Metallated porphyrin based porous organic polymers as efficient electrocatalysts
Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(II) porphyrin based porous organic polymer (CoPOP) and its pyroly...
Saved in:
Published in | Nanoscale Vol. 7; no. 43; pp. 18271 - 18277 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 2040-3364 2040-3372 |
DOI | 10.1039/C5NR05324B |
Cover
Loading…
Abstract | Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(II) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ∼100% constant ORR current over 50,000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm(-2)) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm(-2)). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e(-) pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system. |
---|---|
AbstractList | Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(II) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ∼100% constant ORR current over 50,000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm(-2)) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm(-2)). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e(-) pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system. Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining similar to 100% constant ORR current over 50 000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 degree C, 800 degree C, and 1000 degree C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 degree C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs.RHE) and the largest limited diffusion current density (5.35 mA cm super(-2)) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs.RHE, limited diffusion current density 5.10 mA cm super(-2)). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e super(-) pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system. |
Author | Ren, Zhiyong Jason Xu, Kongliang Liu, Zhenning Zhang, Wei Jin, Yinghua Lu, Guolong Zhu, Youlong |
Author_xml | – sequence: 1 givenname: Guolong surname: Lu fullname: Lu, Guolong – sequence: 2 givenname: Youlong surname: Zhu fullname: Zhu, Youlong – sequence: 3 givenname: Kongliang surname: Xu fullname: Xu, Kongliang – sequence: 4 givenname: Yinghua surname: Jin fullname: Jin, Yinghua – sequence: 5 givenname: Zhiyong Jason surname: Ren fullname: Ren, Zhiyong Jason – sequence: 6 givenname: Zhenning surname: Liu fullname: Liu, Zhenning – sequence: 7 givenname: Wei surname: Zhang fullname: Zhang, Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26486413$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UtLxDAQAOAgK-5DL_4A6VGEah5Nmh518QXrA9FzSZOpRvpYk-yh_97IriuI4Glm4Mswk5miUdd3gNAhwacEs-Jszu-fMGc0u9hBE4oznDKW09E2F9kYTb1_x1gUTLA9NKYikyIjbIIe7yCoplEBTLLs3fJtcLZLKuXXdb_ySe9eVWd1LJuhBecT5ROoa6stdCGBBnRwvVaxzeCD30e7tWo8HGziDL1cXT7Pb9LFw_Xt_HyR6oyykHItaSUBal4ZqKhWjBXKFDwOyw0BDEUhdVUzWWfCRKyMNtzkykDOSG44m6Hjdd-l6z9W4EPZWq8hrtJBnLokkgjMJaP4f5pTKXIsBIn0aENXVQumXDrbKjeU3x8WwckaaNd776DeEoLLr2uUP9eIGP_C2gYVbN8Fp2zz15NPvvGNBw |
CitedBy_id | crossref_primary_10_1016_j_molcata_2016_09_011 crossref_primary_10_1021_acssuschemeng_8b04919 crossref_primary_10_1002_celc_201700653 crossref_primary_10_1016_j_polymer_2021_124140 crossref_primary_10_1002_aoc_5259 crossref_primary_10_1016_j_jpowsour_2019_226738 crossref_primary_10_1016_j_ijhydene_2019_03_055 crossref_primary_10_1021_acsaem_0c03265 crossref_primary_10_1002_cplu_202200168 crossref_primary_10_1016_j_jelechem_2016_09_014 crossref_primary_10_1021_acsami_7b03305 crossref_primary_10_1016_S1872_2067_15_61082_8 crossref_primary_10_1021_acsami_6b09811 crossref_primary_10_1039_C8AY01885E crossref_primary_10_1039_C8RA10462J crossref_primary_10_1039_D2NJ00308B crossref_primary_10_3390_catal6100157 crossref_primary_10_1007_s12274_023_5593_2 crossref_primary_10_1016_j_apcata_2018_04_028 crossref_primary_10_3390_catal9110954 crossref_primary_10_1016_j_electacta_2018_02_148 crossref_primary_10_1039_C6TA11168H crossref_primary_10_1002_cjoc_202400386 crossref_primary_10_1002_admi_201700583 crossref_primary_10_1039_C8TA06588H crossref_primary_10_1016_j_apcatb_2016_12_013 crossref_primary_10_1039_C7TA00949F crossref_primary_10_1007_s11030_019_09955_2 crossref_primary_10_1016_j_micromeso_2019_109774 crossref_primary_10_1039_C9QI00551J crossref_primary_10_1021_acsaem_1c03887 crossref_primary_10_1088_1361_6528_abeb9d crossref_primary_10_1021_acsaem_2c03417 crossref_primary_10_1038_s41467_017_00152_z crossref_primary_10_1002_ente_201900964 crossref_primary_10_1039_C9NR05919A crossref_primary_10_1002_adma_202402184 crossref_primary_10_1007_s11426_017_9078_7 crossref_primary_10_1016_j_apcatb_2021_120108 crossref_primary_10_1002_celc_201801541 crossref_primary_10_1007_s13233_021_9037_0 crossref_primary_10_1016_j_jpowsour_2016_03_028 crossref_primary_10_1073_pnas_2000606117 crossref_primary_10_1016_j_cattod_2020_07_003 crossref_primary_10_1149_1945_7111_aba4df crossref_primary_10_1016_j_electacta_2023_141817 crossref_primary_10_1039_C9DT01599J crossref_primary_10_1021_acs_iecr_1c04719 crossref_primary_10_1016_j_ijhydene_2020_04_024 crossref_primary_10_1039_D0NR04346J crossref_primary_10_1007_s11356_022_22445_7 |
Cites_doi | 10.1002/adma.201304147 10.1021/cs500744x 10.1039/C4TA06231K 10.1038/2011212a0 10.1007/s11814-011-0225-z 10.1002/adma.201500727 10.1016/j.electacta.2015.01.201 10.1021/cs500673k 10.1039/c0sc00281j 10.1039/c0ee00558d 10.1016/j.ijhydene.2010.03.134 10.1002/aenm.201200013 10.1021/ja211433h 10.1016/0013-4686(86)80022-6 10.1038/nature11115 10.1002/anie.201308896 10.1038/ncomms3076 10.1016/j.carbon.2011.07.004 10.1126/science.1135844 10.1021/cm901698s 10.1002/anie.200803554 10.1039/C1EE01962G 10.1021/ja500984k 10.1021/cr0680639 10.1021/nn5012144 10.1002/adma.201304238 10.1016/j.elecom.2010.06.004 10.1021/jp906408y 10.1016/j.electacta.2008.02.012 10.1038/nature05118 10.1039/C0EE00011F 10.1039/C4NR07571D |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
DOI | 10.1039/C5NR05324B |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 18277 |
ExternalDocumentID | 26486413 10_1039_C5NR05324B |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY NPM 7X8 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
ID | FETCH-LOGICAL-c423t-5c82b8eef5bdeb2ca339ad953645d1e0e998cbf38f46d5c8adcd5d7ade7317d53 |
ISSN | 2040-3364 |
IngestDate | Fri Jul 11 05:48:36 EDT 2025 Fri Jul 11 05:51:10 EDT 2025 Thu Apr 03 07:02:45 EDT 2025 Tue Jul 01 00:33:26 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c423t-5c82b8eef5bdeb2ca339ad953645d1e0e998cbf38f46d5c8adcd5d7ade7317d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26486413 |
PQID | 1728670661 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1816058320 proquest_miscellaneous_1728670661 pubmed_primary_26486413 crossref_primary_10_1039_C5NR05324B crossref_citationtrail_10_1039_C5NR05324B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2015 |
References | Lin (C5NR05324B-(cit32)/*[position()=1]) 2015; 27 Xiang (C5NR05324B-(cit31)/*[position()=1]) 2014; 53 Wang (C5NR05324B-(cit20)/*[position()=1]) 2014; 4 Youn (C5NR05324B-(cit14)/*[position()=1]) 2014; 8 Morozan (C5NR05324B-(cit17)/*[position()=1]) 2011; 49 Chang (C5NR05324B-(cit6)/*[position()=1]) 2012; 5 Peng (C5NR05324B-(cit36)/*[position()=1]) 2014; 4 Cao (C5NR05324B-(cit4)/*[position()=1]) 2013; 4 Bezerra (C5NR05324B-(cit18)/*[position()=1]) 2008; 53 Nekooi (C5NR05324B-(cit10)/*[position()=1]) 2010; 35 Lu (C5NR05324B-(cit33)/*[position()=1]) 2015; 3 Jasinski (C5NR05324B-(cit22)/*[position()=1]) 1964; 201 Cao (C5NR05324B-(cit2)/*[position()=1]) 2012; 2 Hijazi (C5NR05324B-(cit30)/*[position()=1]) 2014; 136 Chen (C5NR05324B-(cit8)/*[position()=1]) 2009; 113 Chen (C5NR05324B-(cit21)/*[position()=1]) 2011; 4 Xiang (C5NR05324B-(cit27)/*[position()=1]) 2014; 53 Collman (C5NR05324B-(cit12)/*[position()=1]) 2007; 315 Wu (C5NR05324B-(cit26)/*[position()=1]) 2014; 26 Cracknell (C5NR05324B-(cit11)/*[position()=1]) 2008; 108 Goubert-Renaudin (C5NR05324B-(cit25)/*[position()=1]) 2010; 12 Zhao (C5NR05324B-(cit23)/*[position()=1]) 2014; 26 Jahan (C5NR05324B-(cit29)/*[position()=1]) 2012; 134 Han (C5NR05324B-(cit34)/*[position()=1]) 2015; 7 Yang (C5NR05324B-(cit7)/*[position()=1]) 2015; 159 Wiesener (C5NR05324B-(cit19)/*[position()=1]) 1986; 31 McGuire (C5NR05324B-(cit16)/*[position()=1]) 2010; 1 Cheng (C5NR05324B-(cit9)/*[position()=1]) 2010; 22 Thorum (C5NR05324B-(cit15)/*[position()=1]) 2009; 48 Bashyam (C5NR05324B-(cit13)/*[position()=1]) 2006; 443 Jaouen (C5NR05324B-(cit37)/*[position()=1]) 2011; 4 Debe (C5NR05324B-(cit1)/*[position()=1]) 2012; 486 Jahan (C5NR05324B-(cit3)/*[position()=1]) 2012; 134 Wu (C5NR05324B-(cit24)/*[position()=1]) 2014; 26 Vengatesan (C5NR05324B-(cit5)/*[position()=1]) 2012; 29 Lin (C5NR05324B-(cit28)/*[position()=1]) 2015; 27 |
References_xml | – volume: 26 start-page: 1450 year: 2014 ident: C5NR05324B-(cit26)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304147 – volume: 4 start-page: 3797 year: 2014 ident: C5NR05324B-(cit36)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs500744x – volume: 3 start-page: 4954 year: 2015 ident: C5NR05324B-(cit33)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06231K – volume: 201 start-page: 1212 year: 1964 ident: C5NR05324B-(cit22)/*[position()=1] publication-title: Nature doi: 10.1038/2011212a0 – volume: 29 start-page: 621 year: 2012 ident: C5NR05324B-(cit5)/*[position()=1] publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-011-0225-z – volume: 27 start-page: 3431 year: 2015 ident: C5NR05324B-(cit32)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500727 – volume: 159 start-page: 184 year: 2015 ident: C5NR05324B-(cit7)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.01.201 – volume: 4 start-page: 3928 year: 2014 ident: C5NR05324B-(cit20)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs500673k – volume: 27 start-page: 3431 year: 2015 ident: C5NR05324B-(cit28)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500727 – volume: 1 start-page: 411 year: 2010 ident: C5NR05324B-(cit16)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c0sc00281j – volume: 4 start-page: 3167 year: 2011 ident: C5NR05324B-(cit21)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00558d – volume: 35 start-page: 6392 year: 2010 ident: C5NR05324B-(cit10)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.03.134 – volume: 2 start-page: 816 year: 2012 ident: C5NR05324B-(cit2)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200013 – volume: 134 start-page: 6707 year: 2012 ident: C5NR05324B-(cit3)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211433h – volume: 31 start-page: 1073 year: 1986 ident: C5NR05324B-(cit19)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/0013-4686(86)80022-6 – volume: 486 start-page: 43 year: 2012 ident: C5NR05324B-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature11115 – volume: 53 start-page: 2433 year: 2014 ident: C5NR05324B-(cit31)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201308896 – volume: 4 start-page: 2076 year: 2013 ident: C5NR05324B-(cit4)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3076 – volume: 49 start-page: 4839 year: 2011 ident: C5NR05324B-(cit17)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2011.07.004 – volume: 315 start-page: 1565 year: 2007 ident: C5NR05324B-(cit12)/*[position()=1] publication-title: Science doi: 10.1126/science.1135844 – volume: 22 start-page: 898 year: 2010 ident: C5NR05324B-(cit9)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm901698s – volume: 48 start-page: 165 year: 2009 ident: C5NR05324B-(cit15)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200803554 – volume: 26 start-page: 1450 year: 2014 ident: C5NR05324B-(cit24)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304147 – volume: 5 start-page: 5305 year: 2012 ident: C5NR05324B-(cit6)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C1EE01962G – volume: 136 start-page: 6348 year: 2014 ident: C5NR05324B-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500984k – volume: 134 start-page: 6707 year: 2012 ident: C5NR05324B-(cit29)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211433h – volume: 108 start-page: 2439 year: 2008 ident: C5NR05324B-(cit11)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr0680639 – volume: 8 start-page: 5164 year: 2014 ident: C5NR05324B-(cit14)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn5012144 – volume: 26 start-page: 1093 year: 2014 ident: C5NR05324B-(cit23)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304238 – volume: 12 start-page: 1457 year: 2010 ident: C5NR05324B-(cit25)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.06.004 – volume: 53 start-page: 2433 year: 2014 ident: C5NR05324B-(cit27)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201308896 – volume: 113 start-page: 20689 year: 2009 ident: C5NR05324B-(cit8)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp906408y – volume: 53 start-page: 4937 year: 2008 ident: C5NR05324B-(cit18)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.02.012 – volume: 443 start-page: 63 year: 2006 ident: C5NR05324B-(cit13)/*[position()=1] publication-title: Nature doi: 10.1038/nature05118 – volume: 4 start-page: 114 year: 2011 ident: C5NR05324B-(cit37)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00011F – volume: 7 start-page: 5607 year: 2015 ident: C5NR05324B-(cit34)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR07571D |
SSID | ssj0069363 |
Score | 2.3626611 |
Snippet | Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 18271 |
SubjectTerms | Catalysis Catalysts Current density Diffusion Media Oxygen Polymers Porphyrins |
Title | Metallated porphyrin based porous organic polymers as efficient electrocatalysts |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26486413 https://www.proquest.com/docview/1728670661 https://www.proquest.com/docview/1816058320 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagvcABsTNsMoILQoEktmPnWKqiUtoKoak0nCJvoyJBpprJHMqv5z0725QWAZdo5sWTSO_zvM1vIeQVl8z51MEfSVpwUIwtEqW4SpTWmQH9qdNQx310XOyf8IOZmA1jFUN1SWPe2p-X1pX8D6pAA1yxSvYfkO0fCgT4DPjCFRCG619hfOQbjIOj0QhmNDBs-a1-g3opfMfk1ji0yeIshnOMUONYGR-6RmAOQDsDJ4Rwzlexp1NnqYLYXawAwB74w3WIoa9BWrbaLsSbAxVkxpg6C8RPCywR1gP5IPYr-Ara8nStx_GGTIziDT7IpRyTEBmTG0JUjvYKZyOJCP5LnLHym6xOGbY6taJe4nQKviHQgc9nPwJqmIFX8FiveqEzdnfrOtnOwUkAsby9szf9eNhp4qJkBeta0rLy3fAqbAHd_njTHrnCyQjGxvQ2udV6CXQnQn6HXPP1XXJz1DvyHvk8gE978GkAn0bwaQs-7cCnekV78OlF8O-Tkw970939pB2PkViwgZtEWJUb5f1cGOdNbjVjpXZ4HM-Fy3zqwZO2Zs7UnBcOFmtnnXBSOy_BaHSCPSBb9aL2jwjVaaYZGNtSG8-lEEqnztrSyLkpuM31hLzumFTZtnc8jjD5XoUcBlZWu-L4S-Dt-wl52a89ix1TLl31ouN1BQINT6l07YE3FQ5MKyRYwtkf1qgMj_NZnk7IwwhU_64O2MdX3nlCbgwb-ynZapZr_wxMy8Y8b3fQLytLfcU |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metallated+porphyrin+based+porous+organic+polymers+as+efficient+electrocatalysts&rft.jtitle=Nanoscale&rft.au=Lu%2C+Guolong&rft.au=Zhu%2C+Youlong&rft.au=Xu%2C+Kongliang&rft.au=Jin%2C+Yinghua&rft.date=2015-01-01&rft.eissn=2040-3372&rft.volume=7&rft.issue=43&rft.spage=18271&rft_id=info:doi/10.1039%2Fc5nr05324b&rft_id=info%3Apmid%2F26486413&rft.externalDocID=26486413 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |