Electrochemical Advanced Oxidation Processes Using Diamond Technology: A Critical Review

Re-evaluation of conventional wastewater treatment processes is of paramount importance to improve the overall quality of our aquatic environment. Electrochemical Advanced Oxidation Processes (EAOPs) are the most promising alternative methods with application in wastewater treatment facilities since...

Full description

Saved in:
Bibliographic Details
Published inEnvironments (Basel, Switzerland) Vol. 10; no. 2; p. 15
Main Authors Brosler, Priscilla, Girão, Ana V., Silva, Rui F., Tedim, João, Oliveira, Filipe J.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Re-evaluation of conventional wastewater treatment processes is of paramount importance to improve the overall quality of our aquatic environment. Electrochemical Advanced Oxidation Processes (EAOPs) are the most promising alternative methods with application in wastewater treatment facilities since in situ electrogenerated oxidant agents degrade and mineralize a wide range of water pollutants. Boron-doped diamond (BDD) technology has proven its excellency in the anodic oxidation (AO) of different pollutants. In this work, we describe the use of a systematic literature review (SLR) methodology and a bibliometric analysis tool for the assessment of a representative sample of work (hundreds of publications) concerning the synergism between AO using BDD technology and other oxidation methods. One section of the discussion relates to different techniques used to enhance the AO performance of BDD technology, namely persulfate radicals or ozone and photoelectrocatalysis, whereas the second one considers Fenton-based reactions. A standard synergism effect occurs between AO using BDD technology and the add-ons or the Fenton-based methods, resulting in the enhancement of the degradation and mineralization efficiencies. The future of EAOPs using BDD technology must include renewable energy sources to self-sustain the overall process, and further research on the subject is mandatory to enable the effective acceptance and application of such processes in wastewater remediation facilities.
AbstractList Re-evaluation of conventional wastewater treatment processes is of paramount importance to improve the overall quality of our aquatic environment. Electrochemical Advanced Oxidation Processes (EAOPs) are the most promising alternative methods with application in wastewater treatment facilities since in situ electrogenerated oxidant agents degrade and mineralize a wide range of water pollutants. Boron-doped diamond (BDD) technology has proven its excellency in the anodic oxidation (AO) of different pollutants. In this work, we describe the use of a systematic literature review (SLR) methodology and a bibliometric analysis tool for the assessment of a representative sample of work (hundreds of publications) concerning the synergism between AO using BDD technology and other oxidation methods. One section of the discussion relates to different techniques used to enhance the AO performance of BDD technology, namely persulfate radicals or ozone and photoelectrocatalysis, whereas the second one considers Fenton-based reactions. A standard synergism effect occurs between AO using BDD technology and the add-ons or the Fenton-based methods, resulting in the enhancement of the degradation and mineralization efficiencies. The future of EAOPs using BDD technology must include renewable energy sources to self-sustain the overall process, and further research on the subject is mandatory to enable the effective acceptance and application of such processes in wastewater remediation facilities.
Audience Academic
Author Oliveira, Filipe J.
Tedim, João
Brosler, Priscilla
Silva, Rui F.
Girão, Ana V.
Author_xml – sequence: 1
  givenname: Priscilla
  orcidid: 0000-0002-7925-4470
  surname: Brosler
  fullname: Brosler, Priscilla
– sequence: 2
  givenname: Ana V.
  orcidid: 0000-0003-2699-646X
  surname: Girão
  fullname: Girão, Ana V.
– sequence: 3
  givenname: Rui F.
  orcidid: 0000-0002-2584-1792
  surname: Silva
  fullname: Silva, Rui F.
– sequence: 4
  givenname: João
  orcidid: 0000-0002-7584-4641
  surname: Tedim
  fullname: Tedim, João
– sequence: 5
  givenname: Filipe J.
  surname: Oliveira
  fullname: Oliveira, Filipe J.
BookMark eNp9kctKAzEUhoMoeH0DFwNu3FRzmUkm7kq9QkGRCu6GTHKmTZlJNJlWfXvT1oUUkSwScr7vcPjPIdp13gFCpwRfMCbxJbilDd514PpIMKYYk2IHHVAs-IBRWe7-eu-jkxjneIWUTDB2gF5vWtB98HoGndWqzYZmqZwGkz1-WqN66132lMoQI8TsJVo3za6t6rwz2QT0zPnWT7-usmE2CrZfd3iGpYWPY7TXqDbCyc99hF5ubyaj-8H48e5hNBwPdE5ZPxC8ZkXNi7rAtC6F0CUxYArOJau5pEbqJlV5rnJcitxII5u8UJQ0OVdFrWt2hM43fd-Cf19A7KvORg1tqxz4RaxoWQpOCMVlQs-20LlfBJemq6gQMpcUU5Koiw01VS1U1jW-D0qnY1YJpewbm_6HIo0viRQiCVcbQQcfY4Cm0rZfJ5dE21YEV6tFVX8tKsn5lvwWbKfC1__aN4EAnSk
CitedBy_id crossref_primary_10_1021_acsomega_3c09749
crossref_primary_10_1016_j_diamond_2023_110595
crossref_primary_10_1016_j_jece_2024_112693
crossref_primary_10_1016_j_watres_2024_123026
crossref_primary_10_3390_pr12112486
crossref_primary_10_1016_j_mseb_2024_117560
crossref_primary_10_1016_j_matchemphys_2024_129509
crossref_primary_10_1016_j_coelec_2024_101504
crossref_primary_10_1007_s10311_023_01693_0
crossref_primary_10_1016_j_geogeo_2023_100210
crossref_primary_10_1038_s41598_024_81403_0
crossref_primary_10_3390_environments11110236
crossref_primary_10_1016_j_apmt_2023_101983
crossref_primary_10_1039_D4RA07657E
crossref_primary_10_1186_s12995_025_00448_7
crossref_primary_10_1016_j_chemosphere_2024_141519
crossref_primary_10_1016_j_diamond_2025_111964
crossref_primary_10_1016_j_trac_2025_118178
Cites_doi 10.1007/s11192-009-0146-3
10.1016/j.watres.2022.118846
10.1016/S0043-1354(02)00570-5
10.1016/j.chemosphere.2014.07.067
10.1039/C4RA13734E
10.1016/j.seppur.2018.04.021
10.1016/B978-0-12-813160-2.00014-6
10.1016/j.cattod.2016.04.030
10.1016/j.coelec.2018.07.010
10.1016/j.chemosphere.2020.129480
10.1016/S0013-4686(01)00630-2
10.1016/j.cej.2016.06.098
10.1016/j.jenvman.2018.01.022
10.1002/9781118062364.ch13
10.1016/j.seppur.2022.122080
10.1016/j.cossms.2021.100935
10.1039/CT8946500899
10.1023/A:1022892230969
10.3390/nano11071804
10.1063/1.1662389
10.1016/j.chemosphere.2018.07.043
10.1016/j.elecom.2006.02.013
10.1016/j.electacta.2008.07.014
10.1016/j.apcatb.2008.09.017
10.1002/smtd.202000257
10.1021/es00039a010
10.1103/PhysRevLett.66.2010
10.1252/jcej.19.513
10.1061/(ASCE)HZ.2153-5515.0000584
10.1016/j.seppur.2014.06.009
10.1016/j.apcatb.2018.09.045
10.2166/ws.2022.029
10.1016/j.chemosphere.2011.12.011
10.1039/C9RA10318J
10.1021/es980969b
10.1016/j.chemosphere.2021.130488
10.1039/C4CP04022H
10.1016/j.electacta.2018.10.097
10.1016/j.jenvman.2018.07.065
10.1016/j.apcatb.2015.09.014
10.1016/j.watres.2016.02.045
10.1016/j.catcom.2010.08.013
10.1016/j.cej.2017.04.040
10.1021/es802748c
10.1016/j.cej.2016.07.012
10.1016/j.jhazmat.2004.08.009
10.1007/s12678-022-00724-8
10.1080/10643380500326564
10.1016/j.chemosphere.2016.11.134
10.1016/j.chemosphere.2021.131579
10.1016/S0925-9635(96)00593-6
10.1155/2013/128248
10.3390/catal12070711
10.1007/s11356-020-11421-8
10.1016/j.jenvman.2007.10.010
10.4265/bio.13.119
10.1007/s10854-014-2498-6
10.1016/j.cej.2014.03.084
10.1016/j.apcatb.2015.07.038
10.1002/celc.201801651
10.1149/1945-7111/ac3ff4
10.1016/j.jhazmat.2017.12.015
10.1016/j.cej.2010.03.043
10.1016/j.apsusc.2016.03.045
10.1016/j.cep.2020.108244
10.1080/10643389.2013.829765
10.1016/j.cej.2022.137114
10.1016/j.watres.2009.09.060
10.1016/j.cej.2014.09.100
10.1007/s10311-020-01014-9
10.1016/j.electacta.2004.05.006
10.1002/celc.201801876
10.1016/j.psep.2010.11.003
10.1002/adma.19940060511
10.3390/pr9091482
10.1016/j.watres.2015.05.036
10.1039/C7CS00757D
10.1016/j.apcatb.2019.04.060
10.1016/S0304-3894(01)00301-6
10.1016/j.apcatb.2006.04.020
10.1016/j.cplett.2012.04.051
10.1016/j.jelechem.2019.05.011
10.1016/j.chemosphere.2020.126499
10.7150/ntno.24793
10.1179/174328007X160245
10.1016/j.chemosphere.2010.08.032
10.1007/s10311-011-0337-z
10.1016/j.chemosphere.2013.10.044
10.1016/j.jelechem.2015.03.032
10.1021/acs.est.6b02057
10.1149/2.027307jes
10.1088/0953-8984/21/36/364221
10.1039/b910206j
10.1016/j.chemosphere.2007.12.029
10.1016/j.apcatb.2008.04.016
10.1016/j.envres.2022.113362
10.1016/j.cej.2013.11.087
10.1016/j.scib.2017.03.009
10.1016/j.jece.2020.103997
10.1021/cr5001892
10.1016/j.apcatb.2019.117902
10.1007/s12678-013-0135-4
10.5772/51945
10.1002/celc.201801732
10.3390/molecules27165218
10.1016/j.apcatb.2009.01.022
10.1016/j.cep.2018.04.010
10.1016/j.cej.2019.122417
10.1149/2.1281805jes
10.3389/fvets.2020.00314
10.20450/mjcce.2014.407
10.1021/cr9001319
10.1002/celc.201801741
10.1016/S0926-3373(97)00059-3
10.1016/S0920-5861(99)00102-9
10.1016/j.watres.2008.12.044
10.1166/nnl.2019.3001
10.1016/j.jelechem.2021.115492
10.1016/j.coelec.2020.100678
10.1007/s41348-021-00524-0
10.1016/j.cej.2017.03.084
10.1016/j.jphotochem.2009.01.014
10.1021/cr900136g
10.1016/j.apcatb.2017.10.060
10.1016/j.watres.2020.116783
10.1021/es0498787
10.1039/C9TA07491K
10.1016/j.apcatb.2016.08.037
10.1016/j.cattod.2007.06.049
10.1039/D2SC04019K
10.1080/01919518708552148
10.1149/1.1838643
10.1016/j.jhazmat.2014.10.003
10.1023/A:1024084924058
10.1080/19443994.2015.1043490
10.1016/j.cej.2010.04.060
10.1149/1.1836528
10.1021/acsami.6b01929
10.1016/j.diamond.2013.09.001
10.1002/smll.201900153
10.1007/s11356-014-2783-1
10.1149/1.2206009
10.1021/acs.est.5b02705
10.1007/698_2017_37
10.1016/j.jenvman.2020.111597
10.1016/j.jelechem.2019.04.022
10.1016/j.jece.2021.106369
10.1016/j.jelechem.2018.10.049
10.1016/j.chemosphere.2021.130010
10.1016/j.electacta.2019.135373
10.1016/j.seppur.2018.11.056
10.1007/s11356-021-16389-7
10.5796/electrochemistry.81.627
10.1016/j.biortech.2007.12.034
10.1016/j.resconrec.2021.106037
10.1149/1.2059343
10.2166/wst.2004.0264
10.1016/j.apcatb.2011.12.026
10.1016/j.electacta.2004.01.083
10.1007/s10800-018-1218-y
10.1007/s11356-014-2772-4
10.1016/j.apcatb.2019.01.029
10.1016/j.chemosphere.2018.02.001
10.1016/j.jenvman.2011.09.012
10.1002/jctb.1873
10.1016/j.chemosphere.2008.11.050
10.1021/acs.est.8b02740
10.1016/j.electacta.2012.10.069
10.1016/j.jcis.2016.10.013
10.1016/S1872-2067(21)63910-4
10.1016/j.diamond.2004.06.016
10.1002/9781118062364
10.1016/j.cossms.2021.100925
10.1016/j.jhazmat.2010.11.011
10.1016/j.watres.2021.117234
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7S9
L.6
DOI 10.3390/environments10020015
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Environmental Science Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-3298
ExternalDocumentID A742391977
10_3390_environments10020015
GeographicLocations Portugal
GeographicLocations_xml – name: Portugal
GroupedDBID 5VS
7XC
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EDH
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c423t-76b35b65b502b877c81ded56693b692d9cfb6564a40874d9d9f45a21f46a5bcb3
IEDL.DBID BENPR
ISSN 2076-3298
IngestDate Fri Jul 11 03:05:43 EDT 2025
Mon Jun 30 07:31:29 EDT 2025
Tue Jun 10 21:22:26 EDT 2025
Tue Jul 01 03:41:34 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-76b35b65b502b877c81ded56693b692d9cfb6564a40874d9d9f45a21f46a5bcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2584-1792
0000-0002-7925-4470
0000-0002-7584-4641
0000-0003-2699-646X
OpenAccessLink https://www.proquest.com/docview/2779492021?pq-origsite=%requestingapplication%
PQID 2779492021
PQPubID 2055416
ParticipantIDs proquest_miscellaneous_2887611208
proquest_journals_2779492021
gale_infotracacademiconefile_A742391977
crossref_citationtrail_10_3390_environments10020015
crossref_primary_10_3390_environments10020015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Environments (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Glaze (ref_23) 1987; 9
Kajihara (ref_42) 1991; 66
Souza (ref_100) 2016; 180
Bandala (ref_161) 2021; 895
Kraft (ref_87) 2006; 5
Balmer (ref_36) 2009; 21
Hurwitz (ref_98) 2014; 240
Llanos (ref_157) 2019; 208
Cai (ref_70) 2019; 257
ref_132
Macpherson (ref_41) 2015; 17
Brillas (ref_129) 2009; 109
Yang (ref_37) 2019; 48
Keller (ref_50) 2015; 283
Zhao (ref_115) 2010; 12
Daud (ref_1) 2011; 89
Rodrigo (ref_60) 2015; 166–167
Przyjazny (ref_78) 2018; 128
Zhou (ref_140) 2017; Volume 61
Cotillas (ref_103) 2018; 199
Luong (ref_30) 2009; 134
Chen (ref_65) 2018; 210
Yu (ref_117) 2012; 539–540
Li (ref_71) 2020; 8
Kim (ref_11) 2011; 186
Han (ref_120) 2017; 62
Thiam (ref_137) 2018; 224
Sopaj (ref_47) 2015; 262
ref_126
Mousset (ref_113) 2020; 18
Jian (ref_121) 2020; 4
Dickhout (ref_9) 2017; 487
Murati (ref_151) 2014; 33
Brillas (ref_21) 2009; 87
Flox (ref_183) 2007; 129
Wang (ref_81) 2013; 2013
Ramesham (ref_34) 1997; 6
(ref_170) 2021; 159
Brillas (ref_58) 2014; 25
Choi (ref_91) 2016; 57
Ferro (ref_26) 2004; 49
Liu (ref_94) 2021; 9
Mollah (ref_7) 2004; 114
Fryda (ref_25) 2004; 49
Samet (ref_48) 2010; 161
Bennedsen (ref_59) 2012; 86
Fernandes (ref_168) 2021; 275
Machado (ref_173) 2022; 13
He (ref_44) 2019; 212
Boczkaj (ref_79) 2017; 320
Nidheesh (ref_131) 2014; 132
Gargouri (ref_2) 2014; 117
Ganiyu (ref_148) 2019; 6
Flox (ref_147) 2009; 74
Ye (ref_179) 2019; 247
Schneider (ref_108) 2014; 114
Wee (ref_135) 2019; 6
Koparal (ref_136) 2009; 89
ref_77
ref_76
Coria (ref_174) 2016; 304
Lu (ref_75) 2022; 302
Oturan (ref_152) 2014; 21
Feijoo (ref_74) 2022; 446
ref_156
Cornejo (ref_185) 2021; 25
Hurwitz (ref_99) 2014; 249
Panizza (ref_22) 2009; 109
Mousset (ref_187) 2021; 200
Oturan (ref_19) 2014; 44
Brillas (ref_160) 2013; 4
Shokrollahzadeh (ref_3) 2008; 99
Suzuki (ref_122) 2020; 10
Flox (ref_46) 2006; 67
Park (ref_85) 2005; 8
Reyes (ref_158) 2010; 160
Saeed (ref_110) 2022; 29
(ref_52) 2018; 2
Radjenovic (ref_62) 2016; 94
Wood (ref_95) 2021; 168
Waltman (ref_56) 2010; 84
Li (ref_96) 2022; 22
Paz (ref_186) 2009; 90
ref_80
MacKenzie (ref_53) 2012; 1
Park (ref_92) 2019; 11
Thompson (ref_16) 2022; 13
Wang (ref_145) 2008; 84
Poferl (ref_40) 1973; 44
Brillas (ref_57) 2014; 58
Salazar (ref_176) 2012; 115–116
Mena (ref_104) 2019; 372
Wang (ref_116) 2011; 13
Shin (ref_69) 2019; 254
Ochiai (ref_107) 2010; 44
Yang (ref_72) 2020; 252
Gozzi (ref_171) 2019; 6
Moreira (ref_180) 2016; 182
Zheng (ref_124) 2021; 190
Skoumal (ref_166) 2008; 71
Michaud (ref_83) 2003; 33
Tirado (ref_169) 2018; 48
Liu (ref_15) 2018; 52
Panizza (ref_27) 2018; 11
Nidheesh (ref_29) 2019; 6
Kitaori (ref_89) 2013; 81
Arfanis (ref_5) 2017; 310
Truc (ref_10) 2021; 25
Dong (ref_111) 2015; 5
Pignatello (ref_141) 1999; 33
Brillas (ref_128) 1996; 143
ref_55
Cornejo (ref_184) 2020; 331
Alcaide (ref_167) 2020; 379
Dirany (ref_150) 2010; 81
Diban (ref_49) 2017; 322
Rodrigo (ref_102) 2018; 165
Park (ref_84) 2003; 39
Kanfra (ref_93) 2021; 128
Verma (ref_6) 2012; 93
Cai (ref_66) 2019; 15
Das (ref_39) 2007; 52
Oriol (ref_178) 2021; 28
Andreozzi (ref_164) 1999; 53
Chen (ref_13) 2022; 178
Anglada (ref_51) 2009; 43
Gao (ref_118) 2015; 26
Plakas (ref_175) 2019; 242
Ternes (ref_17) 2003; 37
Moreira (ref_181) 2015; 81
Clematis (ref_177) 2021; 270
Zhang (ref_114) 2009; 207
ref_64
Katsuki (ref_82) 1998; 145
Wang (ref_112) 2022; 43
Brillas (ref_143) 1998; 16
Brillas (ref_146) 2004; 49
Sun (ref_163) 1993; 27
Comninellis (ref_28) 2008; 83
Souza (ref_101) 2017; 280
Reyes (ref_162) 2014; 97
Swain (ref_35) 2019; 141
(ref_133) 2018; 213
Brennan (ref_54) 2020; 7
Honda (ref_90) 2013; 40
Sires (ref_20) 2014; 21
Sudoh (ref_139) 1986; 19
Masomboon (ref_144) 2008; 17
Heberle (ref_68) 2019; 844
Vahid (ref_97) 2013; 88
Carrera (ref_125) 2022; 212
Steter (ref_172) 2018; 224
Fan (ref_119) 2016; 8
Zhou (ref_32) 2016; 377
Arihara (ref_86) 2006; 9
Koparal (ref_12) 2002; 89
Meng (ref_8) 2009; 43
Haenen (ref_43) 2004; 13
Bocos (ref_130) 2016; 50
ref_38
Klidi (ref_149) 2019; 841
Navarro (ref_67) 2019; 832
Sekido (ref_88) 2008; 13
Skoumal (ref_155) 2009; 54
Ibanez (ref_159) 2013; 160
Souza (ref_105) 2021; 279
Fenton (ref_127) 1894; 65
Pinheiro (ref_154) 2019; 295
Bu (ref_63) 2017; 168
ref_106
Oturan (ref_138) 2021; 25
Casado (ref_165) 2005; 39
Farhat (ref_61) 2015; 49
ref_109
Chen (ref_14) 2022; 221
Debut (ref_123) 2021; 278
Moreira (ref_24) 2017; 202
Pignatello (ref_142) 2006; 36
Nashat (ref_73) 2022; 286
Oturan (ref_153) 2012; 10
Swain (ref_33) 1994; 6
Angus (ref_31) 1999; 9
Ganiyu (ref_18) 2021; 27
Su (ref_134) 2019; 7
ref_4
Iniesta (ref_45) 2001; 46
Antonin (ref_182) 2015; 747
References_xml – volume: 84
  start-page: 523
  year: 2010
  ident: ref_56
  article-title: Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping
  publication-title: Scientometrics
  doi: 10.1007/s11192-009-0146-3
– volume: 221
  start-page: 118846
  year: 2022
  ident: ref_14
  article-title: Emerging Electrochemical Techniques for Identifying and Removing Micro/Nanoplastics in Urban Waters
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118846
– volume: 37
  start-page: 1976
  year: 2003
  ident: ref_17
  article-title: Ozonation: A Tool for Removal of Pharmaceuticals, Contrast Media and Musk Fragrances from Wastewater?
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(02)00570-5
– volume: 117
  start-page: 309
  year: 2014
  ident: ref_2
  article-title: Application of Electrochemical Technology for Removing Petroleum Hydrocarbons from Produced Water Using Lead Dioxide and Boron-Doped Diamond Electrodes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.07.067
– volume: 5
  start-page: 14610
  year: 2015
  ident: ref_111
  article-title: Recent Developments in Heterogeneous Photocatalytic Water Treatment Using Visible Light-Responsive Photocatalysts: A Review
  publication-title: RSC Adv.
  doi: 10.1039/C4RA13734E
– volume: 208
  start-page: 123
  year: 2019
  ident: ref_157
  article-title: On the Design of a Jet-Aerated Microfluidic Flow-through Reactor for Wastewater Treatment by Electro-Fenton
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.04.021
– ident: ref_77
  doi: 10.1016/B978-0-12-813160-2.00014-6
– volume: 280
  start-page: 192
  year: 2017
  ident: ref_101
  article-title: Applicability of Electrochemical Oxidation Using Diamond Anodes to the Treatment of a Sulfonylurea Herbicide
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.04.030
– volume: 11
  start-page: 62
  year: 2018
  ident: ref_27
  article-title: Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2018.07.010
– volume: 270
  start-page: 129480
  year: 2021
  ident: ref_177
  article-title: Electro-Fenton, Solar Photoelectro-Fenton and UVA Photoelectro-Fenton: Degradation of Erythrosine B Dye Solution
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.129480
– ident: ref_132
– volume: 9
  start-page: 175
  year: 1999
  ident: ref_31
  article-title: Conducting Diamond Electrodes: Applications in Electrochemistry
  publication-title: New Diam. Front. Carbon Technol.
– volume: 46
  start-page: 3573
  year: 2001
  ident: ref_45
  article-title: Electrochemical Oxidation of Phenol at Boron-Doped Diamond Electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(01)00630-2
– volume: 310
  start-page: 525
  year: 2017
  ident: ref_5
  article-title: Photocatalytic Degradation of Salicylic Acid and Caffeine Emerging Contaminants Using Titania Nanotubes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.06.098
– volume: 25
  start-page: 393
  year: 2014
  ident: ref_58
  article-title: A review on the degradation of organic pollutants in waters by UV photoelectro-Fenton and solar photoelectro-Fenton
  publication-title: J. Braz. Chem. Soc.
– volume: 213
  start-page: 279
  year: 2018
  ident: ref_133
  article-title: Kinetics of Acid Orange 7 Oxidation by Using Carbon Fiber and Reticulated Vitreous Carbon in an Electro-Fenton Process
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.01.022
– ident: ref_76
  doi: 10.1002/9781118062364.ch13
– volume: 302
  start-page: 122080
  year: 2022
  ident: ref_75
  article-title: Manufacturing 3D Nano-Porous Architecture for Boron-Doped Diamond Film to Efficient Abatement of Organic Pollutant: Synergistic Effect of Hydroxyl Radical and Sulfate Radical
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122080
– volume: 25
  start-page: 100935
  year: 2021
  ident: ref_185
  article-title: Electrochemical Reactors Equipped with BDD Electrodes: Geometrical Aspects and Applications in Water Treatment
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2021.100935
– volume: 65
  start-page: 899
  year: 1894
  ident: ref_127
  article-title: LXXIII.—Oxidation of Tartaric Acid in Presence of Iron
  publication-title: J. Chem. Soc. Trans.
  doi: 10.1039/CT8946500899
– volume: 39
  start-page: 321
  year: 2003
  ident: ref_84
  article-title: Stable Ozone Generation by Using Boron-Doped Diamond Electrodes
  publication-title: Russ. J. Electrochem.
  doi: 10.1023/A:1022892230969
– ident: ref_109
  doi: 10.3390/nano11071804
– volume: 44
  start-page: 1428
  year: 1973
  ident: ref_40
  article-title: Growth of Boron-doped Diamond Seed Crystals by Vapor Deposition
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1662389
– volume: 210
  start-page: 516
  year: 2018
  ident: ref_65
  article-title: Electrochemical Activation of Sulfate by BDD Anode in Basic Medium for Efficient Removal of Organic Pollutants
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.07.043
– ident: ref_4
– volume: 8
  start-page: 65
  year: 2005
  ident: ref_85
  article-title: Use of Boron-Doped Diamond Electrode in Ozone Generation
  publication-title: J. New Mater. Electrochem. Syst.
– volume: 5
  start-page: 883
  year: 2006
  ident: ref_87
  article-title: Electrochemical Ozone Production Using Diamond Anodes and a Solid Polymer Electrolyte
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.02.013
– volume: 54
  start-page: 2077
  year: 2009
  ident: ref_155
  article-title: Electro-Fenton, UVA Photoelectro-Fenton and Solar Photoelectro-Fenton Degradation of the Drug Ibuprofen in Acid Aqueous Medium Using Platinum and Boron-Doped Diamond Anodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.07.014
– volume: 87
  start-page: 105
  year: 2009
  ident: ref_21
  article-title: Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: A General Review
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2008.09.017
– volume: 4
  start-page: 2000257
  year: 2020
  ident: ref_121
  article-title: Tunable Photo-Electrochemistry of Patterned TiO2/BDD Heterojunctions
  publication-title: Small Methods
  doi: 10.1002/smtd.202000257
– volume: 27
  start-page: 304
  year: 1993
  ident: ref_163
  article-title: Photochemical Reactions Involved in the Total Mineralization of 2,4-D by Iron(3+)/Hydrogen Peroxide/UV
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00039a010
– volume: 66
  start-page: 2010
  year: 1991
  ident: ref_42
  article-title: Nitrogen and Potential n -Type Dopants in Diamond
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.2010
– volume: 19
  start-page: 513
  year: 1986
  ident: ref_139
  article-title: Oxidative Degradation of Aqueous Phenol Effluent with Electrogenerated Fenton’s Reagent
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.19.513
– volume: 25
  start-page: 03120003
  year: 2021
  ident: ref_10
  article-title: Electron Beam as an Effective Wastewater Treatment Technology in Lab-Scale Application
  publication-title: J. Hazard. Toxic Radioact. Waste
  doi: 10.1061/(ASCE)HZ.2153-5515.0000584
– volume: 132
  start-page: 568
  year: 2014
  ident: ref_131
  article-title: NaHCO3 Enhanced Rhodamine B Removal from Aqueous Solution by Graphite–Graphite Electro Fenton System
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2014.06.009
– volume: 242
  start-page: 327
  year: 2019
  ident: ref_175
  article-title: Optimization of Electrocatalytic H2O2 Production at Pilot Plant Scale for Solar-Assisted Water Treatment
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.09.045
– volume: 22
  start-page: 3993
  year: 2022
  ident: ref_96
  article-title: Ozone Water Production Using a SPE Electrolyzer Equipped with Boron Doped Diamond Electrodes
  publication-title: Water Supply
  doi: 10.2166/ws.2022.029
– volume: 1
  start-page: 193
  year: 2012
  ident: ref_53
  article-title: Systematic Reviews: What They Are, Why They Are Important, and How to Get Involved
  publication-title: J. Clin. Prev. Cardiol.
– volume: 86
  start-page: 1092
  year: 2012
  ident: ref_59
  article-title: Influence of Chloride and Carbonates on the Reactivity of Activated Persulfate
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.12.011
– volume: 10
  start-page: 1793
  year: 2020
  ident: ref_122
  article-title: Synergetic Effect in Water Treatment with Mesoporous TiO2/BDD Hybrid Electrode
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10318J
– volume: 33
  start-page: 1832
  year: 1999
  ident: ref_141
  article-title: Evidence for an Additional Oxidant in the Photoassisted Fenton Reaction
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es980969b
– volume: 278
  start-page: 130488
  year: 2021
  ident: ref_123
  article-title: Photoelectrocatalytic Degradation of Glyphosate on Titanium Dioxide Synthesized by Sol-Gel/Spin-Coating on Boron Doped Diamond (TiO2/BDD) as a Photoanode
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130488
– volume: 17
  start-page: 2935
  year: 2015
  ident: ref_41
  article-title: A Practical Guide to Using Boron Doped Diamond in Electrochemical Research
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04022H
– volume: 295
  start-page: 39
  year: 2019
  ident: ref_154
  article-title: Mineralization of Paracetamol Using a Gas Diffusion Electrode Modified with Ceria High Aspect Ratio Nanostructures
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.10.097
– volume: 224
  start-page: 340
  year: 2018
  ident: ref_137
  article-title: On the Performance of Electrocatalytic Anodes for Photoelectro-Fenton Treatment of Synthetic Solutions and Real Water Spiked with the Herbicide Chloramben
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.07.065
– volume: 182
  start-page: 161
  year: 2016
  ident: ref_180
  article-title: Electrochemical Advanced Oxidation Processes for Sanitary Landfill Leachate Remediation: Evaluation of Operational Variables
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.09.014
– volume: 94
  start-page: 128
  year: 2016
  ident: ref_62
  article-title: Sulfate-Mediated Electrooxidation of X-Ray Contrast Media on Boron-Doped Diamond Anode
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.02.045
– volume: 12
  start-page: 76
  year: 2010
  ident: ref_115
  article-title: Photoelectrocatalytic Degradation of Organic Contaminant at Hybrid BDD-ZnWO4 Electrode
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2010.08.013
– volume: 322
  start-page: 196
  year: 2017
  ident: ref_49
  article-title: Efficient Electrochemical Degradation of Poly- and Perfluoroalkyl Substances (PFASs) from the Effluents of an Industrial Wastewater Treatment Plant
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.04.040
– volume: 43
  start-page: 2035
  year: 2009
  ident: ref_51
  article-title: Pilot Scale Performance of the Electro-Oxidation of Landfill Leachate at Boron-Doped Diamond Anodes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802748c
– volume: 304
  start-page: 817
  year: 2016
  ident: ref_174
  article-title: Influence of the Anode Material on the Degradation of Naproxen by Fenton-Based Electrochemical Processes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.07.012
– volume: 114
  start-page: 199
  year: 2004
  ident: ref_7
  article-title: Fundamentals, Present and Future Perspectives of Electrocoagulation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2004.08.009
– volume: 13
  start-page: 457
  year: 2022
  ident: ref_173
  article-title: Use of WO2.72 Nanoparticles/Vulcan® XC72 GDE Electrocatalyst Combined with the Photoelectro-Fenton Process for the Degradation of 17α-Ethinylestradiol (EE2)
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-022-00724-8
– volume: 36
  start-page: 1
  year: 2006
  ident: ref_142
  article-title: Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380500326564
– volume: 168
  start-page: 1309
  year: 2017
  ident: ref_63
  article-title: Removal of 2-MIB and Geosmin by Electrogenerated Persulfate: Performance, Mechanism and Pathways
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.11.134
– volume: 286
  start-page: 131579
  year: 2022
  ident: ref_73
  article-title: Optimization of Electrochemical Activation of Persulfate by BDD Electrodes for Rapid Removal of Sulfamethazine
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131579
– volume: 6
  start-page: 17
  year: 1997
  ident: ref_34
  article-title: Electrochemical Characterization of Doped and Undoped CVD Diamond Deposited by Microwave Plasma
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/S0925-9635(96)00593-6
– volume: 2013
  start-page: e128248
  year: 2013
  ident: ref_81
  article-title: Anodic Materials for Electrocatalytic Ozone Generation
  publication-title: Int. J. Electrochem.
  doi: 10.1155/2013/128248
– ident: ref_106
  doi: 10.3390/catal12070711
– volume: 28
  start-page: 23833
  year: 2021
  ident: ref_178
  article-title: Photoelectro-Fenton Treatment of Pesticide Triclopyr at Neutral PH Using Fe(III)–EDDS under UVA Light or Sunlight
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-11421-8
– volume: 90
  start-page: 410
  year: 2009
  ident: ref_186
  article-title: Costs of the Electrochemical Oxidation of Wastewaters: A Comparison with Ozonation and Fenton Oxidation Processes
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2007.10.010
– volume: 13
  start-page: 119
  year: 2008
  ident: ref_88
  article-title: Development of a Small-Sized Generator of Ozonated Water Using an Electro-Conductive Diamond Electrode
  publication-title: Biocontrol. Sci.
  doi: 10.4265/bio.13.119
– volume: 26
  start-page: 1018
  year: 2015
  ident: ref_118
  article-title: Efficient Photocatalyst Based on ZnO Nanorod Arrays/p-Type Boron-Doped-Diamond Heterojunction
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-014-2498-6
– volume: 249
  start-page: 180
  year: 2014
  ident: ref_99
  article-title: Photo-Assisted Electrochemical Treatment of Municipal Wastewater Reverse Osmosis Concentrate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.03.084
– volume: 180
  start-page: 733
  year: 2016
  ident: ref_100
  article-title: Removal of Pesticide 2,4-D by Conductive-Diamond Photoelectrochemical Oxidation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.07.038
– volume: 166–167
  start-page: 454
  year: 2015
  ident: ref_60
  article-title: Influence of Mediated Processes on the Removal of Rhodamine with Conductive-Diamond Electrochemical Oxidation
  publication-title: Appl. Catal. B Environ.
– volume: 6
  start-page: 865
  year: 2019
  ident: ref_171
  article-title: Assessment of 4-Aminoantipyrine Degradation and Mineralization by Photoelectro-Fenton with a Boron-Doped Diamond Anode: Optimization, Treatment in Municipal Secondary Effluent, and Toxicity
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801651
– volume: 168
  start-page: 126514
  year: 2021
  ident: ref_95
  article-title: Electrochemical Ozone Generation Using Compacted High Pressure High Temperature Boron Doped Diamond Microparticle Electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac3ff4
– volume: 372
  start-page: 77
  year: 2019
  ident: ref_104
  article-title: Sono- and Photoelectrocatalytic Processes for the Removal of Ionic Liquids Based on the 1-Butyl-3-Methylimidazolium Cation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.12.015
– volume: 160
  start-page: 199
  year: 2010
  ident: ref_158
  article-title: Determination of Optimum Operating Parameters for Acid Yellow 36 Decolorization by Electro-Fenton Process Using BDD Cathode
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.03.043
– volume: 377
  start-page: 406
  year: 2016
  ident: ref_32
  article-title: Electrochemical Oxidation of Biological Pretreated and Membrane Separated Landfill Leachate Concentrates on Boron Doped Diamond Anode
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.03.045
– volume: 159
  start-page: 108244
  year: 2021
  ident: ref_170
  article-title: Comparison and Statistical Analysis for Post-Tanning Synthetic Wastewater Degradation Using Different Electrochemical Processes
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2020.108244
– volume: 13
  start-page: 1423
  year: 2011
  ident: ref_116
  article-title: Investigation on Ce-Doped TiO2-Coated BDD Composite Electrode with High Photoelectrocatalytic Activity under Visible Light Irradiation
  publication-title: Electrochem. Commun.
– volume: 44
  start-page: 2577
  year: 2014
  ident: ref_19
  article-title: Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2013.829765
– volume: 446
  start-page: 137114
  year: 2022
  ident: ref_74
  article-title: Electrochemical Advanced Oxidation of Carbamazepine: Mechanism and Optimal Operating Conditions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137114
– volume: 44
  start-page: 904
  year: 2010
  ident: ref_107
  article-title: Development of Solar-Driven Electrochemical and Photocatalytic Water Treatment System Using a Boron-Doped Diamond Electrode and TiO2 Photocatalyst
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.09.060
– volume: 262
  start-page: 286
  year: 2015
  ident: ref_47
  article-title: Influence of the Anode Materials on the Electrochemical Oxidation Efficiency. Application to Oxidative Degradation of the Pharmaceutical Amoxicillin
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.09.100
– volume: 18
  start-page: 1301
  year: 2020
  ident: ref_113
  article-title: Photoelectrochemical Reactors for Treatment of Water and Wastewater: A Review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-020-01014-9
– volume: 49
  start-page: 4487
  year: 2004
  ident: ref_146
  article-title: Electrochemical Destruction of Chlorophenoxy Herbicides by Anodic Oxidation and Electro-Fenton Using a Boron-Doped Diamond Electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.05.006
– volume: 6
  start-page: 2124
  year: 2019
  ident: ref_29
  article-title: Environmental Applications of Boron-Doped Diamond Electrodes: 1. Applications in Water and Wastewater Treatment
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801876
– volume: 89
  start-page: 95
  year: 2011
  ident: ref_1
  article-title: Treatment Technologies for Petroleum Refinery Effluents: A Review
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2010.11.003
– volume: 6
  start-page: 388
  year: 1994
  ident: ref_33
  article-title: The Use of CVD Diamond Thin Films in Electrochemical Systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.19940060511
– ident: ref_156
  doi: 10.3390/pr9091482
– volume: 81
  start-page: 375
  year: 2015
  ident: ref_181
  article-title: Incorporation of Electrochemical Advanced Oxidation Processes in a Multistage Treatment System for Sanitary Landfill Leachate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.05.036
– volume: 48
  start-page: 157
  year: 2019
  ident: ref_37
  article-title: Conductive Diamond: Synthesis, Properties, and Electrochemical Applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00757D
– volume: 254
  start-page: 156
  year: 2019
  ident: ref_69
  article-title: Electrochemical Oxidation of Organics in Sulfate Solutions on Boron-Doped Diamond Electrode: Multiple Pathways for Sulfate Radical Generation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.04.060
– volume: 89
  start-page: 83
  year: 2002
  ident: ref_12
  article-title: Removal of Nitrate from Water by Electroreduction and Electrocoagulation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/S0304-3894(01)00301-6
– ident: ref_64
– volume: 67
  start-page: 93
  year: 2006
  ident: ref_46
  article-title: Electro-Fenton and Photoelectro-Fenton Degradation of Indigo Carmine in Acidic Aqueous Medium
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2006.04.020
– volume: 539–540
  start-page: 74
  year: 2012
  ident: ref_117
  article-title: Fabrication, Structure, and Photocatalytic Activities of Boron-Doped ZnO Nanorods Hydrothermally Grown on CVD Diamond Film
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2012.04.051
– volume: 844
  start-page: 27
  year: 2019
  ident: ref_68
  article-title: Electrochemical Advanced Oxidation of Atenolol at Nb/BDD Thin Film Anode
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.05.011
– volume: 252
  start-page: 126499
  year: 2020
  ident: ref_72
  article-title: Persulfate Enhanced Electrochemical Oxidation of Highly Toxic Cyanide-Containing Organic Wastewater Using Boron-Doped Diamond Anode
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126499
– volume: 2
  start-page: 197
  year: 2018
  ident: ref_52
  article-title: Writing a Review Article—Are You Making These Mistakes?
  publication-title: Nanotheranostics
  doi: 10.7150/ntno.24793
– volume: 52
  start-page: 29
  year: 2007
  ident: ref_39
  article-title: A Review of Nucleation, Growth and Low Temperature Synthesis of Diamond Thin Films
  publication-title: Int. Mater. Rev.
  doi: 10.1179/174328007X160245
– volume: 81
  start-page: 594
  year: 2010
  ident: ref_150
  article-title: Electrochemical Abatement of the Antibiotic Sulfamethoxazole from Water
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.08.032
– volume: 10
  start-page: 165
  year: 2012
  ident: ref_153
  article-title: Unprecedented Total Mineralization of Atrazine and Cyanuric Acid by Anodic Oxidation and Electro-Fenton with a Boron-Doped Diamond Anode
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-011-0337-z
– volume: 97
  start-page: 26
  year: 2014
  ident: ref_162
  article-title: Coupling of Solar Photoelectro-Fenton with a BDD Anode and Solar Heterogeneous Photocatalysis for the Mineralization of the Herbicide Atrazine
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.044
– volume: 747
  start-page: 1
  year: 2015
  ident: ref_182
  article-title: Degradation of Evans Blue Diazo Dye by Electrochemical Processes Based on Fenton’s Reaction Chemistry
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2015.03.032
– volume: 50
  start-page: 7679
  year: 2016
  ident: ref_130
  article-title: Electrocoagulation: Simply a Phase Separation Technology? The Case of Bronopol Compared to Its Treatment by EAOPs
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02057
– volume: 160
  start-page: G3171
  year: 2013
  ident: ref_159
  article-title: Efficient Anodic Degradation of Phenol Paired to Improved Cathodic Production of H2O2 at BDD Electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.027307jes
– volume: 21
  start-page: 364221
  year: 2009
  ident: ref_36
  article-title: Chemical Vapour Deposition Synthetic Diamond: Materials, Technology and Applications
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/36/364221
– volume: 134
  start-page: 1965
  year: 2009
  ident: ref_30
  article-title: Boron-Doped Diamond Electrode: Synthesis, Characterization, Functionalization and Analytical Applications
  publication-title: Analyst
  doi: 10.1039/b910206j
– volume: 71
  start-page: 1718
  year: 2008
  ident: ref_166
  article-title: Mineralization of the Biocide Chloroxylenol by Electrochemical Advanced Oxidation Processes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.12.029
– ident: ref_55
– volume: 84
  start-page: 393
  year: 2008
  ident: ref_145
  article-title: Mineralization of an Azo Dye Acid Red 14 by Photoelectro-Fenton Process Using an Activated Carbon Fiber Cathode
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2008.04.016
– volume: 212
  start-page: 113362
  year: 2022
  ident: ref_125
  article-title: Photoelectrocatalytic Degradation of Diclofenac with a Boron-Doped Diamond Electrode Modified with Titanium Dioxide as a Photoanode
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.113362
– volume: 240
  start-page: 235
  year: 2014
  ident: ref_98
  article-title: Degradation of Phenol by Synergistic Chlorine-Enhanced Photo-Assisted Electrochemical Oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.11.087
– volume: 62
  start-page: 619
  year: 2017
  ident: ref_120
  article-title: Photoelectrocatalytic Activity of an Ordered and Vertically Aligned TiO2 Nanorod Array/BDD Heterojunction Electrode
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.03.009
– volume: 8
  start-page: 103997
  year: 2020
  ident: ref_71
  article-title: Electrochemical Oxidation of Reactive Blue 19 on Boron-Doped Diamond Anode with Different Supporting Electrolyte
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2020.103997
– volume: 114
  start-page: 9919
  year: 2014
  ident: ref_108
  article-title: Understanding TiO2 Photocatalysis: Mechanisms and Materials
  publication-title: Chem. Rev.
  doi: 10.1021/cr5001892
– volume: 257
  start-page: 117902
  year: 2019
  ident: ref_70
  article-title: Extremely Efficient Electrochemical Degradation of Organic Pollutants with Co-Generation of Hydroxyl and Sulfate Radicals on Blue-TiO2 Nanotubes Anode
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.117902
– volume: 4
  start-page: 224
  year: 2013
  ident: ref_160
  article-title: Degradation of 2,4-Dichlorophenoxyacetic Acid by Electro-Oxidation and Electro-Fenton/BDD Processes Using a Pre-Pilot Plant
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-013-0135-4
– ident: ref_80
  doi: 10.5772/51945
– volume: 6
  start-page: 937
  year: 2019
  ident: ref_135
  article-title: Near-Neutral Electro-Fenton Treatment of Pharmaceutical Pollutants: Effect of Using a Triphosphate Ligand and BDD Electrode
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801732
– ident: ref_126
  doi: 10.3390/molecules27165218
– volume: 89
  start-page: 620
  year: 2009
  ident: ref_136
  article-title: A Comparative Study on the Efficiency of Electro-Fenton Process in the Removal of Propham from Water
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2009.01.022
– volume: 128
  start-page: 103
  year: 2018
  ident: ref_78
  article-title: Effective Method of Treatment of Industrial Effluents under Basic PH Conditions Using Acoustic Cavitation—A Comprehensive Comparison with Hydrodynamic Cavitation Processes
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2018.04.010
– volume: 379
  start-page: 122417
  year: 2020
  ident: ref_167
  article-title: A Stable CoSP/MWCNTs Air-Diffusion Cathode for the Photoelectro-Fenton Degradation of Organic Pollutants at Pre-Pilot Scale
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122417
– volume: 58
  start-page: 239
  year: 2014
  ident: ref_57
  article-title: Electro-Fenton, UVA Photoelectro-Fenton and Solar Photoelectro-Fenton Treatments of Organics in Waters Using a Boron-Doped Diamond Anode: A Review
  publication-title: J. Mex. Chem. Soc.
– volume: 165
  start-page: E262
  year: 2018
  ident: ref_102
  article-title: Coupling Photo and Sono Technologies with BDD Anodic Oxidation for Treating Soil-Washing Effluent Polluted with Atrazine
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1281805jes
– volume: 7
  start-page: 314
  year: 2020
  ident: ref_54
  article-title: Critically Appraised Topics (CATs) in Veterinary Medicine: Applying Evidence in Clinical Practice
  publication-title: Front. Vet. Sci.
  doi: 10.3389/fvets.2020.00314
– volume: 33
  start-page: 121
  year: 2014
  ident: ref_151
  article-title: Application of the Electro-Fenton Process to Mesotrione Aqueous Solutions: Kinetics, Degradation Pathways, Mineralization, and Evolution of Toxicity
  publication-title: Maced. J. Chem. Chem. Eng.
  doi: 10.20450/mjcce.2014.407
– volume: 109
  start-page: 6541
  year: 2009
  ident: ref_22
  article-title: Direct and Mediated Anodic Oxidation of Organic Pollutants
  publication-title: Chem. Rev.
  doi: 10.1021/cr9001319
– volume: 6
  start-page: 1808
  year: 2019
  ident: ref_148
  article-title: Abatement of Analgesic Antipyretic 4-Aminophenazone Using Conductive Boron-Doped Diamond and Sub-Stoichiometric Titanium Oxide Anodes: Kinetics, Mineralization and Toxicity Assessment
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801741
– volume: 16
  start-page: 31
  year: 1998
  ident: ref_143
  article-title: Aniline Mineralization by AOP’s: Anodic Oxidation, Photocatalysis, Electro-Fenton and Photoelectro-Fenton Processes
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/S0926-3373(97)00059-3
– volume: 53
  start-page: 51
  year: 1999
  ident: ref_164
  article-title: Advanced Oxidation Processes (AOP) for Water Purification and Recovery
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(99)00102-9
– volume: 43
  start-page: 1489
  year: 2009
  ident: ref_8
  article-title: Recent Advances in Membrane Bioreactors (MBRs): Membrane Fouling and Membrane Material
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.12.044
– volume: 11
  start-page: 1257
  year: 2019
  ident: ref_92
  article-title: Electrochemical Oxidation of High-Concentration Ozone Generation in Flowing Water Through Boron Doped Diamond Electrodes
  publication-title: Nanosci. Nanotechnol. Lett.
  doi: 10.1166/nnl.2019.3001
– volume: 895
  start-page: 115492
  year: 2021
  ident: ref_161
  article-title: Electro-Fenton Mineralization of Diazo Dye Black NT2 Using a Pre-Pilot Flow Plant
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2021.115492
– volume: 27
  start-page: 100678
  year: 2021
  ident: ref_18
  article-title: Electrochemical Advanced Oxidation Processes for Wastewater Treatment: Advances in Formation and Detection of Reactive Species and Mechanisms
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2020.100678
– volume: 128
  start-page: 1657
  year: 2021
  ident: ref_93
  article-title: Ozonated Water Electrolytically Generated by Diamond-Coated Electrodes Controlled Phytonematodes in Replanted Soil
  publication-title: J. Plant Dis. Prot.
  doi: 10.1007/s41348-021-00524-0
– volume: 320
  start-page: 608
  year: 2017
  ident: ref_79
  article-title: Wastewater Treatment by Means of Advanced Oxidation Processes at Basic PH Conditions: A Review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.084
– volume: 207
  start-page: 66
  year: 2009
  ident: ref_114
  article-title: Degradation of X-3B Dye by Immobilized TiO2 Photocatalysis Coupling Anodic Oxidation on BDD Electrode
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2009.01.014
– volume: 109
  start-page: 6570
  year: 2009
  ident: ref_129
  article-title: Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry
  publication-title: Chem. Rev.
  doi: 10.1021/cr900136g
– volume: 224
  start-page: 410
  year: 2018
  ident: ref_172
  article-title: Solar Photoelectro-Fenton Treatment of a Mixture of Parabens Spiked into Secondary Treated Wastewater Effluent at Low Input Current
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.10.060
– volume: 190
  start-page: 116783
  year: 2021
  ident: ref_124
  article-title: Stormwater Herbicides Removal with a Solar-Driven Advanced Oxidation Process: A Feasibility Investigation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116783
– volume: 39
  start-page: 1843
  year: 2005
  ident: ref_165
  article-title: Mineralization of Aromatics in Water by Sunlight-Assisted Electro-Fenton Technology in a Pilot Reactor
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0498787
– volume: 7
  start-page: 24408
  year: 2019
  ident: ref_134
  article-title: A Carbon Nanotube-Confined Iron Modified Cathode with Prominent Stability and Activity for Heterogeneous Electro-Fenton Reactions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07491K
– volume: 202
  start-page: 217
  year: 2017
  ident: ref_24
  article-title: Electrochemical Advanced Oxidation Processes: A Review on Their Application to Synthetic and Real Wastewaters
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.08.037
– volume: 129
  start-page: 29
  year: 2007
  ident: ref_183
  article-title: Mineralization of Herbicide Mecoprop by Photoelectro-Fenton with UVA and Solar Light
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2007.06.049
– volume: 13
  start-page: 12616
  year: 2022
  ident: ref_16
  article-title: Electrokinetic Separation Techniques for Studying Nano- and Microplastics
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC04019K
– volume: 9
  start-page: 335
  year: 1987
  ident: ref_23
  article-title: The Chemistry of Water-Treatment Processes Involving Ozone, Hydrogen-Peroxide and Ultraviolet-Radiation
  publication-title: Ozone-Sci. Eng.
  doi: 10.1080/01919518708552148
– volume: 145
  start-page: 2358
  year: 1998
  ident: ref_82
  article-title: Water Electrolysis Using Diamond Thin-Film Electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1838643
– volume: 283
  start-page: 551
  year: 2015
  ident: ref_50
  article-title: Removal of Organic Contaminants from Secondary Effluent by Anodic Oxidation with a Boron-Doped Diamond Anode as Tertiary Treatment
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.10.003
– volume: 33
  start-page: 151
  year: 2003
  ident: ref_83
  article-title: Electrochemical Oxidation of Water on Synthetic Boron-Doped Diamond Thin Film Anodes
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/A:1024084924058
– volume: 57
  start-page: 10152
  year: 2016
  ident: ref_91
  article-title: Electrochemical Ozone Production in Inert Supporting Electrolytes on a Boron-Doped Diamond Electrode with a Solid Polymer Electrolyte Electrolyzer
  publication-title: Desalination Water Treat.
  doi: 10.1080/19443994.2015.1043490
– volume: 161
  start-page: 167
  year: 2010
  ident: ref_48
  article-title: Electrochemical Degradation of Chlorpyrifos Pesticide in Aqueous Solutions by Anodic Oxidation at Boron-Doped Diamond Electrodes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.04.060
– volume: 143
  start-page: L49
  year: 1996
  ident: ref_128
  article-title: Iron(II) Catalysis of the Mineralization of Aniline Using a Carbon-PTFE O 2—Fed Cathode
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1836528
– volume: 8
  start-page: 28306
  year: 2016
  ident: ref_119
  article-title: Double-Layer 3D Macro–Mesoporous Metal Oxide Modified Boron-Doped Diamond with Enhanced Photoelectrochemical Performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01929
– volume: 40
  start-page: 7
  year: 2013
  ident: ref_90
  article-title: An Electrolyte-Free System for Ozone Generation Using Heavily Boron-Doped Diamond Electrodes
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2013.09.001
– volume: 15
  start-page: 1900153
  year: 2019
  ident: ref_66
  article-title: Boron-Doped Diamond for Hydroxyl Radical and Sulfate Radical Anion Electrogeneration, Transformation, and Voltage-Free Sustainable Oxidation
  publication-title: Small
  doi: 10.1002/smll.201900153
– volume: 21
  start-page: 8336
  year: 2014
  ident: ref_20
  article-title: Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-014-2783-1
– volume: 9
  start-page: D17
  year: 2006
  ident: ref_86
  article-title: Application of Freestanding Perforated Diamond Electrodes for Efficient Ozone-Water Production
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.2206009
– volume: 49
  start-page: 14326
  year: 2015
  ident: ref_61
  article-title: Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b02705
– volume: Volume 61
  start-page: 313
  year: 2017
  ident: ref_140
  article-title: Solar-Assisted Electro-Fenton Systems for Wastewater Treatment
  publication-title: Electro-Fenton Process
  doi: 10.1007/698_2017_37
– volume: 279
  start-page: 111597
  year: 2021
  ident: ref_105
  article-title: Does Intensification with UV Light and US Improve the Sustainability of Electrolytic Waste Treatment Processes?
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.111597
– volume: 841
  start-page: 166
  year: 2019
  ident: ref_149
  article-title: Electrochemical Treatment of Paper Mill Wastewater by Electro-Fenton Process
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.04.022
– volume: 9
  start-page: 106369
  year: 2021
  ident: ref_94
  article-title: A Highly Stable Microporous Boron-Doped Diamond Electrode Etched by Oxygen Plasma for Enhanced Electrochemical Ozone Generation
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106369
– volume: 832
  start-page: 112
  year: 2019
  ident: ref_67
  article-title: Using P-Si/BDD Anode for the Electrochemical Oxidation of Norfloxacin
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.10.049
– volume: 275
  start-page: 130010
  year: 2021
  ident: ref_168
  article-title: On the Performance of Distinct Electrochemical and Solar-Based Advanced Oxidation Processes to Mineralize the Insecticide Imidacloprid
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130010
– volume: 331
  start-page: 135373
  year: 2020
  ident: ref_184
  article-title: Characterization of the Reaction Environment in Flow Reactors Fitted with BDD Electrodes for Use in Electrochemical Advanced Oxidation Processes: A Critical Review
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135373
– volume: 212
  start-page: 802
  year: 2019
  ident: ref_44
  article-title: Recent Developments and Advances in Boron-Doped Diamond Electrodes for Electrochemical Oxidation of Organic Pollutants
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.11.056
– volume: 29
  start-page: 293
  year: 2022
  ident: ref_110
  article-title: Photocatalysis: An Effective Tool for Photodegradation of Dyes—A Review
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-16389-7
– volume: 81
  start-page: 627
  year: 2013
  ident: ref_89
  article-title: Development of a Small-Sized Electrolyzed Water Generator for Sterilization
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.81.627
– volume: 99
  start-page: 6127
  year: 2008
  ident: ref_3
  article-title: Biodegradation Potential and Bacterial Diversity of a Petrochemical Wastewater Treatment Plant in Iran
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.12.034
– volume: 178
  start-page: 106037
  year: 2022
  ident: ref_13
  article-title: Recycling Spent Water Treatment Adsorbents for Efficient Electrocatalytic Water Oxidation Reaction
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2021.106037
– volume: 141
  start-page: 3382
  year: 2019
  ident: ref_35
  article-title: The Susceptibility to Surface Corrosion in Acidic Fluoride Media: A Comparison of Diamond, HOPG, and Glassy Carbon Electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2059343
– volume: 49
  start-page: 207
  year: 2004
  ident: ref_25
  article-title: Electrochemical Advanced Oxidation Process Using DiaChem®electrodes
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2004.0264
– volume: 115–116
  start-page: 107
  year: 2012
  ident: ref_176
  article-title: Finding the Best Fe2+/Cu2+ Combination for the Solar Photoelectro-Fenton Treatment of Simulated Wastewater Containing the Industrial Textile Dye Disperse Blue 3
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2011.12.026
– volume: 49
  start-page: 4027
  year: 2004
  ident: ref_26
  article-title: Electrochemical Incineration of Oxalic Acid: Role of Electrode Material
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.01.083
– volume: 48
  start-page: 1307
  year: 2018
  ident: ref_169
  article-title: Treatment of Cheese Whey Wastewater by Combined Electrochemical Processes
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-018-1218-y
– volume: 17
  start-page: 1073
  year: 2008
  ident: ref_144
  article-title: Effect of Hydrogen Peroxide on the Degradation of 2,6-Dimethylaniline by Fenton Processes
  publication-title: Fresenius Environ. Bull.
– volume: 21
  start-page: 8379
  year: 2014
  ident: ref_152
  article-title: Electro-Oxidation of the Dye Azure B: Kinetics, Mechanism, and by-Products
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-2772-4
– volume: 247
  start-page: 191
  year: 2019
  ident: ref_179
  article-title: Enhanced Electrocatalytic Production of H2O2 at Co-Based Air-Diffusion Cathodes for the Photoelectro-Fenton Treatment of Bronopol
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.01.029
– volume: 199
  start-page: 445
  year: 2018
  ident: ref_103
  article-title: Degradation of Dye Procion Red MX-5B by Electrolytic and Electro-Irradiated Technologies Using Diamond Electrodes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.02.001
– volume: 93
  start-page: 154
  year: 2012
  ident: ref_6
  article-title: A Review on Chemical Coagulation/Flocculation Technologies for Removal of Colour from Textile Wastewaters
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2011.09.012
– volume: 83
  start-page: 769
  year: 2008
  ident: ref_28
  article-title: Advanced Oxidation Processes for Water Treatment: Advances and Trends for R&D
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.1873
– volume: 74
  start-page: 1340
  year: 2009
  ident: ref_147
  article-title: Electrochemical Incineration of Cresols: A Comparative Study between PbO2 and Boron-Doped Diamond Anodes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.11.050
– volume: 52
  start-page: 9992
  year: 2018
  ident: ref_15
  article-title: Defect Sites in Ultrathin Pd Nanowires Facilitate the Highly Efficient Electrochemical Hydrodechlorination of Pollutants by H* ads
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02740
– volume: 88
  start-page: 614
  year: 2013
  ident: ref_97
  article-title: Photoassisted Electrochemical Recirculation System with Boron-Doped Diamond Anode and Carbon Nanotubes Containing Cathode for Degradation of a Model Azo Dye
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.10.069
– volume: 487
  start-page: 523
  year: 2017
  ident: ref_9
  article-title: Produced Water Treatment by Membranes: A Review from a Colloidal Perspective
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.10.013
– volume: 43
  start-page: 178
  year: 2022
  ident: ref_112
  article-title: A Review on Heterogeneous Photocatalysis for Environmental Remediation: From Semiconductors to Modification Strategies
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63910-4
– volume: 13
  start-page: 2041
  year: 2004
  ident: ref_43
  article-title: The Phosphorous Level Fine Structure in Homoepitaxial and Polycrystalline N-Type CVD Diamond
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2004.06.016
– ident: ref_38
  doi: 10.1002/9781118062364
– volume: 25
  start-page: 100925
  year: 2021
  ident: ref_138
  article-title: Outstanding Performances of the BDD Film Anode in Electro-Fenton Process: Applications and Comparative Performance
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2021.100925
– volume: 186
  start-page: 16
  year: 2011
  ident: ref_11
  article-title: Heterogeneous Catalytic Wet Air Oxidation of Refractory Organic Pollutants in Industrial Wastewaters: A Review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.11.011
– volume: 200
  start-page: 117234
  year: 2021
  ident: ref_187
  article-title: Cost Comparison of Advanced Oxidation Processes for Wastewater Treatment Using Accumulated Oxygen-Equivalent Criteria
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117234
SSID ssj0001583733
Score 2.3494391
SecondaryResourceType review_article
Snippet Re-evaluation of conventional wastewater treatment processes is of paramount importance to improve the overall quality of our aquatic environment....
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 15
SubjectTerms Analysis
Anodizing
Aquatic environment
bibliometric analysis
Bibliometrics
Boron
Carbon
Diamond crystals
Diamonds
Electrochemistry
Electrodes
Gases
Literature reviews
Mineralization
Oxidants
Oxidation
Oxidation-reduction reaction
Oxidizing agents
ozone
Pollutants
Purification
remediation
Renewable energy sources
Sewage
Synergism
Systematic review
Technology utilization
Trends
wastewater
Wastewater treatment
Water pollution
Water treatment
Water treatment plants
Title Electrochemical Advanced Oxidation Processes Using Diamond Technology: A Critical Review
URI https://www.proquest.com/docview/2779492021
https://www.proquest.com/docview/2887611208
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB60vehBfGK1SgTBU3C3STaJF6naUgQfiEJvS5LNgiBttS34851001ZB9JzZsOQx881MZj6AU7ToxpdSU6etpNwySS13gprSCmlcIfSsiv_uPuu98Nu-6MeA2zg-q5zrxJmiLoYuxMjPWxJPjkZXPb0cvdPAGhWyq5FCYxXqqIKVqkH9qnP_-LSMsgh0wBirauYY-vfn3-vHQvvRIPPDJv2umWfmprsJGxEnkna1sVuw4gfbsP6te-AO9DsVhY2LNf-kHfP55OHztaJKIrEOwI_J7G0AuXkN7EIFWUbUL0ibzPkOSJUp2IWXbuf5ukcjUQJ1iIYmVGaWCZsJK5KWVVI6BKG-QKCmmc10q9CuxNGMG54oyQtd6JIL00pLnhlhnWV7UBsMB34fiFcFN0p4ljjHpTWqTFzJGAIHJlLl0waw-VLlLnYRD2QWbzl6E2GB898WuAF08dWo6qLxj_xZ2IU8XDKc3ZlYK4D_GNpV5e2QX9YpYtcGNOcblcfbN86XZ6UBJ4thvDchGWIGfjhFGdSuGYLNRB38PcUhrAWK-eqldhNqk4-pP0IgMrHH8bR9AYmi4R4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dSxwxEB_s-dD6IGpbPLWagtKn4O4m2WwKUk49Ob-upSjc25pks3Agd-qdqP9U_0Ynt1lPQeyTz8mGZTLJ_Cbz8QPYRIuuXSkVtcpIyg2T1HArqC6NkNoWQk2q-E-7aeecH_VEbwb-1bUwPq2yvhMnF3UxtP6NfDuRqDkKXfX419U19axRPrpaU2hUanHsHu7QZRvtHO7j_m4lyUH7bK9DA6sAtQgdxlSmhgmTCiOixGRSWkRsrkBUo5hJVVIoW-JoyjWPMskLVaiSC53EJU-1MNYwXPcDzHKWRkkDZnfb3T9_p686Ah0-xqoaPcZUtP28Xs23O_VzXtjA1y3BxLwdLMB8wKWkVSnSIsy4wRLMPetW-Bl67Yoyx4YeA6QV8gfI7_t-Rc1EQt2BG5FJLgLZ73s2o4JMX_B_khap-RVIFZn4AufvIsKv0BgMB24ZiMsKrjPhWGQtl0ZnZWRLxhCoMBFnLm4Cq0WV29C13JNnXObovXgB568JuAn06aurqmvHf-b_8LuQ-0ONq1sdahPwH317rLzl49kqRqzchLV6o_Jw2kf5VDeb8P1pGM-pD77ogRve4hy8zVMEt1G28vYSG_Cxc3Z6kp8cdo9X4ZOnt6-yxNegMb65dd8QBI3NetA8AhfvreyPYlAdmg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-VVprgAcEGoqwbRgLxZDWJ7ThGmqayttoHlAkxqW_BdhxpEmrL2ortX-Ov27lx1iFN8NRnO1Z0Pvt-5_v4AbxDi65dKRW1ykjKDZPUcCuoLo2Q2hZCrar4v4zS4wt-OhbjBvypa2F8WmV9J64u6mJq_Rt5N5GoOQpd9bhbhrSI8_7wcPaLegYpH2mt6TQqFTlzN7_RfZsfnPRxr98nyXDw_eiYBoYBahFGLKhMDRMmFUZEicmktIjeXIEIRzGTqqRQtsTRlGseZZIXqlAlFzqJS55qYaxhuO4jaEnvFTWh9WkwOv-2fuER6PwxVtXrMaai7v3aNd_61M_5yx4-bBVWpm74DJ4GjEp6lVI9h4abbMOTe50Ld2A8qOhzbOg3QHohl4B8vb6saJpIqEFwc7LKSyD9S89sVJD1a_5H0iM11wKpohQv4GIjInwJzcl04l4BcVnBdSYci6zl0uisjGzJGIIWJuLMxW1gtahyGzqYeyKNnzl6Ml7A-UMCbgO9-2pWdfD4z_wPfhdyf8BxdatDnQL-o2-Vlfd8bFvFiJvb0Kk3Kg8nf56v9bQNb--G8cz6QIyeuOkS5-DNniLQjbLX_17iDWyhkuefT0Znu_DYM91XCeMdaC6ulm4P8dDC7AfFI_Bj07p-C1UuIc8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Advanced+Oxidation+Processes+Using+Diamond+Technology%3A+A+Critical+Review&rft.jtitle=Environments+%28Basel%2C+Switzerland%29&rft.au=Brosler%2C+Priscilla&rft.au=Gir%C3%A3o%2C+Ana+V.&rft.au=Silva%2C+Rui+F.&rft.au=Tedim%2C+Jo%C3%A3o&rft.date=2023-02-01&rft.issn=2076-3298&rft.eissn=2076-3298&rft.volume=10&rft.issue=2&rft.spage=15&rft_id=info:doi/10.3390%2Fenvironments10020015&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_environments10020015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3298&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3298&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3298&client=summon