Scheduling equal-length jobs with arbitrary sizes on uniform parallel batch machines
We consider the problem of scheduling jobs with equal lengths and arbitrary sizes on uniform parallel batch machines with different capacities. Each machine can only process the jobs whose sizes are not larger than its capacity. Several jobs can be processed as a batch simultaneously on a machine, a...
Saved in:
Published in | Open mathematics (Warsaw, Poland) Vol. 21; no. 1; pp. 228 - 249 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
De Gruyter
28.02.2023
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider the problem of scheduling jobs with equal lengths and arbitrary sizes on uniform parallel batch machines with different capacities. Each machine can only process the jobs whose sizes are not larger than its capacity. Several jobs can be processed as a batch simultaneously on a machine, as long as their total size does not exceed the machine’s capacity. The objective is to minimize makespan. Under a divisibility constraint, we obtain two efficient exact algorithms. For the general problem, we obtain an efficient 2-approximation algorithm. Previous work has shown that the problem cannot be approximated to within an approximation ratio better than 2, unless P = NP, even when all machines have identical speeds and capacities. |
---|---|
AbstractList | We consider the problem of scheduling jobs with equal lengths and arbitrary sizes on uniform parallel batch machines with different capacities. Each machine can only process the jobs whose sizes are not larger than its capacity. Several jobs can be processed as a batch simultaneously on a machine, as long as their total size does not exceed the machine’s capacity. The objective is to minimize makespan. Under a divisibility constraint, we obtain two efficient exact algorithms. For the general problem, we obtain an efficient 2-approximation algorithm. Previous work has shown that the problem cannot be approximated to within an approximation ratio better than 2, unless P = NP, even when all machines have identical speeds and capacities. We consider the problem of scheduling jobs with equal lengths and arbitrary sizes on uniform parallel batch machines with different capacities. Each machine can only process the jobs whose sizes are not larger than its capacity. Several jobs can be processed as a batch simultaneously on a machine, as long as their total size does not exceed the machine’s capacity. The objective is to minimize makespan. Under a divisibility constraint, we obtain two efficient exact algorithms. For the general problem, we obtain an efficient 2-approximation algorithm. Previous work has shown that the problem cannot be approximated to within an approximation ratio better than 2, unless P = NP, even when all machines have identical speeds and capacities. |
Author | Xin, Xiao Khan, Muhammad Ijaz Li, Shuguang |
Author_xml | – sequence: 1 givenname: Xiao surname: Xin fullname: Xin, Xiao organization: Shandong Co-Innovation Center of Future Intelligent Computing, Shandong Technology and Business University, Yantai 264005, China – sequence: 2 givenname: Muhammad Ijaz surname: Khan fullname: Khan, Muhammad Ijaz organization: Department of Mechanics and Engineering Science, Peking University, Beijing 100871, China – sequence: 3 givenname: Shuguang surname: Li fullname: Li, Shuguang email: sgliytu@hotmail.com organization: College of Computer Science and Technology, Shandong Technology and Business University, Yantai 264005, China |
BookMark | eNp1kc2LFDEQxYOs4Dru1XPAc6_57umjLH4sLHhwPYdKOpnOkElmkzTL-tebcRRF9FL1CPWreuS9RBcpJ4fQa0quqaTy7QHaMjDC2ECkYs_QJeMTHaSQ8uIP_QJd1bonhHSGjJReovsvdnHzGkPaYfewQhyiS7u24H02FT-GrqCY0AqUJ1zDN1dxTnhNwedywEcoEKOL2ECzCz6AXUJy9RV67iFWd_Wzb9DXD-_vbz4Nd58_3t68uxusYLwNQgjDJpgn6iXz0gowhk5qNGLrPZmtHalXM-VEgZmBT6ObjCLU-nHbzTPJN-j2vHfOsNfHEg7dpc4Q9I-HXHYaSgs2Os3AjqAkMcpIwaetsYYryS0wrqZtrxv05rzrWPLD6mrT-7yW1O1r1u8xpSRVfUqcp2zJtRbntQ0NWsip_1CImhJ9ikOf4tCnOPQpjo5d_4X9MvtfYDoDjxCbK7PblfWpi9-m_g0ySvl3pHmiFg |
CitedBy_id | crossref_primary_10_1007_s00603_023_03705_5 crossref_primary_10_1016_j_rinp_2023_106542 crossref_primary_10_2478_ama_2024_0023 crossref_primary_10_1016_j_csite_2023_103163 crossref_primary_10_1016_j_aej_2023_09_012 crossref_primary_10_1016_j_jmmm_2023_170798 crossref_primary_10_1016_j_jmmm_2023_170748 crossref_primary_10_32604_cmc_2024_049480 crossref_primary_10_1007_s42461_024_00992_6 crossref_primary_10_1142_S0217984923501130 crossref_primary_10_1016_j_cjph_2023_05_014 crossref_primary_10_1080_02286203_2023_2296678 crossref_primary_10_1177_01445987241266084 crossref_primary_10_1016_j_rineng_2023_101393 crossref_primary_10_1038_s41598_023_48137_x crossref_primary_10_1080_01605682_2023_2277867 crossref_primary_10_1016_j_rinp_2023_106676 crossref_primary_10_1016_j_asej_2023_102377 |
Cites_doi | 10.1007/s00170-005-2585-1 10.1080/0951192X.2012.731612 10.1007/s10951-010-0222-9 10.1002/nav.21587 10.1016/0885-064X(87)90009-4 10.1016/j.cor.2013.06.016 10.1007/s10878-022-00882-x 10.1016/j.ejor.2005.03.023 10.1016/j.ipl.2009.02.003 10.3934/jimo.2016057 10.1016/j.ijpe.2015.07.021 10.1016/j.cor.2016.08.015 10.1080/00207543.2011.641358 10.1145/1273340.1273344 10.1016/j.eswa.2009.06.070 10.1007/s00170-011-3442-z 10.1016/j.ejor.2017.06.021 10.1016/j.ijpe.2016.05.014 10.3934/mbe.2022502 10.1016/S0377-2217(02)00247-3 10.1016/S0167-5060(08)70356-X 10.1016/j.ijpe.2012.02.006 10.1016/j.ijpe.2014.06.019 10.1016/j.knosys.2016.10.026 10.1109/SCIS.2007.367682 10.1016/S0377-2217(99)00153-8 10.1016/j.ejor.2021.06.012 |
ContentType | Journal Article |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1515/math-2022-0562 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2391-5455 |
EndPage | 249 |
ExternalDocumentID | oai_doaj_org_article_2ac7a650b6b54398bcb3653ca23698a2 10_1515_math_2022_0562 10_1515_math_2022_0562211 |
GroupedDBID | 5VS 88I AAFWJ ABFKT ABUWG ACGFS ADBBV AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ K7- KQ8 M2P M48 M~E OK1 PHGZM PHGZT PIMPY PQGLB QD8 SLJYH AAYXX CITATION 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U Y2W PUEGO |
ID | FETCH-LOGICAL-c423t-444b29ad91f52f5c4abb1967b48ff0dcc71f6d1306abda397e9b601cf78071253 |
IEDL.DBID | M48 |
ISSN | 2391-5455 |
IngestDate | Wed Aug 27 01:32:13 EDT 2025 Fri Jul 25 02:15:10 EDT 2025 Thu Apr 24 23:08:00 EDT 2025 Tue Jul 01 04:05:18 EDT 2025 Thu Jul 10 10:34:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-444b29ad91f52f5c4abb1967b48ff0dcc71f6d1306abda397e9b601cf78071253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/math-2022-0562 |
PQID | 2780266516 |
PQPubID | 5000747 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2ac7a650b6b54398bcb3653ca23698a2 proquest_journals_2780266516 crossref_citationtrail_10_1515_math_2022_0562 crossref_primary_10_1515_math_2022_0562 walterdegruyter_journals_10_1515_math_2022_0562211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-28 |
PublicationDateYYYYMMDD | 2023-02-28 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw |
PublicationTitle | Open mathematics (Warsaw, Poland) |
PublicationYear | 2023 |
Publisher | De Gruyter De Gruyter Poland |
Publisher_xml | – name: De Gruyter – name: De Gruyter Poland |
References | 2023090109331032337_j_math-2022-0562_ref_015 2023090109331032337_j_math-2022-0562_ref_014 2023090109331032337_j_math-2022-0562_ref_017 2023090109331032337_j_math-2022-0562_ref_016 2023090109331032337_j_math-2022-0562_ref_019 2023090109331032337_j_math-2022-0562_ref_018 2023090109331032337_j_math-2022-0562_ref_020 2023090109331032337_j_math-2022-0562_ref_022 2023090109331032337_j_math-2022-0562_ref_021 2023090109331032337_j_math-2022-0562_ref_002 2023090109331032337_j_math-2022-0562_ref_024 2023090109331032337_j_math-2022-0562_ref_001 2023090109331032337_j_math-2022-0562_ref_023 2023090109331032337_j_math-2022-0562_ref_004 2023090109331032337_j_math-2022-0562_ref_026 2023090109331032337_j_math-2022-0562_ref_003 2023090109331032337_j_math-2022-0562_ref_025 2023090109331032337_j_math-2022-0562_ref_006 2023090109331032337_j_math-2022-0562_ref_028 2023090109331032337_j_math-2022-0562_ref_005 2023090109331032337_j_math-2022-0562_ref_027 2023090109331032337_j_math-2022-0562_ref_008 2023090109331032337_j_math-2022-0562_ref_007 2023090109331032337_j_math-2022-0562_ref_029 2023090109331032337_j_math-2022-0562_ref_009 2023090109331032337_j_math-2022-0562_ref_031 2023090109331032337_j_math-2022-0562_ref_030 2023090109331032337_j_math-2022-0562_ref_011 2023090109331032337_j_math-2022-0562_ref_033 2023090109331032337_j_math-2022-0562_ref_010 2023090109331032337_j_math-2022-0562_ref_032 2023090109331032337_j_math-2022-0562_ref_013 2023090109331032337_j_math-2022-0562_ref_035 2023090109331032337_j_math-2022-0562_ref_012 2023090109331032337_j_math-2022-0562_ref_034 |
References_xml | – ident: 2023090109331032337_j_math-2022-0562_ref_003 doi: 10.1007/s00170-005-2585-1 – ident: 2023090109331032337_j_math-2022-0562_ref_013 doi: 10.1080/0951192X.2012.731612 – ident: 2023090109331032337_j_math-2022-0562_ref_004 doi: 10.1007/s10951-010-0222-9 – ident: 2023090109331032337_j_math-2022-0562_ref_009 doi: 10.1002/nav.21587 – ident: 2023090109331032337_j_math-2022-0562_ref_012 doi: 10.1016/0885-064X(87)90009-4 – ident: 2023090109331032337_j_math-2022-0562_ref_035 – ident: 2023090109331032337_j_math-2022-0562_ref_015 doi: 10.1016/j.cor.2013.06.016 – ident: 2023090109331032337_j_math-2022-0562_ref_024 doi: 10.1007/s10878-022-00882-x – ident: 2023090109331032337_j_math-2022-0562_ref_029 doi: 10.1016/j.ejor.2005.03.023 – ident: 2023090109331032337_j_math-2022-0562_ref_033 doi: 10.1016/j.ipl.2009.02.003 – ident: 2023090109331032337_j_math-2022-0562_ref_007 – ident: 2023090109331032337_j_math-2022-0562_ref_021 doi: 10.3934/jimo.2016057 – ident: 2023090109331032337_j_math-2022-0562_ref_020 doi: 10.1016/j.ijpe.2015.07.021 – ident: 2023090109331032337_j_math-2022-0562_ref_016 doi: 10.1016/j.cor.2016.08.015 – ident: 2023090109331032337_j_math-2022-0562_ref_011 doi: 10.1080/00207543.2011.641358 – ident: 2023090109331032337_j_math-2022-0562_ref_032 doi: 10.1145/1273340.1273344 – ident: 2023090109331032337_j_math-2022-0562_ref_018 doi: 10.1016/j.eswa.2009.06.070 – ident: 2023090109331032337_j_math-2022-0562_ref_019 doi: 10.1007/s00170-011-3442-z – ident: 2023090109331032337_j_math-2022-0562_ref_022 doi: 10.1016/j.ejor.2017.06.021 – ident: 2023090109331032337_j_math-2022-0562_ref_014 doi: 10.1016/j.ijpe.2016.05.014 – ident: 2023090109331032337_j_math-2022-0562_ref_028 doi: 10.3934/mbe.2022502 – ident: 2023090109331032337_j_math-2022-0562_ref_031 doi: 10.1016/S0377-2217(02)00247-3 – ident: 2023090109331032337_j_math-2022-0562_ref_005 doi: 10.1016/S0167-5060(08)70356-X – ident: 2023090109331032337_j_math-2022-0562_ref_027 – ident: 2023090109331032337_j_math-2022-0562_ref_025 – ident: 2023090109331032337_j_math-2022-0562_ref_034 doi: 10.1016/j.ijpe.2012.02.006 – ident: 2023090109331032337_j_math-2022-0562_ref_010 doi: 10.1016/j.ijpe.2014.06.019 – ident: 2023090109331032337_j_math-2022-0562_ref_008 – ident: 2023090109331032337_j_math-2022-0562_ref_026 doi: 10.1016/j.knosys.2016.10.026 – ident: 2023090109331032337_j_math-2022-0562_ref_030 – ident: 2023090109331032337_j_math-2022-0562_ref_006 – ident: 2023090109331032337_j_math-2022-0562_ref_023 – ident: 2023090109331032337_j_math-2022-0562_ref_017 doi: 10.1109/SCIS.2007.367682 – ident: 2023090109331032337_j_math-2022-0562_ref_001 doi: 10.1016/S0377-2217(99)00153-8 – ident: 2023090109331032337_j_math-2022-0562_ref_002 doi: 10.1016/j.ejor.2021.06.012 |
SSID | ssj0001510711 |
Score | 2.3663867 |
Snippet | We consider the problem of scheduling jobs with equal lengths and arbitrary sizes on uniform parallel batch machines with different capacities. Each machine... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 228 |
SubjectTerms | 68Q25 90B35 Algorithms Approximation equal job lengths job sizes makespan Mathematical analysis Scheduling uniform parallel batch machines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOQieim2apNujiiKCXlTwFjJ5uMralW0X0V_vJO2uDxQvXssc0i-TzDdJ5htC9p3LtBOlTawtZcJ9nuKS8mmSQm5ECkWm45nu5ZU8v-UXd-LuU6uv8CaslQdugTtk2hQaaQRIEBg8-2AglyI3muWy7Ou4-2LM-5RMtfXBmNZkWafSiDH7EPnfAF0CU68Q8r9EoSjW_4VhLr3Eu2rr7seT12Z6NxpDztkyWeq4Ij1qx7hC5ly1ShYvZ0Kr9Rq5uUbQbXhNfk9dKJBMQmeUZkAfR1DTcMhK9RgeYm09rR_eXE1HFZ1UoR7riQbd7-HQDSnghjygT_FhpavXye3Z6c3JedI1SkgMsqEm4ZwDK7VFlAXzwnANgCurAN73PrXGFJmXFqOV1GA1MhBXAiZixhd9RImJfIPMV6PKbRJqS-C5LSxwqblguhQWmPCeFYCzyUWPJFPglOlUxEMzi6EK2QQCrQLQKgCtAtA9cjCzf271M361PA7zMLMKutfxA3qD6rxB_eUNPbIznUXVLcZaMfxN5CEikz3Cvs3sh9XPo8L8eOs_BrZNFkKj-rYYfofMN-OJ20U608Be9Nx3v4DzkQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEG40uegh-MQ1UfogeGoy09OPmVMwkhCEBNEEcmu6-rEb2czEnVlEf73Vs727RNTrUDRDPb-q7qoi5F0IpQ2y8cz7RjERqwJNKhasgMrJAnRpx5ru-YU6uxKfruV1Lrj1-Vnl2ieOjtp3LtXID7muMV1QslRHd99Z2hqVblfzCo2HZBddcI3J1-7xycXnL9sqC6qcLss8rRFj9yHiwBmqBqZgKfTfi0bj0P57SHPvx3hn7cN0sfw5rO9Ix9Bz-oTsZcxIP6yE_JQ8CO0z8vh8M3C1f04uvyLzfXpVPqUhNUqytCFlmNFvHfQ0FVupXcDN2GNP-5tfoaddS5dt6su6pWn-93we5hTQMc_o7fjAMvQvyNXpyeXHM5YXJjCHqGhgQgjgjfXIbcmjdMICoIVpEHWMhXdOl1F5jFrKgreIREIDmJC5iLzViHSql2Sn7drwilDfgKi89iCUFZLbRnrgMkauAaUq5ISwNeOMy9PE01KLuUlZBTLaJEabxGiTGD0h7zf0d6s5Gv-kPE5y2FCl-dfjh24xNdmcDLdOWwSXoEAipKrBQaVk5SyvVFNbPORgLUWTjbI3WxWaEP6HZLdUf_8rzJNf___MffIoraJftbsfkJ1hsQxvELAM8DZr5W_41OzO priority: 102 providerName: ProQuest |
Title | Scheduling equal-length jobs with arbitrary sizes on uniform parallel batch machines |
URI | https://www.degruyter.com/doi/10.1515/math-2022-0562 https://www.proquest.com/docview/2780266516 https://doaj.org/article/2ac7a650b6b54398bcb3653ca23698a2 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbY9gIPEz9FYVR-QOLJkDi2kzwgxNDKhNQJwSrtzfLZTrspSyFJBeOv5-ymnQZD4jU6WfZ9vtx3tu-OkJfep8bL0jHnSsVElSVoUlXCEsisTCBPTTzTnZ6o45n4dCbPrt8_DQrsbg3tQj-pWVu__vn96h0a_NvYvSeVb5DaLRBtjKqCN98he-iV8mCk04HqrzOGMdCJ7Xh5VqYMiYMcajj-PcQNHxVL-d_gn_s_4k228_N2ddVvbk6jQ5rcJ_sDk6Tv19A_IHd885Dcm27LsHaPyOlXhMSFt-Zz6kP6JAt9U_oFvVhCR8MRLDUtnMfMe9qd__IdXTZ01YRsrUsaqoLXta8p4O96QS_js0vfPSazydHph2M2tFFgFrlSz4QQwEvjEAPJK2mFAUC7y0EUVZU4a_O0Ug59mTLgDPITXwKGabbKC9QYl9kTstssG_-UUFeCyFzuQCgjJDeldMBlVfEcEGshR4RtFKftUGM8tLqodYg1UNE6KFoHReug6BF5tZX_tq6u8U_Jw4DDVipUxY4flu1cD0amubG5QcoJCiQSrQIsZEpm1vBMlYXBQQ42KOrNTtMcl4ksRaZqRPgfyF5L3T4rjJ6f_fcSnpO7oVf9Oh_-gOz27cq_QEbTw5jsFJOPY7J3eHTy-cs4nguM4_b9DVhy9w0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqdYKOADiFPUxK8kB4R4LVva7YWt1Jvx2M5u0TYpm6yq8qP4jYyzya6KgFuv0cSy5vmN7Zkh5KX3ifEyd5FzuYpEwWM0qSKOYuBWxpAmpj3THR-p0bH4ciJPtsivvhYmPKvsfWLrqF1lwxn5HkszTBeUTNTb8x9RmBoVblf7ERortTjwlxeYstVv9j-ifF8xNvw0-TCKuqkCkUXo0ERCCGC5cbglyQpphQFANUxBZEURO2vTpFAOXbsy4AyGa58DZi22wA2kCAc4rnuD3BSc58GisuHnzZkOKniaJF1vSEQKe4g6Z6iImPAFoHEl9rUjAq7g2p2L9obc-eliedn0N7JtoBveJTsdQqXvVip1j2z58j65M163d60fkMlXFLULb9in1IeyzCjMY2lm9HsFNQ1Hu9Qs4LSt6Kf16U9f06qkyzJUgZ3R0G18PvdzChgGZvSsfc7p64fk-FoY-Yhsl1XpHxPqchDcpQ6EMkIyk0sHTBYFSwF1SMgBiXrGadv1Lg8jNOY65DDIaB0YrQOjdWD0gLxe05-vunb8k_J9kMOaKnTbbj9Ui6nujFczY1ODUBYUSARwGVjgSnJrGFd5ZnCR3V6KunMBtd4o7ICwPyS7ofr7rjArf_L_NV-QW6PJ-FAf7h8dPCW38U--KrTfJdvNYumfIVRq4Hmrn5R8u26D-A3ljCh3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbaRarKAUEf6vIoPlTqKdrEsZ3NEVqW7QNaCZB6szx-7FItCdpkheDXM85mQ-nj0ms0iZwZT-YbZ-YbQt45l2gnchtZm8uI-zRGl_JxFENqRAxZopsz3ZNTOb7gn3-IVTVh1ZZVWjeZL27rJUPqwJZmEQ7KOq4BjMADRHNTNDAmUiGAD66tf0rWpMxT3iNrB-Pjs28PBy2467IkaQkb_7z5UUBqePsfgc2Nm-a3dbemX6LPaJNstLCRHiztvEWeuOIFWT_pOFerl-T8DPVvQ2H5hLrQKxmFISn1lP4soaLhvJXqOVw2bfa0urxzFS0LuihCa9YVDRTgs5mbUcBv85ReNTWWrnpFLkZH5x_GUTszITIIjOqIcw4s1xYVLpgXhmsAdLIM-ND72BqTJV5aDFxSg9UIRlwOmJMZnw1RS0ykr0mvKAv3hlCbA09tZoFLzQXTubDAhPcsAzQsF30SrRSnTEsoHuZazFRILFDRKihaBUWroOg-ed_JXy-pNP4peRjs0EkFCuzmQjmfqNajFNMm04gvQYJAVDUEA6kUqdEslflQ40N2V1ZUrV9WiuFrIiQRiewT9ptlH6T-vipMlbf_56Z98uz7x5H6-un0yw55HsbVL1vid0mvni_cHoKaGt622_Yezx_16g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scheduling+equal-length+jobs+with+arbitrary+sizes+on+uniform+parallel+batch+machines&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Xin%2C+Xiao&rft.au=Khan%2C+Muhammad+Ijaz&rft.au=Li%2C+Shuguang&rft.date=2023-02-28&rft.issn=2391-5455&rft.eissn=2391-5455&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1515%2Fmath-2022-0562&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_math_2022_0562 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon |