Direct effects of glucagon on glucose uptake and lipolysis in human adipocytes
We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inte...
Saved in:
Published in | Molecular and cellular endocrinology Vol. 503; p. 110696 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10–100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes.
•Glucagon receptor is expressed at low levels in human adipose tissue.•Glucagon at high concentrations increases glucose uptake and lipolysis in human adipocytes.•Glucagon stimulating effects on glucose uptake are independent of insulin signalling. |
---|---|
AbstractList | We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10-100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes. We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10-100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes.We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10-100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes. We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10–100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes. •Glucagon receptor is expressed at low levels in human adipose tissue.•Glucagon at high concentrations increases glucose uptake and lipolysis in human adipocytes.•Glucagon stimulating effects on glucose uptake are independent of insulin signalling. We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10–100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes. |
ArticleNumber | 110696 |
Author | Lundqvist, Martin Eriksson, Jan W. Thombare, Ketan Kamble, Prasad G. Almby, Kristina Sarsenbayeva, Assel Pereira, Maria J. |
Author_xml | – sequence: 1 givenname: Maria J. orcidid: 0000-0001-5498-3899 surname: Pereira fullname: Pereira, Maria J. email: maria.pereira@medsci.uu.se – sequence: 2 givenname: Ketan surname: Thombare fullname: Thombare, Ketan – sequence: 3 givenname: Assel surname: Sarsenbayeva fullname: Sarsenbayeva, Assel – sequence: 4 givenname: Prasad G. orcidid: 0000-0002-5627-8904 surname: Kamble fullname: Kamble, Prasad G. – sequence: 5 givenname: Kristina surname: Almby fullname: Almby, Kristina – sequence: 6 givenname: Martin surname: Lundqvist fullname: Lundqvist, Martin – sequence: 7 givenname: Jan W. surname: Eriksson fullname: Eriksson, Jan W. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31891768$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-406177$$DView record from Swedish Publication Index |
BookMark | eNqNkU1v1DAQhi1URLctP4AL8pED2fprY1ucqpYWpAou0Kvl2OPFSxKHOC7af0-WtBx6qJBGmpH1vCNrnhN01KceEHpDyZoSWp_v1p2DNSNUryklta5foBVVklWKbOQRWhFOeCUZkcfoJOcdIURumHqFjjlVmspardCXqziCmzCEMLeMU8Dbtji7TT2e6zCnDLgMk_0J2PYet3FI7T7HjGOPf5TO9tj6-c3tJ8hn6GWwbYbXD_0Ufb_--O3yU3X79ebz5cVt5QTjUyUcE43kTKvGcwkEhGZBKO45lxZ4I4LzlAXiNzQ0fGOtEkF74Co0NHDl-Cl6v-zNv2EojRnG2Nlxb5KN5ireXZg0bk0pRpCaSjnj7xZ8GNOvAnkyXcwO2tb2kEo2TBAilBD6P1DOqdRaaDGjbx_Q0nTg_33i8bozIBfAjSnnEYJxcbJTTP002tgaSszBo9mZ2aM5eDSLxzlJnyQflz-X-bBkYD78fYTRZBehd-D_KjY-xWfSfwBBtbSr |
CitedBy_id | crossref_primary_10_3803_EnM_2021_1167 crossref_primary_10_1016_j_peptides_2023_170941 crossref_primary_10_1002_osp4_541 crossref_primary_10_1080_13543784_2024_2441865 crossref_primary_10_1016_j_cyto_2022_156080 crossref_primary_10_1152_ajpendo_00078_2022 crossref_primary_10_24017_Scince_2022_1_10 crossref_primary_10_1016_S2213_8587_23_00356_X crossref_primary_10_1016_S2213_8587_22_00349_7 crossref_primary_10_1152_ajpcell_00595_2020 crossref_primary_10_1016_j_molmet_2022_101639 crossref_primary_10_1007_s11695_024_07315_0 crossref_primary_10_22201_fesz_23958723e_2020_0_270 crossref_primary_10_1080_21623945_2022_2102116 crossref_primary_10_3390_ijms22105159 crossref_primary_10_1016_j_tox_2020_152600 crossref_primary_10_1210_clinem_dgac042 crossref_primary_10_1039_D2CB00049K crossref_primary_10_1039_D3MO00067B crossref_primary_10_1016_j_bbalip_2021_159018 crossref_primary_10_1016_j_peptides_2022_170906 crossref_primary_10_1016_j_addr_2020_05_008 crossref_primary_10_1021_acs_jafc_1c02925 crossref_primary_10_1126_sciadv_ads5963 crossref_primary_10_1093_labmed_lmab126 crossref_primary_10_1210_endocr_bqad172 crossref_primary_10_1039_D2CS00395C crossref_primary_10_1038_s41467_024_54080_w crossref_primary_10_1016_j_biopha_2024_117326 crossref_primary_10_1021_acs_jmedchem_1c01289 crossref_primary_10_1111_dom_14948 crossref_primary_10_14814_phy2_15263 crossref_primary_10_1111_dom_16167 crossref_primary_10_1155_2021_1815178 crossref_primary_10_1111_dom_16106 crossref_primary_10_1016_j_fct_2021_112334 crossref_primary_10_1093_ejendo_lvae151 crossref_primary_10_1111_obr_13372 crossref_primary_10_3390_metabo13050587 |
Cites_doi | 10.1111/dom.12752 10.1016/0196-9781(89)90010-7 10.1210/er.2018-00251 10.1007/s001250050807 10.1016/S0022-2275(20)39356-1 10.2337/db10-0763 10.2147/DMSO.S20633 10.1038/s41598-019-42770-1 10.1172/JCI107537 10.1016/S0022-2275(20)40346-3 10.2337/diab.24.11.1020 10.1007/BF00257430 10.1016/0305-0491(71)90254-9 10.1016/S0149-7634(05)80042-9 10.1016/0303-7207(94)90162-7 10.1210/endo-113-1-270 10.1210/en.2011-1070 10.1055/s-0028-1096783 10.1210/jcem-72-2-308 10.2337/dci15-0033 10.1016/j.mce.2012.10.030 10.1007/BF03348878 10.1016/S0140-6736(18)32260-8 10.1194/jlr.R700005-JLR200 10.2337/dc15-1643 10.1016/j.mce.2012.01.024 10.1073/pnas.91.8.3242 10.1016/S0021-9258(18)64236-X 10.1111/dom.12585 10.1038/oby.2005.72 10.1007/s00125-017-4354-8 10.1210/jc.2019-00062 10.1016/S0021-9258(18)95712-1 10.1016/S0021-9258(18)96968-1 10.1016/S0021-9258(18)64055-4 10.1210/jc.2014-1266 10.1016/j.metabol.2016.09.008 10.1016/S0022-2275(20)39429-3 10.1055/s-0028-1093959 10.1210/jcem-70-2-410 10.1016/0196-9781(89)90039-9 10.1172/JCI111080 10.1210/jcem-64-5-896 10.1016/S0022-2275(20)36828-0 10.1016/B978-0-12-800280-3.00010-4 10.2337/db15-1541 10.1186/s12967-016-0985-7 10.2174/0929867033456648 10.1210/jcem-35-2-312 10.1016/0196-9781(95)00078-X 10.1016/S0140-6736(65)90761-0 10.1055/s-2007-979981 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ADTPV AOWAS DF2 |
DOI | 10.1016/j.mce.2019.110696 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-8057 |
ExternalDocumentID | oai_DiVA_org_uu_406177 31891768 10_1016_j_mce_2019_110696 S0303720719303983 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABFRF ABGSF ABJNI ABLVK ABMAC ABMZM ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LCYCR LX3 LZ1 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SCU SDF SDG SDP SES SPCBC SSH SSU SSZ T5K WH7 ~G- .55 .GJ 29M 3O- 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACIEU ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HDZ HLW HMK HMO HVGLF HZ~ J5H MVM R2- RIG SAE SBG SEW WUQ X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 ADTPV AOWAS DF2 |
ID | FETCH-LOGICAL-c423t-4c24b73298bd37e0e492f483d337ae3b4fcd12f0d51fb35aa84f9de38fb1f38c3 |
IEDL.DBID | .~1 |
ISSN | 0303-7207 1872-8057 |
IngestDate | Thu Aug 21 06:57:19 EDT 2025 Tue Aug 05 11:11:30 EDT 2025 Mon Jul 21 10:07:40 EDT 2025 Wed Feb 19 02:30:03 EST 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 01 03:48:46 EDT 2025 Fri Feb 23 02:49:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Glucose uptake Glucagon receptor Adipose tissue Glucagon Metabolism Lipolysis |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-4c24b73298bd37e0e492f483d337ae3b4fcd12f0d51fb35aa84f9de38fb1f38c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5627-8904 0000-0001-5498-3899 |
PMID | 31891768 |
PQID | 2331799494 |
PQPubID | 23479 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_406177 proquest_miscellaneous_2400484497 proquest_miscellaneous_2331799494 pubmed_primary_31891768 crossref_citationtrail_10_1016_j_mce_2019_110696 crossref_primary_10_1016_j_mce_2019_110696 elsevier_sciencedirect_doi_10_1016_j_mce_2019_110696 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Molecular and cellular endocrinology |
PublicationTitleAlternate | Mol Cell Endocrinol |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mosinger, Kuhn, Kujalova (bib29) 1965; 66 Gabrielsson, Olofsson, Sjogren, Jernas, Elander, Lonn, Rudemo, Carlsson (bib9) 2005; 13 Kazda, Ding, Kelly, Garhyan, Shi, Lim, Fu, Watson, Lewin, Landschulz, Deeg, Moller, Hardy (bib21) 2016; 39 Andreozzi, Raciti, Nigro, Mannino, Procopio, Davalli, Beguinot, Sesti, Miele, Folli (bib1) 2016; 14 Vaughan (bib54) 1961; 236 Cherrington, Chiasson, Liljenquist, Lacy, Park (bib6) 1978; 43 Burcelin, Katz, Charron (bib3) 1996; 22 Richter, Robl, Schwandt (bib39) 1989; 10 Samols, Marri, Marks (bib43) 1965; 2 Svoboda, Tastenoy, Vertongen, Robberecht (bib51) 1994; 105 Heckemeyer, Barker, Duckworth, Solomon (bib15) 1983; 113 Merida, Delgado, Molina, Villanueva-Penacarrillo, Valverde (bib28) 1993; 77 Livingston, Cuatrecasas, Lockwood (bib25) 1974; 15 Vaughan, Steinberg (bib55) 1963; 4 Frias, Nauck, Van, Kutner, Cui, Benson, Urva, Gimeno, Milicevic, Robins, Haupt (bib8) 2018; 392 Schade, Eaton (bib46) 1975; 24 Carlson, Snead, Campbell (bib4) 1993; 77 Pereira, Palming, Rizell, Aureliano, Carvalho, Svensson, Eriksson (bib33) 2012; 355 Rodbell, Jones (bib40) 1966; 241 Vendrell, El Bekay, Peral, Garcia-Fuentes, Megia, Macias-Gonzalez, Fernandez Real, Jimenez-Gomez, Escote, Pachon, Simo, Selva, Malagon, Tinahones (bib56) 2011; 152 Geary (bib10) 1990; 14 Lefebvre, Luyckx, Bacq (bib23) 1973; 5 Perea, Clemente, Martinell, Villanueva-Penacarrillo, Valverde (bib32) 1995; 27 Unson, Gurzenda, Merrifield (bib52) 1989; 10 Ejarque, Guerrero-Perez, de la Morena, Casajoana, Virgili, Lopez-Urdiales, Maymo-Masip, Pujol Gebelli, Garcia Ruiz de Gordejuela, Perez-Maraver, Pellitero, Fernandez-Veledo, Vendrell, Vilarrasa (bib7) 2019; 9 Schweiger, Eichmann, Taschler, Zimmermann, Zechner, Lass (bib48) 2014; 538 Liljenquist, Bomboy, Lewis, Sinclair-Smith, Felts, Lacy, Crofford, Liddle (bib24) 1974; 53 Sethi, Vidal-Puig (bib49) 2007; 48 Vajda, Logan, Lasseter, Armas, Plotkin, Pipkin, Li, Zhou, Klein, Wei, Dilzer, Zhi, Marschke (bib53) 2017; 19 Jorsal, Wewer Albrechtsen, Christensen, Mortensen, Wandall, Langholz, Friis, Worm, Orskov, Stoving, Andries, Juhl, Sorensen, Forman, Falkenhahn, Musholt, Theis, Larsen, Holst, Vrang, Jelsing, Vilsboll, Knop (bib19) 2019; 104 Vizek, Razova, Melichar (bib57) 1979; 28 Carranza, Simon, Torres, Romero, Calle (bib5) 1993; 16 Schneider, Fineberg, Blackburn (bib47) 1981; 20 Pereira, Palming, Rizell, Aureliano, Carvalho, Svensson, Eriksson (bib34) 2013; 365 Wewer Albrechtsen, Pedersen, Galsgaard, Winther-Sorensen, Suppli, Janah, Gromada, Vilstrup, Knop, Holst (bib58) 2019 Nair (bib30) 1987; 64 Pozza, Pappalettera, Melogli, Viberti, Ghidoni (bib37) 1971; 3 Honnor, Dhillon, Londos (bib17) 1985; 260 Pereira, Skrtic, Katsogiannos, Abrahamsson, Sidibeh, Dahgam, Mansson, Riserus, Kullberg, Eriksson (bib36) 2016; 65 Smith, Sjostrom, Bjornstorp (bib50) 1972; 13 Jensen, Heiling, Miles (bib18) 1991; 72 Lund, Bagger, Wewer Albrechtsen, Christensen, Grondahl, Hartmann, Mathiesen, Hansen, Storkholm, van Hall, Rehfeld, Hornburg, Meissner, Mann, Larsen, Holst, Vilsboll, Knop (bib26) 2016; 65 Goldfine, Cerasi, Luft (bib11) 1972; 35 Holz, Chepurny (bib16) 2003; 10 Xiao, Pavlic, Szeto, Patterson, Lewis (bib60) 2011; 60 Prigge, Grande (bib38) 1971; 39 Bertin, Arner, Bolinder, Hagstrom-Toft (bib2) 2001; 86 Rouille, Westermark, Martin, Steiner (bib41) 1994; 91 Pereira, Palming, Rizell, Aureliano, Carvalho, Svensson, Eriksson (bib35) 2014; 99 Wu, Jeng, Hollenbeck, Chen, Jaspan, Reaven (bib59) 1990; 70 Hagen (bib13) 1961; 236 Yu, Jansson, Posner, Smith, Eriksson (bib61) 1997; 40 Hansen, Abrahamsen, Nishimura (bib14) 1995; 16 Sanchez-Garrido, Brandt, Clemmensen, Muller, DiMarchi, Tschop (bib44) 2017; 60 Sancho, Nuche, Arnes, Cancelas, Gonzalez, Diaz-Miguel, Martin-Duce, Valverde, Villanueva-Penacarrillo (bib45) 2007; 19 Gravholt, Moller, Jensen, Christiansen, Schmitz (bib12) 2001; 86 Kedia (bib22) 2011; 4 Pearson, Unger, Holland (bib31) 2016; 39 Kashiwagi, Verso, Andrews, Vasquez, Reaven, Foley (bib20) 1983; 72 Manganiello, Vaughan (bib27) 1972; 13 Salem, Izzi-Engbeaya, Coello, Thomas, Chambers, Comninos, Buckley, Win, Al-Nahhas, Rabiner, Gunn, Budge, Symonds, Bloom, Tan, Dhillo (bib42) 2016; 18 Prigge (10.1016/j.mce.2019.110696_bib38) 1971; 39 Schade (10.1016/j.mce.2019.110696_bib46) 1975; 24 Merida (10.1016/j.mce.2019.110696_bib28) 1993; 77 Pearson (10.1016/j.mce.2019.110696_bib31) 2016; 39 Rodbell (10.1016/j.mce.2019.110696_bib40) 1966; 241 Ejarque (10.1016/j.mce.2019.110696_bib7) 2019; 9 Manganiello (10.1016/j.mce.2019.110696_bib27) 1972; 13 Rouille (10.1016/j.mce.2019.110696_bib41) 1994; 91 Jorsal (10.1016/j.mce.2019.110696_bib19) 2019; 104 Smith (10.1016/j.mce.2019.110696_bib50) 1972; 13 Lefebvre (10.1016/j.mce.2019.110696_bib23) 1973; 5 Kashiwagi (10.1016/j.mce.2019.110696_bib20) 1983; 72 Goldfine (10.1016/j.mce.2019.110696_bib11) 1972; 35 Lund (10.1016/j.mce.2019.110696_bib26) 2016; 65 Holz (10.1016/j.mce.2019.110696_bib16) 2003; 10 Richter (10.1016/j.mce.2019.110696_bib39) 1989; 10 Gravholt (10.1016/j.mce.2019.110696_bib12) 2001; 86 Pereira (10.1016/j.mce.2019.110696_bib33) 2012; 355 Cherrington (10.1016/j.mce.2019.110696_bib6) 1978; 43 Sancho (10.1016/j.mce.2019.110696_bib45) 2007; 19 Wu (10.1016/j.mce.2019.110696_bib59) 1990; 70 Svoboda (10.1016/j.mce.2019.110696_bib51) 1994; 105 Perea (10.1016/j.mce.2019.110696_bib32) 1995; 27 Liljenquist (10.1016/j.mce.2019.110696_bib24) 1974; 53 Sanchez-Garrido (10.1016/j.mce.2019.110696_bib44) 2017; 60 Jensen (10.1016/j.mce.2019.110696_bib18) 1991; 72 Vizek (10.1016/j.mce.2019.110696_bib57) 1979; 28 Bertin (10.1016/j.mce.2019.110696_bib2) 2001; 86 Vaughan (10.1016/j.mce.2019.110696_bib55) 1963; 4 Burcelin (10.1016/j.mce.2019.110696_bib3) 1996; 22 Unson (10.1016/j.mce.2019.110696_bib52) 1989; 10 Vendrell (10.1016/j.mce.2019.110696_bib56) 2011; 152 Kedia (10.1016/j.mce.2019.110696_bib22) 2011; 4 Kazda (10.1016/j.mce.2019.110696_bib21) 2016; 39 Heckemeyer (10.1016/j.mce.2019.110696_bib15) 1983; 113 Schneider (10.1016/j.mce.2019.110696_bib47) 1981; 20 Pereira (10.1016/j.mce.2019.110696_bib36) 2016; 65 Geary (10.1016/j.mce.2019.110696_bib10) 1990; 14 Samols (10.1016/j.mce.2019.110696_bib43) 1965; 2 Andreozzi (10.1016/j.mce.2019.110696_bib1) 2016; 14 Gabrielsson (10.1016/j.mce.2019.110696_bib9) 2005; 13 Xiao (10.1016/j.mce.2019.110696_bib60) 2011; 60 Pereira (10.1016/j.mce.2019.110696_bib34) 2013; 365 Pozza (10.1016/j.mce.2019.110696_bib37) 1971; 3 Carranza (10.1016/j.mce.2019.110696_bib5) 1993; 16 Vajda (10.1016/j.mce.2019.110696_bib53) 2017; 19 Vaughan (10.1016/j.mce.2019.110696_bib54) 1961; 236 Nair (10.1016/j.mce.2019.110696_bib30) 1987; 64 Wewer Albrechtsen (10.1016/j.mce.2019.110696_bib58) 2019 Frias (10.1016/j.mce.2019.110696_bib8) 2018; 392 Honnor (10.1016/j.mce.2019.110696_bib17) 1985; 260 Salem (10.1016/j.mce.2019.110696_bib42) 2016; 18 Carlson (10.1016/j.mce.2019.110696_bib4) 1993; 77 Pereira (10.1016/j.mce.2019.110696_bib35) 2014; 99 Yu (10.1016/j.mce.2019.110696_bib61) 1997; 40 Hagen (10.1016/j.mce.2019.110696_bib13) 1961; 236 Mosinger (10.1016/j.mce.2019.110696_bib29) 1965; 66 Sethi (10.1016/j.mce.2019.110696_bib49) 2007; 48 Livingston (10.1016/j.mce.2019.110696_bib25) 1974; 15 Schweiger (10.1016/j.mce.2019.110696_bib48) 2014; 538 Hansen (10.1016/j.mce.2019.110696_bib14) 1995; 16 |
References_xml | – volume: 65 start-page: 585 year: 2016 end-page: 597 ident: bib26 article-title: Evidence of extrapancreatic glucagon secretion in man publication-title: Diabetes – volume: 64 start-page: 896 year: 1987 end-page: 901 ident: bib30 article-title: Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency publication-title: J. Clin. Endocrinol. Metab. – volume: 65 start-page: 1768 year: 2016 end-page: 1780 ident: bib36 article-title: Impaired adipose tissue lipid storage, but not altered lipolysis, contributes to elevated levels of NEFA in type 2 diabetes. Degree of hyperglycemia and adiposity are important factors publication-title: Metabolism – volume: 66 start-page: 380 year: 1965 end-page: 389 ident: bib29 article-title: Action of adipokinetic hormones on human adipose tissue in vitro publication-title: J. Lab. Clin. Med. – volume: 13 start-page: 12 year: 1972 end-page: 16 ident: bib27 article-title: Selective loss of adipose cell responsiveness to glucagon with growth in the rat publication-title: J. Lipid Res. – volume: 99 start-page: E1885 year: 2014 end-page: 1894 ident: bib35 article-title: Cyclosporine A and tacrolimus reduce the amount of GLUT4 at the cell surface in human adipocytes: increased endocytosis as a potential mechanism for the diabetogenic effects of immunosuppressive agents publication-title: J. Clin. Endocrinol. Metab. – volume: 9 start-page: 6274 year: 2019 ident: bib7 article-title: Role of adipose tissue GLP-1R expression in metabolic improvement after bariatric surgery in patients with type 2 diabetes publication-title: Sci. Rep. – volume: 39 start-page: 69 year: 1971 end-page: 82 ident: bib38 article-title: Effects of glucagon, epinephrine and insulin on in vitro lipolysis of adipose tissue from mammals and birds publication-title: Comp. Biochem. Physiol. B – volume: 236 start-page: 2196 year: 1961 end-page: 2199 ident: bib54 article-title: Effect of hormones on glucose metabolism in adipose tissue publication-title: J. Biol. Chem. – volume: 4 start-page: 193 year: 1963 end-page: 199 ident: bib55 article-title: Effect of hormones on lipolysis and esterification of free fatty acids during incubation of adipose tissue in vitro publication-title: J. Lipid Res. – volume: 39 start-page: 1075 year: 2016 end-page: 1077 ident: bib31 article-title: Clinical trials, triumphs, and tribulations of glucagon receptor antagonists publication-title: Diabetes Care – volume: 152 start-page: 4072 year: 2011 end-page: 4079 ident: bib56 article-title: Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance publication-title: Endocrinology – volume: 28 start-page: 325 year: 1979 end-page: 331 ident: bib57 article-title: Lipolytic effect of TSH, glucagon and hydrocortisone on the adipose tissue of newborns and adults in vitro publication-title: Physiol. Bohemoslov. – volume: 19 start-page: 961 year: 2007 end-page: 966 ident: bib45 article-title: The action of GLP-1 and exendins upon glucose transport in normal human adipocytes, and on kinase activity as compared to morbidly obese patients publication-title: Int. J. Mol. Med. – volume: 77 start-page: 1654 year: 1993 end-page: 1657 ident: bib28 article-title: Presence of glucagon and glucagon-like peptide-1-(7-36)amide receptors in solubilized membranes of human adipose tissue publication-title: J. Clin. Endocrinol. Metab. – volume: 19 start-page: 24 year: 2017 end-page: 32 ident: bib53 article-title: Pharmacokinetics and pharmacodynamics of single and multiple doses of the glucagon receptor antagonist LGD-6972 in healthy subjects and subjects with type 2 diabetes mellitus publication-title: Diabetes Obes. Metab. – volume: 60 start-page: 383 year: 2011 end-page: 390 ident: bib60 article-title: Effects of acute hyperglucagonemia on hepatic and intestinal lipoprotein production and clearance in healthy humans publication-title: Diabetes – volume: 113 start-page: 270 year: 1983 end-page: 276 ident: bib15 article-title: Studies of the biological effect and degradation of glucagon in the rat perifused isolated adipose cell publication-title: Endocrinology – volume: 538 start-page: 171 year: 2014 end-page: 193 ident: bib48 article-title: Measurement of lipolysis publication-title: Methods Enzymol. – volume: 392 start-page: 2180 year: 2018 end-page: 2193 ident: bib8 article-title: Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial publication-title: Lancet – volume: 72 start-page: 308 year: 1991 end-page: 315 ident: bib18 article-title: Effects of glucagon on free fatty acid metabolism in humans publication-title: J. Clin. Endocrinol. Metab. – volume: 104 start-page: 6403 year: 2019 end-page: 6416 ident: bib19 article-title: Investigating intestinal glucagon after roux-en-Y gastric bypass surgery publication-title: J. Clin. Endocrinol. Metab. – volume: 16 start-page: 1163 year: 1995 end-page: 1166 ident: bib14 article-title: Glucagon receptor mRNA distribution in rat tissues publication-title: Peptides – volume: 24 start-page: 1020 year: 1975 end-page: 1026 ident: bib46 article-title: Modulation of fatty acid metabolism by glucagon in man. III. Role of pharmacologic limitation of FFA availability publication-title: Diabetes – volume: 72 start-page: 1246 year: 1983 end-page: 1254 ident: bib20 article-title: In vitro insulin resistance of human adipocytes isolated from subjects with noninsulin-dependent diabetes mellitus publication-title: J. Clin. Investig. – volume: 22 start-page: 373 year: 1996 end-page: 396 ident: bib3 article-title: Molecular and cellular aspects of the glucagon receptor: role in diabetes and metabolism publication-title: Diabetes Metab. – volume: 70 start-page: 410 year: 1990 end-page: 416 ident: bib59 article-title: Does glucagon increase plasma free fatty acid concentration in humans with normal glucose tolerance? publication-title: J. Clin. Endocrinol. Metab. – volume: 77 start-page: 11 year: 1993 end-page: 15 ident: bib4 article-title: Regulation of free fatty acid metabolism by glucagon publication-title: J. Clin. Endocrinol. Metab. – volume: 14 start-page: 323 year: 1990 end-page: 338 ident: bib10 article-title: Pancreatic glucagon signals postprandial satiety publication-title: Neurosci. Biobehav. Rev. – volume: 13 start-page: 822 year: 1972 end-page: 824 ident: bib50 article-title: Comparison of two methods for determining human adipose cell size publication-title: J. Lipid Res. – volume: 43 start-page: 31 year: 1978 end-page: 45 ident: bib6 article-title: Control of hepatic glucose output by glucagon and insulin in the intact dog publication-title: Biochem. Soc. Symp. – volume: 10 start-page: 2471 year: 2003 end-page: 2483 ident: bib16 article-title: Glucagon-like peptide-1 synthetic analogs: new therapeutic agents for use in the treatment of diabetes mellitus publication-title: Curr. Med. Chem. – volume: 260 start-page: 15130 year: 1985 end-page: 15138 ident: bib17 article-title: cAMP-dependent protein kinase and lipolysis in rat adipocytes. II. Definition of steady-state relationship with lipolytic and antilipolytic modulators publication-title: J. Biol. Chem. – volume: 27 start-page: 372 year: 1995 end-page: 375 ident: bib32 article-title: Physiological effect of glucagon in human isolated adipocytes publication-title: Horm. Metab. Res. – volume: 10 start-page: 333 year: 1989 end-page: 335 ident: bib39 article-title: Human glucagon and vasoactive intestinal polypeptide (VIP) stimulate free fatty acid release from human adipose tissue in vitro publication-title: Peptides – volume: 53 start-page: 190 year: 1974 end-page: 197 ident: bib24 article-title: Effects of glucagon on lipolysis and ketogenesis in normal and diabetic men publication-title: J. Clin. Investig. – volume: 16 start-page: 439 year: 1993 end-page: 442 ident: bib5 article-title: Identification of glucagon receptors in human adipocytes from a liposarcoma publication-title: J. Endocrinol. Investig. – volume: 86 start-page: 2085 year: 2001 end-page: 2089 ident: bib12 article-title: Physiological levels of glucagon do not influence lipolysis in abdominal adipose tissue as assessed by microdialysis publication-title: J. Clin. Endocrinol. Metab. – volume: 4 start-page: 337 year: 2011 end-page: 346 ident: bib22 article-title: Treatment of severe diabetic hypoglycemia with glucagon: an underutilized therapeutic approach publication-title: Diabetes Metab Syndr Obes – volume: 105 start-page: 131 year: 1994 end-page: 137 ident: bib51 article-title: Relative quantitative analysis of glucagon receptor mRNA in rat tissues publication-title: Mol. Cell. Endocrinol. – volume: 20 start-page: 616 year: 1981 end-page: 621 ident: bib47 article-title: The acute metabolic effects of glucagon and its interactions with insulin in forearm tissue publication-title: Diabetologia – volume: 18 start-page: 72 year: 2016 end-page: 81 ident: bib42 article-title: Glucagon increases energy expenditure independently of brown adipose tissue activation in humans publication-title: Diabetes Obes. Metab. – year: 2019 ident: bib58 article-title: The liver-alpha cell axis and type 2 diabetes publication-title: Endocr. Rev. – volume: 14 start-page: 229 year: 2016 ident: bib1 article-title: The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism publication-title: J. Transl. Med. – volume: 39 start-page: 1241 year: 2016 end-page: 1249 ident: bib21 article-title: Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies publication-title: Diabetes Care – volume: 15 start-page: 26 year: 1974 end-page: 32 ident: bib25 article-title: Studies of glucagon resistance in large rat adipocytes: 125I-labeled glucagon binding and lipolytic capacity publication-title: J. Lipid Res. – volume: 60 start-page: 1851 year: 2017 end-page: 1861 ident: bib44 article-title: GLP-1/glucagon receptor co-agonism for treatment of obesity publication-title: Diabetologia – volume: 2 start-page: 415 year: 1965 end-page: 416 ident: bib43 article-title: Promotion of insulin secretion by glucagon publication-title: Lancet – volume: 48 start-page: 1253 year: 2007 end-page: 1262 ident: bib49 article-title: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation publication-title: J. Lipid Res. – volume: 10 start-page: 1171 year: 1989 end-page: 1177 ident: bib52 article-title: Biological activities of des-His1[Glu9]glucagon amide, a glucagon antagonist publication-title: Peptides – volume: 355 start-page: 96 year: 2012 end-page: 105 ident: bib33 article-title: mTOR inhibition with rapamycin causes impaired insulin signalling and glucose uptake in human subcutaneous and omental adipocytes publication-title: Mol. Cell. Endocrinol. – volume: 3 start-page: 291 year: 1971 end-page: 292 ident: bib37 article-title: Lipolytic effect of intra-arterial injection of glucagon in man publication-title: Horm. Metab. Res. – volume: 365 start-page: 260 year: 2013 end-page: 269 ident: bib34 article-title: The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue publication-title: Mol. Cell. Endocrinol. – volume: 13 start-page: 649 year: 2005 end-page: 652 ident: bib9 article-title: Evaluation of reference genes for studies of gene expression in human adipose tissue publication-title: Obes. Res. – volume: 40 start-page: 1197 year: 1997 end-page: 1203 ident: bib61 article-title: Peroxovanadate and insulin action in adipocytes from NIDDM patients. Evidence against a primary defect in tyrosine phosphorylation publication-title: Diabetologia – volume: 35 start-page: 312 year: 1972 end-page: 315 ident: bib11 article-title: Glucagon stimulation of insulin release in man: inhibition during hypoglycemia publication-title: J. Clin. Endocrinol. Metab. – volume: 236 start-page: 1023 year: 1961 end-page: 1027 ident: bib13 article-title: Effect of glucagon on the metabolism of adipose tissue publication-title: J. Biol. Chem. – volume: 5 start-page: 245 year: 1973 end-page: 250 ident: bib23 article-title: Effects of denervation on the metabolism and the response to glucagon of white adipose tissue of rats publication-title: Horm. Metab. Res. – volume: 241 start-page: 140 year: 1966 end-page: 142 ident: bib40 article-title: Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline publication-title: J. Biol. Chem. – volume: 86 start-page: 1229 year: 2001 end-page: 1234 ident: bib2 article-title: Action of glucagon and glucagon-like peptide-1-(7-36) amide on lipolysis in human subcutaneous adipose tissue and skeletal muscle in vivo publication-title: J. Clin. Endocrinol. Metab. – volume: 91 start-page: 3242 year: 1994 end-page: 3246 ident: bib41 article-title: Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1-6 cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 19 start-page: 24 issue: 1 year: 2017 ident: 10.1016/j.mce.2019.110696_bib53 article-title: Pharmacokinetics and pharmacodynamics of single and multiple doses of the glucagon receptor antagonist LGD-6972 in healthy subjects and subjects with type 2 diabetes mellitus publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12752 – volume: 10 start-page: 1171 issue: 6 year: 1989 ident: 10.1016/j.mce.2019.110696_bib52 article-title: Biological activities of des-His1[Glu9]glucagon amide, a glucagon antagonist publication-title: Peptides doi: 10.1016/0196-9781(89)90010-7 – volume: 86 start-page: 2085 issue: 5 year: 2001 ident: 10.1016/j.mce.2019.110696_bib12 article-title: Physiological levels of glucagon do not influence lipolysis in abdominal adipose tissue as assessed by microdialysis publication-title: J. Clin. Endocrinol. Metab. – year: 2019 ident: 10.1016/j.mce.2019.110696_bib58 article-title: The liver-alpha cell axis and type 2 diabetes publication-title: Endocr. Rev. doi: 10.1210/er.2018-00251 – volume: 40 start-page: 1197 issue: 10 year: 1997 ident: 10.1016/j.mce.2019.110696_bib61 article-title: Peroxovanadate and insulin action in adipocytes from NIDDM patients. Evidence against a primary defect in tyrosine phosphorylation publication-title: Diabetologia doi: 10.1007/s001250050807 – volume: 77 start-page: 11 issue: 1 year: 1993 ident: 10.1016/j.mce.2019.110696_bib4 article-title: Regulation of free fatty acid metabolism by glucagon publication-title: J. Clin. Endocrinol. Metab. – volume: 13 start-page: 822 issue: 6 year: 1972 ident: 10.1016/j.mce.2019.110696_bib50 article-title: Comparison of two methods for determining human adipose cell size publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)39356-1 – volume: 43 start-page: 31 year: 1978 ident: 10.1016/j.mce.2019.110696_bib6 article-title: Control of hepatic glucose output by glucagon and insulin in the intact dog publication-title: Biochem. Soc. Symp. – volume: 60 start-page: 383 issue: 2 year: 2011 ident: 10.1016/j.mce.2019.110696_bib60 article-title: Effects of acute hyperglucagonemia on hepatic and intestinal lipoprotein production and clearance in healthy humans publication-title: Diabetes doi: 10.2337/db10-0763 – volume: 4 start-page: 337 year: 2011 ident: 10.1016/j.mce.2019.110696_bib22 article-title: Treatment of severe diabetic hypoglycemia with glucagon: an underutilized therapeutic approach publication-title: Diabetes Metab Syndr Obes doi: 10.2147/DMSO.S20633 – volume: 9 start-page: 6274 issue: 1 year: 2019 ident: 10.1016/j.mce.2019.110696_bib7 article-title: Role of adipose tissue GLP-1R expression in metabolic improvement after bariatric surgery in patients with type 2 diabetes publication-title: Sci. Rep. doi: 10.1038/s41598-019-42770-1 – volume: 53 start-page: 190 issue: 1 year: 1974 ident: 10.1016/j.mce.2019.110696_bib24 article-title: Effects of glucagon on lipolysis and ketogenesis in normal and diabetic men publication-title: J. Clin. Investig. doi: 10.1172/JCI107537 – volume: 4 start-page: 193 year: 1963 ident: 10.1016/j.mce.2019.110696_bib55 article-title: Effect of hormones on lipolysis and esterification of free fatty acids during incubation of adipose tissue in vitro publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)40346-3 – volume: 24 start-page: 1020 issue: 11 year: 1975 ident: 10.1016/j.mce.2019.110696_bib46 article-title: Modulation of fatty acid metabolism by glucagon in man. III. Role of pharmacologic limitation of FFA availability publication-title: Diabetes doi: 10.2337/diab.24.11.1020 – volume: 20 start-page: 616 issue: 6 year: 1981 ident: 10.1016/j.mce.2019.110696_bib47 article-title: The acute metabolic effects of glucagon and its interactions with insulin in forearm tissue publication-title: Diabetologia doi: 10.1007/BF00257430 – volume: 39 start-page: 69 issue: 1 year: 1971 ident: 10.1016/j.mce.2019.110696_bib38 article-title: Effects of glucagon, epinephrine and insulin on in vitro lipolysis of adipose tissue from mammals and birds publication-title: Comp. Biochem. Physiol. B doi: 10.1016/0305-0491(71)90254-9 – volume: 14 start-page: 323 issue: 3 year: 1990 ident: 10.1016/j.mce.2019.110696_bib10 article-title: Pancreatic glucagon signals postprandial satiety publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/S0149-7634(05)80042-9 – volume: 105 start-page: 131 issue: 2 year: 1994 ident: 10.1016/j.mce.2019.110696_bib51 article-title: Relative quantitative analysis of glucagon receptor mRNA in rat tissues publication-title: Mol. Cell. Endocrinol. doi: 10.1016/0303-7207(94)90162-7 – volume: 113 start-page: 270 issue: 1 year: 1983 ident: 10.1016/j.mce.2019.110696_bib15 article-title: Studies of the biological effect and degradation of glucagon in the rat perifused isolated adipose cell publication-title: Endocrinology doi: 10.1210/endo-113-1-270 – volume: 152 start-page: 4072 issue: 11 year: 2011 ident: 10.1016/j.mce.2019.110696_bib56 article-title: Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance publication-title: Endocrinology doi: 10.1210/en.2011-1070 – volume: 28 start-page: 325 issue: 4 year: 1979 ident: 10.1016/j.mce.2019.110696_bib57 article-title: Lipolytic effect of TSH, glucagon and hydrocortisone on the adipose tissue of newborns and adults in vitro publication-title: Physiol. Bohemoslov. – volume: 3 start-page: 291 issue: 4 year: 1971 ident: 10.1016/j.mce.2019.110696_bib37 article-title: Lipolytic effect of intra-arterial injection of glucagon in man publication-title: Horm. Metab. Res. doi: 10.1055/s-0028-1096783 – volume: 72 start-page: 308 issue: 2 year: 1991 ident: 10.1016/j.mce.2019.110696_bib18 article-title: Effects of glucagon on free fatty acid metabolism in humans publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem-72-2-308 – volume: 39 start-page: 1075 issue: 7 year: 2016 ident: 10.1016/j.mce.2019.110696_bib31 article-title: Clinical trials, triumphs, and tribulations of glucagon receptor antagonists publication-title: Diabetes Care doi: 10.2337/dci15-0033 – volume: 365 start-page: 260 issue: 2 year: 2013 ident: 10.1016/j.mce.2019.110696_bib34 article-title: The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2012.10.030 – volume: 16 start-page: 439 issue: 6 year: 1993 ident: 10.1016/j.mce.2019.110696_bib5 article-title: Identification of glucagon receptors in human adipocytes from a liposarcoma publication-title: J. Endocrinol. Investig. doi: 10.1007/BF03348878 – volume: 22 start-page: 373 issue: 6 year: 1996 ident: 10.1016/j.mce.2019.110696_bib3 article-title: Molecular and cellular aspects of the glucagon receptor: role in diabetes and metabolism publication-title: Diabetes Metab. – volume: 392 start-page: 2180 issue: 10160 year: 2018 ident: 10.1016/j.mce.2019.110696_bib8 article-title: Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial publication-title: Lancet doi: 10.1016/S0140-6736(18)32260-8 – volume: 48 start-page: 1253 issue: 6 year: 2007 ident: 10.1016/j.mce.2019.110696_bib49 article-title: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation publication-title: J. Lipid Res. doi: 10.1194/jlr.R700005-JLR200 – volume: 39 start-page: 1241 issue: 7 year: 2016 ident: 10.1016/j.mce.2019.110696_bib21 article-title: Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies publication-title: Diabetes Care doi: 10.2337/dc15-1643 – volume: 355 start-page: 96 issue: 1 year: 2012 ident: 10.1016/j.mce.2019.110696_bib33 article-title: mTOR inhibition with rapamycin causes impaired insulin signalling and glucose uptake in human subcutaneous and omental adipocytes publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2012.01.024 – volume: 91 start-page: 3242 issue: 8 year: 1994 ident: 10.1016/j.mce.2019.110696_bib41 article-title: Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1-6 cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.91.8.3242 – volume: 236 start-page: 1023 year: 1961 ident: 10.1016/j.mce.2019.110696_bib13 article-title: Effect of glucagon on the metabolism of adipose tissue publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)64236-X – volume: 18 start-page: 72 issue: 1 year: 2016 ident: 10.1016/j.mce.2019.110696_bib42 article-title: Glucagon increases energy expenditure independently of brown adipose tissue activation in humans publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12585 – volume: 13 start-page: 649 issue: 4 year: 2005 ident: 10.1016/j.mce.2019.110696_bib9 article-title: Evaluation of reference genes for studies of gene expression in human adipose tissue publication-title: Obes. Res. doi: 10.1038/oby.2005.72 – volume: 66 start-page: 380 issue: 3 year: 1965 ident: 10.1016/j.mce.2019.110696_bib29 article-title: Action of adipokinetic hormones on human adipose tissue in vitro publication-title: J. Lab. Clin. Med. – volume: 60 start-page: 1851 issue: 10 year: 2017 ident: 10.1016/j.mce.2019.110696_bib44 article-title: GLP-1/glucagon receptor co-agonism for treatment of obesity publication-title: Diabetologia doi: 10.1007/s00125-017-4354-8 – volume: 104 start-page: 6403 issue: 12 year: 2019 ident: 10.1016/j.mce.2019.110696_bib19 article-title: Investigating intestinal glucagon after roux-en-Y gastric bypass surgery publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2019-00062 – volume: 260 start-page: 15130 issue: 28 year: 1985 ident: 10.1016/j.mce.2019.110696_bib17 article-title: cAMP-dependent protein kinase and lipolysis in rat adipocytes. II. Definition of steady-state relationship with lipolytic and antilipolytic modulators publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)95712-1 – volume: 241 start-page: 140 issue: 1 year: 1966 ident: 10.1016/j.mce.2019.110696_bib40 article-title: Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)96968-1 – volume: 236 start-page: 2196 year: 1961 ident: 10.1016/j.mce.2019.110696_bib54 article-title: Effect of hormones on glucose metabolism in adipose tissue publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)64055-4 – volume: 99 start-page: E1885 issue: 10 year: 2014 ident: 10.1016/j.mce.2019.110696_bib35 article-title: Cyclosporine A and tacrolimus reduce the amount of GLUT4 at the cell surface in human adipocytes: increased endocytosis as a potential mechanism for the diabetogenic effects of immunosuppressive agents publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2014-1266 – volume: 65 start-page: 1768 issue: 12 year: 2016 ident: 10.1016/j.mce.2019.110696_bib36 article-title: Impaired adipose tissue lipid storage, but not altered lipolysis, contributes to elevated levels of NEFA in type 2 diabetes. Degree of hyperglycemia and adiposity are important factors publication-title: Metabolism doi: 10.1016/j.metabol.2016.09.008 – volume: 13 start-page: 12 issue: 1 year: 1972 ident: 10.1016/j.mce.2019.110696_bib27 article-title: Selective loss of adipose cell responsiveness to glucagon with growth in the rat publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)39429-3 – volume: 19 start-page: 961 issue: 6 year: 2007 ident: 10.1016/j.mce.2019.110696_bib45 article-title: The action of GLP-1 and exendins upon glucose transport in normal human adipocytes, and on kinase activity as compared to morbidly obese patients publication-title: Int. J. Mol. Med. – volume: 5 start-page: 245 issue: 4 year: 1973 ident: 10.1016/j.mce.2019.110696_bib23 article-title: Effects of denervation on the metabolism and the response to glucagon of white adipose tissue of rats publication-title: Horm. Metab. Res. doi: 10.1055/s-0028-1093959 – volume: 70 start-page: 410 issue: 2 year: 1990 ident: 10.1016/j.mce.2019.110696_bib59 article-title: Does glucagon increase plasma free fatty acid concentration in humans with normal glucose tolerance? publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem-70-2-410 – volume: 10 start-page: 333 issue: 2 year: 1989 ident: 10.1016/j.mce.2019.110696_bib39 article-title: Human glucagon and vasoactive intestinal polypeptide (VIP) stimulate free fatty acid release from human adipose tissue in vitro publication-title: Peptides doi: 10.1016/0196-9781(89)90039-9 – volume: 77 start-page: 1654 issue: 6 year: 1993 ident: 10.1016/j.mce.2019.110696_bib28 article-title: Presence of glucagon and glucagon-like peptide-1-(7-36)amide receptors in solubilized membranes of human adipose tissue publication-title: J. Clin. Endocrinol. Metab. – volume: 72 start-page: 1246 issue: 4 year: 1983 ident: 10.1016/j.mce.2019.110696_bib20 article-title: In vitro insulin resistance of human adipocytes isolated from subjects with noninsulin-dependent diabetes mellitus publication-title: J. Clin. Investig. doi: 10.1172/JCI111080 – volume: 64 start-page: 896 issue: 5 year: 1987 ident: 10.1016/j.mce.2019.110696_bib30 article-title: Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem-64-5-896 – volume: 15 start-page: 26 issue: 1 year: 1974 ident: 10.1016/j.mce.2019.110696_bib25 article-title: Studies of glucagon resistance in large rat adipocytes: 125I-labeled glucagon binding and lipolytic capacity publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)36828-0 – volume: 538 start-page: 171 year: 2014 ident: 10.1016/j.mce.2019.110696_bib48 article-title: Measurement of lipolysis publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-800280-3.00010-4 – volume: 65 start-page: 585 issue: 3 year: 2016 ident: 10.1016/j.mce.2019.110696_bib26 article-title: Evidence of extrapancreatic glucagon secretion in man publication-title: Diabetes doi: 10.2337/db15-1541 – volume: 86 start-page: 1229 issue: 3 year: 2001 ident: 10.1016/j.mce.2019.110696_bib2 article-title: Action of glucagon and glucagon-like peptide-1-(7-36) amide on lipolysis in human subcutaneous adipose tissue and skeletal muscle in vivo publication-title: J. Clin. Endocrinol. Metab. – volume: 14 start-page: 229 issue: 1 year: 2016 ident: 10.1016/j.mce.2019.110696_bib1 article-title: The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism publication-title: J. Transl. Med. doi: 10.1186/s12967-016-0985-7 – volume: 10 start-page: 2471 issue: 22 year: 2003 ident: 10.1016/j.mce.2019.110696_bib16 article-title: Glucagon-like peptide-1 synthetic analogs: new therapeutic agents for use in the treatment of diabetes mellitus publication-title: Curr. Med. Chem. doi: 10.2174/0929867033456648 – volume: 35 start-page: 312 issue: 2 year: 1972 ident: 10.1016/j.mce.2019.110696_bib11 article-title: Glucagon stimulation of insulin release in man: inhibition during hypoglycemia publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem-35-2-312 – volume: 16 start-page: 1163 issue: 6 year: 1995 ident: 10.1016/j.mce.2019.110696_bib14 article-title: Glucagon receptor mRNA distribution in rat tissues publication-title: Peptides doi: 10.1016/0196-9781(95)00078-X – volume: 2 start-page: 415 issue: 7409 year: 1965 ident: 10.1016/j.mce.2019.110696_bib43 article-title: Promotion of insulin secretion by glucagon publication-title: Lancet doi: 10.1016/S0140-6736(65)90761-0 – volume: 27 start-page: 372 issue: 8 year: 1995 ident: 10.1016/j.mce.2019.110696_bib32 article-title: Physiological effect of glucagon in human isolated adipocytes publication-title: Horm. Metab. Res. doi: 10.1055/s-2007-979981 |
SSID | ssj0007528 |
Score | 2.4735508 |
Snippet | We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in... |
SourceID | swepub proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110696 |
SubjectTerms | adipocytes Adipocytes - drug effects Adipocytes - metabolism Adipocytes - pathology Adipose tissue Adipose Tissue - metabolism Adipose Tissue - pathology Adult Aged body mass index Carbohydrate Metabolism - drug effects Case-Control Studies Cells, Cultured Cohort Studies Diabetes Mellitus, Type 2 - metabolism Diabetes Mellitus, Type 2 - pathology Female gene expression Gene Expression - drug effects genes Glucagon Glucagon - pharmacology Glucagon receptor glucagon receptors glucose Glucose - metabolism Glucose uptake Humans insulin insulin resistance Lipolysis Lipolysis - drug effects Male Metabolism Middle Aged Primary Cell Culture Receptors, Glucagon - genetics Receptors, Glucagon - metabolism |
Title | Direct effects of glucagon on glucose uptake and lipolysis in human adipocytes |
URI | https://dx.doi.org/10.1016/j.mce.2019.110696 https://www.ncbi.nlm.nih.gov/pubmed/31891768 https://www.proquest.com/docview/2331799494 https://www.proquest.com/docview/2400484497 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-406177 |
Volume | 503 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIiEuCFo-lkJlJOCAFDaxnbV9XBWqBdS9QFFvluPYVUqbrMrm0Et_OzOOs4gP7QEpJ2csJePJ-Nl-eUPIK_B77ZStMh0AvonSlVllWcg8q2TQOcY17necLGeLU_HprDzbIUfjvzBIq0y5f8jpMVunlmny5nTVNNMvEJ5YYkUCBMm5Vqj4KYTEKH93-4vmIctYXxWNM7QeTzYjx-vKoVJmoZEMP0Pd_n_PTX9jzz-EReNkdPyA3E8oks6HB31Idny7R_bnLaygr27oGxp5nXHDfI_cPUnH5_tkOSQ4mkgctAsUKev2vGspXIm-TvvV2n731LY1vWxWXRQtoU1LYz0_amtoczcAUR-R0-MPX48WWSqokDlATetMOCYqyZlWVc2lz73QLAjFa86l9bwSwdUFC3ldFqHipbVKBF17rkJVBK4cf0x22671TwktAwrlMwA0AtKAnilmNawVAQ3kNi9UmJB8dKVxSW0ci15cmpFWdmHA-wa9bwbvT8jbTZfVILWxzViM42N-ixcDU8G2bi_HsTTwHeHhiG191_8wjHMUxxNabLGJCU8ILSfkyRAImyeF3Agr35makNdDZGzuoID3--bb3HTX56bvDUIoKZ_93wsckHsMV_yRBfec7K6ve_8CYNG6Ooxxf0juzD9-Xix_AiOgCR4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9wgEB6lG6nNpWqTPrZPKrU9VLLWBrzAcZU22jTZvTSpckPYhshtYq-S9SH_vgzGK_WhPVTyCYOEh2H4gM_fALz3dq9KaYpEOQ_feF7mSWGoSywthFMp-jWedyyW0_k5_3qRX-zA4fAvDNIqY-zvY3qI1rFkEq05WdX15Jt3T0yxIjwESZmS7B7sojpVPoLd2fHJfLkJyCIPKVaxfoINhsvNQPO6LlEsM1PIh5-idP-_l6e_4ecf2qJhPTp6BA8jkCSzvq-PYcc2-3Awa_wm-vqOfCSB2hnOzPfh_iLeoB_Aso9xJPI4SOsIstbNZdsQ_0QGO-lWa_PTEtNU5KpetUG3hNQNCSn9iKl8WXnnUeoTOD_6cnY4T2JOhaT0wGmd8JLyQjCqZFExYVPLFXVcsooxYSwruCurjLq0yjNXsNwYyZ2qLJOuyByTJXsKo6Zt7HMguUOtfOoxDfeRQE0lNcpvFz0gSE2aSTeGdDClLqPgOOa9uNIDs-yH9tbXaH3dW38MnzZNVr3axrbKfBgf_ZvLaL8abGv2bhhL7acS3o-YxrbdraaMoT4eV3xLnRDzOFdiDM96R9j01IdHv_mdyjF86D1j8wY1vD_X32e6vbnUXacRRQnx4v8-4C08mJ8tTvXp8fLkJexRPAAIpLhXMFrfdPa1R0nr4k2cBb8AN9ILzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+effects+of+glucagon+on+glucose+uptake+and+lipolysis+in+human+adipocytes&rft.jtitle=Molecular+and+cellular+endocrinology&rft.au=Pereira%2C+Maria+J&rft.au=Thombare%2C+Ketan&rft.au=Sarsenbayeva%2C+Assel&rft.au=Kamble%2C+Prasad+G.&rft.date=2020-03-01&rft.issn=0303-7207&rft.volume=503&rft_id=info:doi/10.1016%2Fj.mce.2019.110696&rft.externalDocID=oai_DiVA_org_uu_406177 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-7207&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-7207&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-7207&client=summon |