Meshless analysis of three-dimensional steady-state heat conduction problems

Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 19; no. 9; pp. 36 - 41
Main Author 程荣军 葛红霞
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2010
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/19/9/090201

Cover

Abstract Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples.
AbstractList Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples.
Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples.
Author 程荣军 葛红霞
AuthorAffiliation Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China Faculty of Science, Ningbo University, Ningbo 315211, China
Author_xml – sequence: 1
  fullname: 程荣军 葛红霞
BookMark eNqFkE1PGzEQhq2KSg3Qn1BpxYUe2Gb8sf4QpwpBWymoFzhbjndMTDfrsHYO-fd1FFSkCsFpDvO8846eY3I0phEJ-ULhGwWt51Qq0VLo5JyauZmDAQb0A5kx6HTLNRdHZPaP-USOc34EkBQYn5HFLebVgDk3bnTDLsfcpNCU1YTY9nGNY46pLppc0PW7NhdXsFmhK41PY7_1pa6bzZSWA67zKfkY3JDx8_M8Ifc313dXP9vF7x-_rr4vWi8YL63U6IF10vcIDB14BSwIj_Ul5JoyxRWnHPXS9TwwEQT1wSgnvJbaB8n5CTk_3K3FT1vMxa5j9jgMbsS0zVYLI5Qxklby65skVUoDE9CxinYH1E8p5wmD3Uxx7aadpWD3nu3eod07tNRYYw-ea-7yv5yP1VL1UiYXh3fTF4d0TJuXwtdQu-lDxeEV_J2Gs-f_Vml8eIrjg106_yfEAS0XRkpFO_4XnOOr6A
CitedBy_id crossref_primary_10_1088_1674_1056_21_9_090205
crossref_primary_10_1088_1674_1056_22_2_020503
crossref_primary_10_1007_s00366_020_01256_9
crossref_primary_10_7498_aps_63_210203
crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_066
crossref_primary_10_1088_1674_1056_22_6_060209
crossref_primary_10_1088_1674_1056_20_3_030206
crossref_primary_10_1088_1674_1056_20_7_070206
crossref_primary_10_1088_1674_1056_20_6_064401
crossref_primary_10_1155_2015_181536
crossref_primary_10_1142_S175882512150085X
crossref_primary_10_1088_1674_1056_23_4_040203
crossref_primary_10_7498_aps_60_090206
crossref_primary_10_1088_1674_1056_21_4_040203
crossref_primary_10_1142_S1758825121500435
crossref_primary_10_7498_aps_64_080202
crossref_primary_10_1002_nme_6203
crossref_primary_10_1088_1674_1056_21_10_100209
crossref_primary_10_1088_1674_1056_22_5_050206
crossref_primary_10_1016_j_jappgeo_2021_104323
crossref_primary_10_1088_1674_1056_21_1_010206
Cites_doi 10.1080/10407790590901648
10.7498/aps.57.6037
10.7498/aps.55.3215
10.1016/S0045-7825(96)01078-X
10.1080/10407780490457437
10.7498/aps.57.1
10.1002/nme.1156
10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I
10.1088/1674-1056/18/10/001
10.1007/s004660050346
10.1016/j.ijheatmasstransfer.2006.08.039
10.1016/0010-4655(88)90026-4
10.1115/1.1949651
10.1007/s00466-009-0401-8
10.1002/nme.1620370205
10.1360/142004-25
10.1016/S1007-0214(05)70010-9
10.1016/j.enganabound.2008.03.005
10.1016/j.advengsoft.2005.01.009
10.7498/aps.54.4463
10.1002/fld.1650200824
10.1080/10407780590926183
10.7498/aps.56.5569
10.7498/aps.56.597
10.1016/j.apnum.2007.04.003
10.7498/aps.57.6047
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1088/1674-1056/19/9/090201
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Meshless analysis of three-dimensional steady-state heat conduction problems
EISSN 2058-3834
EndPage 41
ExternalDocumentID 10_1088_1674_1056_19_9_090201
34966715
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AAPBV
AATNI
ABHWH
ABPTK
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CDYEO
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
UCJ
W28
~WA
UNR
-SA
-S~
AAYXX
ABJNI
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
TCJ
TGP
U1G
U5K
7U5
8FD
AEINN
L7M
ID FETCH-LOGICAL-c423t-68ec0256cde02ea0c702f4ce610e3812737313e8bad3f24f41cf97a4c868cf633
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu Sep 04 19:15:21 EDT 2025
Fri Sep 05 04:51:55 EDT 2025
Tue Jul 01 05:37:05 EDT 2025
Thu Apr 24 22:52:15 EDT 2025
Tue Nov 10 14:20:57 EST 2020
Mon May 13 15:55:38 EDT 2019
Fri Nov 25 02:41:35 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-68ec0256cde02ea0c702f4ce610e3812737313e8bad3f24f41cf97a4c868cf633
Notes O241.82
reproducing kernel particle method, meshless method, steady-state heat conduction problem
11-5639/O4
TK124
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1778024052
PQPubID 23500
PageCount 6
ParticipantIDs iop_primary_10_1088_1674_1056_19_9_090201
proquest_miscellaneous_849479961
proquest_miscellaneous_1778024052
crossref_citationtrail_10_1088_1674_1056_19_9_090201
chongqing_backfile_34966715
crossref_primary_10_1088_1674_1056_19_9_090201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2010
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
23
Christopher R J (3) 2002
24
Erwin K (1) 1999
27
28
29
Sladek J (33) 2006; 38
Dai B D (15) 2007; 56
Cheng Y M (17) 2005; 48
Qin Y X (12) 2006; 55
Cheng R J (9) 2009; 18
Singh I V (25) 2005; 21
30
31
10
34
Cheng R J (8) 2008; 57
13
Chen L (19) 2008; 57
Chen W (6) 2000; 1
Singh I V (26) 2005; 36
Selvadurai (2) 1979
Cheng Y M (18) 2005; 54
4
Liu W K (11) 1995; 20
Cheng R J (14) 2007; 56
Sladek J (32) 2001; 2
5
Cheng Y M (16) 2003; 35
7
Chen L (20) 2008; 57
21
References_xml – ident: 31
  doi: 10.1080/10407790590901648
– volume: 38
  start-page: 157
  year: 2006
  ident: 33
  publication-title: Comput. Mech
– volume: 57
  start-page: 6037
  issn: 0372-736X
  year: 2008
  ident: 8
  publication-title: Acta Phys. Sin
  doi: 10.7498/aps.57.6037
– volume: 55
  start-page: 3215
  issn: 0372-736X
  year: 2006
  ident: 12
  publication-title: Acta Phys. Sin
  doi: 10.7498/aps.55.3215
– ident: 4
  doi: 10.1016/S0045-7825(96)01078-X
– year: 1999
  ident: 1
  publication-title: Advanced Engineering Mathematics
– ident: 23
  doi: 10.1080/10407780490457437
– volume: 57
  start-page: 1
  issn: 0372-736X
  year: 2008
  ident: 19
  publication-title: Acta Phys. Sin
  doi: 10.7498/aps.57.1
– volume: 1
  start-page: 75
  year: 2000
  ident: 6
  publication-title: Meshfree Method for Partial Differential Equations
– year: 1979
  ident: 2
  publication-title: Partial Differential Equations in Mechanics
– ident: 29
  doi: 10.1002/nme.1156
– ident: 22
  doi: 10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I
– volume: 18
  start-page: 4059
  issn: 1674-1056
  year: 2009
  ident: 9
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/18/10/001
– volume: 2
  start-page: 423
  year: 2001
  ident: 32
  publication-title: Comp. Modeling Engng. Sci
– ident: 10
  doi: 10.1007/s004660050346
– ident: 27
  doi: 10.1016/j.ijheatmasstransfer.2006.08.039
– ident: 5
  doi: 10.1016/0010-4655(88)90026-4
– volume: 21
  start-page: 73
  year: 2005
  ident: 25
  publication-title: Heat Technol.
– ident: 28
  doi: 10.1115/1.1949651
– year: 2002
  ident: 3
  publication-title: Advanced Methods in Scientific
– ident: 34
  doi: 10.1007/s00466-009-0401-8
– ident: 7
  doi: 10.1002/nme.1620370205
– volume: 48
  start-page: 641
  year: 2005
  ident: 17
  publication-title: Ser. G Phys., Mechanics Astronomy
  doi: 10.1360/142004-25
– ident: 30
  doi: 10.1016/S1007-0214(05)70010-9
– ident: 21
  doi: 10.1016/j.enganabound.2008.03.005
– volume: 36
  start-page: 554
  issn: 0141-1195
  year: 2005
  ident: 26
  publication-title: Adv Eng. Software
  doi: 10.1016/j.advengsoft.2005.01.009
– volume: 35
  start-page: 181
  year: 2003
  ident: 16
  publication-title: Acta Mech. Sin
– volume: 54
  start-page: 4463
  issn: 0372-736X
  year: 2005
  ident: 18
  publication-title: Acta Phys. Sin
  doi: 10.7498/aps.54.4463
– volume: 20
  start-page: 1081
  year: 1995
  ident: 11
  publication-title: Int. J. Numer. Math. Eng
  doi: 10.1002/fld.1650200824
– ident: 24
  doi: 10.1080/10407780590926183
– volume: 56
  start-page: 5569
  issn: 0372-736X
  year: 2007
  ident: 14
  publication-title: Acta Phys. Sin
  doi: 10.7498/aps.56.5569
– volume: 56
  start-page: 597
  issn: 0372-736X
  year: 2007
  ident: 15
  publication-title: Acta Phys. Sin
  doi: 10.7498/aps.56.597
– ident: 13
  doi: 10.1016/j.apnum.2007.04.003
– volume: 57
  start-page: 6047
  issn: 0372-736X
  year: 2008
  ident: 20
  publication-title: Acta Phys. Sin
  doi: 10.7498/aps.57.6047
SSID ssj0061023
Score 1.9631339
Snippet Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial...
SourceID proquest
crossref
iop
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 36
SubjectTerms Boundary conditions
Conduction
Dirichlet problem
Finite element method
Heat conduction
Heat transfer
Mathematical analysis
Mathematical models
偏微分方程
工程问题
拉普拉斯方程
数值解
本质边界条件
稳态热传导问题
网格分析
Title Meshless analysis of three-dimensional steady-state heat conduction problems
URI http://lib.cqvip.com/qk/85823A/20109/34966715.html
http://iopscience.iop.org/1674-1056/19/9/090201
https://www.proquest.com/docview/1778024052
https://www.proquest.com/docview/849479961
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9xADLYoElIvpU81QKup1B44zO4mmcxMjlVVRBFQDiBxG2VeBYGShc0e4Ndj54GEoCq95eDJw-PYnzX2Z4CvGFGtD8Fx4RWRamvBrXaCV176mXZW54Kakw8O5e6J2DstTldgnEx33swHzz_By_4kXyrBaT78NC2n5ZTqCLt-LYz9ZNG_fh-NnlcSDQElWOOKsWMHk7wn70J8CmdN_ecKo8SDuPQCH_7IOXcRZ2cdjsa-nb7Q5GKybO3E3T6mcXzux7yGVwP6ZN97c3kDK6F-C2tdFahbvIP9g7A4u0Tfx6qBq4Q1kbW43YF7GgPQU3iwzjJueNeMxMibM8yqfc9Dy4YRNYv3cLLz8_jHLh_GLXCHmKrlUgdHCMj5MMtCNXNqlkXhAqo1YFxHnKPyNA_aVj6PmYgidbFUlXBaahdlnn-A1bqpw0dgIq0qNIEC4QviGytLEX0WbShKGxAghwQ27xWP4dpdEAmVIe56qdIiATFuhXEDUzkNzLg03Ym51obUaEiNJi1NaXo1JjC5XzbvqTr-tWAb9-W5st8eyD4lY-Y-JvBltBqDPyqdvlR1aJYLkyqliVCuyBJgf5HRohQKM9B04z9ebRNe9iUNVPi2Bavt9TJ8QqTU2s_d73EHA-sDhg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RSAuvBGhPIwEBw7exImT2EdEWbXQlh6o1JuV2A6VWiXbbvYAv56ZOFmpQAWIWw6eyJ6xZz7LM98AvMaIWjvvLZeuJFJtJXmtrOSVK1yibK0yScXJB4fF7rH8eJKfbMDOuhamW4yuf4afgSg4qHBMiFMx5c1zahgfCx3rmBILExEvXLMJN_Ks0NTHYO_z0eSPCyInoGvXJDbV8Vz3K2JZOO3arxcYO65Eq02c0S8ue4hD87vgpxWE9JOz2aqvZ_b7T-SO_7vEe3BnBKrsXZC5Dxu-fQA3h4RRu3wI-wd-eXqObpJVI60J6xrW487w3FHHgMD2wYZN9I0PdUuMHD_DC7gLlLVs7GazfATH8w9f3u_ysTMDtwi_el4obwksWeeT1FeJLZO0kdajrj1CAIREZSYyr-rKZU0qGylso8tKWlUo2xRZ9hi22q71T4BJUVW4W3JEOgiF6kLLxqVN7XNde8TSPoLttTUwstsz4qsyRHNflCKPQE72MXYkNafeGudmeFxXypAqDanSCG20CaqMYLYWWwRWjz8JvEVb_e3YN1fG_m6MQVtG8GraSgbPND3UVK3vVksjylIR91yeRsCuGaOkliVeVsXTf5jaS7h1tDM3-3uHn7bhdkiEoHS5Z7DVX678c8RXff1iOD4_AEd4E3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meshless+analysis+of+three-dimensional+steady-state+heat+conduction+problems&rft.jtitle=Chinese+physics+B&rft.au=Rong-Jun%2C+Cheng&rft.au=Hong-Xia%2C+Ge&rft.date=2010-09-01&rft.issn=1674-1056&rft.volume=19&rft.issue=9&rft.spage=90201&rft_id=info:doi/10.1088%2F1674-1056%2F19%2F9%2F090201&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_19_9_090201
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg