Meshless analysis of three-dimensional steady-state heat conduction problems
Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time...
Saved in:
Published in | Chinese physics B Vol. 19; no. 9; pp. 36 - 41 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.09.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/19/9/090201 |
Cover
Abstract | Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples. |
---|---|
AbstractList | Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples. Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples. |
Author | 程荣军 葛红霞 |
AuthorAffiliation | Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China Faculty of Science, Ningbo University, Ningbo 315211, China |
Author_xml | – sequence: 1 fullname: 程荣军 葛红霞 |
BookMark | eNqFkE1PGzEQhq2KSg3Qn1BpxYUe2Gb8sf4QpwpBWymoFzhbjndMTDfrsHYO-fd1FFSkCsFpDvO8846eY3I0phEJ-ULhGwWt51Qq0VLo5JyauZmDAQb0A5kx6HTLNRdHZPaP-USOc34EkBQYn5HFLebVgDk3bnTDLsfcpNCU1YTY9nGNY46pLppc0PW7NhdXsFmhK41PY7_1pa6bzZSWA67zKfkY3JDx8_M8Ifc313dXP9vF7x-_rr4vWi8YL63U6IF10vcIDB14BSwIj_Ul5JoyxRWnHPXS9TwwEQT1wSgnvJbaB8n5CTk_3K3FT1vMxa5j9jgMbsS0zVYLI5Qxklby65skVUoDE9CxinYH1E8p5wmD3Uxx7aadpWD3nu3eod07tNRYYw-ea-7yv5yP1VL1UiYXh3fTF4d0TJuXwtdQu-lDxeEV_J2Gs-f_Vml8eIrjg106_yfEAS0XRkpFO_4XnOOr6A |
CitedBy_id | crossref_primary_10_1088_1674_1056_21_9_090205 crossref_primary_10_1088_1674_1056_22_2_020503 crossref_primary_10_1007_s00366_020_01256_9 crossref_primary_10_7498_aps_63_210203 crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_066 crossref_primary_10_1088_1674_1056_22_6_060209 crossref_primary_10_1088_1674_1056_20_3_030206 crossref_primary_10_1088_1674_1056_20_7_070206 crossref_primary_10_1088_1674_1056_20_6_064401 crossref_primary_10_1155_2015_181536 crossref_primary_10_1142_S175882512150085X crossref_primary_10_1088_1674_1056_23_4_040203 crossref_primary_10_7498_aps_60_090206 crossref_primary_10_1088_1674_1056_21_4_040203 crossref_primary_10_1142_S1758825121500435 crossref_primary_10_7498_aps_64_080202 crossref_primary_10_1002_nme_6203 crossref_primary_10_1088_1674_1056_21_10_100209 crossref_primary_10_1088_1674_1056_22_5_050206 crossref_primary_10_1016_j_jappgeo_2021_104323 crossref_primary_10_1088_1674_1056_21_1_010206 |
Cites_doi | 10.1080/10407790590901648 10.7498/aps.57.6037 10.7498/aps.55.3215 10.1016/S0045-7825(96)01078-X 10.1080/10407780490457437 10.7498/aps.57.1 10.1002/nme.1156 10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I 10.1088/1674-1056/18/10/001 10.1007/s004660050346 10.1016/j.ijheatmasstransfer.2006.08.039 10.1016/0010-4655(88)90026-4 10.1115/1.1949651 10.1007/s00466-009-0401-8 10.1002/nme.1620370205 10.1360/142004-25 10.1016/S1007-0214(05)70010-9 10.1016/j.enganabound.2008.03.005 10.1016/j.advengsoft.2005.01.009 10.7498/aps.54.4463 10.1002/fld.1650200824 10.1080/10407780590926183 10.7498/aps.56.5569 10.7498/aps.56.597 10.1016/j.apnum.2007.04.003 10.7498/aps.57.6047 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1088/1674-1056/19/9/090201 |
DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Meshless analysis of three-dimensional steady-state heat conduction problems |
EISSN | 2058-3834 |
EndPage | 41 |
ExternalDocumentID | 10_1088_1674_1056_19_9_090201 34966715 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AAPBV AATNI ABHWH ABPTK ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CDYEO CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 UCJ W28 ~WA UNR -SA -S~ AAYXX ABJNI ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- TCJ TGP U1G U5K 7U5 8FD AEINN L7M |
ID | FETCH-LOGICAL-c423t-68ec0256cde02ea0c702f4ce610e3812737313e8bad3f24f41cf97a4c868cf633 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu Sep 04 19:15:21 EDT 2025 Fri Sep 05 04:51:55 EDT 2025 Tue Jul 01 05:37:05 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 Tue Nov 10 14:20:57 EST 2020 Mon May 13 15:55:38 EDT 2019 Fri Nov 25 02:41:35 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-68ec0256cde02ea0c702f4ce610e3812737313e8bad3f24f41cf97a4c868cf633 |
Notes | O241.82 reproducing kernel particle method, meshless method, steady-state heat conduction problem 11-5639/O4 TK124 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 1778024052 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | iop_primary_10_1088_1674_1056_19_9_090201 proquest_miscellaneous_849479961 proquest_miscellaneous_1778024052 crossref_citationtrail_10_1088_1674_1056_19_9_090201 chongqing_backfile_34966715 crossref_primary_10_1088_1674_1056_19_9_090201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2010 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 23 Christopher R J (3) 2002 24 Erwin K (1) 1999 27 28 29 Sladek J (33) 2006; 38 Dai B D (15) 2007; 56 Cheng Y M (17) 2005; 48 Qin Y X (12) 2006; 55 Cheng R J (9) 2009; 18 Singh I V (25) 2005; 21 30 31 10 34 Cheng R J (8) 2008; 57 13 Chen L (19) 2008; 57 Chen W (6) 2000; 1 Singh I V (26) 2005; 36 Selvadurai (2) 1979 Cheng Y M (18) 2005; 54 4 Liu W K (11) 1995; 20 Cheng R J (14) 2007; 56 Sladek J (32) 2001; 2 5 Cheng Y M (16) 2003; 35 7 Chen L (20) 2008; 57 21 |
References_xml | – ident: 31 doi: 10.1080/10407790590901648 – volume: 38 start-page: 157 year: 2006 ident: 33 publication-title: Comput. Mech – volume: 57 start-page: 6037 issn: 0372-736X year: 2008 ident: 8 publication-title: Acta Phys. Sin doi: 10.7498/aps.57.6037 – volume: 55 start-page: 3215 issn: 0372-736X year: 2006 ident: 12 publication-title: Acta Phys. Sin doi: 10.7498/aps.55.3215 – ident: 4 doi: 10.1016/S0045-7825(96)01078-X – year: 1999 ident: 1 publication-title: Advanced Engineering Mathematics – ident: 23 doi: 10.1080/10407780490457437 – volume: 57 start-page: 1 issn: 0372-736X year: 2008 ident: 19 publication-title: Acta Phys. Sin doi: 10.7498/aps.57.1 – volume: 1 start-page: 75 year: 2000 ident: 6 publication-title: Meshfree Method for Partial Differential Equations – year: 1979 ident: 2 publication-title: Partial Differential Equations in Mechanics – ident: 29 doi: 10.1002/nme.1156 – ident: 22 doi: 10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I – volume: 18 start-page: 4059 issn: 1674-1056 year: 2009 ident: 9 publication-title: Chin. Phys. doi: 10.1088/1674-1056/18/10/001 – volume: 2 start-page: 423 year: 2001 ident: 32 publication-title: Comp. Modeling Engng. Sci – ident: 10 doi: 10.1007/s004660050346 – ident: 27 doi: 10.1016/j.ijheatmasstransfer.2006.08.039 – ident: 5 doi: 10.1016/0010-4655(88)90026-4 – volume: 21 start-page: 73 year: 2005 ident: 25 publication-title: Heat Technol. – ident: 28 doi: 10.1115/1.1949651 – year: 2002 ident: 3 publication-title: Advanced Methods in Scientific – ident: 34 doi: 10.1007/s00466-009-0401-8 – ident: 7 doi: 10.1002/nme.1620370205 – volume: 48 start-page: 641 year: 2005 ident: 17 publication-title: Ser. G Phys., Mechanics Astronomy doi: 10.1360/142004-25 – ident: 30 doi: 10.1016/S1007-0214(05)70010-9 – ident: 21 doi: 10.1016/j.enganabound.2008.03.005 – volume: 36 start-page: 554 issn: 0141-1195 year: 2005 ident: 26 publication-title: Adv Eng. Software doi: 10.1016/j.advengsoft.2005.01.009 – volume: 35 start-page: 181 year: 2003 ident: 16 publication-title: Acta Mech. Sin – volume: 54 start-page: 4463 issn: 0372-736X year: 2005 ident: 18 publication-title: Acta Phys. Sin doi: 10.7498/aps.54.4463 – volume: 20 start-page: 1081 year: 1995 ident: 11 publication-title: Int. J. Numer. Math. Eng doi: 10.1002/fld.1650200824 – ident: 24 doi: 10.1080/10407780590926183 – volume: 56 start-page: 5569 issn: 0372-736X year: 2007 ident: 14 publication-title: Acta Phys. Sin doi: 10.7498/aps.56.5569 – volume: 56 start-page: 597 issn: 0372-736X year: 2007 ident: 15 publication-title: Acta Phys. Sin doi: 10.7498/aps.56.597 – ident: 13 doi: 10.1016/j.apnum.2007.04.003 – volume: 57 start-page: 6047 issn: 0372-736X year: 2008 ident: 20 publication-title: Acta Phys. Sin doi: 10.7498/aps.57.6047 |
SSID | ssj0061023 |
Score | 1.9631339 |
Snippet | Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial... |
SourceID | proquest crossref iop chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 36 |
SubjectTerms | Boundary conditions Conduction Dirichlet problem Finite element method Heat conduction Heat transfer Mathematical analysis Mathematical models 偏微分方程 工程问题 拉普拉斯方程 数值解 本质边界条件 稳态热传导问题 网格分析 |
Title | Meshless analysis of three-dimensional steady-state heat conduction problems |
URI | http://lib.cqvip.com/qk/85823A/20109/34966715.html http://iopscience.iop.org/1674-1056/19/9/090201 https://www.proquest.com/docview/1778024052 https://www.proquest.com/docview/849479961 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9xADLYoElIvpU81QKup1B44zO4mmcxMjlVVRBFQDiBxG2VeBYGShc0e4Ndj54GEoCq95eDJw-PYnzX2Z4CvGFGtD8Fx4RWRamvBrXaCV176mXZW54Kakw8O5e6J2DstTldgnEx33swHzz_By_4kXyrBaT78NC2n5ZTqCLt-LYz9ZNG_fh-NnlcSDQElWOOKsWMHk7wn70J8CmdN_ecKo8SDuPQCH_7IOXcRZ2cdjsa-nb7Q5GKybO3E3T6mcXzux7yGVwP6ZN97c3kDK6F-C2tdFahbvIP9g7A4u0Tfx6qBq4Q1kbW43YF7GgPQU3iwzjJueNeMxMibM8yqfc9Dy4YRNYv3cLLz8_jHLh_GLXCHmKrlUgdHCMj5MMtCNXNqlkXhAqo1YFxHnKPyNA_aVj6PmYgidbFUlXBaahdlnn-A1bqpw0dgIq0qNIEC4QviGytLEX0WbShKGxAghwQ27xWP4dpdEAmVIe56qdIiATFuhXEDUzkNzLg03Ym51obUaEiNJi1NaXo1JjC5XzbvqTr-tWAb9-W5st8eyD4lY-Y-JvBltBqDPyqdvlR1aJYLkyqliVCuyBJgf5HRohQKM9B04z9ebRNe9iUNVPi2Bavt9TJ8QqTU2s_d73EHA-sDhg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RSAuvBGhPIwEBw7exImT2EdEWbXQlh6o1JuV2A6VWiXbbvYAv56ZOFmpQAWIWw6eyJ6xZz7LM98AvMaIWjvvLZeuJFJtJXmtrOSVK1yibK0yScXJB4fF7rH8eJKfbMDOuhamW4yuf4afgSg4qHBMiFMx5c1zahgfCx3rmBILExEvXLMJN_Ks0NTHYO_z0eSPCyInoGvXJDbV8Vz3K2JZOO3arxcYO65Eq02c0S8ue4hD87vgpxWE9JOz2aqvZ_b7T-SO_7vEe3BnBKrsXZC5Dxu-fQA3h4RRu3wI-wd-eXqObpJVI60J6xrW487w3FHHgMD2wYZN9I0PdUuMHD_DC7gLlLVs7GazfATH8w9f3u_ysTMDtwi_el4obwksWeeT1FeJLZO0kdajrj1CAIREZSYyr-rKZU0qGylso8tKWlUo2xRZ9hi22q71T4BJUVW4W3JEOgiF6kLLxqVN7XNde8TSPoLttTUwstsz4qsyRHNflCKPQE72MXYkNafeGudmeFxXypAqDanSCG20CaqMYLYWWwRWjz8JvEVb_e3YN1fG_m6MQVtG8GraSgbPND3UVK3vVksjylIR91yeRsCuGaOkliVeVsXTf5jaS7h1tDM3-3uHn7bhdkiEoHS5Z7DVX678c8RXff1iOD4_AEd4E3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meshless+analysis+of+three-dimensional+steady-state+heat+conduction+problems&rft.jtitle=Chinese+physics+B&rft.au=Rong-Jun%2C+Cheng&rft.au=Hong-Xia%2C+Ge&rft.date=2010-09-01&rft.issn=1674-1056&rft.volume=19&rft.issue=9&rft.spage=90201&rft_id=info:doi/10.1088%2F1674-1056%2F19%2F9%2F090201&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_19_9_090201 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |