Analyzing microbiome data with taxonomic misclassification using a zero-inflated Dirichlet-multinomial model

The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent ...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 26; no. 1; pp. 69 - 19
Main Author Koslovsky, Matthew D.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 27.02.2025
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children.
AbstractList The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children.
The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children. Keywords: Compositional, High-dimensional, Multivariate count data, Obesity
Abstract The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children.
The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children.The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children.
The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children.
ArticleNumber 69
Audience Academic
Author Koslovsky, Matthew D.
Author_xml – sequence: 1
  givenname: Matthew D.
  surname: Koslovsky
  fullname: Koslovsky, Matthew D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40016656$$D View this record in MEDLINE/PubMed
BookMark eNptksluHCEQhlHkKLYneYEcopZySQ7tsDVNH0fONpKlSFnOqAboMSO6cYCWl6cPPeMlE0UcQFVfFcXPf4qOxjBahF4TfEaIFB8SobLpakybGgvcypo_QyeEt6SmBDdHf52P0WlKW4xJK3HzAh3zchSiESfIL0fwt3du3FSD0zGsXRhsZSBDde3yZZXhJoyhpEo6aQ8pud5pyC6M1ZTmMqjubAy1G3sP2Zrqo4tOX3qb62Hy2c3F4KshGOtfouc9-GRf3e8L9Ovzp5_nX-uLb19W58uLWnPKck1bzaSRvWkYN9DL8jbaECu41FZ0GphmhnWkk4TRvu34mhqNuaREGGn7xrAFWu37mgBbdRXdAPFWBXBqFwhxoyBmp71V1LbAmBFSEM51260pB8ubTmLdE1vGWaB3-15XMfyebMpqFsJ6D6MNU1KMtJSKjtOmoG__QbdhikXfHdXMorfiidpAub_IFnIEPTdVS0k70pKOzL3O_kOVZWz5jOKD3pX4QcH7g4LCZHuTNzClpFY_vh-yb-4HndaDNY8KPdiiAHQPFEekFG3_iBCsZu-pvfdU8Z7aeU9x9gdleMjL
Cites_doi 10.2197/ipsjtbio.13.1
10.1080/01621459.2022.2151447
10.1093/biostatistics/kxz050
10.1111/biom.12654
10.1002/cjs.11556
10.1214/22-AOAS1641
10.1038/ismej.2017.119
10.1093/biomet/asab020
10.1111/j.2517-6161.1982.tb01195.x
10.3389/fmicb.2020.607325
10.1186/s12859-016-1414-x
10.3748/wjg.v27.i25.3837
10.1371/journal.pone.0255446
10.1128/AEM.00062-07
10.1128/AEM.02627-17
10.3389/fmicb.2020.570825
10.3389/fmicb.2017.02224
10.1007/s11912-016-0528-7
10.1111/2041-210X.12114
10.1038/nmeth.3869
10.1111/biom.13853
10.1101/19000489
10.1186/s12859-019-3325-0
10.3389/fgene.2019.01022
10.1109/TNNLS.2013.2292894
10.1093/bioinformatics/btab543
10.1111/2041-210X.13315
10.3389/fmicb.2017.00365
10.1093/bioinformatics/btq461
10.5281/zenodo.569601
10.1038/s41587-019-0209-9
10.1007/s10651-024-00614-w
10.1155/2014/906168
10.1093/biostatistics/kxab048
10.1214/18-BA1132
10.1038/s41467-017-01973-8
10.1101/gr.5969107
10.1080/01621459.2013.829001
10.1128/mSphere.00191-21
10.1093/bioinformatics/bty729
10.18637/jss.v040.i08
10.1128/mSystems.00857-19
10.1111/rssc.12493
10.1186/s12859-020-03803-z
10.1186/gb-2014-15-3-r46
10.1186/s12859-015-0747-1
10.1214/16-AOAS928
10.2307/3315930
10.1080/10618600.2016.1154063
10.1371/journal.pone.0129606
10.1214/12-AOAS592
10.1111/2041-210X.13831
10.1214/20-AOAS1354
10.1038/s41522-019-0101-x
10.1214/19-AOAS1295
10.1093/biomet/76.4.643
10.3389/fevo.2021.588292
10.1128/mSystems.00191-16
10.1002/hep.26093
10.1038/nmeth.2604
10.1080/10618600.2021.1935971
10.1186/s12859-021-04193-6
10.1111/2041-210X.13858
10.1093/jn/nxz198
ContentType Journal Article
Copyright 2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1186/s12859-025-06078-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 19
ExternalDocumentID oai_doaj_org_article_2e7a33d686144c79b24ae45980cf1e42
A829171915
40016656
10_1186_s12859_025_06078_4
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-2245492
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
M48
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
7X8
ID FETCH-LOGICAL-c423t-27c38d8fd534daf8607251e648ce69ca3c3d39198132f794b2dc048216d8ef5d3
IEDL.DBID DOA
ISSN 1471-2105
IngestDate Wed Aug 27 01:20:40 EDT 2025
Fri Jul 11 05:35:08 EDT 2025
Sat Aug 23 15:03:45 EDT 2025
Tue Jun 17 22:00:01 EDT 2025
Tue Jun 10 21:08:40 EDT 2025
Fri Jun 27 05:15:09 EDT 2025
Mon May 12 02:38:44 EDT 2025
Tue Jul 01 05:28:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Obesity
High-dimensional
Multivariate count data
Compositional
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-27c38d8fd534daf8607251e648ce69ca3c3d39198132f794b2dc048216d8ef5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/2e7a33d686144c79b24ae45980cf1e42
PMID 40016656
PQID 3175400176
PQPubID 44065
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_2e7a33d686144c79b24ae45980cf1e42
proquest_miscellaneous_3172269425
proquest_journals_3175400176
gale_infotracmisc_A829171915
gale_infotracacademiconefile_A829171915
gale_incontextgauss_ISR_A829171915
pubmed_primary_40016656
crossref_primary_10_1186_s12859_025_06078_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-27
PublicationDateYYYYMMDD 2025-02-27
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2025
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References J Chen (6078_CR50) 2013; 7
T Okui (6078_CR17) 2020; 13
D Eddelbuettel (6078_CR55) 2011; 40
J Aitchison (6078_CR62) 1982; 44
E Bolyen (6078_CR9) 2019; 37
MD Koslovsky (6078_CR18) 2020; 14
P Shi (6078_CR39) 2022; 109
K Shuler (6078_CR23) 2021; 70
R Jiang (6078_CR35) 2023; 118
HJ Gwak (6078_CR1) 2020; 11
Y Zhang (6078_CR54) 2017; 26
C Duvallet (6078_CR59) 2017
M Pedone (6078_CR68) 2023; 17
Z Dai (6078_CR53) 2019; 35
S Wang (6078_CR41) 2020; 48
M Duan (6078_CR65) 2021; 16
6078_CR25
B Neelon (6078_CR33) 2019; 14
C Duvallet (6078_CR60) 2017; 8
AM Eren (6078_CR10) 2013; 4
WD Wadsworth (6078_CR15) 2017; 18
AI Spiers (6078_CR45) 2022; 13
MJ Ha (6078_CR19) 2020; 21
J Aitchison (6078_CR36) 1989; 76
GB Gloor (6078_CR27) 2017; 8
NG Polson (6078_CR52) 2013; 108
G Allard (6078_CR7) 2015; 16
D Di Cecco (6078_CR30) 2024; 31
L Christensen (6078_CR67) 2019; 149
MD Koslovsky (6078_CR38) 2023; 79
DH Huson (6078_CR2) 2007; 17
B Ren (6078_CR20) 2020; 14
T Wang (6078_CR49) 2017; 73
B Frénay (6078_CR43) 2013; 25
N Shah (6078_CR8) 2019; 10
PD Schloss (6078_CR32) 2021; 6
CM Chiu (6078_CR66) 2014; 2014
O Castaner (6078_CR58) 2018; 2018
X Zhang (6078_CR16) 2020; 21
L Xu (6078_CR34) 2015; 10
TB Swartz (6078_CR40) 2004; 32
S Jiang (6078_CR21) 2021; 22
MA Berry (6078_CR31) 2017; 8
MD Koslovsky (6078_CR51) 2020; 21
DE Wood (6078_CR4) 2014; 15
RC Edgar (6078_CR6) 2013; 10
GK John (6078_CR56) 2016; 18
J Pollock (6078_CR29) 2018; 84
ZD Wallen (6078_CR61) 2021; 22
P Shi (6078_CR14) 2016; 10
Q Wang (6078_CR3) 2007; 73
BJ Callahan (6078_CR11) 2016; 13
A Amir (6078_CR12) 2017; 2
N Osborne (6078_CR24) 2022; 31
J Chiquet (6078_CR37) 2021; 9
CJ Pérez (6078_CR42) 2007; 101
RC Edgar (6078_CR5) 2010; 26
Q Cao (6078_CR26) 2021; 11
C Zhou (6078_CR22) 2021; 37
BJ Callahan (6078_CR13) 2017; 11
MD Koslovsky (6078_CR46) 2024; 1
WJ Wright (6078_CR44) 2020; 11
C Stratton (6078_CR47) 2022; 13
BN Liu (6078_CR57) 2021; 27
N Ozato (6078_CR63) 2019; 5
DS Clausen (6078_CR28) 2022; 23
L Zhu (6078_CR48) 2013; 57
A Benítez-Páez (6078_CR64) 2020; 5
References_xml – volume: 13
  start-page: 1
  year: 2020
  ident: 6078_CR17
  publication-title: IPSJ Trans Bioinform
  doi: 10.2197/ipsjtbio.13.1
– volume: 118
  start-page: 792
  issue: 542
  year: 2023
  ident: 6078_CR35
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2022.2151447
– volume: 22
  start-page: 522
  issue: 3
  year: 2021
  ident: 6078_CR21
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxz050
– volume: 73
  start-page: 792
  issue: 3
  year: 2017
  ident: 6078_CR49
  publication-title: Biometrics
  doi: 10.1111/biom.12654
– volume: 48
  start-page: 655
  issue: 4
  year: 2020
  ident: 6078_CR41
  publication-title: Can J Stat
  doi: 10.1002/cjs.11556
– volume: 17
  start-page: 539
  issue: 1
  year: 2023
  ident: 6078_CR68
  publication-title: Ann Appl Stat
  doi: 10.1214/22-AOAS1641
– volume: 11
  start-page: 2639
  issue: 12
  year: 2017
  ident: 6078_CR13
  publication-title: ISME J
  doi: 10.1038/ismej.2017.119
– volume: 109
  start-page: 405
  issue: 2
  year: 2022
  ident: 6078_CR39
  publication-title: Biometrika
  doi: 10.1093/biomet/asab020
– volume: 44
  start-page: 139
  issue: 2
  year: 1982
  ident: 6078_CR62
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1982.tb01195.x
– volume: 2018
  start-page: 4095789
  year: 2018
  ident: 6078_CR58
  publication-title: Int J Endocrinol
– volume: 11
  start-page: 607325
  year: 2021
  ident: 6078_CR26
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.607325
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: 6078_CR15
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-1414-x
– volume: 27
  start-page: 3837
  issue: 25
  year: 2021
  ident: 6078_CR57
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v27.i25.3837
– volume: 16
  start-page: e0255446
  issue: 8
  year: 2021
  ident: 6078_CR65
  publication-title: Plos One
  doi: 10.1371/journal.pone.0255446
– volume: 73
  start-page: 5261
  issue: 16
  year: 2007
  ident: 6078_CR3
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00062-07
– volume: 84
  start-page: e02627
  issue: 7
  year: 2018
  ident: 6078_CR29
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02627-17
– volume: 11
  start-page: 570825
  year: 2020
  ident: 6078_CR1
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.570825
– volume: 8
  start-page: 2224
  year: 2017
  ident: 6078_CR27
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.02224
– volume: 18
  start-page: 1
  year: 2016
  ident: 6078_CR56
  publication-title: Curr Oncol Rep
  doi: 10.1007/s11912-016-0528-7
– volume: 4
  start-page: 1111
  issue: 12
  year: 2013
  ident: 6078_CR10
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12114
– volume: 13
  start-page: 581
  issue: 7
  year: 2016
  ident: 6078_CR11
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3869
– volume: 79
  start-page: 3239
  issue: 4
  year: 2023
  ident: 6078_CR38
  publication-title: Biometrics
  doi: 10.1111/biom.13853
– ident: 6078_CR25
  doi: 10.1101/19000489
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 6078_CR51
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-019-3325-0
– volume: 10
  start-page: 1022
  year: 2019
  ident: 6078_CR8
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.01022
– volume: 25
  start-page: 845
  issue: 5
  year: 2013
  ident: 6078_CR43
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2292894
– volume: 37
  start-page: 4652
  issue: 24
  year: 2021
  ident: 6078_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab543
– volume: 11
  start-page: 71
  issue: 1
  year: 2020
  ident: 6078_CR44
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13315
– volume: 1
  start-page: 1
  issue: 1
  year: 2024
  ident: 6078_CR46
  publication-title: Bayesian Anal
– volume: 8
  start-page: 365
  year: 2017
  ident: 6078_CR31
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.00365
– volume: 26
  start-page: 2460
  issue: 19
  year: 2010
  ident: 6078_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq461
– year: 2017
  ident: 6078_CR59
  publication-title: Zenodo
  doi: 10.5281/zenodo.569601
– volume: 37
  start-page: 852
  issue: 8
  year: 2019
  ident: 6078_CR9
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0209-9
– volume: 31
  start-page: 485
  year: 2024
  ident: 6078_CR30
  publication-title: Environ Ecol Stat
  doi: 10.1007/s10651-024-00614-w
– volume: 2014
  start-page: 906168
  year: 2014
  ident: 6078_CR66
  publication-title: BioMed Res Int
  doi: 10.1155/2014/906168
– volume: 23
  start-page: 1099
  issue: 4
  year: 2022
  ident: 6078_CR28
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxab048
– volume: 14
  start-page: 829
  issue: 3
  year: 2019
  ident: 6078_CR33
  publication-title: Bayesian Anal
  doi: 10.1214/18-BA1132
– volume: 8
  start-page: 1784
  issue: 1
  year: 2017
  ident: 6078_CR60
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01973-8
– volume: 17
  start-page: 377
  issue: 3
  year: 2007
  ident: 6078_CR2
  publication-title: Genome Res
  doi: 10.1101/gr.5969107
– volume: 108
  start-page: 1339
  issue: 504
  year: 2013
  ident: 6078_CR52
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2013.829001
– volume: 6
  start-page: 10
  issue: 4
  year: 2021
  ident: 6078_CR32
  publication-title: Msphere
  doi: 10.1128/mSphere.00191-21
– volume: 35
  start-page: 807
  issue: 5
  year: 2019
  ident: 6078_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty729
– volume: 40
  start-page: 1
  year: 2011
  ident: 6078_CR55
  publication-title: J Stat Softw
  doi: 10.18637/jss.v040.i08
– volume: 5
  start-page: 10
  issue: 2
  year: 2020
  ident: 6078_CR64
  publication-title: Msystems
  doi: 10.1128/mSystems.00857-19
– volume: 70
  start-page: 961
  issue: 4
  year: 2021
  ident: 6078_CR23
  publication-title: J R Stat Soc Ser C Appl Stat
  doi: 10.1111/rssc.12493
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 6078_CR16
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-020-03803-z
– volume: 15
  start-page: 1
  issue: 3
  year: 2014
  ident: 6078_CR4
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-3-r46
– volume: 16
  start-page: 1
  issue: 1
  year: 2015
  ident: 6078_CR7
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-015-0747-1
– volume: 10
  start-page: 1019
  issue: 2
  year: 2016
  ident: 6078_CR14
  publication-title: Ann Appl Stat
  doi: 10.1214/16-AOAS928
– volume: 32
  start-page: 285
  issue: 3
  year: 2004
  ident: 6078_CR40
  publication-title: Can J Stat
  doi: 10.2307/3315930
– volume: 101
  start-page: 71
  issue: 1
  year: 2007
  ident: 6078_CR42
  publication-title: RACSAM
– volume: 26
  start-page: 1
  issue: 1
  year: 2017
  ident: 6078_CR54
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2016.1154063
– volume: 10
  start-page: e0129606
  issue: 7
  year: 2015
  ident: 6078_CR34
  publication-title: PloS One
  doi: 10.1371/journal.pone.0129606
– volume: 7
  start-page: 418
  issue: 1
  year: 2013
  ident: 6078_CR50
  publication-title: Ann Appl Stat
  doi: 10.1214/12-AOAS592
– volume: 13
  start-page: 1288
  issue: 6
  year: 2022
  ident: 6078_CR47
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13831
– volume: 14
  start-page: 1471
  issue: 3
  year: 2020
  ident: 6078_CR18
  publication-title: Ann Appl Stat
  doi: 10.1214/20-AOAS1354
– volume: 5
  start-page: 28
  issue: 1
  year: 2019
  ident: 6078_CR63
  publication-title: NPJ Biofilms Microbiomes
  doi: 10.1038/s41522-019-0101-x
– volume: 14
  start-page: 494
  issue: 1
  year: 2020
  ident: 6078_CR20
  publication-title: Ann Appl Stat
  doi: 10.1214/19-AOAS1295
– volume: 76
  start-page: 643
  issue: 4
  year: 1989
  ident: 6078_CR36
  publication-title: Biometrika
  doi: 10.1093/biomet/76.4.643
– volume: 9
  start-page: 188
  year: 2021
  ident: 6078_CR37
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2021.588292
– volume: 21
  start-page: 1
  issue: 21
  year: 2020
  ident: 6078_CR19
  publication-title: BMC Bioinform
– volume: 2
  start-page: 10
  issue: 2
  year: 2017
  ident: 6078_CR12
  publication-title: MSystems
  doi: 10.1128/mSystems.00191-16
– volume: 57
  start-page: 601
  issue: 2
  year: 2013
  ident: 6078_CR48
  publication-title: Hepatology
  doi: 10.1002/hep.26093
– volume: 10
  start-page: 996
  issue: 10
  year: 2013
  ident: 6078_CR6
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2604
– volume: 31
  start-page: 163
  issue: 1
  year: 2022
  ident: 6078_CR24
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2021.1935971
– volume: 22
  start-page: 265
  issue: 1
  year: 2021
  ident: 6078_CR61
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-021-04193-6
– volume: 13
  start-page: 1528
  issue: 7
  year: 2022
  ident: 6078_CR45
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13858
– volume: 149
  start-page: 2174
  issue: 12
  year: 2019
  ident: 6078_CR67
  publication-title: J Nutr
  doi: 10.1093/jn/nxz198
SSID ssj0017805
Score 2.4638321
Snippet The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role...
Abstract The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 69
SubjectTerms Algorithms
Analysis
Biology
Care and treatment
Child
Classification
Complications and side effects
Composition
Compositional
Data analysis
Gastrointestinal Microbiome
High-dimensional
Humans
Identification and classification
Inflation (Finance)
Microbial activity
Microbiomes
Microbiota
Microbiota (Symbiotic organisms)
Microorganisms
Modelling
Multivariate count data
Obesity
Obesity - microbiology
Obesity in children
Phenetics
Probability
Sequences
Sparsity
Taxonomy
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYrgg4TbfG76JKd4nII-qAf7FtJ87B3ctee2C3p_vTNpd2UVfG2SlsxM5iOd-Q0hr2Z15jrpwGqrAlN18qAHIwQrMchoamkag8XJn7-Y4xP1aaEX04VbP6VVbnRiUdSxC3hHfoB2TqFONW8vfzDsGoV_V6cWGtfJDYQuw5Su-WIbcHHE698Uylhz0HNEa2PYwHVmwDQytWOMCmb_v5r5L3-z2J2jO-T25DDSw5HDd8m11N4jN8cWkr_uk_OCKnIFBohenI2gSheJYt4nxStWOvifY-UxDPcBXWXMDSrsoJjzvqSeXqVVx0DSzsHvjBSU4Fk4BXaykmyIi-H7pWPOA3Jy9OH7-2M2dVBgAdykgYl5kDbaHLVU0WcLuwZ_JhllQzJ18BIYImteW4hJM5zMRsQAR1pwE23KOsqHZK_t2vSYUJNVlIanlD0EOSk2jdJeS88briJ4URV5syGluxyBMlwJMKxxI-EdEN4VwjtVkXdI7e1MBLkuD7rV0k1nxok09xIkxmLQGuZ1I5RPStd2FjJPSlTkJfLKIYxFi3kyS7_ue_fx21d3aAXEoRCL6oq8niblblj54KeyA9gVIl_tzNzfmYls2R3eiISbznnv_khlRV5sh3El5q61qVuXOQLrhQW84tEoStt941oDLvWT_7_8KbklithiKdU-2RtW6_QMnKGheV4k_jd6_gcw
  priority: 102
  providerName: ProQuest
Title Analyzing microbiome data with taxonomic misclassification using a zero-inflated Dirichlet-multinomial model
URI https://www.ncbi.nlm.nih.gov/pubmed/40016656
https://www.proquest.com/docview/3175400176
https://www.proquest.com/docview/3172269425
https://doaj.org/article/2e7a33d686144c79b24ae45980cf1e42
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagCIkL4k2gRAYhcUBWs2uv1z6mqKFEokItlXKzvH6USu0GZTcS9NczY28iAgcuXBIpHifxjO35Jpn5hpC3Ex2LKlSOaSUcEzpYuAc9BCvecS81l43E4uTPJ_L4XMwX1eK3Vl-YE5bpgbPiDspQWw7TFEYurtZNKWwQlVYTF4sg0u0LPm8TTA3_HyBT_6ZERsmDrkCeNoatWycSnCITO24osfX_fSf_gTSTx5k9IPcHqEin-Ss-JLdC-4jczc0jfz4mV4lP5AZcD72-zHRK14FixifFH1dpb3_kmmMY7hyCZMwKSoagmO1-QS29Caslgz12BYjTU7j-Lt03MCRLaYY4GT4_9cp5Qs5nR18_HLOhdwJzAJB6VtaOK6-ir7jwNipYNSCZIIVyQWpnOZiC60IriEYjnMmm9A4Oc1lIr0KsPH9K9tplG54TKqPwXBYhRAvhTfBNIypbcVs0hfCAn0bk_UaV5numyDAptFDSZMUbULxJijdiRA5R21tJpLdOL4DRzWB08y-jj8gbtJVBAosWM2Qu7LrrzKezUzNVJUSgEIVWI_JuEIrLfmWdHQoOYFXIebUjub8jiWbZHd5sCTOc8M4g7hK402D9r7fDOBOz1tqwXCeZEiuFS3iLZ3krbdeNcyWA6Rf_Qx8vyb0ybW4stdone_1qHV4BWOqbMbldL2p4VLOPY3JnOp2fzeH58Ojky-k4nZlfCu8UEA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggEEgDsjqxna8zgGh8lh26eMArdSbcWxnqdRuyiYraH8Uv5EZJ1m0IHHrNR47yfjzPJJ5EPJ8kJdpFjLHci0dk3mwIAc9OCveCa9yoQqFycm7e2p8ID8dZodr5FefC4Nhlb1MjILaVw6_kW-inpMoU9Wb0-8Mu0bh39W-hUYLi-1w9gNctvr15D3s7wvORx_2341Z11WAOTAdGsaHTmivS58J6W2p1WAIOj4oqV1QubMCHlLk4IuDn1YCWgvuHcCcp8rrUGZewLqXyGUpRI4nSo8-Lv9aYH-APjFHq806xepwDBvGDuAumskV5Rd7BPyrCf6yb6OeG90g1zsDlW61iLpJ1sLsFrnStqw8u02OYxWTc1B49OSoLeJ0EijGmVL8pEsb-7PNdIbh2qFpjrFIcfspxthPqaXnYV4xQPYx2LmegtA9ct8APiwGN-JkuH_s0HOHHFwIb--S9Vk1C_cJVaX0QqUhlBacquCLQmY2EzYtUunBakvIq56V5rQtzGGiQ6OVaRlvgPEmMt7IhLxFbi8psah2vFDNp6Y7o4aHoRWAUI1OshvmBZc2yCzXA1emQfKEPMO9Mlg2Y4ZxOVO7qGsz-fLZbGkOfi_4vllCXnZEZdXMrbNdmgO8FVbaWqHcWKHEbVkd7iFhOrlSmz-nICFPl8M4E2PlZqFaRBqO-ckclrjXQmn53jhXgQn_4P-LPyFXx_u7O2Znsrf9kFzjEcKYxrVB1pv5IjwCQ6wpHkf0U_L1oo_bb0weQ0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+microbiome+data+with+taxonomic+misclassification+using+a+zero-inflated+Dirichlet-multinomial+model&rft.jtitle=BMC+bioinformatics&rft.au=Koslovsky%2C+Matthew+D&rft.date=2025-02-27&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-025-06078-4&rft.externalDocID=A829171915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon