cattod.2016.04.030 10.1016/j.coelec.2018.07.010 10.1016/j.chemosphere.2020.129480 10.1016/S0013-4686(01)00630-2 10.1016/j.cej.2016.06.098 10.1016/j.jenvman.2018.01.022 10.1002/9781118062364.ch13 10.1016/j.seppur.2022.122080 10.1016/j.cossms.2021.100935 10.1039/CT8946500899 10.1023/A:1022892230969 10.3390/nano11071804 10.1063/1.1662389 10.1016/j.chemosphere.2018.07.043 10.1016/j.elecom.2006.02.013 10.1016/j.electacta.2008.07.014 10.1016/j.apcatb.2008.09.017 10.1002/smtd.202000257 10.1021/es00039a010 10.1103/PhysRevLett.66.2010 10.1252/jcej.19.513 10.1061/(ASCE)HZ.2153-5515.0000584 10.1016/j.seppur.2014.06.009 10.1016/j.apcatb.2018.09.045 10.2166/ws.2022.029 10.1016/j.chemosphere.2011.12.011 10.1039/C9RA10318J 10.1021/es980969b 10.1016/j.chemosphere.2021.130488 10.1039/C4CP04022H 10.1016/j.electacta.2018.10.097 10.1016/j.jenvman.2018.07.065 10.1016/j.apcatb.2015.09.014 10.1016/j.watres.2016.02.045 10.1016/j.catcom.2010.08.013 10.1016/j.cej.2017.04.040 10.1021/es802748c 10.1016/j.cej.2016.07.012 10.1016/j.jhazmat.2004.08.009 10.1007/s12678-022-00724-8 10.1080/10643380500326564 10.1016/j.chemosphere.2016.11.134 10.1016/j.chemosphere.2021.131579 10.1016/S0925-9635(96)00593-6 10.1155/2013/128248 10.3390/catal12070711 10.1007/s11356-020-11421-8 10.1016/j.jenvman.2007.10.010 10.4265/bio.13.119 10.1007/s10854-014-2498-6 10.1016/j.cej.2014.03.084 10.1016/j.apcatb.2015.07.038 10.1002/celc.201801651 10.1149/1945-7111/ac3ff4 10.1016/j.jhazmat.2017.12.015 10.1016/j.cej.2010.03.043 10.1016/j.apsusc.2016.03.045 10.1016/j.cep.2020.108244 10.1080/10643389.2013.829765 10.1016/j.cej.2022.137114 10.1016/j.watres.2009.09.060 10.1016/j.cej.2014.09.100 10.1007/s10311-020-01014-9 10.1016/j.electacta.2004.05.006 10.1002/celc.201801876 10.1016/j.psep.2010.11.003 10.1002/adma.19940060511 10.3390/pr9091482 10.1016/j.watres.2015.05.036 10.1039/C7CS00757D 10.1016/j.apcatb.2019.04.060 10.1016/S0304-3894(01)00301-6 10.1016/j.apcatb.2006.04.020 10.1016/j.cplett.2012.04.051 10.1016/j.jelechem.2019.05.011 10.1016/j.chemosphere.2020.126499 10.7150/ntno.24793 10.1179/174328007X160245 10.1016/j.chemosphere.2010.08.032 10.1007/s10311-011-0337-z 10.1016/j.chemosphere.2013.10.044 10.1016/j.jelechem.2015.03.032 10.1021/acs.est.6b02057 10.1149/2.027307jes 10.1088/0953-8984/21/36/364221 10.1039/b910206j 10.1016/j.chemosphere.2007.12.029 10.1016/j.apcatb.2008.04.016 10.1016/j.envres.2022.113362 10.1016/j.cej.2013.11.087 10.1016/j.scib.2017.03.009 10.1016/j.jece.2020.103997 10.1021/cr5001892 10.1016/j.apcatb.2019.117902 10.1007/s12678-013-0135-4 10.5772/51945 10.1002/celc.201801732 10.3390/molecules27165218 10.1016/j.apcatb.2009.01.022 10.1016/j.cep.2018.04.010 10.1016/j.cej.2019.122417 10.1149/2.1281805jes 10.3389/fvets.2020.00314 10.20450/mjcce.2014.407 10.1021/cr9001319 10.1002/celc.201801741 10.1016/S0926-3373(97)00059-3 10.1016/S0920-5861(99)00102-9 10.1016/j.watres.2008.12.044 10.1166/nnl.2019.3001 10.1016/j.jelechem.2021.115492 10.1016/j.coelec.2020.100678 10.1007/s41348-021-00524-0 10.1016/j.cej.2017.03.084 10.1016/j.jphotochem.2009.01.014 10.1021/cr900136g 10.1016/j.apcatb.2017.10.060 10.1016/j.watres.2020.116783 10.1021/es0498787 10.1039/C9TA07491K 10.1016/j.apcatb.2016.08.037 10.1016/j.cattod.2007.06.049 10.1039/D2SC04019K 10.1080/01919518708552148 10.1149/1.1838643 10.1016/j.jhazmat.2014.10.003 10.1023/A:1024084924058 10.1080/19443994.2015.1043490 10.1016/j.cej.2010.04.060 10.1149/1.1836528 10.1021/acsami.6b01929 10.1016/j.diamond.2013.09.001 10.1002/smll.201900153 10.1007/s11356-014-2783-1 10.1149/1.2206009 10.1021/acs.est.5b02705 10.1007/698_2017_37 10.1016/j.jenvman.2020.111597 10.1016/j.jelechem.2019.04.022 10.1016/j.jece.2021.106369 10.1016/j.jelechem.2018.10.049 10.1016/j.chemosphere.2021.130010 10.1016/j.electacta.2019.135373 10.1016/j.seppur.2018.11.056 10.1007/s11356-021-16389-7 10.5796/electrochemistry.81.627 10.1016/j.biortech.2007.12.034 10.1016/j.resconrec.2021.106037 10.1149/1.2059343 10.2166/wst.2004.0264 10.1016/j.apcatb.2011.12.026 10.1016/j.electacta.2004.01.083 10.1007/s10800-018-1218-y 10.1007/s11356-014-2772-4 10.1016/j.apcatb.2019.01.029 10.1016/j.chemosphere.2018.02.001 10.1016/j.jenvman.2011.09.012 10.1002/jctb.1873 10.1016/j.chemosphere.2008.11.050 10.1021/acs.est.8b02740 10.1016/j.electacta.2012.10.069 10.1016/j.jcis.2016.10.013 10.1016/S1872-2067(21)63910-4 10.1016/j.diamond.2004.06.016 10.1002/9781118062364 10.1016/j.cossms.2021.100925 10.1016/j.jhazmat.2010.11.011 10.1016/j.watres.2021.117234 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY 7S9 L.6 |
DOI | 10.3390/environments10020015 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Environmental Science Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2076-3298 |
ExternalDocumentID | A742391977 10_3390_environments10020015 |
GeographicLocations | Portugal |
GeographicLocations_xml | – name: Portugal |
GroupedDBID | 5VS 7XC 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION EDH HCIFZ IAO ITC KQ8 MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PYCSY PMFND ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c423t-76b35b65b502b877c81ded56693b692d9cfb6564a40874d9d9f45a21f46a5bcb3 |
IEDL.DBID | BENPR |
ISSN | 2076-3298 |
IngestDate | Fri Jul 11 03:05:43 EDT 2025 Mon Jun 30 07:31:29 EDT 2025 Tue Jun 10 21:22:26 EDT 2025 Tue Jul 01 03:41:34 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-76b35b65b502b877c81ded56693b692d9cfb6564a40874d9d9f45a21f46a5bcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2584-1792 0000-0002-7925-4470 0000-0002-7584-4641 0000-0003-2699-646X |
OpenAccessLink | https://www.proquest.com/docview/2779492021?pq-origsite=%requestingapplication% |
PQID | 2779492021 |
PQPubID | 2055416 |
ParticipantIDs | proquest_miscellaneous_2887611208 proquest_journals_2779492021 gale_infotracacademiconefile_A742391977 crossref_citationtrail_10_3390_environments10020015 crossref_primary_10_3390_environments10020015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Environments (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Glaze (ref_23) 1987; 9 Kajihara (ref_42) 1991; 66 Souza (ref_100) 2016; 180 Bandala (ref_161) 2021; 895 Kraft (ref_87) 2006; 5 Balmer (ref_36) 2009; 21 Hurwitz (ref_98) 2014; 240 Llanos (ref_157) 2019; 208 Cai (ref_70) 2019; 257 ref_132 Macpherson (ref_41) 2015; 17 Brillas (ref_129) 2009; 109 Yang (ref_37) 2019; 48 Keller (ref_50) 2015; 283 Zhao (ref_115) 2010; 12 Daud (ref_1) 2011; 89 Rodrigo (ref_60) 2015; 166–167 Przyjazny (ref_78) 2018; 128 Zhou (ref_140) 2017; Volume 61 Cotillas (ref_103) 2018; 199 Luong (ref_30) 2009; 134 Chen (ref_65) 2018; 210 Yu (ref_117) 2012; 539–540 Li (ref_71) 2020; 8 Kim (ref_11) 2011; 186 Han (ref_120) 2017; 62 Thiam (ref_137) 2018; 224 Sopaj (ref_47) 2015; 262 ref_126 Mousset (ref_113) 2020; 18 Jian (ref_121) 2020; 4 Dickhout (ref_9) 2017; 487 Murati (ref_151) 2014; 33 Brillas (ref_21) 2009; 87 Flox (ref_183) 2007; 129 Wang (ref_81) 2013; 2013 Ramesham (ref_34) 1997; 6 (ref_170) 2021; 159 Brillas (ref_58) 2014; 25 Choi (ref_91) 2016; 57 Ferro (ref_26) 2004; 49 Liu (ref_94) 2021; 9 Mollah (ref_7) 2004; 114 Fryda (ref_25) 2004; 49 Samet (ref_48) 2010; 161 Bennedsen (ref_59) 2012; 86 Fernandes (ref_168) 2021; 275 Machado (ref_173) 2022; 13 He (ref_44) 2019; 212 Boczkaj (ref_79) 2017; 320 Nidheesh (ref_131) 2014; 132 Gargouri (ref_2) 2014; 117 Ganiyu (ref_148) 2019; 6 Flox (ref_147) 2009; 74 Ye (ref_179) 2019; 247 Schneider (ref_108) 2014; 114 Wee (ref_135) 2019; 6 Koparal (ref_136) 2009; 89 ref_77 ref_76 Coria (ref_174) 2016; 304 Lu (ref_75) 2022; 302 Oturan (ref_152) 2014; 21 Feijoo (ref_74) 2022; 446 ref_156 Cornejo (ref_185) 2021; 25 Hurwitz (ref_99) 2014; 249 Panizza (ref_22) 2009; 109 Mousset (ref_187) 2021; 200 Oturan (ref_19) 2014; 44 Brillas (ref_160) 2013; 4 Shokrollahzadeh (ref_3) 2008; 99 Suzuki (ref_122) 2020; 10 Flox (ref_46) 2006; 67 Park (ref_85) 2005; 8 Reyes (ref_158) 2010; 160 Saeed (ref_110) 2022; 29 (ref_52) 2018; 2 Radjenovic (ref_62) 2016; 94 Wood (ref_95) 2021; 168 Waltman (ref_56) 2010; 84 Li (ref_96) 2022; 22 Paz (ref_186) 2009; 90 ref_80 MacKenzie (ref_53) 2012; 1 Park (ref_92) 2019; 11 Thompson (ref_16) 2022; 13 Wang (ref_145) 2008; 84 Poferl (ref_40) 1973; 44 Brillas (ref_57) 2014; 58 Salazar (ref_176) 2012; 115–116 Mena (ref_104) 2019; 372 Wang (ref_116) 2011; 13 Shin (ref_69) 2019; 254 Ochiai (ref_107) 2010; 44 Yang (ref_72) 2020; 252 Gozzi (ref_171) 2019; 6 Moreira (ref_180) 2016; 182 Zheng (ref_124) 2021; 190 Skoumal (ref_166) 2008; 71 Michaud (ref_83) 2003; 33 Tirado (ref_169) 2018; 48 Liu (ref_15) 2018; 52 Panizza (ref_27) 2018; 11 Nidheesh (ref_29) 2019; 6 Kitaori (ref_89) 2013; 81 Arfanis (ref_5) 2017; 310 Truc (ref_10) 2021; 25 Dong (ref_111) 2015; 5 Pignatello (ref_141) 1999; 33 Brillas (ref_128) 1996; 143 ref_55 Cornejo (ref_184) 2020; 331 Alcaide (ref_167) 2020; 379 Dirany (ref_150) 2010; 81 Diban (ref_49) 2017; 322 Rodrigo (ref_102) 2018; 165 Park (ref_84) 2003; 39 Kanfra (ref_93) 2021; 128 Verma (ref_6) 2012; 93 Cai (ref_66) 2019; 15 Das (ref_39) 2007; 52 Oriol (ref_178) 2021; 28 Andreozzi (ref_164) 1999; 53 Chen (ref_13) 2022; 178 Anglada (ref_51) 2009; 43 Gao (ref_118) 2015; 26 Plakas (ref_175) 2019; 242 Ternes (ref_17) 2003; 37 Moreira (ref_181) 2015; 81 Clematis (ref_177) 2021; 270 Zhang (ref_114) 2009; 207 ref_64 Katsuki (ref_82) 1998; 145 Wang (ref_112) 2022; 43 Brillas (ref_143) 1998; 16 Brillas (ref_146) 2004; 49 Sun (ref_163) 1993; 27 Comninellis (ref_28) 2008; 83 Souza (ref_101) 2017; 280 Reyes (ref_162) 2014; 97 Swain (ref_35) 2019; 141 (ref_133) 2018; 213 Brennan (ref_54) 2020; 7 Honda (ref_90) 2013; 40 Sires (ref_20) 2014; 21 Sudoh (ref_139) 1986; 19 Masomboon (ref_144) 2008; 17 Heberle (ref_68) 2019; 844 Vahid (ref_97) 2013; 88 Carrera (ref_125) 2022; 212 Steter (ref_172) 2018; 224 Fan (ref_119) 2016; 8 Zhou (ref_32) 2016; 377 Arihara (ref_86) 2006; 9 Koparal (ref_12) 2002; 89 Meng (ref_8) 2009; 43 Haenen (ref_43) 2004; 13 Bocos (ref_130) 2016; 50 ref_38 Klidi (ref_149) 2019; 841 Navarro (ref_67) 2019; 832 Sekido (ref_88) 2008; 13 Skoumal (ref_155) 2009; 54 Ibanez (ref_159) 2013; 160 Souza (ref_105) 2021; 279 Fenton (ref_127) 1894; 65 Pinheiro (ref_154) 2019; 295 Bu (ref_63) 2017; 168 ref_106 Oturan (ref_138) 2021; 25 Casado (ref_165) 2005; 39 Farhat (ref_61) 2015; 49 ref_109 Chen (ref_14) 2022; 221 Debut (ref_123) 2021; 278 Moreira (ref_24) 2017; 202 Pignatello (ref_142) 2006; 36 Nashat (ref_73) 2022; 286 Oturan (ref_153) 2012; 10 Swain (ref_33) 1994; 6 Angus (ref_31) 1999; 9 Ganiyu (ref_18) 2021; 27 Su (ref_134) 2019; 7 ref_4 Iniesta (ref_45) 2001; 46 Antonin (ref_182) 2015; 747 |
References_xml | – volume: 84 start-page: 523 year: 2010 ident: ref_56 article-title: Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping publication-title: Scientometrics doi: 10.1007/s11192-009-0146-3 – volume: 221 start-page: 118846 year: 2022 ident: ref_14 article-title: Emerging Electrochemical Techniques for Identifying and Removing Micro/Nanoplastics in Urban Waters publication-title: Water Res. doi: 10.1016/j.watres.2022.118846 – volume: 37 start-page: 1976 year: 2003 ident: ref_17 article-title: Ozonation: A Tool for Removal of Pharmaceuticals, Contrast Media and Musk Fragrances from Wastewater? publication-title: Water Res. doi: 10.1016/S0043-1354(02)00570-5 – volume: 117 start-page: 309 year: 2014 ident: ref_2 article-title: Application of Electrochemical Technology for Removing Petroleum Hydrocarbons from Produced Water Using Lead Dioxide and Boron-Doped Diamond Electrodes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.07.067 – volume: 5 start-page: 14610 year: 2015 ident: ref_111 article-title: Recent Developments in Heterogeneous Photocatalytic Water Treatment Using Visible Light-Responsive Photocatalysts: A Review publication-title: RSC Adv. doi: 10.1039/C4RA13734E – volume: 208 start-page: 123 year: 2019 ident: ref_157 article-title: On the Design of a Jet-Aerated Microfluidic Flow-through Reactor for Wastewater Treatment by Electro-Fenton publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.04.021 – ident: ref_77 doi: 10.1016/B978-0-12-813160-2.00014-6 – volume: 280 start-page: 192 year: 2017 ident: ref_101 article-title: Applicability of Electrochemical Oxidation Using Diamond Anodes to the Treatment of a Sulfonylurea Herbicide publication-title: Catal. Today doi: 10.1016/j.cattod.2016.04.030 – volume: 11 start-page: 62 year: 2018 ident: ref_27 article-title: Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.07.010 – volume: 270 start-page: 129480 year: 2021 ident: ref_177 article-title: Electro-Fenton, Solar Photoelectro-Fenton and UVA Photoelectro-Fenton: Degradation of Erythrosine B Dye Solution publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129480 – ident: ref_132 – volume: 9 start-page: 175 year: 1999 ident: ref_31 article-title: Conducting Diamond Electrodes: Applications in Electrochemistry publication-title: New Diam. Front. Carbon Technol. – volume: 46 start-page: 3573 year: 2001 ident: ref_45 article-title: Electrochemical Oxidation of Phenol at Boron-Doped Diamond Electrode publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(01)00630-2 – volume: 310 start-page: 525 year: 2017 ident: ref_5 article-title: Photocatalytic Degradation of Salicylic Acid and Caffeine Emerging Contaminants Using Titania Nanotubes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.06.098 – volume: 25 start-page: 393 year: 2014 ident: ref_58 article-title: A review on the degradation of organic pollutants in waters by UV photoelectro-Fenton and solar photoelectro-Fenton publication-title: J. Braz. Chem. Soc. – volume: 213 start-page: 279 year: 2018 ident: ref_133 article-title: Kinetics of Acid Orange 7 Oxidation by Using Carbon Fiber and Reticulated Vitreous Carbon in an Electro-Fenton Process publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.01.022 – ident: ref_76 doi: 10.1002/9781118062364.ch13 – volume: 302 start-page: 122080 year: 2022 ident: ref_75 article-title: Manufacturing 3D Nano-Porous Architecture for Boron-Doped Diamond Film to Efficient Abatement of Organic Pollutant: Synergistic Effect of Hydroxyl Radical and Sulfate Radical publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122080 – volume: 25 start-page: 100935 year: 2021 ident: ref_185 article-title: Electrochemical Reactors Equipped with BDD Electrodes: Geometrical Aspects and Applications in Water Treatment publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2021.100935 – volume: 65 start-page: 899 year: 1894 ident: ref_127 article-title: LXXIII.—Oxidation of Tartaric Acid in Presence of Iron publication-title: J. Chem. Soc. Trans. doi: 10.1039/CT8946500899 – volume: 39 start-page: 321 year: 2003 ident: ref_84 article-title: Stable Ozone Generation by Using Boron-Doped Diamond Electrodes publication-title: Russ. J. Electrochem. doi: 10.1023/A:1022892230969 – ident: ref_109 doi: 10.3390/nano11071804 – volume: 44 start-page: 1428 year: 1973 ident: ref_40 article-title: Growth of Boron-doped Diamond Seed Crystals by Vapor Deposition publication-title: J. Appl. Phys. doi: 10.1063/1.1662389 – volume: 210 start-page: 516 year: 2018 ident: ref_65 article-title: Electrochemical Activation of Sulfate by BDD Anode in Basic Medium for Efficient Removal of Organic Pollutants publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.07.043 – ident: ref_4 – volume: 8 start-page: 65 year: 2005 ident: ref_85 article-title: Use of Boron-Doped Diamond Electrode in Ozone Generation publication-title: J. New Mater. Electrochem. Syst. – volume: 5 start-page: 883 year: 2006 ident: ref_87 article-title: Electrochemical Ozone Production Using Diamond Anodes and a Solid Polymer Electrolyte publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.02.013 – volume: 54 start-page: 2077 year: 2009 ident: ref_155 article-title: Electro-Fenton, UVA Photoelectro-Fenton and Solar Photoelectro-Fenton Degradation of the Drug Ibuprofen in Acid Aqueous Medium Using Platinum and Boron-Doped Diamond Anodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.07.014 – volume: 87 start-page: 105 year: 2009 ident: ref_21 article-title: Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: A General Review publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2008.09.017 – volume: 4 start-page: 2000257 year: 2020 ident: ref_121 article-title: Tunable Photo-Electrochemistry of Patterned TiO2/BDD Heterojunctions publication-title: Small Methods doi: 10.1002/smtd.202000257 – volume: 27 start-page: 304 year: 1993 ident: ref_163 article-title: Photochemical Reactions Involved in the Total Mineralization of 2,4-D by Iron(3+)/Hydrogen Peroxide/UV publication-title: Environ. Sci. Technol. doi: 10.1021/es00039a010 – volume: 66 start-page: 2010 year: 1991 ident: ref_42 article-title: Nitrogen and Potential n -Type Dopants in Diamond publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.2010 – volume: 19 start-page: 513 year: 1986 ident: ref_139 article-title: Oxidative Degradation of Aqueous Phenol Effluent with Electrogenerated Fenton’s Reagent publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.19.513 – volume: 25 start-page: 03120003 year: 2021 ident: ref_10 article-title: Electron Beam as an Effective Wastewater Treatment Technology in Lab-Scale Application publication-title: J. Hazard. Toxic Radioact. Waste doi: 10.1061/(ASCE)HZ.2153-5515.0000584 – volume: 132 start-page: 568 year: 2014 ident: ref_131 article-title: NaHCO3 Enhanced Rhodamine B Removal from Aqueous Solution by Graphite–Graphite Electro Fenton System publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2014.06.009 – volume: 242 start-page: 327 year: 2019 ident: ref_175 article-title: Optimization of Electrocatalytic H2O2 Production at Pilot Plant Scale for Solar-Assisted Water Treatment publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.09.045 – volume: 22 start-page: 3993 year: 2022 ident: ref_96 article-title: Ozone Water Production Using a SPE Electrolyzer Equipped with Boron Doped Diamond Electrodes publication-title: Water Supply doi: 10.2166/ws.2022.029 – volume: 1 start-page: 193 year: 2012 ident: ref_53 article-title: Systematic Reviews: What They Are, Why They Are Important, and How to Get Involved publication-title: J. Clin. Prev. Cardiol. – volume: 86 start-page: 1092 year: 2012 ident: ref_59 article-title: Influence of Chloride and Carbonates on the Reactivity of Activated Persulfate publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.12.011 – volume: 10 start-page: 1793 year: 2020 ident: ref_122 article-title: Synergetic Effect in Water Treatment with Mesoporous TiO2/BDD Hybrid Electrode publication-title: RSC Adv. doi: 10.1039/C9RA10318J – volume: 33 start-page: 1832 year: 1999 ident: ref_141 article-title: Evidence for an Additional Oxidant in the Photoassisted Fenton Reaction publication-title: Environ. Sci. Technol. doi: 10.1021/es980969b – volume: 278 start-page: 130488 year: 2021 ident: ref_123 article-title: Photoelectrocatalytic Degradation of Glyphosate on Titanium Dioxide Synthesized by Sol-Gel/Spin-Coating on Boron Doped Diamond (TiO2/BDD) as a Photoanode publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130488 – volume: 17 start-page: 2935 year: 2015 ident: ref_41 article-title: A Practical Guide to Using Boron Doped Diamond in Electrochemical Research publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04022H – volume: 295 start-page: 39 year: 2019 ident: ref_154 article-title: Mineralization of Paracetamol Using a Gas Diffusion Electrode Modified with Ceria High Aspect Ratio Nanostructures publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.10.097 – volume: 224 start-page: 340 year: 2018 ident: ref_137 article-title: On the Performance of Electrocatalytic Anodes for Photoelectro-Fenton Treatment of Synthetic Solutions and Real Water Spiked with the Herbicide Chloramben publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.07.065 – volume: 182 start-page: 161 year: 2016 ident: ref_180 article-title: Electrochemical Advanced Oxidation Processes for Sanitary Landfill Leachate Remediation: Evaluation of Operational Variables publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.09.014 – volume: 94 start-page: 128 year: 2016 ident: ref_62 article-title: Sulfate-Mediated Electrooxidation of X-Ray Contrast Media on Boron-Doped Diamond Anode publication-title: Water Res. doi: 10.1016/j.watres.2016.02.045 – volume: 12 start-page: 76 year: 2010 ident: ref_115 article-title: Photoelectrocatalytic Degradation of Organic Contaminant at Hybrid BDD-ZnWO4 Electrode publication-title: Catal. Commun. doi: 10.1016/j.catcom.2010.08.013 – volume: 322 start-page: 196 year: 2017 ident: ref_49 article-title: Efficient Electrochemical Degradation of Poly- and Perfluoroalkyl Substances (PFASs) from the Effluents of an Industrial Wastewater Treatment Plant publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.040 – volume: 43 start-page: 2035 year: 2009 ident: ref_51 article-title: Pilot Scale Performance of the Electro-Oxidation of Landfill Leachate at Boron-Doped Diamond Anodes publication-title: Environ. Sci. Technol. doi: 10.1021/es802748c – volume: 304 start-page: 817 year: 2016 ident: ref_174 article-title: Influence of the Anode Material on the Degradation of Naproxen by Fenton-Based Electrochemical Processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.07.012 – volume: 114 start-page: 199 year: 2004 ident: ref_7 article-title: Fundamentals, Present and Future Perspectives of Electrocoagulation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2004.08.009 – volume: 13 start-page: 457 year: 2022 ident: ref_173 article-title: Use of WO2.72 Nanoparticles/Vulcan® XC72 GDE Electrocatalyst Combined with the Photoelectro-Fenton Process for the Degradation of 17α-Ethinylestradiol (EE2) publication-title: Electrocatalysis doi: 10.1007/s12678-022-00724-8 – volume: 36 start-page: 1 year: 2006 ident: ref_142 article-title: Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380500326564 – volume: 168 start-page: 1309 year: 2017 ident: ref_63 article-title: Removal of 2-MIB and Geosmin by Electrogenerated Persulfate: Performance, Mechanism and Pathways publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.11.134 – volume: 286 start-page: 131579 year: 2022 ident: ref_73 article-title: Optimization of Electrochemical Activation of Persulfate by BDD Electrodes for Rapid Removal of Sulfamethazine publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131579 – volume: 6 start-page: 17 year: 1997 ident: ref_34 article-title: Electrochemical Characterization of Doped and Undoped CVD Diamond Deposited by Microwave Plasma publication-title: Diam. Relat. Mater. doi: 10.1016/S0925-9635(96)00593-6 – volume: 2013 start-page: e128248 year: 2013 ident: ref_81 article-title: Anodic Materials for Electrocatalytic Ozone Generation publication-title: Int. J. Electrochem. doi: 10.1155/2013/128248 – ident: ref_106 doi: 10.3390/catal12070711 – volume: 28 start-page: 23833 year: 2021 ident: ref_178 article-title: Photoelectro-Fenton Treatment of Pesticide Triclopyr at Neutral PH Using Fe(III)–EDDS under UVA Light or Sunlight publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-11421-8 – volume: 90 start-page: 410 year: 2009 ident: ref_186 article-title: Costs of the Electrochemical Oxidation of Wastewaters: A Comparison with Ozonation and Fenton Oxidation Processes publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2007.10.010 – volume: 13 start-page: 119 year: 2008 ident: ref_88 article-title: Development of a Small-Sized Generator of Ozonated Water Using an Electro-Conductive Diamond Electrode publication-title: Biocontrol. Sci. doi: 10.4265/bio.13.119 – volume: 26 start-page: 1018 year: 2015 ident: ref_118 article-title: Efficient Photocatalyst Based on ZnO Nanorod Arrays/p-Type Boron-Doped-Diamond Heterojunction publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-014-2498-6 – volume: 249 start-page: 180 year: 2014 ident: ref_99 article-title: Photo-Assisted Electrochemical Treatment of Municipal Wastewater Reverse Osmosis Concentrate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.084 – volume: 180 start-page: 733 year: 2016 ident: ref_100 article-title: Removal of Pesticide 2,4-D by Conductive-Diamond Photoelectrochemical Oxidation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.07.038 – volume: 166–167 start-page: 454 year: 2015 ident: ref_60 article-title: Influence of Mediated Processes on the Removal of Rhodamine with Conductive-Diamond Electrochemical Oxidation publication-title: Appl. Catal. B Environ. – volume: 6 start-page: 865 year: 2019 ident: ref_171 article-title: Assessment of 4-Aminoantipyrine Degradation and Mineralization by Photoelectro-Fenton with a Boron-Doped Diamond Anode: Optimization, Treatment in Municipal Secondary Effluent, and Toxicity publication-title: ChemElectroChem doi: 10.1002/celc.201801651 – volume: 168 start-page: 126514 year: 2021 ident: ref_95 article-title: Electrochemical Ozone Generation Using Compacted High Pressure High Temperature Boron Doped Diamond Microparticle Electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac3ff4 – volume: 372 start-page: 77 year: 2019 ident: ref_104 article-title: Sono- and Photoelectrocatalytic Processes for the Removal of Ionic Liquids Based on the 1-Butyl-3-Methylimidazolium Cation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.12.015 – volume: 160 start-page: 199 year: 2010 ident: ref_158 article-title: Determination of Optimum Operating Parameters for Acid Yellow 36 Decolorization by Electro-Fenton Process Using BDD Cathode publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.03.043 – volume: 377 start-page: 406 year: 2016 ident: ref_32 article-title: Electrochemical Oxidation of Biological Pretreated and Membrane Separated Landfill Leachate Concentrates on Boron Doped Diamond Anode publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.03.045 – volume: 159 start-page: 108244 year: 2021 ident: ref_170 article-title: Comparison and Statistical Analysis for Post-Tanning Synthetic Wastewater Degradation Using Different Electrochemical Processes publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2020.108244 – volume: 13 start-page: 1423 year: 2011 ident: ref_116 article-title: Investigation on Ce-Doped TiO2-Coated BDD Composite Electrode with High Photoelectrocatalytic Activity under Visible Light Irradiation publication-title: Electrochem. Commun. – volume: 44 start-page: 2577 year: 2014 ident: ref_19 article-title: Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2013.829765 – volume: 446 start-page: 137114 year: 2022 ident: ref_74 article-title: Electrochemical Advanced Oxidation of Carbamazepine: Mechanism and Optimal Operating Conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137114 – volume: 44 start-page: 904 year: 2010 ident: ref_107 article-title: Development of Solar-Driven Electrochemical and Photocatalytic Water Treatment System Using a Boron-Doped Diamond Electrode and TiO2 Photocatalyst publication-title: Water Res. doi: 10.1016/j.watres.2009.09.060 – volume: 262 start-page: 286 year: 2015 ident: ref_47 article-title: Influence of the Anode Materials on the Electrochemical Oxidation Efficiency. Application to Oxidative Degradation of the Pharmaceutical Amoxicillin publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.09.100 – volume: 18 start-page: 1301 year: 2020 ident: ref_113 article-title: Photoelectrochemical Reactors for Treatment of Water and Wastewater: A Review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-01014-9 – volume: 49 start-page: 4487 year: 2004 ident: ref_146 article-title: Electrochemical Destruction of Chlorophenoxy Herbicides by Anodic Oxidation and Electro-Fenton Using a Boron-Doped Diamond Electrode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.05.006 – volume: 6 start-page: 2124 year: 2019 ident: ref_29 article-title: Environmental Applications of Boron-Doped Diamond Electrodes: 1. Applications in Water and Wastewater Treatment publication-title: ChemElectroChem doi: 10.1002/celc.201801876 – volume: 89 start-page: 95 year: 2011 ident: ref_1 article-title: Treatment Technologies for Petroleum Refinery Effluents: A Review publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2010.11.003 – volume: 6 start-page: 388 year: 1994 ident: ref_33 article-title: The Use of CVD Diamond Thin Films in Electrochemical Systems publication-title: Adv. Mater. doi: 10.1002/adma.19940060511 – ident: ref_156 doi: 10.3390/pr9091482 – volume: 81 start-page: 375 year: 2015 ident: ref_181 article-title: Incorporation of Electrochemical Advanced Oxidation Processes in a Multistage Treatment System for Sanitary Landfill Leachate publication-title: Water Res. doi: 10.1016/j.watres.2015.05.036 – volume: 48 start-page: 157 year: 2019 ident: ref_37 article-title: Conductive Diamond: Synthesis, Properties, and Electrochemical Applications publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00757D – volume: 254 start-page: 156 year: 2019 ident: ref_69 article-title: Electrochemical Oxidation of Organics in Sulfate Solutions on Boron-Doped Diamond Electrode: Multiple Pathways for Sulfate Radical Generation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.04.060 – volume: 89 start-page: 83 year: 2002 ident: ref_12 article-title: Removal of Nitrate from Water by Electroreduction and Electrocoagulation publication-title: J. Hazard. Mater. doi: 10.1016/S0304-3894(01)00301-6 – ident: ref_64 – volume: 67 start-page: 93 year: 2006 ident: ref_46 article-title: Electro-Fenton and Photoelectro-Fenton Degradation of Indigo Carmine in Acidic Aqueous Medium publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2006.04.020 – volume: 539–540 start-page: 74 year: 2012 ident: ref_117 article-title: Fabrication, Structure, and Photocatalytic Activities of Boron-Doped ZnO Nanorods Hydrothermally Grown on CVD Diamond Film publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2012.04.051 – volume: 844 start-page: 27 year: 2019 ident: ref_68 article-title: Electrochemical Advanced Oxidation of Atenolol at Nb/BDD Thin Film Anode publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.05.011 – volume: 252 start-page: 126499 year: 2020 ident: ref_72 article-title: Persulfate Enhanced Electrochemical Oxidation of Highly Toxic Cyanide-Containing Organic Wastewater Using Boron-Doped Diamond Anode publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126499 – volume: 2 start-page: 197 year: 2018 ident: ref_52 article-title: Writing a Review Article—Are You Making These Mistakes? publication-title: Nanotheranostics doi: 10.7150/ntno.24793 – volume: 52 start-page: 29 year: 2007 ident: ref_39 article-title: A Review of Nucleation, Growth and Low Temperature Synthesis of Diamond Thin Films publication-title: Int. Mater. Rev. doi: 10.1179/174328007X160245 – volume: 81 start-page: 594 year: 2010 ident: ref_150 article-title: Electrochemical Abatement of the Antibiotic Sulfamethoxazole from Water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.08.032 – volume: 10 start-page: 165 year: 2012 ident: ref_153 article-title: Unprecedented Total Mineralization of Atrazine and Cyanuric Acid by Anodic Oxidation and Electro-Fenton with a Boron-Doped Diamond Anode publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-011-0337-z – volume: 97 start-page: 26 year: 2014 ident: ref_162 article-title: Coupling of Solar Photoelectro-Fenton with a BDD Anode and Solar Heterogeneous Photocatalysis for the Mineralization of the Herbicide Atrazine publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.044 – volume: 747 start-page: 1 year: 2015 ident: ref_182 article-title: Degradation of Evans Blue Diazo Dye by Electrochemical Processes Based on Fenton’s Reaction Chemistry publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2015.03.032 – volume: 50 start-page: 7679 year: 2016 ident: ref_130 article-title: Electrocoagulation: Simply a Phase Separation Technology? The Case of Bronopol Compared to Its Treatment by EAOPs publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02057 – volume: 160 start-page: G3171 year: 2013 ident: ref_159 article-title: Efficient Anodic Degradation of Phenol Paired to Improved Cathodic Production of H2O2 at BDD Electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/2.027307jes – volume: 21 start-page: 364221 year: 2009 ident: ref_36 article-title: Chemical Vapour Deposition Synthetic Diamond: Materials, Technology and Applications publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/36/364221 – volume: 134 start-page: 1965 year: 2009 ident: ref_30 article-title: Boron-Doped Diamond Electrode: Synthesis, Characterization, Functionalization and Analytical Applications publication-title: Analyst doi: 10.1039/b910206j – volume: 71 start-page: 1718 year: 2008 ident: ref_166 article-title: Mineralization of the Biocide Chloroxylenol by Electrochemical Advanced Oxidation Processes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.12.029 – ident: ref_55 – volume: 84 start-page: 393 year: 2008 ident: ref_145 article-title: Mineralization of an Azo Dye Acid Red 14 by Photoelectro-Fenton Process Using an Activated Carbon Fiber Cathode publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2008.04.016 – volume: 212 start-page: 113362 year: 2022 ident: ref_125 article-title: Photoelectrocatalytic Degradation of Diclofenac with a Boron-Doped Diamond Electrode Modified with Titanium Dioxide as a Photoanode publication-title: Environ. Res. doi: 10.1016/j.envres.2022.113362 – volume: 240 start-page: 235 year: 2014 ident: ref_98 article-title: Degradation of Phenol by Synergistic Chlorine-Enhanced Photo-Assisted Electrochemical Oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.11.087 – volume: 62 start-page: 619 year: 2017 ident: ref_120 article-title: Photoelectrocatalytic Activity of an Ordered and Vertically Aligned TiO2 Nanorod Array/BDD Heterojunction Electrode publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.03.009 – volume: 8 start-page: 103997 year: 2020 ident: ref_71 article-title: Electrochemical Oxidation of Reactive Blue 19 on Boron-Doped Diamond Anode with Different Supporting Electrolyte publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.103997 – volume: 114 start-page: 9919 year: 2014 ident: ref_108 article-title: Understanding TiO2 Photocatalysis: Mechanisms and Materials publication-title: Chem. Rev. doi: 10.1021/cr5001892 – volume: 257 start-page: 117902 year: 2019 ident: ref_70 article-title: Extremely Efficient Electrochemical Degradation of Organic Pollutants with Co-Generation of Hydroxyl and Sulfate Radicals on Blue-TiO2 Nanotubes Anode publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117902 – volume: 4 start-page: 224 year: 2013 ident: ref_160 article-title: Degradation of 2,4-Dichlorophenoxyacetic Acid by Electro-Oxidation and Electro-Fenton/BDD Processes Using a Pre-Pilot Plant publication-title: Electrocatalysis doi: 10.1007/s12678-013-0135-4 – ident: ref_80 doi: 10.5772/51945 – volume: 6 start-page: 937 year: 2019 ident: ref_135 article-title: Near-Neutral Electro-Fenton Treatment of Pharmaceutical Pollutants: Effect of Using a Triphosphate Ligand and BDD Electrode publication-title: ChemElectroChem doi: 10.1002/celc.201801732 – ident: ref_126 doi: 10.3390/molecules27165218 – volume: 89 start-page: 620 year: 2009 ident: ref_136 article-title: A Comparative Study on the Efficiency of Electro-Fenton Process in the Removal of Propham from Water publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2009.01.022 – volume: 128 start-page: 103 year: 2018 ident: ref_78 article-title: Effective Method of Treatment of Industrial Effluents under Basic PH Conditions Using Acoustic Cavitation—A Comprehensive Comparison with Hydrodynamic Cavitation Processes publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2018.04.010 – volume: 379 start-page: 122417 year: 2020 ident: ref_167 article-title: A Stable CoSP/MWCNTs Air-Diffusion Cathode for the Photoelectro-Fenton Degradation of Organic Pollutants at Pre-Pilot Scale publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122417 – volume: 58 start-page: 239 year: 2014 ident: ref_57 article-title: Electro-Fenton, UVA Photoelectro-Fenton and Solar Photoelectro-Fenton Treatments of Organics in Waters Using a Boron-Doped Diamond Anode: A Review publication-title: J. Mex. Chem. Soc. – volume: 165 start-page: E262 year: 2018 ident: ref_102 article-title: Coupling Photo and Sono Technologies with BDD Anodic Oxidation for Treating Soil-Washing Effluent Polluted with Atrazine publication-title: J. Electrochem. Soc. doi: 10.1149/2.1281805jes – volume: 7 start-page: 314 year: 2020 ident: ref_54 article-title: Critically Appraised Topics (CATs) in Veterinary Medicine: Applying Evidence in Clinical Practice publication-title: Front. Vet. Sci. doi: 10.3389/fvets.2020.00314 – volume: 33 start-page: 121 year: 2014 ident: ref_151 article-title: Application of the Electro-Fenton Process to Mesotrione Aqueous Solutions: Kinetics, Degradation Pathways, Mineralization, and Evolution of Toxicity publication-title: Maced. J. Chem. Chem. Eng. doi: 10.20450/mjcce.2014.407 – volume: 109 start-page: 6541 year: 2009 ident: ref_22 article-title: Direct and Mediated Anodic Oxidation of Organic Pollutants publication-title: Chem. Rev. doi: 10.1021/cr9001319 – volume: 6 start-page: 1808 year: 2019 ident: ref_148 article-title: Abatement of Analgesic Antipyretic 4-Aminophenazone Using Conductive Boron-Doped Diamond and Sub-Stoichiometric Titanium Oxide Anodes: Kinetics, Mineralization and Toxicity Assessment publication-title: ChemElectroChem doi: 10.1002/celc.201801741 – volume: 16 start-page: 31 year: 1998 ident: ref_143 article-title: Aniline Mineralization by AOP’s: Anodic Oxidation, Photocatalysis, Electro-Fenton and Photoelectro-Fenton Processes publication-title: Appl. Catal. B Environ. doi: 10.1016/S0926-3373(97)00059-3 – volume: 53 start-page: 51 year: 1999 ident: ref_164 article-title: Advanced Oxidation Processes (AOP) for Water Purification and Recovery publication-title: Catal. Today doi: 10.1016/S0920-5861(99)00102-9 – volume: 43 start-page: 1489 year: 2009 ident: ref_8 article-title: Recent Advances in Membrane Bioreactors (MBRs): Membrane Fouling and Membrane Material publication-title: Water Res. doi: 10.1016/j.watres.2008.12.044 – volume: 11 start-page: 1257 year: 2019 ident: ref_92 article-title: Electrochemical Oxidation of High-Concentration Ozone Generation in Flowing Water Through Boron Doped Diamond Electrodes publication-title: Nanosci. Nanotechnol. Lett. doi: 10.1166/nnl.2019.3001 – volume: 895 start-page: 115492 year: 2021 ident: ref_161 article-title: Electro-Fenton Mineralization of Diazo Dye Black NT2 Using a Pre-Pilot Flow Plant publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2021.115492 – volume: 27 start-page: 100678 year: 2021 ident: ref_18 article-title: Electrochemical Advanced Oxidation Processes for Wastewater Treatment: Advances in Formation and Detection of Reactive Species and Mechanisms publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2020.100678 – volume: 128 start-page: 1657 year: 2021 ident: ref_93 article-title: Ozonated Water Electrolytically Generated by Diamond-Coated Electrodes Controlled Phytonematodes in Replanted Soil publication-title: J. Plant Dis. Prot. doi: 10.1007/s41348-021-00524-0 – volume: 320 start-page: 608 year: 2017 ident: ref_79 article-title: Wastewater Treatment by Means of Advanced Oxidation Processes at Basic PH Conditions: A Review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.084 – volume: 207 start-page: 66 year: 2009 ident: ref_114 article-title: Degradation of X-3B Dye by Immobilized TiO2 Photocatalysis Coupling Anodic Oxidation on BDD Electrode publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2009.01.014 – volume: 109 start-page: 6570 year: 2009 ident: ref_129 article-title: Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry publication-title: Chem. Rev. doi: 10.1021/cr900136g – volume: 224 start-page: 410 year: 2018 ident: ref_172 article-title: Solar Photoelectro-Fenton Treatment of a Mixture of Parabens Spiked into Secondary Treated Wastewater Effluent at Low Input Current publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.10.060 – volume: 190 start-page: 116783 year: 2021 ident: ref_124 article-title: Stormwater Herbicides Removal with a Solar-Driven Advanced Oxidation Process: A Feasibility Investigation publication-title: Water Res. doi: 10.1016/j.watres.2020.116783 – volume: 39 start-page: 1843 year: 2005 ident: ref_165 article-title: Mineralization of Aromatics in Water by Sunlight-Assisted Electro-Fenton Technology in a Pilot Reactor publication-title: Environ. Sci. Technol. doi: 10.1021/es0498787 – volume: 7 start-page: 24408 year: 2019 ident: ref_134 article-title: A Carbon Nanotube-Confined Iron Modified Cathode with Prominent Stability and Activity for Heterogeneous Electro-Fenton Reactions publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07491K – volume: 202 start-page: 217 year: 2017 ident: ref_24 article-title: Electrochemical Advanced Oxidation Processes: A Review on Their Application to Synthetic and Real Wastewaters publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.08.037 – volume: 129 start-page: 29 year: 2007 ident: ref_183 article-title: Mineralization of Herbicide Mecoprop by Photoelectro-Fenton with UVA and Solar Light publication-title: Catal. Today doi: 10.1016/j.cattod.2007.06.049 – volume: 13 start-page: 12616 year: 2022 ident: ref_16 article-title: Electrokinetic Separation Techniques for Studying Nano- and Microplastics publication-title: Chem. Sci. doi: 10.1039/D2SC04019K – volume: 9 start-page: 335 year: 1987 ident: ref_23 article-title: The Chemistry of Water-Treatment Processes Involving Ozone, Hydrogen-Peroxide and Ultraviolet-Radiation publication-title: Ozone-Sci. Eng. doi: 10.1080/01919518708552148 – volume: 145 start-page: 2358 year: 1998 ident: ref_82 article-title: Water Electrolysis Using Diamond Thin-Film Electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.1838643 – volume: 283 start-page: 551 year: 2015 ident: ref_50 article-title: Removal of Organic Contaminants from Secondary Effluent by Anodic Oxidation with a Boron-Doped Diamond Anode as Tertiary Treatment publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.10.003 – volume: 33 start-page: 151 year: 2003 ident: ref_83 article-title: Electrochemical Oxidation of Water on Synthetic Boron-Doped Diamond Thin Film Anodes publication-title: J. Appl. Electrochem. doi: 10.1023/A:1024084924058 – volume: 57 start-page: 10152 year: 2016 ident: ref_91 article-title: Electrochemical Ozone Production in Inert Supporting Electrolytes on a Boron-Doped Diamond Electrode with a Solid Polymer Electrolyte Electrolyzer publication-title: Desalination Water Treat. doi: 10.1080/19443994.2015.1043490 – volume: 161 start-page: 167 year: 2010 ident: ref_48 article-title: Electrochemical Degradation of Chlorpyrifos Pesticide in Aqueous Solutions by Anodic Oxidation at Boron-Doped Diamond Electrodes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.04.060 – volume: 143 start-page: L49 year: 1996 ident: ref_128 article-title: Iron(II) Catalysis of the Mineralization of Aniline Using a Carbon-PTFE O 2—Fed Cathode publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836528 – volume: 8 start-page: 28306 year: 2016 ident: ref_119 article-title: Double-Layer 3D Macro–Mesoporous Metal Oxide Modified Boron-Doped Diamond with Enhanced Photoelectrochemical Performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01929 – volume: 40 start-page: 7 year: 2013 ident: ref_90 article-title: An Electrolyte-Free System for Ozone Generation Using Heavily Boron-Doped Diamond Electrodes publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2013.09.001 – volume: 15 start-page: 1900153 year: 2019 ident: ref_66 article-title: Boron-Doped Diamond for Hydroxyl Radical and Sulfate Radical Anion Electrogeneration, Transformation, and Voltage-Free Sustainable Oxidation publication-title: Small doi: 10.1002/smll.201900153 – volume: 21 start-page: 8336 year: 2014 ident: ref_20 article-title: Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-014-2783-1 – volume: 9 start-page: D17 year: 2006 ident: ref_86 article-title: Application of Freestanding Perforated Diamond Electrodes for Efficient Ozone-Water Production publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.2206009 – volume: 49 start-page: 14326 year: 2015 ident: ref_61 article-title: Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02705 – volume: Volume 61 start-page: 313 year: 2017 ident: ref_140 article-title: Solar-Assisted Electro-Fenton Systems for Wastewater Treatment publication-title: Electro-Fenton Process doi: 10.1007/698_2017_37 – volume: 279 start-page: 111597 year: 2021 ident: ref_105 article-title: Does Intensification with UV Light and US Improve the Sustainability of Electrolytic Waste Treatment Processes? publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111597 – volume: 841 start-page: 166 year: 2019 ident: ref_149 article-title: Electrochemical Treatment of Paper Mill Wastewater by Electro-Fenton Process publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.04.022 – volume: 9 start-page: 106369 year: 2021 ident: ref_94 article-title: A Highly Stable Microporous Boron-Doped Diamond Electrode Etched by Oxygen Plasma for Enhanced Electrochemical Ozone Generation publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106369 – volume: 832 start-page: 112 year: 2019 ident: ref_67 article-title: Using P-Si/BDD Anode for the Electrochemical Oxidation of Norfloxacin publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.10.049 – volume: 275 start-page: 130010 year: 2021 ident: ref_168 article-title: On the Performance of Distinct Electrochemical and Solar-Based Advanced Oxidation Processes to Mineralize the Insecticide Imidacloprid publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130010 – volume: 331 start-page: 135373 year: 2020 ident: ref_184 article-title: Characterization of the Reaction Environment in Flow Reactors Fitted with BDD Electrodes for Use in Electrochemical Advanced Oxidation Processes: A Critical Review publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135373 – volume: 212 start-page: 802 year: 2019 ident: ref_44 article-title: Recent Developments and Advances in Boron-Doped Diamond Electrodes for Electrochemical Oxidation of Organic Pollutants publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.11.056 – volume: 29 start-page: 293 year: 2022 ident: ref_110 article-title: Photocatalysis: An Effective Tool for Photodegradation of Dyes—A Review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-16389-7 – volume: 81 start-page: 627 year: 2013 ident: ref_89 article-title: Development of a Small-Sized Electrolyzed Water Generator for Sterilization publication-title: Electrochemistry doi: 10.5796/electrochemistry.81.627 – volume: 99 start-page: 6127 year: 2008 ident: ref_3 article-title: Biodegradation Potential and Bacterial Diversity of a Petrochemical Wastewater Treatment Plant in Iran publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.12.034 – volume: 178 start-page: 106037 year: 2022 ident: ref_13 article-title: Recycling Spent Water Treatment Adsorbents for Efficient Electrocatalytic Water Oxidation Reaction publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2021.106037 – volume: 141 start-page: 3382 year: 2019 ident: ref_35 article-title: The Susceptibility to Surface Corrosion in Acidic Fluoride Media: A Comparison of Diamond, HOPG, and Glassy Carbon Electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2059343 – volume: 49 start-page: 207 year: 2004 ident: ref_25 article-title: Electrochemical Advanced Oxidation Process Using DiaChem®electrodes publication-title: Water Sci. Technol. doi: 10.2166/wst.2004.0264 – volume: 115–116 start-page: 107 year: 2012 ident: ref_176 article-title: Finding the Best Fe2+/Cu2+ Combination for the Solar Photoelectro-Fenton Treatment of Simulated Wastewater Containing the Industrial Textile Dye Disperse Blue 3 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2011.12.026 – volume: 49 start-page: 4027 year: 2004 ident: ref_26 article-title: Electrochemical Incineration of Oxalic Acid: Role of Electrode Material publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.01.083 – volume: 48 start-page: 1307 year: 2018 ident: ref_169 article-title: Treatment of Cheese Whey Wastewater by Combined Electrochemical Processes publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-018-1218-y – volume: 17 start-page: 1073 year: 2008 ident: ref_144 article-title: Effect of Hydrogen Peroxide on the Degradation of 2,6-Dimethylaniline by Fenton Processes publication-title: Fresenius Environ. Bull. – volume: 21 start-page: 8379 year: 2014 ident: ref_152 article-title: Electro-Oxidation of the Dye Azure B: Kinetics, Mechanism, and by-Products publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-2772-4 – volume: 247 start-page: 191 year: 2019 ident: ref_179 article-title: Enhanced Electrocatalytic Production of H2O2 at Co-Based Air-Diffusion Cathodes for the Photoelectro-Fenton Treatment of Bronopol publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.01.029 – volume: 199 start-page: 445 year: 2018 ident: ref_103 article-title: Degradation of Dye Procion Red MX-5B by Electrolytic and Electro-Irradiated Technologies Using Diamond Electrodes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.02.001 – volume: 93 start-page: 154 year: 2012 ident: ref_6 article-title: A Review on Chemical Coagulation/Flocculation Technologies for Removal of Colour from Textile Wastewaters publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2011.09.012 – volume: 83 start-page: 769 year: 2008 ident: ref_28 article-title: Advanced Oxidation Processes for Water Treatment: Advances and Trends for R&D publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1873 – volume: 74 start-page: 1340 year: 2009 ident: ref_147 article-title: Electrochemical Incineration of Cresols: A Comparative Study between PbO2 and Boron-Doped Diamond Anodes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.11.050 – volume: 52 start-page: 9992 year: 2018 ident: ref_15 article-title: Defect Sites in Ultrathin Pd Nanowires Facilitate the Highly Efficient Electrochemical Hydrodechlorination of Pollutants by H* ads publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02740 – volume: 88 start-page: 614 year: 2013 ident: ref_97 article-title: Photoassisted Electrochemical Recirculation System with Boron-Doped Diamond Anode and Carbon Nanotubes Containing Cathode for Degradation of a Model Azo Dye publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.10.069 – volume: 487 start-page: 523 year: 2017 ident: ref_9 article-title: Produced Water Treatment by Membranes: A Review from a Colloidal Perspective publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.10.013 – volume: 43 start-page: 178 year: 2022 ident: ref_112 article-title: A Review on Heterogeneous Photocatalysis for Environmental Remediation: From Semiconductors to Modification Strategies publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63910-4 – volume: 13 start-page: 2041 year: 2004 ident: ref_43 article-title: The Phosphorous Level Fine Structure in Homoepitaxial and Polycrystalline N-Type CVD Diamond publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2004.06.016 – ident: ref_38 doi: 10.1002/9781118062364 – volume: 25 start-page: 100925 year: 2021 ident: ref_138 article-title: Outstanding Performances of the BDD Film Anode in Electro-Fenton Process: Applications and Comparative Performance publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2021.100925 – volume: 186 start-page: 16 year: 2011 ident: ref_11 article-title: Heterogeneous Catalytic Wet Air Oxidation of Refractory Organic Pollutants in Industrial Wastewaters: A Review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.11.011 – volume: 200 start-page: 117234 year: 2021 ident: ref_187 article-title: Cost Comparison of Advanced Oxidation Processes for Wastewater Treatment Using Accumulated Oxygen-Equivalent Criteria publication-title: Water Res. doi: 10.1016/j.watres.2021.117234 |
SSID | ssj0001583733 |
Score | 2.3494391 |
SecondaryResourceType | review_article |
Snippet | Re-evaluation of conventional wastewater treatment processes is of paramount importance to improve the overall quality of our aquatic environment.... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 15 |
SubjectTerms | Analysis Anodizing Aquatic environment bibliometric analysis Bibliometrics Boron Carbon Diamond crystals Diamonds Electrochemistry Electrodes Gases Literature reviews Mineralization Oxidants Oxidation Oxidation-reduction reaction Oxidizing agents ozone Pollutants Purification remediation Renewable energy sources Sewage Synergism Systematic review Technology utilization Trends wastewater Wastewater treatment Water pollution Water treatment Water treatment plants |
Title | Electrochemical Advanced Oxidation Processes Using Diamond Technology: A Critical Review |
URI | https://www.proquest.com/docview/2779492021 https://www.proquest.com/docview/2887611208 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB60vehBfGK1SgTBU3C3STaJF6naUgQfiEJvS5LNgiBttS34851001ZB9JzZsOQx881MZj6AU7ToxpdSU6etpNwySS13gprSCmlcIfSsiv_uPuu98Nu-6MeA2zg-q5zrxJmiLoYuxMjPWxJPjkZXPb0cvdPAGhWyq5FCYxXqqIKVqkH9qnP_-LSMsgh0wBirauYY-vfn3-vHQvvRIPPDJv2umWfmprsJGxEnkna1sVuw4gfbsP6te-AO9DsVhY2LNf-kHfP55OHztaJKIrEOwI_J7G0AuXkN7EIFWUbUL0ibzPkOSJUp2IWXbuf5ukcjUQJ1iIYmVGaWCZsJK5KWVVI6BKG-QKCmmc10q9CuxNGMG54oyQtd6JIL00pLnhlhnWV7UBsMB34fiFcFN0p4ljjHpTWqTFzJGAIHJlLl0waw-VLlLnYRD2QWbzl6E2GB898WuAF08dWo6qLxj_xZ2IU8XDKc3ZlYK4D_GNpV5e2QX9YpYtcGNOcblcfbN86XZ6UBJ4thvDchGWIGfjhFGdSuGYLNRB38PcUhrAWK-eqldhNqk4-pP0IgMrHH8bR9AYmi4R4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dSxwxEB_s-dD6IGpbPLWagtKn4O4m2WwKUk49Ob-upSjc25pks3Agd-qdqP9U_0Ynt1lPQeyTz8mGZTLJ_Cbz8QPYRIuuXSkVtcpIyg2T1HArqC6NkNoWQk2q-E-7aeecH_VEbwb-1bUwPq2yvhMnF3UxtP6NfDuRqDkKXfX419U19axRPrpaU2hUanHsHu7QZRvtHO7j_m4lyUH7bK9DA6sAtQgdxlSmhgmTCiOixGRSWkRsrkBUo5hJVVIoW-JoyjWPMskLVaiSC53EJU-1MNYwXPcDzHKWRkkDZnfb3T9_p686Ah0-xqoaPcZUtP28Xs23O_VzXtjA1y3BxLwdLMB8wKWkVSnSIsy4wRLMPetW-Bl67Yoyx4YeA6QV8gfI7_t-Rc1EQt2BG5FJLgLZ73s2o4JMX_B_khap-RVIFZn4AufvIsKv0BgMB24ZiMsKrjPhWGQtl0ZnZWRLxhCoMBFnLm4Cq0WV29C13JNnXObovXgB568JuAn06aurqmvHf-b_8LuQ-0ONq1sdahPwH317rLzl49kqRqzchLV6o_Jw2kf5VDeb8P1pGM-pD77ogRve4hy8zVMEt1G28vYSG_Cxc3Z6kp8cdo9X4ZOnt6-yxNegMb65dd8QBI3NetA8AhfvreyPYlAdmg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-VVprgAcEGoqwbRgLxZDWJ7ThGmqayttoHlAkxqW_BdhxpEmrL2ortX-Ov27lx1iFN8NRnO1Z0Pvt-5_v4AbxDi65dKRW1ykjKDZPUcCuoLo2Q2hZCrar4v4zS4wt-OhbjBvypa2F8WmV9J64u6mJq_Rt5N5GoOQpd9bhbhrSI8_7wcPaLegYpH2mt6TQqFTlzN7_RfZsfnPRxr98nyXDw_eiYBoYBahFGLKhMDRMmFUZEicmktIjeXIEIRzGTqqRQtsTRlGseZZIXqlAlFzqJS55qYaxhuO4jaEnvFTWh9WkwOv-2fuER6PwxVtXrMaai7v3aNd_61M_5yx4-bBVWpm74DJ4GjEp6lVI9h4abbMOTe50Ld2A8qOhzbOg3QHohl4B8vb6saJpIqEFwc7LKSyD9S89sVJD1a_5H0iM11wKpohQv4GIjInwJzcl04l4BcVnBdSYci6zl0uisjGzJGIIWJuLMxW1gtahyGzqYeyKNnzl6Ml7A-UMCbgO9-2pWdfD4z_wPfhdyf8BxdatDnQL-o2-Vlfd8bFvFiJvb0Kk3Kg8nf56v9bQNb--G8cz6QIyeuOkS5-DNniLQjbLX_17iDWyhkuefT0Znu_DYM91XCeMdaC6ulm4P8dDC7AfFI_Bj07p-C1UuIc8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Advanced+Oxidation+Processes+Using+Diamond+Technology%3A+A+Critical+Review&rft.jtitle=Environments+%28Basel%2C+Switzerland%29&rft.au=Brosler%2C+Priscilla&rft.au=Gir%C3%A3o%2C+Ana+V.&rft.au=Silva%2C+Rui+F.&rft.au=Tedim%2C+Jo%C3%A3o&rft.date=2023-02-01&rft.issn=2076-3298&rft.eissn=2076-3298&rft.volume=10&rft.issue=2&rft.spage=15&rft_id=info:doi/10.3390%2Fenvironments10020015&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_environments10020015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3298&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3298&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3298&client=summon |