Direct effects of glucagon on glucose uptake and lipolysis in human adipocytes

We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inte...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular endocrinology Vol. 503; p. 110696
Main Authors Pereira, Maria J., Thombare, Ketan, Sarsenbayeva, Assel, Kamble, Prasad G., Almby, Kristina, Lundqvist, Martin, Eriksson, Jan W.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10–100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes. •Glucagon receptor is expressed at low levels in human adipose tissue.•Glucagon at high concentrations increases glucose uptake and lipolysis in human adipocytes.•Glucagon stimulating effects on glucose uptake are independent of insulin signalling.
AbstractList We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10-100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes.
We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10-100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes.We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10-100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes.
We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10–100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes. •Glucagon receptor is expressed at low levels in human adipose tissue.•Glucagon at high concentrations increases glucose uptake and lipolysis in human adipocytes.•Glucagon stimulating effects on glucose uptake are independent of insulin signalling.
We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10–100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes.
ArticleNumber 110696
Author Lundqvist, Martin
Eriksson, Jan W.
Thombare, Ketan
Kamble, Prasad G.
Almby, Kristina
Sarsenbayeva, Assel
Pereira, Maria J.
Author_xml – sequence: 1
  givenname: Maria J.
  orcidid: 0000-0001-5498-3899
  surname: Pereira
  fullname: Pereira, Maria J.
  email: maria.pereira@medsci.uu.se
– sequence: 2
  givenname: Ketan
  surname: Thombare
  fullname: Thombare, Ketan
– sequence: 3
  givenname: Assel
  surname: Sarsenbayeva
  fullname: Sarsenbayeva, Assel
– sequence: 4
  givenname: Prasad G.
  orcidid: 0000-0002-5627-8904
  surname: Kamble
  fullname: Kamble, Prasad G.
– sequence: 5
  givenname: Kristina
  surname: Almby
  fullname: Almby, Kristina
– sequence: 6
  givenname: Martin
  surname: Lundqvist
  fullname: Lundqvist, Martin
– sequence: 7
  givenname: Jan W.
  surname: Eriksson
  fullname: Eriksson, Jan W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31891768$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-406177$$DView record from Swedish Publication Index
BookMark eNqNkU1v1DAQhi1URLctP4AL8pED2fprY1ucqpYWpAou0Kvl2OPFSxKHOC7af0-WtBx6qJBGmpH1vCNrnhN01KceEHpDyZoSWp_v1p2DNSNUryklta5foBVVklWKbOQRWhFOeCUZkcfoJOcdIURumHqFjjlVmspardCXqziCmzCEMLeMU8Dbtji7TT2e6zCnDLgMk_0J2PYet3FI7T7HjGOPf5TO9tj6-c3tJ8hn6GWwbYbXD_0Ufb_--O3yU3X79ebz5cVt5QTjUyUcE43kTKvGcwkEhGZBKO45lxZ4I4LzlAXiNzQ0fGOtEkF74Co0NHDl-Cl6v-zNv2EojRnG2Nlxb5KN5ireXZg0bk0pRpCaSjnj7xZ8GNOvAnkyXcwO2tb2kEo2TBAilBD6P1DOqdRaaDGjbx_Q0nTg_33i8bozIBfAjSnnEYJxcbJTTP002tgaSszBo9mZ2aM5eDSLxzlJnyQflz-X-bBkYD78fYTRZBehd-D_KjY-xWfSfwBBtbSr
CitedBy_id crossref_primary_10_3803_EnM_2021_1167
crossref_primary_10_1016_j_peptides_2023_170941
crossref_primary_10_1002_osp4_541
crossref_primary_10_1080_13543784_2024_2441865
crossref_primary_10_1016_j_cyto_2022_156080
crossref_primary_10_1152_ajpendo_00078_2022
crossref_primary_10_24017_Scince_2022_1_10
crossref_primary_10_1016_S2213_8587_23_00356_X
crossref_primary_10_1016_S2213_8587_22_00349_7
crossref_primary_10_1152_ajpcell_00595_2020
crossref_primary_10_1016_j_molmet_2022_101639
crossref_primary_10_1007_s11695_024_07315_0
crossref_primary_10_22201_fesz_23958723e_2020_0_270
crossref_primary_10_1080_21623945_2022_2102116
crossref_primary_10_3390_ijms22105159
crossref_primary_10_1016_j_tox_2020_152600
crossref_primary_10_1210_clinem_dgac042
crossref_primary_10_1039_D2CB00049K
crossref_primary_10_1039_D3MO00067B
crossref_primary_10_1016_j_bbalip_2021_159018
crossref_primary_10_1016_j_peptides_2022_170906
crossref_primary_10_1016_j_addr_2020_05_008
crossref_primary_10_1021_acs_jafc_1c02925
crossref_primary_10_1126_sciadv_ads5963
crossref_primary_10_1093_labmed_lmab126
crossref_primary_10_1210_endocr_bqad172
crossref_primary_10_1039_D2CS00395C
crossref_primary_10_1038_s41467_024_54080_w
crossref_primary_10_1016_j_biopha_2024_117326
crossref_primary_10_1021_acs_jmedchem_1c01289
crossref_primary_10_1111_dom_14948
crossref_primary_10_14814_phy2_15263
crossref_primary_10_1111_dom_16167
crossref_primary_10_1155_2021_1815178
crossref_primary_10_1111_dom_16106
crossref_primary_10_1016_j_fct_2021_112334
crossref_primary_10_1093_ejendo_lvae151
crossref_primary_10_1111_obr_13372
crossref_primary_10_3390_metabo13050587
Cites_doi 10.1111/dom.12752
10.1016/0196-9781(89)90010-7
10.1210/er.2018-00251
10.1007/s001250050807
10.1016/S0022-2275(20)39356-1
10.2337/db10-0763
10.2147/DMSO.S20633
10.1038/s41598-019-42770-1
10.1172/JCI107537
10.1016/S0022-2275(20)40346-3
10.2337/diab.24.11.1020
10.1007/BF00257430
10.1016/0305-0491(71)90254-9
10.1016/S0149-7634(05)80042-9
10.1016/0303-7207(94)90162-7
10.1210/endo-113-1-270
10.1210/en.2011-1070
10.1055/s-0028-1096783
10.1210/jcem-72-2-308
10.2337/dci15-0033
10.1016/j.mce.2012.10.030
10.1007/BF03348878
10.1016/S0140-6736(18)32260-8
10.1194/jlr.R700005-JLR200
10.2337/dc15-1643
10.1016/j.mce.2012.01.024
10.1073/pnas.91.8.3242
10.1016/S0021-9258(18)64236-X
10.1111/dom.12585
10.1038/oby.2005.72
10.1007/s00125-017-4354-8
10.1210/jc.2019-00062
10.1016/S0021-9258(18)95712-1
10.1016/S0021-9258(18)96968-1
10.1016/S0021-9258(18)64055-4
10.1210/jc.2014-1266
10.1016/j.metabol.2016.09.008
10.1016/S0022-2275(20)39429-3
10.1055/s-0028-1093959
10.1210/jcem-70-2-410
10.1016/0196-9781(89)90039-9
10.1172/JCI111080
10.1210/jcem-64-5-896
10.1016/S0022-2275(20)36828-0
10.1016/B978-0-12-800280-3.00010-4
10.2337/db15-1541
10.1186/s12967-016-0985-7
10.2174/0929867033456648
10.1210/jcem-35-2-312
10.1016/0196-9781(95)00078-X
10.1016/S0140-6736(65)90761-0
10.1055/s-2007-979981
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ADTPV
AOWAS
DF2
DOI 10.1016/j.mce.2019.110696
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-8057
ExternalDocumentID oai_DiVA_org_uu_406177
31891768
10_1016_j_mce_2019_110696
S0303720719303983
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABBQC
ABFRF
ABGSF
ABJNI
ABLVK
ABMAC
ABMZM
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LCYCR
LX3
LZ1
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSH
SSU
SSZ
T5K
WH7
~G-
.55
.GJ
29M
3O-
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACIEU
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HDZ
HLW
HMK
HMO
HVGLF
HZ~
J5H
MVM
R2-
RIG
SAE
SBG
SEW
WUQ
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c423t-4c24b73298bd37e0e492f483d337ae3b4fcd12f0d51fb35aa84f9de38fb1f38c3
IEDL.DBID .~1
ISSN 0303-7207
1872-8057
IngestDate Thu Aug 21 06:57:19 EDT 2025
Tue Aug 05 11:11:30 EDT 2025
Mon Jul 21 10:07:40 EDT 2025
Wed Feb 19 02:30:03 EST 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 03:48:46 EDT 2025
Fri Feb 23 02:49:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Glucose uptake
Glucagon receptor
Adipose tissue
Glucagon
Metabolism
Lipolysis
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-4c24b73298bd37e0e492f483d337ae3b4fcd12f0d51fb35aa84f9de38fb1f38c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5627-8904
0000-0001-5498-3899
PMID 31891768
PQID 2331799494
PQPubID 23479
ParticipantIDs swepub_primary_oai_DiVA_org_uu_406177
proquest_miscellaneous_2400484497
proquest_miscellaneous_2331799494
pubmed_primary_31891768
crossref_citationtrail_10_1016_j_mce_2019_110696
crossref_primary_10_1016_j_mce_2019_110696
elsevier_sciencedirect_doi_10_1016_j_mce_2019_110696
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Molecular and cellular endocrinology
PublicationTitleAlternate Mol Cell Endocrinol
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mosinger, Kuhn, Kujalova (bib29) 1965; 66
Gabrielsson, Olofsson, Sjogren, Jernas, Elander, Lonn, Rudemo, Carlsson (bib9) 2005; 13
Kazda, Ding, Kelly, Garhyan, Shi, Lim, Fu, Watson, Lewin, Landschulz, Deeg, Moller, Hardy (bib21) 2016; 39
Andreozzi, Raciti, Nigro, Mannino, Procopio, Davalli, Beguinot, Sesti, Miele, Folli (bib1) 2016; 14
Vaughan (bib54) 1961; 236
Cherrington, Chiasson, Liljenquist, Lacy, Park (bib6) 1978; 43
Burcelin, Katz, Charron (bib3) 1996; 22
Richter, Robl, Schwandt (bib39) 1989; 10
Samols, Marri, Marks (bib43) 1965; 2
Svoboda, Tastenoy, Vertongen, Robberecht (bib51) 1994; 105
Heckemeyer, Barker, Duckworth, Solomon (bib15) 1983; 113
Merida, Delgado, Molina, Villanueva-Penacarrillo, Valverde (bib28) 1993; 77
Livingston, Cuatrecasas, Lockwood (bib25) 1974; 15
Vaughan, Steinberg (bib55) 1963; 4
Frias, Nauck, Van, Kutner, Cui, Benson, Urva, Gimeno, Milicevic, Robins, Haupt (bib8) 2018; 392
Schade, Eaton (bib46) 1975; 24
Carlson, Snead, Campbell (bib4) 1993; 77
Pereira, Palming, Rizell, Aureliano, Carvalho, Svensson, Eriksson (bib33) 2012; 355
Rodbell, Jones (bib40) 1966; 241
Vendrell, El Bekay, Peral, Garcia-Fuentes, Megia, Macias-Gonzalez, Fernandez Real, Jimenez-Gomez, Escote, Pachon, Simo, Selva, Malagon, Tinahones (bib56) 2011; 152
Geary (bib10) 1990; 14
Lefebvre, Luyckx, Bacq (bib23) 1973; 5
Perea, Clemente, Martinell, Villanueva-Penacarrillo, Valverde (bib32) 1995; 27
Unson, Gurzenda, Merrifield (bib52) 1989; 10
Ejarque, Guerrero-Perez, de la Morena, Casajoana, Virgili, Lopez-Urdiales, Maymo-Masip, Pujol Gebelli, Garcia Ruiz de Gordejuela, Perez-Maraver, Pellitero, Fernandez-Veledo, Vendrell, Vilarrasa (bib7) 2019; 9
Schweiger, Eichmann, Taschler, Zimmermann, Zechner, Lass (bib48) 2014; 538
Liljenquist, Bomboy, Lewis, Sinclair-Smith, Felts, Lacy, Crofford, Liddle (bib24) 1974; 53
Sethi, Vidal-Puig (bib49) 2007; 48
Vajda, Logan, Lasseter, Armas, Plotkin, Pipkin, Li, Zhou, Klein, Wei, Dilzer, Zhi, Marschke (bib53) 2017; 19
Jorsal, Wewer Albrechtsen, Christensen, Mortensen, Wandall, Langholz, Friis, Worm, Orskov, Stoving, Andries, Juhl, Sorensen, Forman, Falkenhahn, Musholt, Theis, Larsen, Holst, Vrang, Jelsing, Vilsboll, Knop (bib19) 2019; 104
Vizek, Razova, Melichar (bib57) 1979; 28
Carranza, Simon, Torres, Romero, Calle (bib5) 1993; 16
Schneider, Fineberg, Blackburn (bib47) 1981; 20
Pereira, Palming, Rizell, Aureliano, Carvalho, Svensson, Eriksson (bib34) 2013; 365
Wewer Albrechtsen, Pedersen, Galsgaard, Winther-Sorensen, Suppli, Janah, Gromada, Vilstrup, Knop, Holst (bib58) 2019
Nair (bib30) 1987; 64
Pozza, Pappalettera, Melogli, Viberti, Ghidoni (bib37) 1971; 3
Honnor, Dhillon, Londos (bib17) 1985; 260
Pereira, Skrtic, Katsogiannos, Abrahamsson, Sidibeh, Dahgam, Mansson, Riserus, Kullberg, Eriksson (bib36) 2016; 65
Smith, Sjostrom, Bjornstorp (bib50) 1972; 13
Jensen, Heiling, Miles (bib18) 1991; 72
Lund, Bagger, Wewer Albrechtsen, Christensen, Grondahl, Hartmann, Mathiesen, Hansen, Storkholm, van Hall, Rehfeld, Hornburg, Meissner, Mann, Larsen, Holst, Vilsboll, Knop (bib26) 2016; 65
Goldfine, Cerasi, Luft (bib11) 1972; 35
Holz, Chepurny (bib16) 2003; 10
Xiao, Pavlic, Szeto, Patterson, Lewis (bib60) 2011; 60
Prigge, Grande (bib38) 1971; 39
Bertin, Arner, Bolinder, Hagstrom-Toft (bib2) 2001; 86
Rouille, Westermark, Martin, Steiner (bib41) 1994; 91
Pereira, Palming, Rizell, Aureliano, Carvalho, Svensson, Eriksson (bib35) 2014; 99
Wu, Jeng, Hollenbeck, Chen, Jaspan, Reaven (bib59) 1990; 70
Hagen (bib13) 1961; 236
Yu, Jansson, Posner, Smith, Eriksson (bib61) 1997; 40
Hansen, Abrahamsen, Nishimura (bib14) 1995; 16
Sanchez-Garrido, Brandt, Clemmensen, Muller, DiMarchi, Tschop (bib44) 2017; 60
Sancho, Nuche, Arnes, Cancelas, Gonzalez, Diaz-Miguel, Martin-Duce, Valverde, Villanueva-Penacarrillo (bib45) 2007; 19
Gravholt, Moller, Jensen, Christiansen, Schmitz (bib12) 2001; 86
Kedia (bib22) 2011; 4
Pearson, Unger, Holland (bib31) 2016; 39
Kashiwagi, Verso, Andrews, Vasquez, Reaven, Foley (bib20) 1983; 72
Manganiello, Vaughan (bib27) 1972; 13
Salem, Izzi-Engbeaya, Coello, Thomas, Chambers, Comninos, Buckley, Win, Al-Nahhas, Rabiner, Gunn, Budge, Symonds, Bloom, Tan, Dhillo (bib42) 2016; 18
Prigge (10.1016/j.mce.2019.110696_bib38) 1971; 39
Schade (10.1016/j.mce.2019.110696_bib46) 1975; 24
Merida (10.1016/j.mce.2019.110696_bib28) 1993; 77
Pearson (10.1016/j.mce.2019.110696_bib31) 2016; 39
Rodbell (10.1016/j.mce.2019.110696_bib40) 1966; 241
Ejarque (10.1016/j.mce.2019.110696_bib7) 2019; 9
Manganiello (10.1016/j.mce.2019.110696_bib27) 1972; 13
Rouille (10.1016/j.mce.2019.110696_bib41) 1994; 91
Jorsal (10.1016/j.mce.2019.110696_bib19) 2019; 104
Smith (10.1016/j.mce.2019.110696_bib50) 1972; 13
Lefebvre (10.1016/j.mce.2019.110696_bib23) 1973; 5
Kashiwagi (10.1016/j.mce.2019.110696_bib20) 1983; 72
Goldfine (10.1016/j.mce.2019.110696_bib11) 1972; 35
Lund (10.1016/j.mce.2019.110696_bib26) 2016; 65
Holz (10.1016/j.mce.2019.110696_bib16) 2003; 10
Richter (10.1016/j.mce.2019.110696_bib39) 1989; 10
Gravholt (10.1016/j.mce.2019.110696_bib12) 2001; 86
Pereira (10.1016/j.mce.2019.110696_bib33) 2012; 355
Cherrington (10.1016/j.mce.2019.110696_bib6) 1978; 43
Sancho (10.1016/j.mce.2019.110696_bib45) 2007; 19
Wu (10.1016/j.mce.2019.110696_bib59) 1990; 70
Svoboda (10.1016/j.mce.2019.110696_bib51) 1994; 105
Perea (10.1016/j.mce.2019.110696_bib32) 1995; 27
Liljenquist (10.1016/j.mce.2019.110696_bib24) 1974; 53
Sanchez-Garrido (10.1016/j.mce.2019.110696_bib44) 2017; 60
Jensen (10.1016/j.mce.2019.110696_bib18) 1991; 72
Vizek (10.1016/j.mce.2019.110696_bib57) 1979; 28
Bertin (10.1016/j.mce.2019.110696_bib2) 2001; 86
Vaughan (10.1016/j.mce.2019.110696_bib55) 1963; 4
Burcelin (10.1016/j.mce.2019.110696_bib3) 1996; 22
Unson (10.1016/j.mce.2019.110696_bib52) 1989; 10
Vendrell (10.1016/j.mce.2019.110696_bib56) 2011; 152
Kedia (10.1016/j.mce.2019.110696_bib22) 2011; 4
Kazda (10.1016/j.mce.2019.110696_bib21) 2016; 39
Heckemeyer (10.1016/j.mce.2019.110696_bib15) 1983; 113
Schneider (10.1016/j.mce.2019.110696_bib47) 1981; 20
Pereira (10.1016/j.mce.2019.110696_bib36) 2016; 65
Geary (10.1016/j.mce.2019.110696_bib10) 1990; 14
Samols (10.1016/j.mce.2019.110696_bib43) 1965; 2
Andreozzi (10.1016/j.mce.2019.110696_bib1) 2016; 14
Gabrielsson (10.1016/j.mce.2019.110696_bib9) 2005; 13
Xiao (10.1016/j.mce.2019.110696_bib60) 2011; 60
Pereira (10.1016/j.mce.2019.110696_bib34) 2013; 365
Pozza (10.1016/j.mce.2019.110696_bib37) 1971; 3
Carranza (10.1016/j.mce.2019.110696_bib5) 1993; 16
Vajda (10.1016/j.mce.2019.110696_bib53) 2017; 19
Vaughan (10.1016/j.mce.2019.110696_bib54) 1961; 236
Nair (10.1016/j.mce.2019.110696_bib30) 1987; 64
Wewer Albrechtsen (10.1016/j.mce.2019.110696_bib58) 2019
Frias (10.1016/j.mce.2019.110696_bib8) 2018; 392
Honnor (10.1016/j.mce.2019.110696_bib17) 1985; 260
Salem (10.1016/j.mce.2019.110696_bib42) 2016; 18
Carlson (10.1016/j.mce.2019.110696_bib4) 1993; 77
Pereira (10.1016/j.mce.2019.110696_bib35) 2014; 99
Yu (10.1016/j.mce.2019.110696_bib61) 1997; 40
Hagen (10.1016/j.mce.2019.110696_bib13) 1961; 236
Mosinger (10.1016/j.mce.2019.110696_bib29) 1965; 66
Sethi (10.1016/j.mce.2019.110696_bib49) 2007; 48
Livingston (10.1016/j.mce.2019.110696_bib25) 1974; 15
Schweiger (10.1016/j.mce.2019.110696_bib48) 2014; 538
Hansen (10.1016/j.mce.2019.110696_bib14) 1995; 16
References_xml – volume: 65
  start-page: 585
  year: 2016
  end-page: 597
  ident: bib26
  article-title: Evidence of extrapancreatic glucagon secretion in man
  publication-title: Diabetes
– volume: 64
  start-page: 896
  year: 1987
  end-page: 901
  ident: bib30
  article-title: Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 65
  start-page: 1768
  year: 2016
  end-page: 1780
  ident: bib36
  article-title: Impaired adipose tissue lipid storage, but not altered lipolysis, contributes to elevated levels of NEFA in type 2 diabetes. Degree of hyperglycemia and adiposity are important factors
  publication-title: Metabolism
– volume: 66
  start-page: 380
  year: 1965
  end-page: 389
  ident: bib29
  article-title: Action of adipokinetic hormones on human adipose tissue in vitro
  publication-title: J. Lab. Clin. Med.
– volume: 13
  start-page: 12
  year: 1972
  end-page: 16
  ident: bib27
  article-title: Selective loss of adipose cell responsiveness to glucagon with growth in the rat
  publication-title: J. Lipid Res.
– volume: 99
  start-page: E1885
  year: 2014
  end-page: 1894
  ident: bib35
  article-title: Cyclosporine A and tacrolimus reduce the amount of GLUT4 at the cell surface in human adipocytes: increased endocytosis as a potential mechanism for the diabetogenic effects of immunosuppressive agents
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 9
  start-page: 6274
  year: 2019
  ident: bib7
  article-title: Role of adipose tissue GLP-1R expression in metabolic improvement after bariatric surgery in patients with type 2 diabetes
  publication-title: Sci. Rep.
– volume: 39
  start-page: 69
  year: 1971
  end-page: 82
  ident: bib38
  article-title: Effects of glucagon, epinephrine and insulin on in vitro lipolysis of adipose tissue from mammals and birds
  publication-title: Comp. Biochem. Physiol. B
– volume: 236
  start-page: 2196
  year: 1961
  end-page: 2199
  ident: bib54
  article-title: Effect of hormones on glucose metabolism in adipose tissue
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 193
  year: 1963
  end-page: 199
  ident: bib55
  article-title: Effect of hormones on lipolysis and esterification of free fatty acids during incubation of adipose tissue in vitro
  publication-title: J. Lipid Res.
– volume: 39
  start-page: 1075
  year: 2016
  end-page: 1077
  ident: bib31
  article-title: Clinical trials, triumphs, and tribulations of glucagon receptor antagonists
  publication-title: Diabetes Care
– volume: 152
  start-page: 4072
  year: 2011
  end-page: 4079
  ident: bib56
  article-title: Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance
  publication-title: Endocrinology
– volume: 28
  start-page: 325
  year: 1979
  end-page: 331
  ident: bib57
  article-title: Lipolytic effect of TSH, glucagon and hydrocortisone on the adipose tissue of newborns and adults in vitro
  publication-title: Physiol. Bohemoslov.
– volume: 19
  start-page: 961
  year: 2007
  end-page: 966
  ident: bib45
  article-title: The action of GLP-1 and exendins upon glucose transport in normal human adipocytes, and on kinase activity as compared to morbidly obese patients
  publication-title: Int. J. Mol. Med.
– volume: 77
  start-page: 1654
  year: 1993
  end-page: 1657
  ident: bib28
  article-title: Presence of glucagon and glucagon-like peptide-1-(7-36)amide receptors in solubilized membranes of human adipose tissue
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 19
  start-page: 24
  year: 2017
  end-page: 32
  ident: bib53
  article-title: Pharmacokinetics and pharmacodynamics of single and multiple doses of the glucagon receptor antagonist LGD-6972 in healthy subjects and subjects with type 2 diabetes mellitus
  publication-title: Diabetes Obes. Metab.
– volume: 60
  start-page: 383
  year: 2011
  end-page: 390
  ident: bib60
  article-title: Effects of acute hyperglucagonemia on hepatic and intestinal lipoprotein production and clearance in healthy humans
  publication-title: Diabetes
– volume: 113
  start-page: 270
  year: 1983
  end-page: 276
  ident: bib15
  article-title: Studies of the biological effect and degradation of glucagon in the rat perifused isolated adipose cell
  publication-title: Endocrinology
– volume: 538
  start-page: 171
  year: 2014
  end-page: 193
  ident: bib48
  article-title: Measurement of lipolysis
  publication-title: Methods Enzymol.
– volume: 392
  start-page: 2180
  year: 2018
  end-page: 2193
  ident: bib8
  article-title: Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial
  publication-title: Lancet
– volume: 72
  start-page: 308
  year: 1991
  end-page: 315
  ident: bib18
  article-title: Effects of glucagon on free fatty acid metabolism in humans
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 104
  start-page: 6403
  year: 2019
  end-page: 6416
  ident: bib19
  article-title: Investigating intestinal glucagon after roux-en-Y gastric bypass surgery
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 16
  start-page: 1163
  year: 1995
  end-page: 1166
  ident: bib14
  article-title: Glucagon receptor mRNA distribution in rat tissues
  publication-title: Peptides
– volume: 24
  start-page: 1020
  year: 1975
  end-page: 1026
  ident: bib46
  article-title: Modulation of fatty acid metabolism by glucagon in man. III. Role of pharmacologic limitation of FFA availability
  publication-title: Diabetes
– volume: 72
  start-page: 1246
  year: 1983
  end-page: 1254
  ident: bib20
  article-title: In vitro insulin resistance of human adipocytes isolated from subjects with noninsulin-dependent diabetes mellitus
  publication-title: J. Clin. Investig.
– volume: 22
  start-page: 373
  year: 1996
  end-page: 396
  ident: bib3
  article-title: Molecular and cellular aspects of the glucagon receptor: role in diabetes and metabolism
  publication-title: Diabetes Metab.
– volume: 70
  start-page: 410
  year: 1990
  end-page: 416
  ident: bib59
  article-title: Does glucagon increase plasma free fatty acid concentration in humans with normal glucose tolerance?
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 77
  start-page: 11
  year: 1993
  end-page: 15
  ident: bib4
  article-title: Regulation of free fatty acid metabolism by glucagon
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 14
  start-page: 323
  year: 1990
  end-page: 338
  ident: bib10
  article-title: Pancreatic glucagon signals postprandial satiety
  publication-title: Neurosci. Biobehav. Rev.
– volume: 13
  start-page: 822
  year: 1972
  end-page: 824
  ident: bib50
  article-title: Comparison of two methods for determining human adipose cell size
  publication-title: J. Lipid Res.
– volume: 43
  start-page: 31
  year: 1978
  end-page: 45
  ident: bib6
  article-title: Control of hepatic glucose output by glucagon and insulin in the intact dog
  publication-title: Biochem. Soc. Symp.
– volume: 10
  start-page: 2471
  year: 2003
  end-page: 2483
  ident: bib16
  article-title: Glucagon-like peptide-1 synthetic analogs: new therapeutic agents for use in the treatment of diabetes mellitus
  publication-title: Curr. Med. Chem.
– volume: 260
  start-page: 15130
  year: 1985
  end-page: 15138
  ident: bib17
  article-title: cAMP-dependent protein kinase and lipolysis in rat adipocytes. II. Definition of steady-state relationship with lipolytic and antilipolytic modulators
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 372
  year: 1995
  end-page: 375
  ident: bib32
  article-title: Physiological effect of glucagon in human isolated adipocytes
  publication-title: Horm. Metab. Res.
– volume: 10
  start-page: 333
  year: 1989
  end-page: 335
  ident: bib39
  article-title: Human glucagon and vasoactive intestinal polypeptide (VIP) stimulate free fatty acid release from human adipose tissue in vitro
  publication-title: Peptides
– volume: 53
  start-page: 190
  year: 1974
  end-page: 197
  ident: bib24
  article-title: Effects of glucagon on lipolysis and ketogenesis in normal and diabetic men
  publication-title: J. Clin. Investig.
– volume: 16
  start-page: 439
  year: 1993
  end-page: 442
  ident: bib5
  article-title: Identification of glucagon receptors in human adipocytes from a liposarcoma
  publication-title: J. Endocrinol. Investig.
– volume: 86
  start-page: 2085
  year: 2001
  end-page: 2089
  ident: bib12
  article-title: Physiological levels of glucagon do not influence lipolysis in abdominal adipose tissue as assessed by microdialysis
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 4
  start-page: 337
  year: 2011
  end-page: 346
  ident: bib22
  article-title: Treatment of severe diabetic hypoglycemia with glucagon: an underutilized therapeutic approach
  publication-title: Diabetes Metab Syndr Obes
– volume: 105
  start-page: 131
  year: 1994
  end-page: 137
  ident: bib51
  article-title: Relative quantitative analysis of glucagon receptor mRNA in rat tissues
  publication-title: Mol. Cell. Endocrinol.
– volume: 20
  start-page: 616
  year: 1981
  end-page: 621
  ident: bib47
  article-title: The acute metabolic effects of glucagon and its interactions with insulin in forearm tissue
  publication-title: Diabetologia
– volume: 18
  start-page: 72
  year: 2016
  end-page: 81
  ident: bib42
  article-title: Glucagon increases energy expenditure independently of brown adipose tissue activation in humans
  publication-title: Diabetes Obes. Metab.
– year: 2019
  ident: bib58
  article-title: The liver-alpha cell axis and type 2 diabetes
  publication-title: Endocr. Rev.
– volume: 14
  start-page: 229
  year: 2016
  ident: bib1
  article-title: The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism
  publication-title: J. Transl. Med.
– volume: 39
  start-page: 1241
  year: 2016
  end-page: 1249
  ident: bib21
  article-title: Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies
  publication-title: Diabetes Care
– volume: 15
  start-page: 26
  year: 1974
  end-page: 32
  ident: bib25
  article-title: Studies of glucagon resistance in large rat adipocytes: 125I-labeled glucagon binding and lipolytic capacity
  publication-title: J. Lipid Res.
– volume: 60
  start-page: 1851
  year: 2017
  end-page: 1861
  ident: bib44
  article-title: GLP-1/glucagon receptor co-agonism for treatment of obesity
  publication-title: Diabetologia
– volume: 2
  start-page: 415
  year: 1965
  end-page: 416
  ident: bib43
  article-title: Promotion of insulin secretion by glucagon
  publication-title: Lancet
– volume: 48
  start-page: 1253
  year: 2007
  end-page: 1262
  ident: bib49
  article-title: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation
  publication-title: J. Lipid Res.
– volume: 10
  start-page: 1171
  year: 1989
  end-page: 1177
  ident: bib52
  article-title: Biological activities of des-His1[Glu9]glucagon amide, a glucagon antagonist
  publication-title: Peptides
– volume: 355
  start-page: 96
  year: 2012
  end-page: 105
  ident: bib33
  article-title: mTOR inhibition with rapamycin causes impaired insulin signalling and glucose uptake in human subcutaneous and omental adipocytes
  publication-title: Mol. Cell. Endocrinol.
– volume: 3
  start-page: 291
  year: 1971
  end-page: 292
  ident: bib37
  article-title: Lipolytic effect of intra-arterial injection of glucagon in man
  publication-title: Horm. Metab. Res.
– volume: 365
  start-page: 260
  year: 2013
  end-page: 269
  ident: bib34
  article-title: The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue
  publication-title: Mol. Cell. Endocrinol.
– volume: 13
  start-page: 649
  year: 2005
  end-page: 652
  ident: bib9
  article-title: Evaluation of reference genes for studies of gene expression in human adipose tissue
  publication-title: Obes. Res.
– volume: 40
  start-page: 1197
  year: 1997
  end-page: 1203
  ident: bib61
  article-title: Peroxovanadate and insulin action in adipocytes from NIDDM patients. Evidence against a primary defect in tyrosine phosphorylation
  publication-title: Diabetologia
– volume: 35
  start-page: 312
  year: 1972
  end-page: 315
  ident: bib11
  article-title: Glucagon stimulation of insulin release in man: inhibition during hypoglycemia
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 236
  start-page: 1023
  year: 1961
  end-page: 1027
  ident: bib13
  article-title: Effect of glucagon on the metabolism of adipose tissue
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 245
  year: 1973
  end-page: 250
  ident: bib23
  article-title: Effects of denervation on the metabolism and the response to glucagon of white adipose tissue of rats
  publication-title: Horm. Metab. Res.
– volume: 241
  start-page: 140
  year: 1966
  end-page: 142
  ident: bib40
  article-title: Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline
  publication-title: J. Biol. Chem.
– volume: 86
  start-page: 1229
  year: 2001
  end-page: 1234
  ident: bib2
  article-title: Action of glucagon and glucagon-like peptide-1-(7-36) amide on lipolysis in human subcutaneous adipose tissue and skeletal muscle in vivo
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 91
  start-page: 3242
  year: 1994
  end-page: 3246
  ident: bib41
  article-title: Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1-6 cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 19
  start-page: 24
  issue: 1
  year: 2017
  ident: 10.1016/j.mce.2019.110696_bib53
  article-title: Pharmacokinetics and pharmacodynamics of single and multiple doses of the glucagon receptor antagonist LGD-6972 in healthy subjects and subjects with type 2 diabetes mellitus
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.12752
– volume: 10
  start-page: 1171
  issue: 6
  year: 1989
  ident: 10.1016/j.mce.2019.110696_bib52
  article-title: Biological activities of des-His1[Glu9]glucagon amide, a glucagon antagonist
  publication-title: Peptides
  doi: 10.1016/0196-9781(89)90010-7
– volume: 86
  start-page: 2085
  issue: 5
  year: 2001
  ident: 10.1016/j.mce.2019.110696_bib12
  article-title: Physiological levels of glucagon do not influence lipolysis in abdominal adipose tissue as assessed by microdialysis
  publication-title: J. Clin. Endocrinol. Metab.
– year: 2019
  ident: 10.1016/j.mce.2019.110696_bib58
  article-title: The liver-alpha cell axis and type 2 diabetes
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2018-00251
– volume: 40
  start-page: 1197
  issue: 10
  year: 1997
  ident: 10.1016/j.mce.2019.110696_bib61
  article-title: Peroxovanadate and insulin action in adipocytes from NIDDM patients. Evidence against a primary defect in tyrosine phosphorylation
  publication-title: Diabetologia
  doi: 10.1007/s001250050807
– volume: 77
  start-page: 11
  issue: 1
  year: 1993
  ident: 10.1016/j.mce.2019.110696_bib4
  article-title: Regulation of free fatty acid metabolism by glucagon
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 13
  start-page: 822
  issue: 6
  year: 1972
  ident: 10.1016/j.mce.2019.110696_bib50
  article-title: Comparison of two methods for determining human adipose cell size
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)39356-1
– volume: 43
  start-page: 31
  year: 1978
  ident: 10.1016/j.mce.2019.110696_bib6
  article-title: Control of hepatic glucose output by glucagon and insulin in the intact dog
  publication-title: Biochem. Soc. Symp.
– volume: 60
  start-page: 383
  issue: 2
  year: 2011
  ident: 10.1016/j.mce.2019.110696_bib60
  article-title: Effects of acute hyperglucagonemia on hepatic and intestinal lipoprotein production and clearance in healthy humans
  publication-title: Diabetes
  doi: 10.2337/db10-0763
– volume: 4
  start-page: 337
  year: 2011
  ident: 10.1016/j.mce.2019.110696_bib22
  article-title: Treatment of severe diabetic hypoglycemia with glucagon: an underutilized therapeutic approach
  publication-title: Diabetes Metab Syndr Obes
  doi: 10.2147/DMSO.S20633
– volume: 9
  start-page: 6274
  issue: 1
  year: 2019
  ident: 10.1016/j.mce.2019.110696_bib7
  article-title: Role of adipose tissue GLP-1R expression in metabolic improvement after bariatric surgery in patients with type 2 diabetes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42770-1
– volume: 53
  start-page: 190
  issue: 1
  year: 1974
  ident: 10.1016/j.mce.2019.110696_bib24
  article-title: Effects of glucagon on lipolysis and ketogenesis in normal and diabetic men
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI107537
– volume: 4
  start-page: 193
  year: 1963
  ident: 10.1016/j.mce.2019.110696_bib55
  article-title: Effect of hormones on lipolysis and esterification of free fatty acids during incubation of adipose tissue in vitro
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)40346-3
– volume: 24
  start-page: 1020
  issue: 11
  year: 1975
  ident: 10.1016/j.mce.2019.110696_bib46
  article-title: Modulation of fatty acid metabolism by glucagon in man. III. Role of pharmacologic limitation of FFA availability
  publication-title: Diabetes
  doi: 10.2337/diab.24.11.1020
– volume: 20
  start-page: 616
  issue: 6
  year: 1981
  ident: 10.1016/j.mce.2019.110696_bib47
  article-title: The acute metabolic effects of glucagon and its interactions with insulin in forearm tissue
  publication-title: Diabetologia
  doi: 10.1007/BF00257430
– volume: 39
  start-page: 69
  issue: 1
  year: 1971
  ident: 10.1016/j.mce.2019.110696_bib38
  article-title: Effects of glucagon, epinephrine and insulin on in vitro lipolysis of adipose tissue from mammals and birds
  publication-title: Comp. Biochem. Physiol. B
  doi: 10.1016/0305-0491(71)90254-9
– volume: 14
  start-page: 323
  issue: 3
  year: 1990
  ident: 10.1016/j.mce.2019.110696_bib10
  article-title: Pancreatic glucagon signals postprandial satiety
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/S0149-7634(05)80042-9
– volume: 105
  start-page: 131
  issue: 2
  year: 1994
  ident: 10.1016/j.mce.2019.110696_bib51
  article-title: Relative quantitative analysis of glucagon receptor mRNA in rat tissues
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/0303-7207(94)90162-7
– volume: 113
  start-page: 270
  issue: 1
  year: 1983
  ident: 10.1016/j.mce.2019.110696_bib15
  article-title: Studies of the biological effect and degradation of glucagon in the rat perifused isolated adipose cell
  publication-title: Endocrinology
  doi: 10.1210/endo-113-1-270
– volume: 152
  start-page: 4072
  issue: 11
  year: 2011
  ident: 10.1016/j.mce.2019.110696_bib56
  article-title: Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance
  publication-title: Endocrinology
  doi: 10.1210/en.2011-1070
– volume: 28
  start-page: 325
  issue: 4
  year: 1979
  ident: 10.1016/j.mce.2019.110696_bib57
  article-title: Lipolytic effect of TSH, glucagon and hydrocortisone on the adipose tissue of newborns and adults in vitro
  publication-title: Physiol. Bohemoslov.
– volume: 3
  start-page: 291
  issue: 4
  year: 1971
  ident: 10.1016/j.mce.2019.110696_bib37
  article-title: Lipolytic effect of intra-arterial injection of glucagon in man
  publication-title: Horm. Metab. Res.
  doi: 10.1055/s-0028-1096783
– volume: 72
  start-page: 308
  issue: 2
  year: 1991
  ident: 10.1016/j.mce.2019.110696_bib18
  article-title: Effects of glucagon on free fatty acid metabolism in humans
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem-72-2-308
– volume: 39
  start-page: 1075
  issue: 7
  year: 2016
  ident: 10.1016/j.mce.2019.110696_bib31
  article-title: Clinical trials, triumphs, and tribulations of glucagon receptor antagonists
  publication-title: Diabetes Care
  doi: 10.2337/dci15-0033
– volume: 365
  start-page: 260
  issue: 2
  year: 2013
  ident: 10.1016/j.mce.2019.110696_bib34
  article-title: The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2012.10.030
– volume: 16
  start-page: 439
  issue: 6
  year: 1993
  ident: 10.1016/j.mce.2019.110696_bib5
  article-title: Identification of glucagon receptors in human adipocytes from a liposarcoma
  publication-title: J. Endocrinol. Investig.
  doi: 10.1007/BF03348878
– volume: 22
  start-page: 373
  issue: 6
  year: 1996
  ident: 10.1016/j.mce.2019.110696_bib3
  article-title: Molecular and cellular aspects of the glucagon receptor: role in diabetes and metabolism
  publication-title: Diabetes Metab.
– volume: 392
  start-page: 2180
  issue: 10160
  year: 2018
  ident: 10.1016/j.mce.2019.110696_bib8
  article-title: Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32260-8
– volume: 48
  start-page: 1253
  issue: 6
  year: 2007
  ident: 10.1016/j.mce.2019.110696_bib49
  article-title: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R700005-JLR200
– volume: 39
  start-page: 1241
  issue: 7
  year: 2016
  ident: 10.1016/j.mce.2019.110696_bib21
  article-title: Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies
  publication-title: Diabetes Care
  doi: 10.2337/dc15-1643
– volume: 355
  start-page: 96
  issue: 1
  year: 2012
  ident: 10.1016/j.mce.2019.110696_bib33
  article-title: mTOR inhibition with rapamycin causes impaired insulin signalling and glucose uptake in human subcutaneous and omental adipocytes
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2012.01.024
– volume: 91
  start-page: 3242
  issue: 8
  year: 1994
  ident: 10.1016/j.mce.2019.110696_bib41
  article-title: Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1-6 cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.91.8.3242
– volume: 236
  start-page: 1023
  year: 1961
  ident: 10.1016/j.mce.2019.110696_bib13
  article-title: Effect of glucagon on the metabolism of adipose tissue
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)64236-X
– volume: 18
  start-page: 72
  issue: 1
  year: 2016
  ident: 10.1016/j.mce.2019.110696_bib42
  article-title: Glucagon increases energy expenditure independently of brown adipose tissue activation in humans
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.12585
– volume: 13
  start-page: 649
  issue: 4
  year: 2005
  ident: 10.1016/j.mce.2019.110696_bib9
  article-title: Evaluation of reference genes for studies of gene expression in human adipose tissue
  publication-title: Obes. Res.
  doi: 10.1038/oby.2005.72
– volume: 66
  start-page: 380
  issue: 3
  year: 1965
  ident: 10.1016/j.mce.2019.110696_bib29
  article-title: Action of adipokinetic hormones on human adipose tissue in vitro
  publication-title: J. Lab. Clin. Med.
– volume: 60
  start-page: 1851
  issue: 10
  year: 2017
  ident: 10.1016/j.mce.2019.110696_bib44
  article-title: GLP-1/glucagon receptor co-agonism for treatment of obesity
  publication-title: Diabetologia
  doi: 10.1007/s00125-017-4354-8
– volume: 104
  start-page: 6403
  issue: 12
  year: 2019
  ident: 10.1016/j.mce.2019.110696_bib19
  article-title: Investigating intestinal glucagon after roux-en-Y gastric bypass surgery
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2019-00062
– volume: 260
  start-page: 15130
  issue: 28
  year: 1985
  ident: 10.1016/j.mce.2019.110696_bib17
  article-title: cAMP-dependent protein kinase and lipolysis in rat adipocytes. II. Definition of steady-state relationship with lipolytic and antilipolytic modulators
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)95712-1
– volume: 241
  start-page: 140
  issue: 1
  year: 1966
  ident: 10.1016/j.mce.2019.110696_bib40
  article-title: Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)96968-1
– volume: 236
  start-page: 2196
  year: 1961
  ident: 10.1016/j.mce.2019.110696_bib54
  article-title: Effect of hormones on glucose metabolism in adipose tissue
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)64055-4
– volume: 99
  start-page: E1885
  issue: 10
  year: 2014
  ident: 10.1016/j.mce.2019.110696_bib35
  article-title: Cyclosporine A and tacrolimus reduce the amount of GLUT4 at the cell surface in human adipocytes: increased endocytosis as a potential mechanism for the diabetogenic effects of immunosuppressive agents
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2014-1266
– volume: 65
  start-page: 1768
  issue: 12
  year: 2016
  ident: 10.1016/j.mce.2019.110696_bib36
  article-title: Impaired adipose tissue lipid storage, but not altered lipolysis, contributes to elevated levels of NEFA in type 2 diabetes. Degree of hyperglycemia and adiposity are important factors
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2016.09.008
– volume: 13
  start-page: 12
  issue: 1
  year: 1972
  ident: 10.1016/j.mce.2019.110696_bib27
  article-title: Selective loss of adipose cell responsiveness to glucagon with growth in the rat
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)39429-3
– volume: 19
  start-page: 961
  issue: 6
  year: 2007
  ident: 10.1016/j.mce.2019.110696_bib45
  article-title: The action of GLP-1 and exendins upon glucose transport in normal human adipocytes, and on kinase activity as compared to morbidly obese patients
  publication-title: Int. J. Mol. Med.
– volume: 5
  start-page: 245
  issue: 4
  year: 1973
  ident: 10.1016/j.mce.2019.110696_bib23
  article-title: Effects of denervation on the metabolism and the response to glucagon of white adipose tissue of rats
  publication-title: Horm. Metab. Res.
  doi: 10.1055/s-0028-1093959
– volume: 70
  start-page: 410
  issue: 2
  year: 1990
  ident: 10.1016/j.mce.2019.110696_bib59
  article-title: Does glucagon increase plasma free fatty acid concentration in humans with normal glucose tolerance?
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem-70-2-410
– volume: 10
  start-page: 333
  issue: 2
  year: 1989
  ident: 10.1016/j.mce.2019.110696_bib39
  article-title: Human glucagon and vasoactive intestinal polypeptide (VIP) stimulate free fatty acid release from human adipose tissue in vitro
  publication-title: Peptides
  doi: 10.1016/0196-9781(89)90039-9
– volume: 77
  start-page: 1654
  issue: 6
  year: 1993
  ident: 10.1016/j.mce.2019.110696_bib28
  article-title: Presence of glucagon and glucagon-like peptide-1-(7-36)amide receptors in solubilized membranes of human adipose tissue
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 72
  start-page: 1246
  issue: 4
  year: 1983
  ident: 10.1016/j.mce.2019.110696_bib20
  article-title: In vitro insulin resistance of human adipocytes isolated from subjects with noninsulin-dependent diabetes mellitus
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI111080
– volume: 64
  start-page: 896
  issue: 5
  year: 1987
  ident: 10.1016/j.mce.2019.110696_bib30
  article-title: Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem-64-5-896
– volume: 15
  start-page: 26
  issue: 1
  year: 1974
  ident: 10.1016/j.mce.2019.110696_bib25
  article-title: Studies of glucagon resistance in large rat adipocytes: 125I-labeled glucagon binding and lipolytic capacity
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)36828-0
– volume: 538
  start-page: 171
  year: 2014
  ident: 10.1016/j.mce.2019.110696_bib48
  article-title: Measurement of lipolysis
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-800280-3.00010-4
– volume: 65
  start-page: 585
  issue: 3
  year: 2016
  ident: 10.1016/j.mce.2019.110696_bib26
  article-title: Evidence of extrapancreatic glucagon secretion in man
  publication-title: Diabetes
  doi: 10.2337/db15-1541
– volume: 86
  start-page: 1229
  issue: 3
  year: 2001
  ident: 10.1016/j.mce.2019.110696_bib2
  article-title: Action of glucagon and glucagon-like peptide-1-(7-36) amide on lipolysis in human subcutaneous adipose tissue and skeletal muscle in vivo
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 14
  start-page: 229
  issue: 1
  year: 2016
  ident: 10.1016/j.mce.2019.110696_bib1
  article-title: The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-016-0985-7
– volume: 10
  start-page: 2471
  issue: 22
  year: 2003
  ident: 10.1016/j.mce.2019.110696_bib16
  article-title: Glucagon-like peptide-1 synthetic analogs: new therapeutic agents for use in the treatment of diabetes mellitus
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867033456648
– volume: 35
  start-page: 312
  issue: 2
  year: 1972
  ident: 10.1016/j.mce.2019.110696_bib11
  article-title: Glucagon stimulation of insulin release in man: inhibition during hypoglycemia
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem-35-2-312
– volume: 16
  start-page: 1163
  issue: 6
  year: 1995
  ident: 10.1016/j.mce.2019.110696_bib14
  article-title: Glucagon receptor mRNA distribution in rat tissues
  publication-title: Peptides
  doi: 10.1016/0196-9781(95)00078-X
– volume: 2
  start-page: 415
  issue: 7409
  year: 1965
  ident: 10.1016/j.mce.2019.110696_bib43
  article-title: Promotion of insulin secretion by glucagon
  publication-title: Lancet
  doi: 10.1016/S0140-6736(65)90761-0
– volume: 27
  start-page: 372
  issue: 8
  year: 1995
  ident: 10.1016/j.mce.2019.110696_bib32
  article-title: Physiological effect of glucagon in human isolated adipocytes
  publication-title: Horm. Metab. Res.
  doi: 10.1055/s-2007-979981
SSID ssj0007528
Score 2.4735508
Snippet We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110696
SubjectTerms adipocytes
Adipocytes - drug effects
Adipocytes - metabolism
Adipocytes - pathology
Adipose tissue
Adipose Tissue - metabolism
Adipose Tissue - pathology
Adult
Aged
body mass index
Carbohydrate Metabolism - drug effects
Case-Control Studies
Cells, Cultured
Cohort Studies
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - pathology
Female
gene expression
Gene Expression - drug effects
genes
Glucagon
Glucagon - pharmacology
Glucagon receptor
glucagon receptors
glucose
Glucose - metabolism
Glucose uptake
Humans
insulin
insulin resistance
Lipolysis
Lipolysis - drug effects
Male
Metabolism
Middle Aged
Primary Cell Culture
Receptors, Glucagon - genetics
Receptors, Glucagon - metabolism
Title Direct effects of glucagon on glucose uptake and lipolysis in human adipocytes
URI https://dx.doi.org/10.1016/j.mce.2019.110696
https://www.ncbi.nlm.nih.gov/pubmed/31891768
https://www.proquest.com/docview/2331799494
https://www.proquest.com/docview/2400484497
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-406177
Volume 503
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIiEuCFo-lkJlJOCAFDaxnbV9XBWqBdS9QFFvluPYVUqbrMrm0Et_OzOOs4gP7QEpJ2csJePJ-Nl-eUPIK_B77ZStMh0AvonSlVllWcg8q2TQOcY17necLGeLU_HprDzbIUfjvzBIq0y5f8jpMVunlmny5nTVNNMvEJ5YYkUCBMm5Vqj4KYTEKH93-4vmIctYXxWNM7QeTzYjx-vKoVJmoZEMP0Pd_n_PTX9jzz-EReNkdPyA3E8oks6HB31Idny7R_bnLaygr27oGxp5nXHDfI_cPUnH5_tkOSQ4mkgctAsUKev2vGspXIm-TvvV2n731LY1vWxWXRQtoU1LYz0_amtoczcAUR-R0-MPX48WWSqokDlATetMOCYqyZlWVc2lz73QLAjFa86l9bwSwdUFC3ldFqHipbVKBF17rkJVBK4cf0x22671TwktAwrlMwA0AtKAnilmNawVAQ3kNi9UmJB8dKVxSW0ci15cmpFWdmHA-wa9bwbvT8jbTZfVILWxzViM42N-ixcDU8G2bi_HsTTwHeHhiG191_8wjHMUxxNabLGJCU8ILSfkyRAImyeF3Agr35makNdDZGzuoID3--bb3HTX56bvDUIoKZ_93wsckHsMV_yRBfec7K6ve_8CYNG6Ooxxf0juzD9-Xix_AiOgCR4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9wgEB6lG6nNpWqTPrZPKrU9VLLWBrzAcZU22jTZvTSpckPYhshtYq-S9SH_vgzGK_WhPVTyCYOEh2H4gM_fALz3dq9KaYpEOQ_feF7mSWGoSywthFMp-jWedyyW0_k5_3qRX-zA4fAvDNIqY-zvY3qI1rFkEq05WdX15Jt3T0yxIjwESZmS7B7sojpVPoLd2fHJfLkJyCIPKVaxfoINhsvNQPO6LlEsM1PIh5-idP-_l6e_4ecf2qJhPTp6BA8jkCSzvq-PYcc2-3Awa_wm-vqOfCSB2hnOzPfh_iLeoB_Aso9xJPI4SOsIstbNZdsQ_0QGO-lWa_PTEtNU5KpetUG3hNQNCSn9iKl8WXnnUeoTOD_6cnY4T2JOhaT0wGmd8JLyQjCqZFExYVPLFXVcsooxYSwruCurjLq0yjNXsNwYyZ2qLJOuyByTJXsKo6Zt7HMguUOtfOoxDfeRQE0lNcpvFz0gSE2aSTeGdDClLqPgOOa9uNIDs-yH9tbXaH3dW38MnzZNVr3axrbKfBgf_ZvLaL8abGv2bhhL7acS3o-YxrbdraaMoT4eV3xLnRDzOFdiDM96R9j01IdHv_mdyjF86D1j8wY1vD_X32e6vbnUXacRRQnx4v8-4C08mJ8tTvXp8fLkJexRPAAIpLhXMFrfdPa1R0nr4k2cBb8AN9ILzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+effects+of+glucagon+on+glucose+uptake+and+lipolysis+in+human+adipocytes&rft.jtitle=Molecular+and+cellular+endocrinology&rft.au=Pereira%2C+Maria+J&rft.au=Thombare%2C+Ketan&rft.au=Sarsenbayeva%2C+Assel&rft.au=Kamble%2C+Prasad+G.&rft.date=2020-03-01&rft.issn=0303-7207&rft.volume=503&rft_id=info:doi/10.1016%2Fj.mce.2019.110696&rft.externalDocID=oai_DiVA_org_uu_406177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-7207&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-7207&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-7207&client=summon