Analysis of a nonsmooth optimization approach to robust estimation
In this paper, we consider the problem of identifying a linear map from measurements which are subject to intermittent and arbitrarily large errors. This is a fundamental problem in many estimation-related applications such as fault detection, state estimation in lossy networks, hybrid system identi...
Saved in:
Published in | Automatica (Oxford) Vol. 66; pp. 132 - 145 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2016
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0005-1098 1873-2836 1873-2836 |
DOI | 10.1016/j.automatica.2015.12.024 |
Cover
Loading…
Abstract | In this paper, we consider the problem of identifying a linear map from measurements which are subject to intermittent and arbitrarily large errors. This is a fundamental problem in many estimation-related applications such as fault detection, state estimation in lossy networks, hybrid system identification, robust estimation, etc. The problem is hard because it exhibits some intrinsic combinatorial features. Therefore, obtaining an effective solution necessitates relaxations that are both solvable at a reasonable cost and effective in the sense that they can return the true parameter vector. The current paper discusses a nonsmooth convex optimization approach and provides a new analysis of its behavior. In particular, it is shown that under appropriate conditions on the data, an exact estimate can be recovered from data corrupted by a large (even infinite) number of gross errors. |
---|---|
AbstractList | In this paper, we consider the problem of identifying a linear map from measurements which are subject to intermittent and arbitrarily large errors. This is a fundamental problem in many estimation-related applications such as fault detection, state estimation in lossy networks, hybrid system identification, robust estimation, etc. The problem is hard because it exhibits some intrinsic combinatorial features. Therefore, obtaining an effective solution necessitates relaxations that are both solvable at a reasonable cost and effective in the sense that they can return the true parameter vector. The current paper discusses a nonsmooth convex optimization approach and provides a new analysis of its behavior. In particular, it is shown that under appropriate conditions on the data, an exact estimate can be recovered from data corrupted by a large (even infinite) number of gross errors. In this paper, we consider the problem of identifying a linear map from measurements which are subject to intermittent and arbitrarily large errors. This is a fundamental problem in many estimation-related applications such as fault detection; state estimation in lossy networks, hybrid system identification, robust estimation, etc. The problem is hard because it exhibits some intrinsic combinatorial features. Therefore, obtaining an effective solution necessitates relaxations that are both solvable at a reasonable cost and effective in the sense that they can return the true parameter vector. The current paper discusses a nonsmooth convex optimization approach and provides a new analysis of its behavior. In particular, it is shown that under appropriate conditions on the data, an exact estimate can be recovered from data corrupted by a large (even infinite) number of gross errors. (C) 2016 Elsevier Ltd. All rights reserved. In this paper, we consider the problem of identifying a linear map from measurements which are subject to intermittent and arbitarily large errors. This is a fundamental problem in many estimation-related applications such as fault detection, state estimation in lossy networks, hybrid system identification, robust estimation, etc. The problem is hard because it exhibits some intrinsic combinatorial features. Therefore, obtaining an effective solution necessitates relaxations that are both solvable at a reasonable cost and effective in the sense that they can return the true parameter vector. The current paper discusses a nonsmooth convex optimization approach and provides a new analysis of its behavior. In particular, it is shown that under appropriate conditions on the data, an exact estimate can be recovered from data corrupted by a large (even infinite) number of gross errors. |
Author | Bako, Laurent Ohlsson, Henrik |
Author_xml | – sequence: 1 givenname: Laurent surname: Bako fullname: Bako, Laurent email: laurent.bako@ec-lyon.fr organization: Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, France – sequence: 2 givenname: Henrik surname: Ohlsson fullname: Ohlsson, Henrik email: ohlsson@berkeley.edu organization: Department of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden |
BackLink | https://hal.science/hal-01984218$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-126801$$DView record from Swedish Publication Index |
BookMark | eNqNkU9v1DAQxS1UJLaF7-AjHJKO_yR1LkjbQinSSlyA68h2HNarbBxsp6h8erwNCMEFLrbs-c3Tm3nn5GwKkyOEMqgZsPbyUOslh6PO3uqaA2tqxmvg8gnZMHUlKq5Ee0Y2ANBUDDr1jJyndChPyRTfkOvtpMeH5BMNA9W0iKdjCHlPw5z90X8vumGiep5j0HZPc6AxmCVl6lKpP1afk6eDHpN78fO-IJ9u3368uat2H969v9nuKiu5yFXLpXW8bwdpVM9aN_Be2qY3DXSiF-WwxoHRwLXUV8ZCY4TuBtE6UL1xqhcXpFp10zc3LwbnWAzEBwza4xv_eYshfsHRL8h4q4AV_tXK7_X4B3y33eHpD1inJGfq_sS-XNky59elzIZHn6wbRz25sCRkirUASoquoK9X1MaQUnQDWp8fF5Gj9iMywFMweMDfweApmOILSzBFQP0l8Mvcf7Rer62u7Pneu4jJejdZ1_vobMY--H-L_ADLaLIN |
CitedBy_id | crossref_primary_10_1016_j_patrec_2018_08_004 crossref_primary_10_1109_TAC_2017_2703308 crossref_primary_10_1177_1077546319878985 crossref_primary_10_1016_j_ifacol_2017_08_2453 crossref_primary_10_1002_rnc_5995 crossref_primary_10_1016_j_automatica_2017_11_026 crossref_primary_10_1016_j_automatica_2016_01_023 crossref_primary_10_1109_OJCSYS_2024_3507452 crossref_primary_10_1002_acs_3497 crossref_primary_10_1016_j_automatica_2017_09_006 |
Cites_doi | 10.1109/TIT.2006.871582 10.1109/CDC.2003.1272554 10.1016/j.automatica.2011.01.036 10.1137/0710053 10.1016/0167-9473(87)90049-1 10.3166/ejc.13.242-260 10.1214/aoms/1177693054 10.1109/TSP.2012.2229992 10.1109/TAC.2011.2166295 10.1109/TAC.2014.2303233 10.1073/pnas.0437847100 10.1214/13-EJS815 10.1080/01621459.1984.10477105 10.1137/110847445 10.1007/s00041-008-9045-x 10.1016/j.automatica.2014.10.017 10.1109/MSP.2010.939739 10.1109/TAC.2014.2351694 10.1109/TIT.2005.858979 10.1109/TIT.2011.2165825 10.1109/LSP.2014.2303122 10.1016/j.automatica.2013.01.031 10.1109/ACC.2009.5160571 10.1109/MSP.2007.914731 10.1016/j.sysconle.2012.11.017 10.1137/060657704 10.3182/20110828-6-IT-1002.02150 10.1109/CDC.2011.6160572 10.1109/TIT.2008.924688 10.1109/CDC.2011.6161431 10.1016/j.ejor.2011.09.017 10.1016/j.automatica.2010.03.013 10.3182/20120711-3-BE-2027.00332 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC VOOES ADTPV AOWAS DG8 |
DOI | 10.1016/j.automatica.2015.12.024 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) SwePub SwePub Articles SWEPUB Linköpings universitet |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2836 |
EndPage | 145 |
ExternalDocumentID | oai_DiVA_org_liu_126801 oai_HAL_hal_01984218v1 10_1016_j_automatica_2015_12_024 S0005109815005567 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC VOOES ADTPV AOWAS DG8 EFKBS |
ID | FETCH-LOGICAL-c423t-624ce2d6f4b8d16ef2d4c5db5093d3093cbe0ba02a4a7bc05b3a9f36e08dbe8d3 |
IEDL.DBID | .~1 |
ISSN | 0005-1098 1873-2836 |
IngestDate | Thu Aug 21 06:39:42 EDT 2025 Fri May 09 12:22:35 EDT 2025 Fri Jul 11 09:04:48 EDT 2025 Tue Jul 01 00:43:37 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Fri Feb 23 02:23:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Outliers Robust estimation Nonsmooth optimization System identification outliers system identification nonsmooth optimization robust estimation |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-624ce2d6f4b8d16ef2d4c5db5093d3093cbe0ba02a4a7bc05b3a9f36e08dbe8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7631-7547 |
OpenAccessLink | https://hal.science/hal-01984218 |
PQID | 1816008439 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | swepub_primary_oai_DiVA_org_liu_126801 hal_primary_oai_HAL_hal_01984218v1 proquest_miscellaneous_1816008439 crossref_citationtrail_10_1016_j_automatica_2015_12_024 crossref_primary_10_1016_j_automatica_2015_12_024 elsevier_sciencedirect_doi_10_1016_j_automatica_2015_12_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Automatica (Oxford) |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Vidal (br000200) 2010; 28 Chen, D., Bako, L., & Lecoeuche, S. (2011). A recursive sparse learning method: Application to jump markov linear systems. In 18th IFAC world congress, Milano, Italy. Zhao, Li (br000220) 2012; 22 Cadzow (br000030) 1973; 10 Donoho (br000065) 2006; 52 Bruckstein, Donoho, Elad (br000025) 2009; 51 Huber (br000100) 1987; 5 Grant, M., & Boyd, S. (2009). CVX: Matlab software for disciplined convex programming, version 1.2 (june, build 711). Vidal, R., Soatto, S., Ma, Y., & Sastry, S. (2003). An algebraic geometric approach to the identification of a class of linear hybrid systems. In Conference on decision and control, Maui, Hawaii, USA. Boyd, Vandenberghe (br000020) 2004 Le, Lauer, Bloch (br000110) 2014; 59 Ozay, N., & Sznaier, M. (2011). Hybrid system identification with faulty measurements and its application to activity analysis. In IEEE conference on decision and control and european control conference, Orlando, FL, USA. Donoho, Elad (br000070) 2003; 100 Rousseeuw, Leroy (br000175) 2005 optimization. In IEEE conference on decision and control and european control conference, Orlando, FL, USA. Mitra, Veeraraghavan, Chellappa (br000130) 2013; 61 Sharon, Y., Wright, J., & Ma, Y. (2009). Minimum sum of distances estimator: Robustness and stability. In American control conference, St Louis, MO, USA. Ljung (br000115) 1999 Candès, Wakin, Boyd (br000050) 2008; 14 Ohlsson, Ljung, Boyd (br000145) 2010; 46 Gondzio (br000085) 2012; 218 Paoletti, Juloski, Ferrari-Trecate, Vidal (br000160) 2007; 13 Xu, Hassibi (br000215) 2011; 57 Seber, Lee (br000180) 2003 Soderstrom, Stoica (br000190) 1989 minimization. Technical Report. Bako (br000010) 2014; 21 minimization algorithms and unique solution of truncated Ozay, Sznaier, Lagoa, Camps (br000155) 2012; 57 Chen, X., & Zhou, W. (2010). Convergence of reweighted Candès, Randall (br000035) 2006; 54 Huber, Ronchetti (br000105) 2009 Rousseeuw (br000170) 1984; 79 Fawzi, Tabuada, Diggavi (br000075) 2014; 59 Bako (br000005) 2011; 47 Maruta, I., & Sugie, T. (2011). Identification of PWA models via data compression based on Rockafellar (br000165) 1996 Garulli, A., Paoletti, S., & Vicino, A. (2012). A survey on switched and piecewise affine system identification. In IFAC symposium on system identification, Brussels, Belgium. Tibshirani (br000195) 2013; 7 Candès, Tao (br000040) 2005; 51 Maronna, Martin, Yohai (br000120) 2006 Bako, Lecoeuche (br000015) 2013; 62 Candès, Wakin (br000045) 2008; 25 Ohlsson, Ljung (br000140) 2013; 49 Xu, Bai, Cho (br000210) 2014; 50 Nesterov (br000135) 2004 Hampel (br000095) 1971; 42 Zhao (10.1016/j.automatica.2015.12.024_br000220) 2012; 22 Xu (10.1016/j.automatica.2015.12.024_br000210) 2014; 50 Maronna (10.1016/j.automatica.2015.12.024_br000120) 2006 10.1016/j.automatica.2015.12.024_br000090 Xu (10.1016/j.automatica.2015.12.024_br000215) 2011; 57 Vidal (10.1016/j.automatica.2015.12.024_br000200) 2010; 28 Paoletti (10.1016/j.automatica.2015.12.024_br000160) 2007; 13 Bruckstein (10.1016/j.automatica.2015.12.024_br000025) 2009; 51 Candès (10.1016/j.automatica.2015.12.024_br000050) 2008; 14 Donoho (10.1016/j.automatica.2015.12.024_br000065) 2006; 52 Bako (10.1016/j.automatica.2015.12.024_br000015) 2013; 62 Candès (10.1016/j.automatica.2015.12.024_br000040) 2005; 51 Le (10.1016/j.automatica.2015.12.024_br000110) 2014; 59 Rousseeuw (10.1016/j.automatica.2015.12.024_br000175) 2005 Gondzio (10.1016/j.automatica.2015.12.024_br000085) 2012; 218 Tibshirani (10.1016/j.automatica.2015.12.024_br000195) 2013; 7 Seber (10.1016/j.automatica.2015.12.024_br000180) 2003 Huber (10.1016/j.automatica.2015.12.024_br000105) 2009 Bako (10.1016/j.automatica.2015.12.024_br000005) 2011; 47 Ljung (10.1016/j.automatica.2015.12.024_br000115) 1999 Bako (10.1016/j.automatica.2015.12.024_br000010) 2014; 21 Cadzow (10.1016/j.automatica.2015.12.024_br000030) 1973; 10 Ohlsson (10.1016/j.automatica.2015.12.024_br000145) 2010; 46 10.1016/j.automatica.2015.12.024_br000150 Huber (10.1016/j.automatica.2015.12.024_br000100) 1987; 5 10.1016/j.automatica.2015.12.024_br000055 Candès (10.1016/j.automatica.2015.12.024_br000045) 2008; 25 Nesterov (10.1016/j.automatica.2015.12.024_br000135) 2004 Boyd (10.1016/j.automatica.2015.12.024_br000020) 2004 10.1016/j.automatica.2015.12.024_br000080 Soderstrom (10.1016/j.automatica.2015.12.024_br000190) 1989 Hampel (10.1016/j.automatica.2015.12.024_br000095) 1971; 42 Ohlsson (10.1016/j.automatica.2015.12.024_br000140) 2013; 49 Rousseeuw (10.1016/j.automatica.2015.12.024_br000170) 1984; 79 Candès (10.1016/j.automatica.2015.12.024_br000035) 2006; 54 10.1016/j.automatica.2015.12.024_br000125 Rockafellar (10.1016/j.automatica.2015.12.024_br000165) 1996 Mitra (10.1016/j.automatica.2015.12.024_br000130) 2013; 61 10.1016/j.automatica.2015.12.024_br000205 Ozay (10.1016/j.automatica.2015.12.024_br000155) 2012; 57 Donoho (10.1016/j.automatica.2015.12.024_br000070) 2003; 100 10.1016/j.automatica.2015.12.024_br000060 Fawzi (10.1016/j.automatica.2015.12.024_br000075) 2014; 59 10.1016/j.automatica.2015.12.024_br000185 |
References_xml | – year: 1989 ident: br000190 article-title: System identification – volume: 79 start-page: 871 year: 1984 end-page: 880 ident: br000170 article-title: Least median of squares regression publication-title: Journal of the American Statistical Association – volume: 59 start-page: 1454 year: 2014 end-page: 1467 ident: br000075 article-title: Secure estimation and control for cyber-physical systems under adversarial attacks publication-title: IEEE Transactions on Automatic Control – year: 2004 ident: br000135 article-title: Introductory lectures on convex optimization: A basic course – year: 2009 ident: br000105 article-title: Robust statistics – volume: 61 start-page: 1249 year: 2013 end-page: 1257 ident: br000130 article-title: Analysis of sparse regularization based robust regression approaches publication-title: IEEE Transactions on Signal Processing – volume: 46 start-page: 1107 year: 2010 end-page: 1111 ident: br000145 article-title: Segmentation of ARX-models using sum-of-norms regularization publication-title: Automatica – volume: 47 start-page: 668 year: 2011 end-page: 677 ident: br000005 article-title: Identification of switched linear systems via sparse optimization publication-title: Automatica – volume: 54 start-page: 2829 year: 2006 end-page: 2840 ident: br000035 article-title: Highly robust error correction by convex programming publication-title: IEEE Transactions on Information Theory – year: 2003 ident: br000180 article-title: Linear regression analysis – volume: 22 start-page: 1065 year: 2012 end-page: 1088 ident: br000220 article-title: Reweighted publication-title: SIAM Journal on Optimization – volume: 42 start-page: 1887 year: 1971 end-page: 1896 ident: br000095 article-title: A general qualitative definition of robustness publication-title: The Annals of Mathematical Statistics – reference: Chen, X., & Zhou, W. (2010). Convergence of reweighted – volume: 49 start-page: 1045 year: 2013 end-page: 1050 ident: br000140 article-title: Identification of switched linear regression models using sum-of-norms regularization publication-title: Automatica – year: 1996 ident: br000165 article-title: Convex analysis – reference: Chen, D., Bako, L., & Lecoeuche, S. (2011). A recursive sparse learning method: Application to jump markov linear systems. In 18th IFAC world congress, Milano, Italy. – volume: 218 start-page: 587 year: 2012 end-page: 601 ident: br000085 article-title: Interior point methods 25 years later publication-title: European Journal of Operational Research – volume: 62 start-page: 143 year: 2013 end-page: 151 ident: br000015 article-title: A sparse optimization approach to state observer design for switched linear systems publication-title: Systems & Control Letters – reference: Grant, M., & Boyd, S. (2009). CVX: Matlab software for disciplined convex programming, version 1.2 (june, build 711). – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: br000065 article-title: Compressed sensing publication-title: IEEE Transactions on Information Theory – volume: 100 start-page: 2197 year: 2003 end-page: 2202 ident: br000070 article-title: Optimal sparse representation in general (nonorthogonal) dictionaries via publication-title: The Proceedings of National Academy of Science – volume: 59 start-page: 3008 year: 2014 end-page: 3013 ident: br000110 article-title: Selective publication-title: IEEE Transactions on Automatic Control – year: 2005 ident: br000175 article-title: Robust regression and outlier detection – volume: 25 start-page: 21 year: 2008 end-page: 30 ident: br000045 article-title: An introduction to compressive sampling publication-title: IEEE Signal Processing Society – reference: Vidal, R., Soatto, S., Ma, Y., & Sastry, S. (2003). An algebraic geometric approach to the identification of a class of linear hybrid systems. In Conference on decision and control, Maui, Hawaii, USA. – volume: 50 start-page: 2905 year: 2014 end-page: 2911 ident: br000210 article-title: System identification in the presence of outliers and random noises: A compressed sensing approach publication-title: Automatica – volume: 7 start-page: 1456 year: 2013 end-page: 1490 ident: br000195 article-title: The lasso problem and uniqueness publication-title: Electronic Journal of Statistics – volume: 13 start-page: 242 year: 2007 end-page: 260 ident: br000160 article-title: Identification of hybrid systems: A tutorial publication-title: European Journal of Control – year: 2004 ident: br000020 article-title: Convex optimization – volume: 28 start-page: 52 year: 2010 end-page: 68 ident: br000200 article-title: A tutorial on subspace clustering publication-title: IEEE Signal Processing Magazine – volume: 51 start-page: 4203 year: 2005 end-page: 4215 ident: br000040 article-title: Decoding by linear programming publication-title: IEEE Transactions on Information Theory – reference: optimization. In IEEE conference on decision and control and european control conference, Orlando, FL, USA. – volume: 5 start-page: 255 year: 1987 end-page: 262 ident: br000100 article-title: The place of publication-title: Computational Statistics & Data Analysis – volume: 14 start-page: 877 year: 2008 end-page: 905 ident: br000050 article-title: Enhancing sparsity by reweighted publication-title: Journal Fourier Analysis and Applications – reference: minimization algorithms and unique solution of truncated – volume: 51 start-page: 34 year: 2009 end-page: 81 ident: br000025 article-title: From sparse solutions of systems of equations to sparse modeling of signals and images publication-title: SIAM Review – volume: 21 start-page: 356 year: 2014 end-page: 360 ident: br000010 article-title: Subspace clustering through parametric representation and sparse optimization publication-title: IEEE Signal Processing Letters – year: 1999 ident: br000115 article-title: System identification: Theory for the user – volume: 57 start-page: 634 year: 2012 end-page: 648 ident: br000155 article-title: A sparsification approach to set membership identification of a class of affine hybrid systems publication-title: IEEE Transactions on Automatic Control – reference: minimization. Technical Report. – reference: Garulli, A., Paoletti, S., & Vicino, A. (2012). A survey on switched and piecewise affine system identification. In IFAC symposium on system identification, Brussels, Belgium. – reference: Maruta, I., & Sugie, T. (2011). Identification of PWA models via data compression based on – volume: 57 start-page: 6894 year: 2011 end-page: 6919 ident: br000215 article-title: Precise stability phase transitions for publication-title: IEEE Transactions on Information Theory – year: 2006 ident: br000120 article-title: Robust statistics: Theory and methods – reference: Ozay, N., & Sznaier, M. (2011). Hybrid system identification with faulty measurements and its application to activity analysis. In IEEE conference on decision and control and european control conference, Orlando, FL, USA. – volume: 10 start-page: 607 year: 1973 end-page: 617 ident: br000030 article-title: A finite algorithm for the minimum publication-title: SIAM Journal on Numerical Analysis – reference: Sharon, Y., Wright, J., & Ma, Y. (2009). Minimum sum of distances estimator: Robustness and stability. In American control conference, St Louis, MO, USA. – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 10.1016/j.automatica.2015.12.024_br000065 article-title: Compressed sensing publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2006.871582 – ident: 10.1016/j.automatica.2015.12.024_br000205 doi: 10.1109/CDC.2003.1272554 – volume: 47 start-page: 668 year: 2011 ident: 10.1016/j.automatica.2015.12.024_br000005 article-title: Identification of switched linear systems via sparse optimization publication-title: Automatica doi: 10.1016/j.automatica.2011.01.036 – volume: 10 start-page: 607 issue: 4 year: 1973 ident: 10.1016/j.automatica.2015.12.024_br000030 article-title: A finite algorithm for the minimum l∞ solution to a system of consistent linear equations publication-title: SIAM Journal on Numerical Analysis doi: 10.1137/0710053 – volume: 5 start-page: 255 year: 1987 ident: 10.1016/j.automatica.2015.12.024_br000100 article-title: The place of l1-norm in robust estimation publication-title: Computational Statistics & Data Analysis doi: 10.1016/0167-9473(87)90049-1 – volume: 13 start-page: 242 year: 2007 ident: 10.1016/j.automatica.2015.12.024_br000160 article-title: Identification of hybrid systems: A tutorial publication-title: European Journal of Control doi: 10.3166/ejc.13.242-260 – volume: 42 start-page: 1887 year: 1971 ident: 10.1016/j.automatica.2015.12.024_br000095 article-title: A general qualitative definition of robustness publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177693054 – volume: 61 start-page: 1249 year: 2013 ident: 10.1016/j.automatica.2015.12.024_br000130 article-title: Analysis of sparse regularization based robust regression approaches publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2012.2229992 – volume: 57 start-page: 634 year: 2012 ident: 10.1016/j.automatica.2015.12.024_br000155 article-title: A sparsification approach to set membership identification of a class of affine hybrid systems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2011.2166295 – volume: 59 start-page: 1454 year: 2014 ident: 10.1016/j.automatica.2015.12.024_br000075 article-title: Secure estimation and control for cyber-physical systems under adversarial attacks publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2014.2303233 – year: 1996 ident: 10.1016/j.automatica.2015.12.024_br000165 – volume: 100 start-page: 2197 year: 2003 ident: 10.1016/j.automatica.2015.12.024_br000070 article-title: Optimal sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization publication-title: The Proceedings of National Academy of Science doi: 10.1073/pnas.0437847100 – volume: 7 start-page: 1456 year: 2013 ident: 10.1016/j.automatica.2015.12.024_br000195 article-title: The lasso problem and uniqueness publication-title: Electronic Journal of Statistics doi: 10.1214/13-EJS815 – volume: 79 start-page: 871 year: 1984 ident: 10.1016/j.automatica.2015.12.024_br000170 article-title: Least median of squares regression publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1984.10477105 – ident: 10.1016/j.automatica.2015.12.024_br000090 – volume: 22 start-page: 1065 year: 2012 ident: 10.1016/j.automatica.2015.12.024_br000220 article-title: Reweighted ℓ1-minimization for sparse solutions to underdetermined linear systems publication-title: SIAM Journal on Optimization doi: 10.1137/110847445 – year: 2005 ident: 10.1016/j.automatica.2015.12.024_br000175 – volume: 14 start-page: 877 year: 2008 ident: 10.1016/j.automatica.2015.12.024_br000050 article-title: Enhancing sparsity by reweighted ℓ1 minimization publication-title: Journal Fourier Analysis and Applications doi: 10.1007/s00041-008-9045-x – volume: 50 start-page: 2905 year: 2014 ident: 10.1016/j.automatica.2015.12.024_br000210 article-title: System identification in the presence of outliers and random noises: A compressed sensing approach publication-title: Automatica doi: 10.1016/j.automatica.2014.10.017 – volume: 28 start-page: 52 issue: 2 year: 2010 ident: 10.1016/j.automatica.2015.12.024_br000200 article-title: A tutorial on subspace clustering publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2010.939739 – volume: 59 start-page: 3008 year: 2014 ident: 10.1016/j.automatica.2015.12.024_br000110 article-title: Selective ℓ1 minimization for sparse recovery publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2014.2351694 – volume: 51 start-page: 4203 year: 2005 ident: 10.1016/j.automatica.2015.12.024_br000040 article-title: Decoding by linear programming publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2005.858979 – year: 2006 ident: 10.1016/j.automatica.2015.12.024_br000120 – volume: 57 start-page: 6894 year: 2011 ident: 10.1016/j.automatica.2015.12.024_br000215 article-title: Precise stability phase transitions for ℓ1 minimization: A unified geometric framework publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2011.2165825 – year: 1999 ident: 10.1016/j.automatica.2015.12.024_br000115 – volume: 21 start-page: 356 year: 2014 ident: 10.1016/j.automatica.2015.12.024_br000010 article-title: Subspace clustering through parametric representation and sparse optimization publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2014.2303122 – volume: 49 start-page: 1045 year: 2013 ident: 10.1016/j.automatica.2015.12.024_br000140 article-title: Identification of switched linear regression models using sum-of-norms regularization publication-title: Automatica doi: 10.1016/j.automatica.2013.01.031 – ident: 10.1016/j.automatica.2015.12.024_br000185 doi: 10.1109/ACC.2009.5160571 – volume: 25 start-page: 21 year: 2008 ident: 10.1016/j.automatica.2015.12.024_br000045 article-title: An introduction to compressive sampling publication-title: IEEE Signal Processing Society doi: 10.1109/MSP.2007.914731 – year: 2004 ident: 10.1016/j.automatica.2015.12.024_br000135 – volume: 62 start-page: 143 year: 2013 ident: 10.1016/j.automatica.2015.12.024_br000015 article-title: A sparse optimization approach to state observer design for switched linear systems publication-title: Systems & Control Letters doi: 10.1016/j.sysconle.2012.11.017 – year: 2004 ident: 10.1016/j.automatica.2015.12.024_br000020 – year: 1989 ident: 10.1016/j.automatica.2015.12.024_br000190 – volume: 51 start-page: 34 year: 2009 ident: 10.1016/j.automatica.2015.12.024_br000025 article-title: From sparse solutions of systems of equations to sparse modeling of signals and images publication-title: SIAM Review doi: 10.1137/060657704 – ident: 10.1016/j.automatica.2015.12.024_br000060 – year: 2009 ident: 10.1016/j.automatica.2015.12.024_br000105 – ident: 10.1016/j.automatica.2015.12.024_br000055 doi: 10.3182/20110828-6-IT-1002.02150 – ident: 10.1016/j.automatica.2015.12.024_br000125 doi: 10.1109/CDC.2011.6160572 – volume: 54 start-page: 2829 year: 2006 ident: 10.1016/j.automatica.2015.12.024_br000035 article-title: Highly robust error correction by convex programming publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2008.924688 – ident: 10.1016/j.automatica.2015.12.024_br000150 doi: 10.1109/CDC.2011.6161431 – year: 2003 ident: 10.1016/j.automatica.2015.12.024_br000180 – volume: 218 start-page: 587 issue: 3 year: 2012 ident: 10.1016/j.automatica.2015.12.024_br000085 article-title: Interior point methods 25 years later publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2011.09.017 – volume: 46 start-page: 1107 year: 2010 ident: 10.1016/j.automatica.2015.12.024_br000145 article-title: Segmentation of ARX-models using sum-of-norms regularization publication-title: Automatica doi: 10.1016/j.automatica.2010.03.013 – ident: 10.1016/j.automatica.2015.12.024_br000080 doi: 10.3182/20120711-3-BE-2027.00332 |
SSID | ssj0004182 |
Score | 2.2904499 |
Snippet | In this paper, we consider the problem of identifying a linear map from measurements which are subject to intermittent and arbitrarily large errors. This is a... In this paper, we consider the problem of identifying a linear map from measurements which are subject to intermittent and arbitarily large errors. This is a... |
SourceID | swepub hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 132 |
SubjectTerms | Automatic Combinatorial analysis Engineering Sciences Error analysis Hybrid systems Mathematical analysis Nonsmooth optimization Optimization Outliers Permissible error Robust estimation State estimation System identification Vectors (mathematics) |
Title | Analysis of a nonsmooth optimization approach to robust estimation |
URI | https://dx.doi.org/10.1016/j.automatica.2015.12.024 https://www.proquest.com/docview/1816008439 https://hal.science/hal-01984218 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-126801 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BvZQDoi91C0VuVXELxI7jOOK0pUXbFycWcbPsxIat2A3azfbY385MHrB7qITUYyw5sWYm4y_xN98AfHI-kUGkIgop95HMYhs5OkJUqpDS5iLjTeuEX-dqNJbfr9KrDTjta2GIVtnl_janN9m6GznurHl8N5lQjS8FVK4R0pAiDFWUS5lRlB_9faR5SK5bxfBGcTPXHZun5XjZZV01yqikQMTT5segkP_aojZviCu5CkRXxUWbDelsF3Y6JMmG7WJfwIafvYTtFX3BV_C5lxxhVWCW4Zf-Ylqha1iFiWLaVWCyXlac1RWbV265qBlJb7Q1ja9hfPb14nQUdU0TogKRUR0pIQsvShWk0yVXPohSFmnpEBgkJR17Fs7HzsbCSpu5Ik5dYvOQKB_r0nldJm9gC5fj3wJLs5AFlwkS5ZI8lzrXsVfW-lD4JI_DALLeTqboFMWpscWt6aljv82jhQ1Z2HBh0MID4A8z71pVjSfMOeldYdYixGDyf8Lsj-i9h4eRqPZo-NPQGIJcLRHp_OED-NA71-BbRkcnduar5cIgDlLUeiDJB3DYen3tXl8ml0NTza_N7YTEuRXu--_-a7178ByvVMsR2oeter707xH-1O6gie8DeDb89mN0fg_q_gY8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3BTtwwEIZHsBxoD1UprdgCxa2q3iJix3EccVooKMCyJ6i4WXZit4uAoN0sz19P4sByqITUqyMn1owz_hPPfAb4bmzCHUtZ5FJqI57FOjK4hShEybnOWUbboxMuJqK44mfX6fUKHPW1MJhWGWJ_F9PbaB1a9oM19x-mU6zxxQmVSy9pkAiTrcIa0qnSAayNTs-LyXN5JJUdNLyFbuYyJPR0aV560dQtHBUhRDRt_w0y_q9VavUPpksua9Flvmi7Jp28h3dBTJJRN94NWLH3H-DtEmJwEw576gipHdHEf-zP72rvHVL7WHEXijBJTxYnTU1mtVnMG4L0ja6s8SNcnRxfHhVRODchKr04aiLBeGlZJRw3sqLCOlbxMq2M1wZJhTufpbGx0THTXGemjFOT6NwlwsayMlZWyScY-OHYLSBp5jJnMoZcLk5zLnMZW6G1daVN8tgNIevtpMoAFcezLW5Vnz12o54trNDCijLlLTwE-tTzoQNrvKLPQe8K9WKSKB__X9H7m_fe08OQq12MxgrbvM6V3IudRzqEr71zlX_RcPdE39t6MVdeCgk8fSDJh_Cj8_qLe_2c_hqpevZb3U6Rzy380v_5v8a7B-vF5cVYjU8n59vwxl8RXcrQDgya2cLuejXUmC9htv8F2SkI7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+a+nonsmooth+optimization+approach+to+robust+estimation&rft.jtitle=Automatica+%28Oxford%29&rft.au=Bako%2C+Laurent&rft.au=Ohlsson%2C+Henrik&rft.date=2016-04-01&rft.pub=Elsevier&rft.issn=0005-1098&rft.volume=66&rft.spage=132&rft.epage=145&rft_id=info:doi/10.1016%2Fj.automatica.2015.12.024&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01984218v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |