Measurement of eight scalar and dipolar couplings for methine?methylene pairs in proteins and nucleic acids
A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for n...
Saved in:
Published in | Journal of biomolecular NMR Vol. 31; no. 3; pp. 201 - 216 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Springer Nature B.V
01.03.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for Cbeta-Calpha moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C5'-C4' groups in a 24-nt RNA oligomer. Chemical shifts of Calpha, Cbeta and Hbeta (respectively C4', C5' and H5') are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to 1J(CalphaHalpha), 2J(CalphaHbeta2)+2J(CalphaHbeta3), 2J(CbetaHalpha), 1J(CbetaHbeta2)+1J(CbetaHbeta3), 1J(CbetaHbeta2)-2J(Hbeta2Hbeta3), 1J(CbetaHbeta3)-2J(Hbeta2Hbeta3), 3J(HalphaHbeta2) and 3J(HalphaHbeta3) for proteins, and 1J(C4'H4'), 2J(C4'H5')+2J(C4'H5"), 2J(C5'H4'), 1J(C5'H5')+1J(C5'H5"), 1J(C5'H5')-2J(H5'H5"), 1J(C5'H5")-2J(H5'H5"), 3J(H4'H5') and 3J(H4'H5") in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine-methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C5'-C4' groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the 3J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive chi1 rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C5'H2 groups in the loop region of the oligomer, in all cases confirmed by 1J(C5'H5')>1J(C5'H5"), and H5' resonating downfield of H5". |
---|---|
AbstractList | A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for C super( beta )-C super( alpha ) moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C[Equation]-C[Equation] groups in a 24-nt RNA oligomer. Chemical shifts of C super( alpha ), C super( beta ) and H super( beta ) (respectively C[Equation], C[Equation] and H[Equation]) are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to super(1)J sub(C alpha H alpha ), super(2)J sub(C alpha H beta 2)+ super(2)J sub(C alpha H beta 3), super(2)J sub(C beta H alpha ), super(1)J sub(C beta H beta 2)+ super(1)J sub(C beta H beta 3), super(1)J sub(C beta H beta 2)- super(2)J sub(H beta 2H beta 3), super(1)J sub(C beta H beta 3)- super(2)J sub(H beta 2H beta 3), super(3)J sub(H alpha H beta 2) and super(3)J sub(H alpha H beta 3) for proteins, and super(1)J[Equation], super(2)J[Equation]J[Equation], super(2)J[Equation], super(1)J[Equation]+ super(1)J[Equation], super(1)J[Equation]J[Equation], super(1)J[Equation]J[Equation], super(3)J[Equation] and super(3)J[Equation] in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine-methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C[Equation]-C[Equation] groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the super(3)J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive chi sub(1) rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C[Equation]H sub(2) groups in the loop region of the oligomer, in all cases confirmed by super(1)J[Equation]J[Equation], and H[Equation] resonating downfield of H[Equation]. A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for C^sup β^-C^sup α^ moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C(ProQuest: Formulae and/or non-USASCII text omitted; see image)>-C(ProQuest: Formulae and/or non-USASCII text omitted; see image)> groups in a 24-nt RNA oligomer. Chemical shifts of C^sup α^, C^sup β^ and H^sup β^ (respectively C(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, C(ProQuest: Formulae and/or non-USASCII text omitted; see image)> and H(ProQuest: Formulae and/or non-USASCII text omitted; see image)>) are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to ^sup 1^J^sub CαHα^, ^sup 2^J^sub CαHβ2^+^sup 2^J^sub CαHβ3^, ^sup 2^J^sub CβHα^, ^sup 1^J^sub CβHβ2^+^sup 1^J^sub CβHβ3^, ^sup 1^J^sub CβHβ2^-^sup 2^J^sub Hβ2Hβ3^, ^sup 1^J^sub CβHβ3^-^sup 2^J^sub Hβ2Hβ3^, ^sup 3^J^sub HαHβ2^ and ^sup 3^J^sub HαHβ3^ for proteins, and ^sup 1^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, ^sup 2^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, ^sup 2^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, ^sup 1^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>+^sup 1^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, ^sup 1^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, ^sup 1^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, ^sup 3^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)> and ^sup 3^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)> in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine-methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C(ProQuest: Formulae and/or non-USASCII text omitted; see image)>-C(ProQuest: Formulae and/or non-USASCII text omitted; see image)> groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the ^sup 3^J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive χ^sub 1^ rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C(ProQuest: Formulae and/or non-USASCII text omitted; see image)>H^sub 2^ groups in the loop region of the oligomer, in all cases confirmed by ^sup 1^J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>J(ProQuest: Formulae and/or non-USASCII text omitted; see image)>, and H(ProQuest: Formulae and/or non-USASCII text omitted; see image)> resonating downfield of H(ProQuest: Formulae and/or non-USASCII text omitted; see image)>.[PUBLICATION ABSTRACT] A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for Cbeta-Calpha moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C5'-C4' groups in a 24-nt RNA oligomer. Chemical shifts of Calpha, Cbeta and Hbeta (respectively C4', C5' and H5') are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to 1J(CalphaHalpha), 2J(CalphaHbeta2)+2J(CalphaHbeta3), 2J(CbetaHalpha), 1J(CbetaHbeta2)+1J(CbetaHbeta3), 1J(CbetaHbeta2)-2J(Hbeta2Hbeta3), 1J(CbetaHbeta3)-2J(Hbeta2Hbeta3), 3J(HalphaHbeta2) and 3J(HalphaHbeta3) for proteins, and 1J(C4'H4'), 2J(C4'H5')+2J(C4'H5"), 2J(C5'H4'), 1J(C5'H5')+1J(C5'H5"), 1J(C5'H5')-2J(H5'H5"), 1J(C5'H5")-2J(H5'H5"), 3J(H4'H5') and 3J(H4'H5") in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine-methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C5'-C4' groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the 3J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive chi1 rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C5'H2 groups in the loop region of the oligomer, in all cases confirmed by 1J(C5'H5')>1J(C5'H5"), and H5' resonating downfield of H5". A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for Cbeta-Calpha moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C5'-C4' groups in a 24-nt RNA oligomer. Chemical shifts of Calpha, Cbeta and Hbeta (respectively C4', C5' and H5') are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to 1J(CalphaHalpha), 2J(CalphaHbeta2)+2J(CalphaHbeta3), 2J(CbetaHalpha), 1J(CbetaHbeta2)+1J(CbetaHbeta3), 1J(CbetaHbeta2)-2J(Hbeta2Hbeta3), 1J(CbetaHbeta3)-2J(Hbeta2Hbeta3), 3J(HalphaHbeta2) and 3J(HalphaHbeta3) for proteins, and 1J(C4'H4'), 2J(C4'H5')+2J(C4'H5"), 2J(C5'H4'), 1J(C5'H5')+1J(C5'H5"), 1J(C5'H5')-2J(H5'H5"), 1J(C5'H5")-2J(H5'H5"), 3J(H4'H5') and 3J(H4'H5") in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine-methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C5'-C4' groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the 3J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive chi1 rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C5'H2 groups in the loop region of the oligomer, in all cases confirmed by 1J(C5'H5')>1J(C5'H5"), and H5' resonating downfield of H5".A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for Cbeta-Calpha moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C5'-C4' groups in a 24-nt RNA oligomer. Chemical shifts of Calpha, Cbeta and Hbeta (respectively C4', C5' and H5') are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to 1J(CalphaHalpha), 2J(CalphaHbeta2)+2J(CalphaHbeta3), 2J(CbetaHalpha), 1J(CbetaHbeta2)+1J(CbetaHbeta3), 1J(CbetaHbeta2)-2J(Hbeta2Hbeta3), 1J(CbetaHbeta3)-2J(Hbeta2Hbeta3), 3J(HalphaHbeta2) and 3J(HalphaHbeta3) for proteins, and 1J(C4'H4'), 2J(C4'H5')+2J(C4'H5"), 2J(C5'H4'), 1J(C5'H5')+1J(C5'H5"), 1J(C5'H5')-2J(H5'H5"), 1J(C5'H5")-2J(H5'H5"), 3J(H4'H5') and 3J(H4'H5") in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine-methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C5'-C4' groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the 3J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive chi1 rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C5'H2 groups in the loop region of the oligomer, in all cases confirmed by 1J(C5'H5')>1J(C5'H5"), and H5' resonating downfield of H5". |
Author | Bax, Ad Miclet, Emeric Boisbouvier, J r me |
Author_xml | – sequence: 1 givenname: Emeric surname: Miclet fullname: Miclet, Emeric – sequence: 2 givenname: J r me surname: Boisbouvier fullname: Boisbouvier, J r me – sequence: 3 givenname: Ad surname: Bax fullname: Bax, Ad |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15803394$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtvFTEQhS0URG4CP4AGWRR0C2N7_dgKoYiXFEST1JbX9iYOu_Zie4vk18eXG4SUglQzxXdGZ845QUcxRY_QawLvCYD8UAgorjoA3gGRvLt7hnaES9ZxAHKEdjBQ3lHJ1DE6KeUGAAZFxQt0TLgCxoZ-h3798KZs2S8-Vpwm7MPVdcXFmtlkbKLDLqxpv9u0rXOIVwVPKePF1-sQ_cf9vJ199Hg1IRccIl5zqj7E8kcdNzv7YLGxwZWX6Plk5uJfPcxTdPnl88XZt-7859fvZ5_OO9tTVpt5OTLH-MjsJNVIqZGDEKPorWEWRgAqhTKOj8Z5Rxi3dBJWEU7d0I9EOHaK3h3uNiu_N1-qXkKxfp5N9GkrWkguKcj-SZC0uBRQ1cC3j8CbtOXYntADoaTnnIkGvXmAtnHxTq85LCbf6r9hN4AcAJtTKdlP_xDQ-0L1oVDdCtX7QvVd08hHGhuqqSHFmk2Y_6O8B7T2pXM |
CitedBy_id | crossref_primary_10_1016_j_jmr_2006_01_003 crossref_primary_10_1039_D4SC00690A crossref_primary_10_1016_j_sbi_2005_08_006 crossref_primary_10_1002_prot_22711 crossref_primary_10_1002_mrc_1836 crossref_primary_10_1021_ja0645436 crossref_primary_10_1007_s10858_009_9387_y crossref_primary_10_1073_pnas_0712121105 crossref_primary_10_1007_s10858_008_9294_7 crossref_primary_10_1002_prot_25094 crossref_primary_10_1021_jp300284u crossref_primary_10_1016_j_dib_2015_08_020 crossref_primary_10_1021_acs_chemrev_1c00730 crossref_primary_10_1016_j_jmr_2007_02_009 crossref_primary_10_1016_j_jsb_2015_07_008 crossref_primary_10_1038_nprot_2007_221 crossref_primary_10_1002_bip_20765 crossref_primary_10_1021_acs_jctc_5b00255 crossref_primary_10_1007_s10858_013_9741_y crossref_primary_10_1016_j_jmr_2006_01_017 crossref_primary_10_1080_00268976_2012_728257 crossref_primary_10_1038_nchem_650 crossref_primary_10_1002_mrc_2271 crossref_primary_10_1016_j_bpj_2015_11_031 crossref_primary_10_1007_s10858_013_9780_4 crossref_primary_10_1016_j_pnmrs_2006_03_001 crossref_primary_10_1021_ct4003702 |
Cites_doi | 10.1023/A:1008346902500 10.1021/ja002133q 10.1021/ja0350684 10.1023/A:1008372624615 10.1016/S0079-6565(97)00023-X 10.1021/ar9600392 10.1038/nsb0997-732 10.1021/ja028740q 10.1021/ja00027a052 10.1016/0079-6565(76)80001-5 10.1006/jmrb.1996.0141 10.1023/A:1026788430236 10.1023/A:1008345303942 10.1002/(SICI)1097-458X(199612)34:133.0.CO;2-U 10.1021/ja029972s 10.1023/A:1008378624590 10.1021/ja980862o 10.1111/j.1432-1033.1991.tb16253.x 10.1021/cr030419i 10.1073/pnas.1835769100 10.1016/S0076-6879(94)39004-5 10.1002/bip.1981.360200610 10.1016/0022-2364(91)90034-Q 10.1038/4176 10.1006/jmre.1999.1979 10.1021/ja047904v 10.1016/0079-6565(84)80005-9 10.1006/jmre.1997.1213 10.1021/ja00052a088 10.1073/pnas.92.20.9279 10.1023/A:1012474811265 10.1023/A:1012998006281 10.1007/BF00197809 10.1007/BF02192847 10.1016/S0959-440X(00)00245-1 10.1021/ja001068h 10.1016/0079-6565(81)80001-5 10.1007/BF00398416 10.1021/ja00196a068 10.1006/jmbi.1994.1691 10.1021/ja992139j 10.1023/A:1008314803561 10.1021/ja003724j 10.1023/A:1011280529850 10.1023/A:1026703605147 10.1006/jmre.1998.1546 10.1021/ja0388212 10.1021/ja038314k 10.1021/ja00124a014 10.1023/A:1008268930690 10.1126/science.278.5340.1111 10.1016/0009-2614(90)87025-M 10.1021/ja002500y 10.1021/ja010595d 10.1021/ja960106n 10.1023/A:1018331001961 10.1063/1.451421 10.1021/ja982592f 10.1007/BF00175254 10.1021/ja982853l 10.1021/bi00471a022 10.1023/A:1025467918856 |
ContentType | Journal Article |
Copyright | Kluwer Academic Publishers 2005 |
Copyright_xml | – notice: Kluwer Academic Publishers 2005 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7TK 7TM 7U9 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s10858-005-0175-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1573-5001 |
EndPage | 216 |
ExternalDocumentID | 2544217171 15803394 10_1007_s10858_005_0175_z |
Genre | Journal Article |
GroupedDBID | --- -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU CITATION COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GPTSA GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M1P M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PHGZM PHGZT PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 ZMTXR ~EX ~KM -54 -5F -5G -BR -EM 3V. AAAVM ADINQ CGR CUY CVF ECM EIF GQ6 NPM Z7U Z7V Z7W Z7X Z82 Z83 Z87 Z8O Z8P Z8Q Z8V Z91 7QL 7QO 7TK 7TM 7U9 7XB 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c423t-507b3d35b3cf78b22a7966b64ca3c0b002768ad5baded135c2f6c8152d94b16d3 |
IEDL.DBID | 7X7 |
ISSN | 0925-2738 |
IngestDate | Mon Jul 21 11:57:44 EDT 2025 Fri Jul 11 03:30:57 EDT 2025 Wed Aug 20 14:40:59 EDT 2025 Wed Feb 19 01:40:30 EST 2025 Tue Jul 01 01:49:41 EDT 2025 Thu Apr 24 22:58:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-507b3d35b3cf78b22a7966b64ca3c0b002768ad5baded135c2f6c8152d94b16d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 15803394 |
PQID | 912145536 |
PQPubID | 326261 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_67572074 proquest_miscellaneous_19828028 proquest_journals_912145536 pubmed_primary_15803394 crossref_primary_10_1007_s10858_005_0175_z crossref_citationtrail_10_1007_s10858_005_0175_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-03-00 2005-Mar 20050301 |
PublicationDateYYYYMMDD | 2005-03-01 |
PublicationDate_xml | – month: 03 year: 2005 text: 2005-03-00 |
PublicationDecade | 2000 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Dordrecht |
PublicationTitle | Journal of biomolecular NMR |
PublicationTitleAlternate | J Biomol NMR |
PublicationYear | 2005 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | O.W. Sørensen (CR52) 1983; 16 C. Perez (CR43) 2001; 123 E.T. Olejniczak (CR41) 1999; 121 J.J. Chou (CR7) 2003; 125 P. Permi (CR44) 2000; 17 E. O?Neil-Cabello (CR40) 2004; 126 T. Carlomagno (CR6) 2000; 17 H.J. Sass (CR49) 2001; 21 J.R. Tolman (CR59) 1996; 112 M. Ottiger (CR42) 1998; 134 B. Brutscher (CR4) 1998; 120 T.S. Ulmer (CR61) 2003; 125 J.P. Derrick (CR10) 1994; 243 J.H. Ippel (CR23) 1996; 34 N. Tjandra (CR53) 1997; 278 D.W. Yang (CR64) 1999; 14 H. Kuboniwa (CR27) 1994; 4 C. Biamonti (CR2) 1994; 4 M.R. Hansen (CR20) 1998; 5 S. Meier (CR29) 2003; 125 J.P. Marino (CR28) 1999; 32 J. Meiler (CR30) 2000; 16 U. Eggenberger (CR12) 1992; 2 K.V. Pervushin (CR45) 1998; 12 J.R. Tolman (CR58) 1995; 92 E. Duchardt (CR11) 2001; 21 G.A. Mueller (CR38) 2000; 18 E. Miclet (CR34) 2003; 125 E. Miclet (CR35) 2004; 126 A. Bax (CR1) 1994; 239 L.J.W. Murray (CR39) 2003; 100 M. Ruckert (CR47) 2000; 122 G.M. Clore (CR8) 1998; 120 J. Schleucher (CR50) 1994; 4 J.R. Tolman (CR56) 2001; 11 C.A.G. Haasnoot (CR18) 1981; 20 A. Meissner (CR32) 1997b; 128 H. Geen (CR15) 1991; 93 G. Kontaxis (CR25) 2001; 20 G. Kontaxis (CR26) 2000; 143 A. Meissner (CR31) 1997a; 10 L.E. Kay (CR24) 1992; 114 Y.X. Wang (CR62) 1998; 120 J.R. Tolman (CR57) 2001; 123 H.J. Sass (CR48) 2000; 18 J.B. Hall (CR19) 2003; 27 N. Tjandra (CR54) 1996; 118 S.S. Wijmenga (CR63) 1998; 32 L. Emsley (CR14) 1990; 165 F. Delaglio (CR9) 1995; 6 V.F. Bystrov (CR5) 1976; 10 M.J.J. Blommers (CR3) 1991; 201 A. Mittermaier (CR36) 2001; 123 P.E. Hansen (CR21) 1981; 14 J.M. Schmidt (CR51) 1999; 14 R. Tycko (CR60) 2000; 122 J.H. Prestegard (CR46) 2004; 104 S. Grzesiek (CR17) 1995; 117 N. Tjandra (CR55) 1997; 4 G.T. Montelione (CR37) 1989; 111 M. Ikura (CR22) 1990; 29 C. Griesinger (CR16) 1986; 85 S.D. Emerson (CR13) 1992; 114 9846877 - Nat Struct Biol. 1998 Dec;5(12):1065-74 8921606 - J Magn Reson B. 1996 Sep;112(3):269-74 11448195 - J Am Chem Soc. 2001 Jul 18;123(28):6892-903 11430758 - J Biomol NMR. 2001 May;20(1):77-82 7966308 - J Mol Biol. 1994 Nov 11;243(5):906-18 7830604 - Methods Enzymol. 1994;239:79-105 14677953 - J Am Chem Soc. 2003 Dec 24;125(51):15740-1 1915376 - Eur J Biochem. 1991 Oct 1;201(1):33-51 11456715 - J Am Chem Soc. 2001 Feb 21;123(7):1416-24 10698659 - J Magn Reson. 2000 Mar;143(1):184-96 15303825 - Chem Rev. 2004 Aug;104(8):3519-40 9761712 - J Magn Reson. 1998 Oct;134(2):365-9 21136331 - J Biomol NMR. 1999 May;14(1):1-12 9353189 - Science. 1997 Nov 7;278(5340):1111-4 14709062 - J Am Chem Soc. 2004 Jan 14;126(1):66-7 15369375 - J Am Chem Soc. 2003 Jul 30;125(30):9179-91 9453800 - J Biomol NMR. 1997 Jul;10(1):89-94 11785752 - Curr Opin Struct Biol. 2001 Oct;11(5):532-9 8019138 - J Biomol NMR. 1994 Mar;4(2):301-6 21136330 - J Biomol NMR. 1998 Aug;12(2):345-8 15327312 - J Am Chem Soc. 2004 Sep 1;126(34):10560-70 10921775 - J Biomol NMR. 2000 Jun;17(2):99-109 7812158 - J Biomol NMR. 1994 Nov;4(6):871-8 7568117 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9279-83 11727975 - J Biomol NMR. 2001 Oct;21(2):117-26 2372549 - Biochemistry. 1990 May 15;29(19):4659-67 12975584 - J Biomol NMR. 2003 Nov;27(3):261-75 11775744 - J Biomol NMR. 2001 Nov;21(3):275-80 12515503 - J Am Chem Soc. 2003 Jan 8;125(1):44-5 14612579 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13904-9 11459487 - J Am Chem Soc. 2001 Jul 25;123(29):7081-93 11200524 - J Biomol NMR. 2000 Dec;18(4):303-9 9303001 - Nat Struct Biol. 1997 Sep;4(9):732-8 12862493 - J Am Chem Soc. 2003 Jul 23;125(29):8959-66 11142508 - J Biomol NMR. 2000 Nov;18(3):183-8 8520220 - J Biomol NMR. 1995 Nov;6(3):277-93 10805131 - J Biomol NMR. 2000 Mar;16(3):245-52 10909865 - J Biomol NMR. 2000 May;17(1):43-54 |
References_xml | – volume: 17 start-page: 99 year: 2000 ident: CR6 publication-title: J. Biomol. NMR doi: 10.1023/A:1008346902500 – volume: 122 start-page: 9340 year: 2000 ident: CR60 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002133q – volume: 125 start-page: 9179 year: 2003 ident: CR61 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0350684 – volume: 17 start-page: 43 year: 2000 ident: CR44 publication-title: J. Biomol. NMR doi: 10.1023/A:1008372624615 – volume: 32 start-page: 287 year: 1998 ident: CR63 publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/S0079-6565(97)00023-X – volume: 32 start-page: 614 year: 1999 ident: CR28 publication-title: Accounts Chem. Res. doi: 10.1021/ar9600392 – volume: 4 start-page: 732 year: 1997 ident: CR55 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0997-732 – volume: 125 start-page: 44 year: 2003 ident: CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028740q – volume: 114 start-page: 354 year: 1992 ident: CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00027a052 – volume: 10 start-page: 41 year: 1976 ident: CR5 publication-title: Prog. NMR Spectrosc. doi: 10.1016/0079-6565(76)80001-5 – volume: 112 start-page: 269 year: 1996 ident: CR59 publication-title: J. Magn. Reson. Ser. B doi: 10.1006/jmrb.1996.0141 – volume: 18 start-page: 183 year: 2000 ident: CR38 publication-title: J. Biomol. NMR doi: 10.1023/A:1026788430236 – volume: 4 start-page: 51 year: 1994 ident: CR2 publication-title: Adv. Biophys. Chem. – volume: 14 start-page: 1 year: 1999 ident: CR51 publication-title: J. Biomol. NMR doi: 10.1023/A:1008345303942 – volume: 34 start-page: S156 year: 1996 ident: CR23 publication-title: Magn. Reson. Chem. doi: 10.1002/(SICI)1097-458X(199612)34:133.0.CO;2-U – volume: 125 start-page: 8959 year: 2003 ident: CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja029972s – volume: 16 start-page: 245 year: 2000 ident: CR30 publication-title: J. Biomol. NMR doi: 10.1023/A:1008378624590 – volume: 120 start-page: 7385 year: 1998 ident: CR62 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja980862o – volume: 201 start-page: 33 year: 1991 ident: CR3 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1991.tb16253.x – volume: 104 start-page: 3519 year: 2004 ident: CR46 publication-title: Chem. Rev. doi: 10.1021/cr030419i – volume: 100 start-page: 13904 year: 2003 ident: CR39 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1835769100 – volume: 239 start-page: 79 year: 1994 ident: CR1 publication-title: Meth. Enzymol. doi: 10.1016/S0076-6879(94)39004-5 – volume: 20 start-page: 1211 year: 1981 ident: CR18 publication-title: Biopolymers doi: 10.1002/bip.1981.360200610 – volume: 93 start-page: 93 year: 1991 ident: CR15 publication-title: J. Magn. Reson. doi: 10.1016/0022-2364(91)90034-Q – volume: 5 start-page: 1065 year: 1998 ident: CR20 publication-title: Nat. Struct. Biol. doi: 10.1038/4176 – volume: 143 start-page: 184 year: 2000 ident: CR26 publication-title: J. Magn. Reson. doi: 10.1006/jmre.1999.1979 – volume: 126 start-page: 10560 year: 2004 ident: CR35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047904v – volume: 16 start-page: 163 year: 1983 ident: CR52 publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/0079-6565(84)80005-9 – volume: 128 start-page: 92 year: 1997b ident: CR32 publication-title: J. Magn. Reson. doi: 10.1006/jmre.1997.1213 – volume: 114 start-page: 10663 year: 1992 ident: CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00052a088 – volume: 92 start-page: 9279 year: 1995 ident: CR58 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.20.9279 – volume: 21 start-page: 117 year: 2001 ident: CR11 publication-title: J. Biomol. NMR doi: 10.1023/A:1012474811265 – volume: 21 start-page: 275 year: 2001 ident: CR49 publication-title: J. Biomol. NMR doi: 10.1023/A:1012998006281 – volume: 6 start-page: 277 year: 1995 ident: CR9 publication-title: J. Biomol. NMR doi: 10.1007/BF00197809 – volume: 2 start-page: 583 year: 1992 ident: CR12 publication-title: J. Biomol. NMR doi: 10.1007/BF02192847 – volume: 11 start-page: 532 year: 2001 ident: CR56 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(00)00245-1 – volume: 122 start-page: 7793 year: 2000 ident: CR47 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja001068h – volume: 14 start-page: 175 year: 1981 ident: CR21 publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/0079-6565(81)80001-5 – volume: 4 start-page: 871 year: 1994 ident: CR27 publication-title: J. Bio. NMR doi: 10.1007/BF00398416 – volume: 111 start-page: 5474 year: 1989 ident: CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00196a068 – volume: 243 start-page: 906 year: 1994 ident: CR10 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.1691 – volume: 121 start-page: 9249 year: 1999 ident: CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja992139j – volume: 14 start-page: 333 year: 1999 ident: CR64 publication-title: J. Biomol. NMR doi: 10.1023/A:1008314803561 – volume: 123 start-page: 7081 year: 2001 ident: CR43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja003724j – volume: 20 start-page: 77 year: 2001 ident: CR25 publication-title: J. Biomol. NMR doi: 10.1023/A:1011280529850 – volume: 18 start-page: 303 year: 2000 ident: CR48 publication-title: J. Biomol. NMR doi: 10.1023/A:1026703605147 – volume: 134 start-page: 365 year: 1998 ident: CR42 publication-title: J. Magn. Reson. doi: 10.1006/jmre.1998.1546 – volume: 125 start-page: 15740 year: 2003 ident: CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0388212 – volume: 126 start-page: 66 year: 2004 ident: CR40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038314k – volume: 117 start-page: 5312 year: 1995 ident: CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00124a014 – volume: 12 start-page: 345 year: 1998 ident: CR45 publication-title: J. Biomol. NMR doi: 10.1023/A:1008268930690 – volume: 278 start-page: 1111 year: 1997 ident: CR53 publication-title: Science doi: 10.1126/science.278.5340.1111 – volume: 165 start-page: 469 year: 1990 ident: CR14 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(90)87025-M – volume: 123 start-page: 1416 year: 2001 ident: CR57 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002500y – volume: 123 start-page: 6892 year: 2001 ident: CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010595d – volume: 118 start-page: 6264 year: 1996 ident: CR54 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja960106n – volume: 10 start-page: 89 year: 1997a ident: CR31 publication-title: J. Biomol. NMR doi: 10.1023/A:1018331001961 – volume: 85 start-page: 6837 year: 1986 ident: CR16 publication-title: J. Chem. Phys. doi: 10.1063/1.451421 – volume: 120 start-page: 10571 year: 1998 ident: CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja982592f – volume: 4 start-page: 301 year: 1994 ident: CR50 publication-title: J. Biomol. NMR doi: 10.1007/BF00175254 – volume: 120 start-page: 11845 year: 1998 ident: CR4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja982853l – volume: 29 start-page: 4659 year: 1990 ident: CR22 publication-title: Biochemistry doi: 10.1021/bi00471a022 – volume: 27 start-page: 261 year: 2003 ident: CR19 publication-title: J. Biomol. NMR doi: 10.1023/A:1025467918856 – reference: 10805131 - J Biomol NMR. 2000 Mar;16(3):245-52 – reference: 11142508 - J Biomol NMR. 2000 Nov;18(3):183-8 – reference: 8520220 - J Biomol NMR. 1995 Nov;6(3):277-93 – reference: 12862493 - J Am Chem Soc. 2003 Jul 23;125(29):8959-66 – reference: 9761712 - J Magn Reson. 1998 Oct;134(2):365-9 – reference: 2372549 - Biochemistry. 1990 May 15;29(19):4659-67 – reference: 10698659 - J Magn Reson. 2000 Mar;143(1):184-96 – reference: 21136331 - J Biomol NMR. 1999 May;14(1):1-12 – reference: 10921775 - J Biomol NMR. 2000 Jun;17(2):99-109 – reference: 7812158 - J Biomol NMR. 1994 Nov;4(6):871-8 – reference: 8921606 - J Magn Reson B. 1996 Sep;112(3):269-74 – reference: 9846877 - Nat Struct Biol. 1998 Dec;5(12):1065-74 – reference: 15303825 - Chem Rev. 2004 Aug;104(8):3519-40 – reference: 11775744 - J Biomol NMR. 2001 Nov;21(3):275-80 – reference: 7830604 - Methods Enzymol. 1994;239:79-105 – reference: 14677953 - J Am Chem Soc. 2003 Dec 24;125(51):15740-1 – reference: 12975584 - J Biomol NMR. 2003 Nov;27(3):261-75 – reference: 11430758 - J Biomol NMR. 2001 May;20(1):77-82 – reference: 7966308 - J Mol Biol. 1994 Nov 11;243(5):906-18 – reference: 10909865 - J Biomol NMR. 2000 May;17(1):43-54 – reference: 7568117 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9279-83 – reference: 11448195 - J Am Chem Soc. 2001 Jul 18;123(28):6892-903 – reference: 11200524 - J Biomol NMR. 2000 Dec;18(4):303-9 – reference: 14612579 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13904-9 – reference: 11727975 - J Biomol NMR. 2001 Oct;21(2):117-26 – reference: 8019138 - J Biomol NMR. 1994 Mar;4(2):301-6 – reference: 21136330 - J Biomol NMR. 1998 Aug;12(2):345-8 – reference: 15369375 - J Am Chem Soc. 2003 Jul 30;125(30):9179-91 – reference: 1915376 - Eur J Biochem. 1991 Oct 1;201(1):33-51 – reference: 9353189 - Science. 1997 Nov 7;278(5340):1111-4 – reference: 14709062 - J Am Chem Soc. 2004 Jan 14;126(1):66-7 – reference: 9303001 - Nat Struct Biol. 1997 Sep;4(9):732-8 – reference: 11456715 - J Am Chem Soc. 2001 Feb 21;123(7):1416-24 – reference: 11459487 - J Am Chem Soc. 2001 Jul 25;123(29):7081-93 – reference: 11785752 - Curr Opin Struct Biol. 2001 Oct;11(5):532-9 – reference: 12515503 - J Am Chem Soc. 2003 Jan 8;125(1):44-5 – reference: 9453800 - J Biomol NMR. 1997 Jul;10(1):89-94 – reference: 15327312 - J Am Chem Soc. 2004 Sep 1;126(34):10560-70 |
SSID | ssj0009826 |
Score | 1.8978882 |
Snippet | A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 201 |
SubjectTerms | Acids Anisotropy Bacterial Proteins - chemistry Base Sequence Carbon Isotopes Escherichia coli - chemistry Experiments Hydrocarbons Methane - analogs & derivatives Methane - chemistry Nitrogen Isotopes Nuclear Magnetic Resonance, Biomolecular Nucleic Acid Conformation Nucleic acids Nucleic Acids - chemistry Protein Conformation Protein Structure, Secondary Protein Structure, Tertiary Proteins Proteins - chemistry Residues RNA, Bacterial - chemistry RNA, Ribosomal, 23S - chemistry Streptococcus |
Title | Measurement of eight scalar and dipolar couplings for methine?methylene pairs in proteins and nucleic acids |
URI | https://www.ncbi.nlm.nih.gov/pubmed/15803394 https://www.proquest.com/docview/912145536 https://www.proquest.com/docview/19828028 https://www.proquest.com/docview/67572074 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ahNJcSpu0zTZNokPpoSBqW9bDp7IbsgmBLKU0sDejhx1MW3kb7x6SX9-R1t6lh-RiGSxjo5E03zz0DcAnWedWpo5RxVxGc4HmjjZFQgN5XZ2YXOqYTXg9E5c3-dWcz_vcnK5Pqxz2xLhRu9YGH_nXIo2c2kx8W_yloWhUCK72FTSew25gLgsZXXIut5y7KlZbS4qMxxMoQ1BzfXJOcUWTmLkmOX34Xy09gjWjzpm-hlc9WCTjtXTfwLPK78PB2KOh_OeefCYxfTP6xffhxWS4e3k2FHE7gF_XWx8gaWsSHaGkQ8HoO6K9I65ZBOOW2HYVzubedgRRLAl1pRF-0tDeo16qyCLEfUjjSSR2aHwX3_aBDbmxRNvGdW_hZnr-8-yS9vUVqEUQtaQIBQ1zjBtma6lMlmmJxo8RudXMJkF9oy2iHTfaVS5l3Ga1sAoVvitykwrH3sGOb311CIQx6XhdMGG1QAiYG2O0xvXnROUSKeQIkmF4S9uTj4caGL_LLW1ykEiJEimDRMqHEXzZvLJYM2881flokFnZL8Ku3EyZEZxunuL4h5CI9lW76soU54hCiPV4DzSoZIY4awTv11Nh-zNcJYwV-Ycnv30Ee5HtNaatfYSd5d2qOkYcszQncbbiVU0vTmB3PJ1MZthOzmfff_wDAojztA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlQuFbRQlgL1ATggWSSxYyeHCpXCsqXdnlqpt-CPBEWAszS7qrb_qf-RsbPZFYf21lMixU4iz9jzZjx-A_BWVtzI2DKaMZtQLtDdUTqPqCevqyLNpQrZhONTMTrn3y_SizW46c_C-LTKfk0MC7VtjI-Rf8zjwKnNxKfJX-qLRvnN1b6CRqcVx-X8Cj22dv_oC4r3XZIMv54djuiiqAA1iBymFPGPZpalmplKZjpJlETErwU3ipnI2ywE4MqmWtnSxiw1SSVMhlbO5lzHwjJ87wN4yBnL_YTKht9WHL9ZqO4W5UkaTrz0m6jdSb0szWgUMuVkSq__N4O3YNtg44ZPYHMBTslBp01PYa10W7B94NAx_zMn70lIFw1x-C149Lm_2zjsi8Ztw6_xKuZImoqEwCtpURHUJVHOEltPvDNNTDPzZ4F_tgRRM_F1rBHuUn-dox0sycTvM5HakUAkUbs29Haefbk2RJnats_g_F6G_jmsu8aVL4AwJm1a5UwYJRBycq21UjjfrShtJIUcQNQPb2EWZOe-5sbvYkXT7CVSoEQKL5HiegAfll0mHdPHXY13e5kVi0nfFksVHcDe8imOv9-CUa5sZm0Ro45kCOlub4EOnEwQ1w1gp1OF1c-kWYRax1_e-e092BidjU-Kk6PT4114HJhmQ8rcK1ifXs7K14ihpvpN0FwCP-57qvwDcoMsoQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIigXBC2FpUB9AA5IVpM4tpMDQqVl1VJacaDS3oI_EhQVnKXZFdr-M_4dYyfZFYf21lMixU4iz9jzZjx-A_BaVqmRsWU0YzahqUB3R-k8op68rop0KlXIJjw9E0fn6ecJn6zB3-EsjE-rHNbEsFDbxvgY-V4eB05tJvaqPivi6-H4w_Q39QWk_EbrUE2j05CTcvEHvbf2_fEhivpNkow_fTs4on2BAWoQRcwoYiHNLOOamUpmOkmURPSvRWoUM5G3XwjGleVa2dLGjJukEiZDi2fzVMfCMnzvHbgrGY_9FJMTueL7zUKltyhPeDj9Mmyodqf2Mp7RKGTNSU6v_jeJ1-DcYO_Gj-BhD1TJfqdZj2GtdJuwte_QSf-1IG9JSB0NMflNuPdxuNs4GArIbcHF6Sr-SJqKhCAsaVEp1CVRzhJbT71jTUwz9-eCf7QEETTxNa0R-lJ_XaBNLMnU7zmR2pFAKlG7NvR2nom5NkSZ2rZP4PxWhn4b1l3jymdAGJOWVzkTRgmEn6nWWimc-1aUNpJCjiAahrcwPfG5r7_xs1hRNnuJFCiRwkukuBrBu2WXacf6cVPjnUFmRb8AtMVSXUewu3yK4--3Y5Qrm3lbxKgjGcK761ugMycTxHgjeNqpwupneBYxlqfPb_z2LtzHSVJ8OT472YEHgXQ2ZM-9gPXZ5bx8iXBqpl8FxSXw_bZnyj9HPTDO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+eight+scalar+and+dipolar+couplings+for+methine-methylene+pairs+in+proteins+and+nucleic+acids&rft.jtitle=Journal+of+biomolecular+NMR&rft.au=Miclet%2C+Emeric&rft.au=Boisbouvier%2C+J%C3%A9r%C3%B4me&rft.au=Bax%2C+Ad&rft.date=2005-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-2738&rft.eissn=1573-5001&rft.volume=31&rft.issue=3&rft.spage=201&rft_id=info:doi/10.1007%2Fs10858-005-0175-z&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2544217171 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2738&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2738&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2738&client=summon |