Measurement of eight scalar and dipolar couplings for methine?methylene pairs in proteins and nucleic acids

A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for n...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomolecular NMR Vol. 31; no. 3; pp. 201 - 216
Main Authors Miclet, Emeric, Boisbouvier, J r me, Bax, Ad
Format Journal Article
LanguageEnglish
Published Netherlands Springer Nature B.V 01.03.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for Cbeta-Calpha moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C5'-C4' groups in a 24-nt RNA oligomer. Chemical shifts of Calpha, Cbeta and Hbeta (respectively C4', C5' and H5') are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to 1J(CalphaHalpha), 2J(CalphaHbeta2)+2J(CalphaHbeta3), 2J(CbetaHalpha), 1J(CbetaHbeta2)+1J(CbetaHbeta3), 1J(CbetaHbeta2)-2J(Hbeta2Hbeta3), 1J(CbetaHbeta3)-2J(Hbeta2Hbeta3), 3J(HalphaHbeta2) and 3J(HalphaHbeta3) for proteins, and 1J(C4'H4'), 2J(C4'H5')+2J(C4'H5"), 2J(C5'H4'), 1J(C5'H5')+1J(C5'H5"), 1J(C5'H5')-2J(H5'H5"), 1J(C5'H5")-2J(H5'H5"), 3J(H4'H5') and 3J(H4'H5") in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine-methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C5'-C4' groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the 3J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive chi1 rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C5'H2 groups in the loop region of the oligomer, in all cases confirmed by 1J(C5'H5')>1J(C5'H5"), and H5' resonating downfield of H5".
AbstractList A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for C super( beta )-C super( alpha ) moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C[Equation]-C[Equation] groups in a 24-nt RNA oligomer. Chemical shifts of C super( alpha ), C super( beta ) and H super( beta ) (respectively C[Equation], C[Equation] and H[Equation]) are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to super(1)J sub(C alpha H alpha ), super(2)J sub(C alpha H beta 2)+ super(2)J sub(C alpha H beta 3), super(2)J sub(C beta H alpha ), super(1)J sub(C beta H beta 2)+ super(1)J sub(C beta H beta 3), super(1)J sub(C beta H beta 2)- super(2)J sub(H beta 2H beta 3), super(1)J sub(C beta H beta 3)- super(2)J sub(H beta 2H beta 3), super(3)J sub(H alpha H beta 2) and super(3)J sub(H alpha H beta 3) for proteins, and super(1)J[Equation], super(2)J[Equation]J[Equation], super(2)J[Equation], super(1)J[Equation]+ super(1)J[Equation], super(1)J[Equation]J[Equation], super(1)J[Equation]J[Equation], super(3)J[Equation] and super(3)J[Equation] in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine-methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C[Equation]-C[Equation] groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the super(3)J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive chi sub(1) rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C[Equation]H sub(2) groups in the loop region of the oligomer, in all cases confirmed by super(1)J[Equation]J[Equation], and H[Equation] resonating downfield of H[Equation].
A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for C^sup β^-C^sup α^ moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C(ProQuest: Formulae and/or non-USASCII text omitted; see image)>-C(ProQuest: Formulae and/or non-USASCII text omitted; see image)> groups in a 24-nt RNA oligomer. Chemical shifts of C^sup α^, C^sup β^ and H^sup β^ (respectively C(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, C(ProQuest: Formulae and/or non-USASCII text omitted; see image)> and H(ProQuest: Formulae and/or non-USASCII text omitted; see image)>) are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to ^sup 1^J^sub CαHα^, ^sup 2^J^sub CαHβ2^+^sup 2^J^sub CαHβ3^, ^sup 2^J^sub CβHα^, ^sup 1^J^sub CβHβ2^+^sup 1^J^sub CβHβ3^, ^sup 1^J^sub CβHβ2^-^sup 2^J^sub Hβ2Hβ3^, ^sup 1^J^sub CβHβ3^-^sup 2^J^sub Hβ2Hβ3^, ^sup 3^J^sub HαHβ2^ and ^sup 3^J^sub HαHβ3^ for proteins, and ^sup 1^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, ^sup 2^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, ^sup 2^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, ^sup 1^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>+^sup 1^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, ^sup 1^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, ^sup 1^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, ^sup 3^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)> and ^sup 3^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)> in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine-methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C(ProQuest: Formulae and/or non-USASCII text omitted; see image)>-C(ProQuest: Formulae and/or non-USASCII text omitted; see image)> groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the ^sup 3^J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive χ^sub 1^ rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C(ProQuest: Formulae and/or non-USASCII text omitted; see image)>H^sub 2^ groups in the loop region of the oligomer, in all cases confirmed by ^sup 1^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, and H(ProQuest: Formulae and/or non-USASCII text omitted; see image)> resonating downfield of H(ProQuest: Formulae and/or non-USASCII text omitted; see image)>.[PUBLICATION ABSTRACT]
A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for Cbeta-Calpha moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C5'-C4' groups in a 24-nt RNA oligomer. Chemical shifts of Calpha, Cbeta and Hbeta (respectively C4', C5' and H5') are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to 1J(CalphaHalpha), 2J(CalphaHbeta2)+2J(CalphaHbeta3), 2J(CbetaHalpha), 1J(CbetaHbeta2)+1J(CbetaHbeta3), 1J(CbetaHbeta2)-2J(Hbeta2Hbeta3), 1J(CbetaHbeta3)-2J(Hbeta2Hbeta3), 3J(HalphaHbeta2) and 3J(HalphaHbeta3) for proteins, and 1J(C4'H4'), 2J(C4'H5')+2J(C4'H5"), 2J(C5'H4'), 1J(C5'H5')+1J(C5'H5"), 1J(C5'H5')-2J(H5'H5"), 1J(C5'H5")-2J(H5'H5"), 3J(H4'H5') and 3J(H4'H5") in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine-methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C5'-C4' groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the 3J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive chi1 rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C5'H2 groups in the loop region of the oligomer, in all cases confirmed by 1J(C5'H5')>1J(C5'H5"), and H5' resonating downfield of H5".
A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for Cbeta-Calpha moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C5'-C4' groups in a 24-nt RNA oligomer. Chemical shifts of Calpha, Cbeta and Hbeta (respectively C4', C5' and H5') are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to 1J(CalphaHalpha), 2J(CalphaHbeta2)+2J(CalphaHbeta3), 2J(CbetaHalpha), 1J(CbetaHbeta2)+1J(CbetaHbeta3), 1J(CbetaHbeta2)-2J(Hbeta2Hbeta3), 1J(CbetaHbeta3)-2J(Hbeta2Hbeta3), 3J(HalphaHbeta2) and 3J(HalphaHbeta3) for proteins, and 1J(C4'H4'), 2J(C4'H5')+2J(C4'H5"), 2J(C5'H4'), 1J(C5'H5')+1J(C5'H5"), 1J(C5'H5')-2J(H5'H5"), 1J(C5'H5")-2J(H5'H5"), 3J(H4'H5') and 3J(H4'H5") in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine-methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C5'-C4' groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the 3J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive chi1 rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C5'H2 groups in the loop region of the oligomer, in all cases confirmed by 1J(C5'H5')>1J(C5'H5"), and H5' resonating downfield of H5".A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for Cbeta-Calpha moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C5'-C4' groups in a 24-nt RNA oligomer. Chemical shifts of Calpha, Cbeta and Hbeta (respectively C4', C5' and H5') are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to 1J(CalphaHalpha), 2J(CalphaHbeta2)+2J(CalphaHbeta3), 2J(CbetaHalpha), 1J(CbetaHbeta2)+1J(CbetaHbeta3), 1J(CbetaHbeta2)-2J(Hbeta2Hbeta3), 1J(CbetaHbeta3)-2J(Hbeta2Hbeta3), 3J(HalphaHbeta2) and 3J(HalphaHbeta3) for proteins, and 1J(C4'H4'), 2J(C4'H5')+2J(C4'H5"), 2J(C5'H4'), 1J(C5'H5')+1J(C5'H5"), 1J(C5'H5')-2J(H5'H5"), 1J(C5'H5")-2J(H5'H5"), 3J(H4'H5') and 3J(H4'H5") in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine-methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C5'-C4' groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the 3J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive chi1 rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C5'H2 groups in the loop region of the oligomer, in all cases confirmed by 1J(C5'H5')>1J(C5'H5"), and H5' resonating downfield of H5".
Author Bax, Ad
Miclet, Emeric
Boisbouvier, J r me
Author_xml – sequence: 1
  givenname: Emeric
  surname: Miclet
  fullname: Miclet, Emeric
– sequence: 2
  givenname: J r me
  surname: Boisbouvier
  fullname: Boisbouvier, J r me
– sequence: 3
  givenname: Ad
  surname: Bax
  fullname: Bax, Ad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15803394$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtvFTEQhS0URG4CP4AGWRR0C2N7_dgKoYiXFEST1JbX9iYOu_Zie4vk18eXG4SUglQzxXdGZ845QUcxRY_QawLvCYD8UAgorjoA3gGRvLt7hnaES9ZxAHKEdjBQ3lHJ1DE6KeUGAAZFxQt0TLgCxoZ-h3798KZs2S8-Vpwm7MPVdcXFmtlkbKLDLqxpv9u0rXOIVwVPKePF1-sQ_cf9vJ199Hg1IRccIl5zqj7E8kcdNzv7YLGxwZWX6Plk5uJfPcxTdPnl88XZt-7859fvZ5_OO9tTVpt5OTLH-MjsJNVIqZGDEKPorWEWRgAqhTKOj8Z5Rxi3dBJWEU7d0I9EOHaK3h3uNiu_N1-qXkKxfp5N9GkrWkguKcj-SZC0uBRQ1cC3j8CbtOXYntADoaTnnIkGvXmAtnHxTq85LCbf6r9hN4AcAJtTKdlP_xDQ-0L1oVDdCtX7QvVd08hHGhuqqSHFmk2Y_6O8B7T2pXM
CitedBy_id crossref_primary_10_1016_j_jmr_2006_01_003
crossref_primary_10_1039_D4SC00690A
crossref_primary_10_1016_j_sbi_2005_08_006
crossref_primary_10_1002_prot_22711
crossref_primary_10_1002_mrc_1836
crossref_primary_10_1021_ja0645436
crossref_primary_10_1007_s10858_009_9387_y
crossref_primary_10_1073_pnas_0712121105
crossref_primary_10_1007_s10858_008_9294_7
crossref_primary_10_1002_prot_25094
crossref_primary_10_1021_jp300284u
crossref_primary_10_1016_j_dib_2015_08_020
crossref_primary_10_1021_acs_chemrev_1c00730
crossref_primary_10_1016_j_jmr_2007_02_009
crossref_primary_10_1016_j_jsb_2015_07_008
crossref_primary_10_1038_nprot_2007_221
crossref_primary_10_1002_bip_20765
crossref_primary_10_1021_acs_jctc_5b00255
crossref_primary_10_1007_s10858_013_9741_y
crossref_primary_10_1016_j_jmr_2006_01_017
crossref_primary_10_1080_00268976_2012_728257
crossref_primary_10_1038_nchem_650
crossref_primary_10_1002_mrc_2271
crossref_primary_10_1016_j_bpj_2015_11_031
crossref_primary_10_1007_s10858_013_9780_4
crossref_primary_10_1016_j_pnmrs_2006_03_001
crossref_primary_10_1021_ct4003702
Cites_doi 10.1023/A:1008346902500
10.1021/ja002133q
10.1021/ja0350684
10.1023/A:1008372624615
10.1016/S0079-6565(97)00023-X
10.1021/ar9600392
10.1038/nsb0997-732
10.1021/ja028740q
10.1021/ja00027a052
10.1016/0079-6565(76)80001-5
10.1006/jmrb.1996.0141
10.1023/A:1026788430236
10.1023/A:1008345303942
10.1002/(SICI)1097-458X(199612)34:133.0.CO;2-U
10.1021/ja029972s
10.1023/A:1008378624590
10.1021/ja980862o
10.1111/j.1432-1033.1991.tb16253.x
10.1021/cr030419i
10.1073/pnas.1835769100
10.1016/S0076-6879(94)39004-5
10.1002/bip.1981.360200610
10.1016/0022-2364(91)90034-Q
10.1038/4176
10.1006/jmre.1999.1979
10.1021/ja047904v
10.1016/0079-6565(84)80005-9
10.1006/jmre.1997.1213
10.1021/ja00052a088
10.1073/pnas.92.20.9279
10.1023/A:1012474811265
10.1023/A:1012998006281
10.1007/BF00197809
10.1007/BF02192847
10.1016/S0959-440X(00)00245-1
10.1021/ja001068h
10.1016/0079-6565(81)80001-5
10.1007/BF00398416
10.1021/ja00196a068
10.1006/jmbi.1994.1691
10.1021/ja992139j
10.1023/A:1008314803561
10.1021/ja003724j
10.1023/A:1011280529850
10.1023/A:1026703605147
10.1006/jmre.1998.1546
10.1021/ja0388212
10.1021/ja038314k
10.1021/ja00124a014
10.1023/A:1008268930690
10.1126/science.278.5340.1111
10.1016/0009-2614(90)87025-M
10.1021/ja002500y
10.1021/ja010595d
10.1021/ja960106n
10.1023/A:1018331001961
10.1063/1.451421
10.1021/ja982592f
10.1007/BF00175254
10.1021/ja982853l
10.1021/bi00471a022
10.1023/A:1025467918856
ContentType Journal Article
Copyright Kluwer Academic Publishers 2005
Copyright_xml – notice: Kluwer Academic Publishers 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7TK
7TM
7U9
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s10858-005-0175-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
ProQuest Central Student
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1573-5001
EndPage 216
ExternalDocumentID 2544217171
15803394
10_1007_s10858_005_0175_z
Genre Journal Article
GroupedDBID ---
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
CITATION
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
ZMTXR
~EX
~KM
-54
-5F
-5G
-BR
-EM
3V.
AAAVM
ADINQ
CGR
CUY
CVF
ECM
EIF
GQ6
NPM
Z7U
Z7V
Z7W
Z7X
Z82
Z83
Z87
Z8O
Z8P
Z8Q
Z8V
Z91
7QL
7QO
7TK
7TM
7U9
7XB
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c423t-507b3d35b3cf78b22a7966b64ca3c0b002768ad5baded135c2f6c8152d94b16d3
IEDL.DBID 7X7
ISSN 0925-2738
IngestDate Mon Jul 21 11:57:44 EDT 2025
Fri Jul 11 03:30:57 EDT 2025
Wed Aug 20 14:40:59 EDT 2025
Wed Feb 19 01:40:30 EST 2025
Tue Jul 01 01:49:41 EDT 2025
Thu Apr 24 22:58:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-507b3d35b3cf78b22a7966b64ca3c0b002768ad5baded135c2f6c8152d94b16d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 15803394
PQID 912145536
PQPubID 326261
PageCount 16
ParticipantIDs proquest_miscellaneous_67572074
proquest_miscellaneous_19828028
proquest_journals_912145536
pubmed_primary_15803394
crossref_primary_10_1007_s10858_005_0175_z
crossref_citationtrail_10_1007_s10858_005_0175_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-03-00
2005-Mar
20050301
PublicationDateYYYYMMDD 2005-03-01
PublicationDate_xml – month: 03
  year: 2005
  text: 2005-03-00
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Dordrecht
PublicationTitle Journal of biomolecular NMR
PublicationTitleAlternate J Biomol NMR
PublicationYear 2005
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References O.W. Sørensen (CR52) 1983; 16
C. Perez (CR43) 2001; 123
E.T. Olejniczak (CR41) 1999; 121
J.J. Chou (CR7) 2003; 125
P. Permi (CR44) 2000; 17
E. O?Neil-Cabello (CR40) 2004; 126
T. Carlomagno (CR6) 2000; 17
H.J. Sass (CR49) 2001; 21
J.R. Tolman (CR59) 1996; 112
M. Ottiger (CR42) 1998; 134
B. Brutscher (CR4) 1998; 120
T.S. Ulmer (CR61) 2003; 125
J.P. Derrick (CR10) 1994; 243
J.H. Ippel (CR23) 1996; 34
N. Tjandra (CR53) 1997; 278
D.W. Yang (CR64) 1999; 14
H. Kuboniwa (CR27) 1994; 4
C. Biamonti (CR2) 1994; 4
M.R. Hansen (CR20) 1998; 5
S. Meier (CR29) 2003; 125
J.P. Marino (CR28) 1999; 32
J. Meiler (CR30) 2000; 16
U. Eggenberger (CR12) 1992; 2
K.V. Pervushin (CR45) 1998; 12
J.R. Tolman (CR58) 1995; 92
E. Duchardt (CR11) 2001; 21
G.A. Mueller (CR38) 2000; 18
E. Miclet (CR34) 2003; 125
E. Miclet (CR35) 2004; 126
A. Bax (CR1) 1994; 239
L.J.W. Murray (CR39) 2003; 100
M. Ruckert (CR47) 2000; 122
G.M. Clore (CR8) 1998; 120
J. Schleucher (CR50) 1994; 4
J.R. Tolman (CR56) 2001; 11
C.A.G. Haasnoot (CR18) 1981; 20
A. Meissner (CR32) 1997b; 128
H. Geen (CR15) 1991; 93
G. Kontaxis (CR25) 2001; 20
G. Kontaxis (CR26) 2000; 143
A. Meissner (CR31) 1997a; 10
L.E. Kay (CR24) 1992; 114
Y.X. Wang (CR62) 1998; 120
J.R. Tolman (CR57) 2001; 123
H.J. Sass (CR48) 2000; 18
J.B. Hall (CR19) 2003; 27
N. Tjandra (CR54) 1996; 118
S.S. Wijmenga (CR63) 1998; 32
L. Emsley (CR14) 1990; 165
F. Delaglio (CR9) 1995; 6
V.F. Bystrov (CR5) 1976; 10
M.J.J. Blommers (CR3) 1991; 201
A. Mittermaier (CR36) 2001; 123
P.E. Hansen (CR21) 1981; 14
J.M. Schmidt (CR51) 1999; 14
R. Tycko (CR60) 2000; 122
J.H. Prestegard (CR46) 2004; 104
S. Grzesiek (CR17) 1995; 117
N. Tjandra (CR55) 1997; 4
G.T. Montelione (CR37) 1989; 111
M. Ikura (CR22) 1990; 29
C. Griesinger (CR16) 1986; 85
S.D. Emerson (CR13) 1992; 114
9846877 - Nat Struct Biol. 1998 Dec;5(12):1065-74
8921606 - J Magn Reson B. 1996 Sep;112(3):269-74
11448195 - J Am Chem Soc. 2001 Jul 18;123(28):6892-903
11430758 - J Biomol NMR. 2001 May;20(1):77-82
7966308 - J Mol Biol. 1994 Nov 11;243(5):906-18
7830604 - Methods Enzymol. 1994;239:79-105
14677953 - J Am Chem Soc. 2003 Dec 24;125(51):15740-1
1915376 - Eur J Biochem. 1991 Oct 1;201(1):33-51
11456715 - J Am Chem Soc. 2001 Feb 21;123(7):1416-24
10698659 - J Magn Reson. 2000 Mar;143(1):184-96
15303825 - Chem Rev. 2004 Aug;104(8):3519-40
9761712 - J Magn Reson. 1998 Oct;134(2):365-9
21136331 - J Biomol NMR. 1999 May;14(1):1-12
9353189 - Science. 1997 Nov 7;278(5340):1111-4
14709062 - J Am Chem Soc. 2004 Jan 14;126(1):66-7
15369375 - J Am Chem Soc. 2003 Jul 30;125(30):9179-91
9453800 - J Biomol NMR. 1997 Jul;10(1):89-94
11785752 - Curr Opin Struct Biol. 2001 Oct;11(5):532-9
8019138 - J Biomol NMR. 1994 Mar;4(2):301-6
21136330 - J Biomol NMR. 1998 Aug;12(2):345-8
15327312 - J Am Chem Soc. 2004 Sep 1;126(34):10560-70
10921775 - J Biomol NMR. 2000 Jun;17(2):99-109
7812158 - J Biomol NMR. 1994 Nov;4(6):871-8
7568117 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9279-83
11727975 - J Biomol NMR. 2001 Oct;21(2):117-26
2372549 - Biochemistry. 1990 May 15;29(19):4659-67
12975584 - J Biomol NMR. 2003 Nov;27(3):261-75
11775744 - J Biomol NMR. 2001 Nov;21(3):275-80
12515503 - J Am Chem Soc. 2003 Jan 8;125(1):44-5
14612579 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13904-9
11459487 - J Am Chem Soc. 2001 Jul 25;123(29):7081-93
11200524 - J Biomol NMR. 2000 Dec;18(4):303-9
9303001 - Nat Struct Biol. 1997 Sep;4(9):732-8
12862493 - J Am Chem Soc. 2003 Jul 23;125(29):8959-66
11142508 - J Biomol NMR. 2000 Nov;18(3):183-8
8520220 - J Biomol NMR. 1995 Nov;6(3):277-93
10805131 - J Biomol NMR. 2000 Mar;16(3):245-52
10909865 - J Biomol NMR. 2000 May;17(1):43-54
References_xml – volume: 17
  start-page: 99
  year: 2000
  ident: CR6
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1008346902500
– volume: 122
  start-page: 9340
  year: 2000
  ident: CR60
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002133q
– volume: 125
  start-page: 9179
  year: 2003
  ident: CR61
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0350684
– volume: 17
  start-page: 43
  year: 2000
  ident: CR44
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1008372624615
– volume: 32
  start-page: 287
  year: 1998
  ident: CR63
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/S0079-6565(97)00023-X
– volume: 32
  start-page: 614
  year: 1999
  ident: CR28
  publication-title: Accounts Chem. Res.
  doi: 10.1021/ar9600392
– volume: 4
  start-page: 732
  year: 1997
  ident: CR55
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb0997-732
– volume: 125
  start-page: 44
  year: 2003
  ident: CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028740q
– volume: 114
  start-page: 354
  year: 1992
  ident: CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00027a052
– volume: 10
  start-page: 41
  year: 1976
  ident: CR5
  publication-title: Prog. NMR Spectrosc.
  doi: 10.1016/0079-6565(76)80001-5
– volume: 112
  start-page: 269
  year: 1996
  ident: CR59
  publication-title: J. Magn. Reson. Ser. B
  doi: 10.1006/jmrb.1996.0141
– volume: 18
  start-page: 183
  year: 2000
  ident: CR38
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1026788430236
– volume: 4
  start-page: 51
  year: 1994
  ident: CR2
  publication-title: Adv. Biophys. Chem.
– volume: 14
  start-page: 1
  year: 1999
  ident: CR51
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1008345303942
– volume: 34
  start-page: S156
  year: 1996
  ident: CR23
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/(SICI)1097-458X(199612)34:133.0.CO;2-U
– volume: 125
  start-page: 8959
  year: 2003
  ident: CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja029972s
– volume: 16
  start-page: 245
  year: 2000
  ident: CR30
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1008378624590
– volume: 120
  start-page: 7385
  year: 1998
  ident: CR62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja980862o
– volume: 201
  start-page: 33
  year: 1991
  ident: CR3
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1991.tb16253.x
– volume: 104
  start-page: 3519
  year: 2004
  ident: CR46
  publication-title: Chem. Rev.
  doi: 10.1021/cr030419i
– volume: 100
  start-page: 13904
  year: 2003
  ident: CR39
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1835769100
– volume: 239
  start-page: 79
  year: 1994
  ident: CR1
  publication-title: Meth. Enzymol.
  doi: 10.1016/S0076-6879(94)39004-5
– volume: 20
  start-page: 1211
  year: 1981
  ident: CR18
  publication-title: Biopolymers
  doi: 10.1002/bip.1981.360200610
– volume: 93
  start-page: 93
  year: 1991
  ident: CR15
  publication-title: J. Magn. Reson.
  doi: 10.1016/0022-2364(91)90034-Q
– volume: 5
  start-page: 1065
  year: 1998
  ident: CR20
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/4176
– volume: 143
  start-page: 184
  year: 2000
  ident: CR26
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1999.1979
– volume: 126
  start-page: 10560
  year: 2004
  ident: CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047904v
– volume: 16
  start-page: 163
  year: 1983
  ident: CR52
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/0079-6565(84)80005-9
– volume: 128
  start-page: 92
  year: 1997b
  ident: CR32
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1997.1213
– volume: 114
  start-page: 10663
  year: 1992
  ident: CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00052a088
– volume: 92
  start-page: 9279
  year: 1995
  ident: CR58
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.20.9279
– volume: 21
  start-page: 117
  year: 2001
  ident: CR11
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1012474811265
– volume: 21
  start-page: 275
  year: 2001
  ident: CR49
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1012998006281
– volume: 6
  start-page: 277
  year: 1995
  ident: CR9
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00197809
– volume: 2
  start-page: 583
  year: 1992
  ident: CR12
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF02192847
– volume: 11
  start-page: 532
  year: 2001
  ident: CR56
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(00)00245-1
– volume: 122
  start-page: 7793
  year: 2000
  ident: CR47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja001068h
– volume: 14
  start-page: 175
  year: 1981
  ident: CR21
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/0079-6565(81)80001-5
– volume: 4
  start-page: 871
  year: 1994
  ident: CR27
  publication-title: J. Bio. NMR
  doi: 10.1007/BF00398416
– volume: 111
  start-page: 5474
  year: 1989
  ident: CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00196a068
– volume: 243
  start-page: 906
  year: 1994
  ident: CR10
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.1691
– volume: 121
  start-page: 9249
  year: 1999
  ident: CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja992139j
– volume: 14
  start-page: 333
  year: 1999
  ident: CR64
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1008314803561
– volume: 123
  start-page: 7081
  year: 2001
  ident: CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja003724j
– volume: 20
  start-page: 77
  year: 2001
  ident: CR25
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1011280529850
– volume: 18
  start-page: 303
  year: 2000
  ident: CR48
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1026703605147
– volume: 134
  start-page: 365
  year: 1998
  ident: CR42
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1998.1546
– volume: 125
  start-page: 15740
  year: 2003
  ident: CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0388212
– volume: 126
  start-page: 66
  year: 2004
  ident: CR40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja038314k
– volume: 117
  start-page: 5312
  year: 1995
  ident: CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00124a014
– volume: 12
  start-page: 345
  year: 1998
  ident: CR45
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1008268930690
– volume: 278
  start-page: 1111
  year: 1997
  ident: CR53
  publication-title: Science
  doi: 10.1126/science.278.5340.1111
– volume: 165
  start-page: 469
  year: 1990
  ident: CR14
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(90)87025-M
– volume: 123
  start-page: 1416
  year: 2001
  ident: CR57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002500y
– volume: 123
  start-page: 6892
  year: 2001
  ident: CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja010595d
– volume: 118
  start-page: 6264
  year: 1996
  ident: CR54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja960106n
– volume: 10
  start-page: 89
  year: 1997a
  ident: CR31
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1018331001961
– volume: 85
  start-page: 6837
  year: 1986
  ident: CR16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451421
– volume: 120
  start-page: 10571
  year: 1998
  ident: CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja982592f
– volume: 4
  start-page: 301
  year: 1994
  ident: CR50
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00175254
– volume: 120
  start-page: 11845
  year: 1998
  ident: CR4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja982853l
– volume: 29
  start-page: 4659
  year: 1990
  ident: CR22
  publication-title: Biochemistry
  doi: 10.1021/bi00471a022
– volume: 27
  start-page: 261
  year: 2003
  ident: CR19
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1025467918856
– reference: 10805131 - J Biomol NMR. 2000 Mar;16(3):245-52
– reference: 11142508 - J Biomol NMR. 2000 Nov;18(3):183-8
– reference: 8520220 - J Biomol NMR. 1995 Nov;6(3):277-93
– reference: 12862493 - J Am Chem Soc. 2003 Jul 23;125(29):8959-66
– reference: 9761712 - J Magn Reson. 1998 Oct;134(2):365-9
– reference: 2372549 - Biochemistry. 1990 May 15;29(19):4659-67
– reference: 10698659 - J Magn Reson. 2000 Mar;143(1):184-96
– reference: 21136331 - J Biomol NMR. 1999 May;14(1):1-12
– reference: 10921775 - J Biomol NMR. 2000 Jun;17(2):99-109
– reference: 7812158 - J Biomol NMR. 1994 Nov;4(6):871-8
– reference: 8921606 - J Magn Reson B. 1996 Sep;112(3):269-74
– reference: 9846877 - Nat Struct Biol. 1998 Dec;5(12):1065-74
– reference: 15303825 - Chem Rev. 2004 Aug;104(8):3519-40
– reference: 11775744 - J Biomol NMR. 2001 Nov;21(3):275-80
– reference: 7830604 - Methods Enzymol. 1994;239:79-105
– reference: 14677953 - J Am Chem Soc. 2003 Dec 24;125(51):15740-1
– reference: 12975584 - J Biomol NMR. 2003 Nov;27(3):261-75
– reference: 11430758 - J Biomol NMR. 2001 May;20(1):77-82
– reference: 7966308 - J Mol Biol. 1994 Nov 11;243(5):906-18
– reference: 10909865 - J Biomol NMR. 2000 May;17(1):43-54
– reference: 7568117 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9279-83
– reference: 11448195 - J Am Chem Soc. 2001 Jul 18;123(28):6892-903
– reference: 11200524 - J Biomol NMR. 2000 Dec;18(4):303-9
– reference: 14612579 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13904-9
– reference: 11727975 - J Biomol NMR. 2001 Oct;21(2):117-26
– reference: 8019138 - J Biomol NMR. 1994 Mar;4(2):301-6
– reference: 21136330 - J Biomol NMR. 1998 Aug;12(2):345-8
– reference: 15369375 - J Am Chem Soc. 2003 Jul 30;125(30):9179-91
– reference: 1915376 - Eur J Biochem. 1991 Oct 1;201(1):33-51
– reference: 9353189 - Science. 1997 Nov 7;278(5340):1111-4
– reference: 14709062 - J Am Chem Soc. 2004 Jan 14;126(1):66-7
– reference: 9303001 - Nat Struct Biol. 1997 Sep;4(9):732-8
– reference: 11456715 - J Am Chem Soc. 2001 Feb 21;123(7):1416-24
– reference: 11459487 - J Am Chem Soc. 2001 Jul 25;123(29):7081-93
– reference: 11785752 - Curr Opin Struct Biol. 2001 Oct;11(5):532-9
– reference: 12515503 - J Am Chem Soc. 2003 Jan 8;125(1):44-5
– reference: 9453800 - J Biomol NMR. 1997 Jul;10(1):89-94
– reference: 15327312 - J Am Chem Soc. 2004 Sep 1;126(34):10560-70
SSID ssj0009826
Score 1.8978882
Snippet A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 201
SubjectTerms Acids
Anisotropy
Bacterial Proteins - chemistry
Base Sequence
Carbon Isotopes
Escherichia coli - chemistry
Experiments
Hydrocarbons
Methane - analogs & derivatives
Methane - chemistry
Nitrogen Isotopes
Nuclear Magnetic Resonance, Biomolecular
Nucleic Acid Conformation
Nucleic acids
Nucleic Acids - chemistry
Protein Conformation
Protein Structure, Secondary
Protein Structure, Tertiary
Proteins
Proteins - chemistry
Residues
RNA, Bacterial - chemistry
RNA, Ribosomal, 23S - chemistry
Streptococcus
Title Measurement of eight scalar and dipolar couplings for methine?methylene pairs in proteins and nucleic acids
URI https://www.ncbi.nlm.nih.gov/pubmed/15803394
https://www.proquest.com/docview/912145536
https://www.proquest.com/docview/19828028
https://www.proquest.com/docview/67572074
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ahNJcSpu0zTZNokPpoSBqW9bDp7IbsgmBLKU0sDejhx1MW3kb7x6SX9-R1t6lh-RiGSxjo5E03zz0DcAnWedWpo5RxVxGc4HmjjZFQgN5XZ2YXOqYTXg9E5c3-dWcz_vcnK5Pqxz2xLhRu9YGH_nXIo2c2kx8W_yloWhUCK72FTSew25gLgsZXXIut5y7KlZbS4qMxxMoQ1BzfXJOcUWTmLkmOX34Xy09gjWjzpm-hlc9WCTjtXTfwLPK78PB2KOh_OeefCYxfTP6xffhxWS4e3k2FHE7gF_XWx8gaWsSHaGkQ8HoO6K9I65ZBOOW2HYVzubedgRRLAl1pRF-0tDeo16qyCLEfUjjSSR2aHwX3_aBDbmxRNvGdW_hZnr-8-yS9vUVqEUQtaQIBQ1zjBtma6lMlmmJxo8RudXMJkF9oy2iHTfaVS5l3Ga1sAoVvitykwrH3sGOb311CIQx6XhdMGG1QAiYG2O0xvXnROUSKeQIkmF4S9uTj4caGL_LLW1ykEiJEimDRMqHEXzZvLJYM2881flokFnZL8Ku3EyZEZxunuL4h5CI9lW76soU54hCiPV4DzSoZIY4awTv11Nh-zNcJYwV-Ycnv30Ee5HtNaatfYSd5d2qOkYcszQncbbiVU0vTmB3PJ1MZthOzmfff_wDAojztA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlQuFbRQlgL1ATggWSSxYyeHCpXCsqXdnlqpt-CPBEWAszS7qrb_qf-RsbPZFYf21lMixU4iz9jzZjx-A_BWVtzI2DKaMZtQLtDdUTqPqCevqyLNpQrZhONTMTrn3y_SizW46c_C-LTKfk0MC7VtjI-Rf8zjwKnNxKfJX-qLRvnN1b6CRqcVx-X8Cj22dv_oC4r3XZIMv54djuiiqAA1iBymFPGPZpalmplKZjpJlETErwU3ipnI2ywE4MqmWtnSxiw1SSVMhlbO5lzHwjJ87wN4yBnL_YTKht9WHL9ZqO4W5UkaTrz0m6jdSb0szWgUMuVkSq__N4O3YNtg44ZPYHMBTslBp01PYa10W7B94NAx_zMn70lIFw1x-C149Lm_2zjsi8Ztw6_xKuZImoqEwCtpURHUJVHOEltPvDNNTDPzZ4F_tgRRM_F1rBHuUn-dox0sycTvM5HakUAkUbs29Haefbk2RJnats_g_F6G_jmsu8aVL4AwJm1a5UwYJRBycq21UjjfrShtJIUcQNQPb2EWZOe-5sbvYkXT7CVSoEQKL5HiegAfll0mHdPHXY13e5kVi0nfFksVHcDe8imOv9-CUa5sZm0Ro45kCOlub4EOnEwQ1w1gp1OF1c-kWYRax1_e-e092BidjU-Kk6PT4114HJhmQ8rcK1ifXs7K14ihpvpN0FwCP-57qvwDcoMsoQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIigXBC2FpUB9AA5IVpM4tpMDQqVl1VJacaDS3oI_EhQVnKXZFdr-M_4dYyfZFYf21lMixU4iz9jzZjx-A_BaVqmRsWU0YzahqUB3R-k8op68rop0KlXIJjw9E0fn6ecJn6zB3-EsjE-rHNbEsFDbxvgY-V4eB05tJvaqPivi6-H4w_Q39QWk_EbrUE2j05CTcvEHvbf2_fEhivpNkow_fTs4on2BAWoQRcwoYiHNLOOamUpmOkmURPSvRWoUM5G3XwjGleVa2dLGjJukEiZDi2fzVMfCMnzvHbgrGY_9FJMTueL7zUKltyhPeDj9Mmyodqf2Mp7RKGTNSU6v_jeJ1-DcYO_Gj-BhD1TJfqdZj2GtdJuwte_QSf-1IG9JSB0NMflNuPdxuNs4GArIbcHF6Sr-SJqKhCAsaVEp1CVRzhJbT71jTUwz9-eCf7QEETTxNa0R-lJ_XaBNLMnU7zmR2pFAKlG7NvR2nom5NkSZ2rZP4PxWhn4b1l3jymdAGJOWVzkTRgmEn6nWWimc-1aUNpJCjiAahrcwPfG5r7_xs1hRNnuJFCiRwkukuBrBu2WXacf6cVPjnUFmRb8AtMVSXUewu3yK4--3Y5Qrm3lbxKgjGcK761ugMycTxHgjeNqpwupneBYxlqfPb_z2LtzHSVJ8OT472YEHgXQ2ZM-9gPXZ5bx8iXBqpl8FxSXw_bZnyj9HPTDO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+eight+scalar+and+dipolar+couplings+for+methine-methylene+pairs+in+proteins+and+nucleic+acids&rft.jtitle=Journal+of+biomolecular+NMR&rft.au=Miclet%2C+Emeric&rft.au=Boisbouvier%2C+J%C3%A9r%C3%B4me&rft.au=Bax%2C+Ad&rft.date=2005-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-2738&rft.eissn=1573-5001&rft.volume=31&rft.issue=3&rft.spage=201&rft_id=info:doi/10.1007%2Fs10858-005-0175-z&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2544217171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2738&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2738&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2738&client=summon