Analyzing microbiome data with taxonomic misclassification using a zero-inflated Dirichlet-multinomial model
The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent ...
Saved in:
Published in | BMC bioinformatics Vol. 26; no. 1; pp. 69 - 19 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
27.02.2025
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children. |
---|---|
AbstractList | The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children. The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children. Keywords: Compositional, High-dimensional, Multivariate count data, Obesity Abstract The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children. The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children.The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children. The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children. |
ArticleNumber | 69 |
Audience | Academic |
Author | Koslovsky, Matthew D. |
Author_xml | – sequence: 1 givenname: Matthew D. surname: Koslovsky fullname: Koslovsky, Matthew D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40016656$$D View this record in MEDLINE/PubMed |
BookMark | eNptksluHCEQhlHkKLYneYEcopZySQ7tsDVNH0fONpKlSFnOqAboMSO6cYCWl6cPPeMlE0UcQFVfFcXPf4qOxjBahF4TfEaIFB8SobLpakybGgvcypo_QyeEt6SmBDdHf52P0WlKW4xJK3HzAh3zchSiESfIL0fwt3du3FSD0zGsXRhsZSBDde3yZZXhJoyhpEo6aQ8pud5pyC6M1ZTmMqjubAy1G3sP2Zrqo4tOX3qb62Hy2c3F4KshGOtfouc9-GRf3e8L9Ovzp5_nX-uLb19W58uLWnPKck1bzaSRvWkYN9DL8jbaECu41FZ0GphmhnWkk4TRvu34mhqNuaREGGn7xrAFWu37mgBbdRXdAPFWBXBqFwhxoyBmp71V1LbAmBFSEM51260pB8ubTmLdE1vGWaB3-15XMfyebMpqFsJ6D6MNU1KMtJSKjtOmoG__QbdhikXfHdXMorfiidpAub_IFnIEPTdVS0k70pKOzL3O_kOVZWz5jOKD3pX4QcH7g4LCZHuTNzClpFY_vh-yb-4HndaDNY8KPdiiAHQPFEekFG3_iBCsZu-pvfdU8Z7aeU9x9gdleMjL |
Cites_doi | 10.2197/ipsjtbio.13.1 10.1080/01621459.2022.2151447 10.1093/biostatistics/kxz050 10.1111/biom.12654 10.1002/cjs.11556 10.1214/22-AOAS1641 10.1038/ismej.2017.119 10.1093/biomet/asab020 10.1111/j.2517-6161.1982.tb01195.x 10.3389/fmicb.2020.607325 10.1186/s12859-016-1414-x 10.3748/wjg.v27.i25.3837 10.1371/journal.pone.0255446 10.1128/AEM.00062-07 10.1128/AEM.02627-17 10.3389/fmicb.2020.570825 10.3389/fmicb.2017.02224 10.1007/s11912-016-0528-7 10.1111/2041-210X.12114 10.1038/nmeth.3869 10.1111/biom.13853 10.1101/19000489 10.1186/s12859-019-3325-0 10.3389/fgene.2019.01022 10.1109/TNNLS.2013.2292894 10.1093/bioinformatics/btab543 10.1111/2041-210X.13315 10.3389/fmicb.2017.00365 10.1093/bioinformatics/btq461 10.5281/zenodo.569601 10.1038/s41587-019-0209-9 10.1007/s10651-024-00614-w 10.1155/2014/906168 10.1093/biostatistics/kxab048 10.1214/18-BA1132 10.1038/s41467-017-01973-8 10.1101/gr.5969107 10.1080/01621459.2013.829001 10.1128/mSphere.00191-21 10.1093/bioinformatics/bty729 10.18637/jss.v040.i08 10.1128/mSystems.00857-19 10.1111/rssc.12493 10.1186/s12859-020-03803-z 10.1186/gb-2014-15-3-r46 10.1186/s12859-015-0747-1 10.1214/16-AOAS928 10.2307/3315930 10.1080/10618600.2016.1154063 10.1371/journal.pone.0129606 10.1214/12-AOAS592 10.1111/2041-210X.13831 10.1214/20-AOAS1354 10.1038/s41522-019-0101-x 10.1214/19-AOAS1295 10.1093/biomet/76.4.643 10.3389/fevo.2021.588292 10.1128/mSystems.00191-16 10.1002/hep.26093 10.1038/nmeth.2604 10.1080/10618600.2021.1935971 10.1186/s12859-021-04193-6 10.1111/2041-210X.13858 10.1093/jn/nxz198 |
ContentType | Journal Article |
Copyright | 2025. The Author(s). COPYRIGHT 2025 BioMed Central Ltd. 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025. The Author(s). – notice: COPYRIGHT 2025 BioMed Central Ltd. – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.1186/s12859-025-06078-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_2e7a33d686144c79b24ae45980cf1e42 A829171915 40016656 10_1186_s12859_025_06078_4 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: National Science Foundation grantid: DMS-2245492 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB CGR CUY CVF ECM EIF NPM PMFND 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N M48 P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U 7X8 |
ID | FETCH-LOGICAL-c423t-27c38d8fd534daf8607251e648ce69ca3c3d39198132f794b2dc048216d8ef5d3 |
IEDL.DBID | DOA |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:20:40 EDT 2025 Fri Jul 11 05:35:08 EDT 2025 Sat Aug 23 15:03:45 EDT 2025 Tue Jun 17 22:00:01 EDT 2025 Tue Jun 10 21:08:40 EDT 2025 Fri Jun 27 05:15:09 EDT 2025 Mon May 12 02:38:44 EDT 2025 Tue Jul 01 05:28:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Obesity High-dimensional Multivariate count data Compositional |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-27c38d8fd534daf8607251e648ce69ca3c3d39198132f794b2dc048216d8ef5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/2e7a33d686144c79b24ae45980cf1e42 |
PMID | 40016656 |
PQID | 3175400176 |
PQPubID | 44065 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2e7a33d686144c79b24ae45980cf1e42 proquest_miscellaneous_3172269425 proquest_journals_3175400176 gale_infotracmisc_A829171915 gale_infotracacademiconefile_A829171915 gale_incontextgauss_ISR_A829171915 pubmed_primary_40016656 crossref_primary_10_1186_s12859_025_06078_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-27 |
PublicationDateYYYYMMDD | 2025-02-27 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2025 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | J Chen (6078_CR50) 2013; 7 T Okui (6078_CR17) 2020; 13 D Eddelbuettel (6078_CR55) 2011; 40 J Aitchison (6078_CR62) 1982; 44 E Bolyen (6078_CR9) 2019; 37 MD Koslovsky (6078_CR18) 2020; 14 P Shi (6078_CR39) 2022; 109 K Shuler (6078_CR23) 2021; 70 R Jiang (6078_CR35) 2023; 118 HJ Gwak (6078_CR1) 2020; 11 Y Zhang (6078_CR54) 2017; 26 C Duvallet (6078_CR59) 2017 M Pedone (6078_CR68) 2023; 17 Z Dai (6078_CR53) 2019; 35 S Wang (6078_CR41) 2020; 48 M Duan (6078_CR65) 2021; 16 6078_CR25 B Neelon (6078_CR33) 2019; 14 C Duvallet (6078_CR60) 2017; 8 AM Eren (6078_CR10) 2013; 4 WD Wadsworth (6078_CR15) 2017; 18 AI Spiers (6078_CR45) 2022; 13 MJ Ha (6078_CR19) 2020; 21 J Aitchison (6078_CR36) 1989; 76 GB Gloor (6078_CR27) 2017; 8 NG Polson (6078_CR52) 2013; 108 G Allard (6078_CR7) 2015; 16 D Di Cecco (6078_CR30) 2024; 31 L Christensen (6078_CR67) 2019; 149 MD Koslovsky (6078_CR38) 2023; 79 DH Huson (6078_CR2) 2007; 17 B Ren (6078_CR20) 2020; 14 T Wang (6078_CR49) 2017; 73 B Frénay (6078_CR43) 2013; 25 N Shah (6078_CR8) 2019; 10 PD Schloss (6078_CR32) 2021; 6 CM Chiu (6078_CR66) 2014; 2014 O Castaner (6078_CR58) 2018; 2018 X Zhang (6078_CR16) 2020; 21 L Xu (6078_CR34) 2015; 10 TB Swartz (6078_CR40) 2004; 32 S Jiang (6078_CR21) 2021; 22 MA Berry (6078_CR31) 2017; 8 MD Koslovsky (6078_CR51) 2020; 21 DE Wood (6078_CR4) 2014; 15 RC Edgar (6078_CR6) 2013; 10 GK John (6078_CR56) 2016; 18 J Pollock (6078_CR29) 2018; 84 ZD Wallen (6078_CR61) 2021; 22 P Shi (6078_CR14) 2016; 10 Q Wang (6078_CR3) 2007; 73 BJ Callahan (6078_CR11) 2016; 13 A Amir (6078_CR12) 2017; 2 N Osborne (6078_CR24) 2022; 31 J Chiquet (6078_CR37) 2021; 9 CJ Pérez (6078_CR42) 2007; 101 RC Edgar (6078_CR5) 2010; 26 Q Cao (6078_CR26) 2021; 11 C Zhou (6078_CR22) 2021; 37 BJ Callahan (6078_CR13) 2017; 11 MD Koslovsky (6078_CR46) 2024; 1 WJ Wright (6078_CR44) 2020; 11 C Stratton (6078_CR47) 2022; 13 BN Liu (6078_CR57) 2021; 27 N Ozato (6078_CR63) 2019; 5 DS Clausen (6078_CR28) 2022; 23 L Zhu (6078_CR48) 2013; 57 A Benítez-Páez (6078_CR64) 2020; 5 |
References_xml | – volume: 13 start-page: 1 year: 2020 ident: 6078_CR17 publication-title: IPSJ Trans Bioinform doi: 10.2197/ipsjtbio.13.1 – volume: 118 start-page: 792 issue: 542 year: 2023 ident: 6078_CR35 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2022.2151447 – volume: 22 start-page: 522 issue: 3 year: 2021 ident: 6078_CR21 publication-title: Biostatistics doi: 10.1093/biostatistics/kxz050 – volume: 73 start-page: 792 issue: 3 year: 2017 ident: 6078_CR49 publication-title: Biometrics doi: 10.1111/biom.12654 – volume: 48 start-page: 655 issue: 4 year: 2020 ident: 6078_CR41 publication-title: Can J Stat doi: 10.1002/cjs.11556 – volume: 17 start-page: 539 issue: 1 year: 2023 ident: 6078_CR68 publication-title: Ann Appl Stat doi: 10.1214/22-AOAS1641 – volume: 11 start-page: 2639 issue: 12 year: 2017 ident: 6078_CR13 publication-title: ISME J doi: 10.1038/ismej.2017.119 – volume: 109 start-page: 405 issue: 2 year: 2022 ident: 6078_CR39 publication-title: Biometrika doi: 10.1093/biomet/asab020 – volume: 44 start-page: 139 issue: 2 year: 1982 ident: 6078_CR62 publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1982.tb01195.x – volume: 2018 start-page: 4095789 year: 2018 ident: 6078_CR58 publication-title: Int J Endocrinol – volume: 11 start-page: 607325 year: 2021 ident: 6078_CR26 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.607325 – volume: 18 start-page: 1 issue: 1 year: 2017 ident: 6078_CR15 publication-title: BMC Bioinform doi: 10.1186/s12859-016-1414-x – volume: 27 start-page: 3837 issue: 25 year: 2021 ident: 6078_CR57 publication-title: World J Gastroenterol doi: 10.3748/wjg.v27.i25.3837 – volume: 16 start-page: e0255446 issue: 8 year: 2021 ident: 6078_CR65 publication-title: Plos One doi: 10.1371/journal.pone.0255446 – volume: 73 start-page: 5261 issue: 16 year: 2007 ident: 6078_CR3 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00062-07 – volume: 84 start-page: e02627 issue: 7 year: 2018 ident: 6078_CR29 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02627-17 – volume: 11 start-page: 570825 year: 2020 ident: 6078_CR1 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.570825 – volume: 8 start-page: 2224 year: 2017 ident: 6078_CR27 publication-title: Front Microbiol doi: 10.3389/fmicb.2017.02224 – volume: 18 start-page: 1 year: 2016 ident: 6078_CR56 publication-title: Curr Oncol Rep doi: 10.1007/s11912-016-0528-7 – volume: 4 start-page: 1111 issue: 12 year: 2013 ident: 6078_CR10 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12114 – volume: 13 start-page: 581 issue: 7 year: 2016 ident: 6078_CR11 publication-title: Nat Methods doi: 10.1038/nmeth.3869 – volume: 79 start-page: 3239 issue: 4 year: 2023 ident: 6078_CR38 publication-title: Biometrics doi: 10.1111/biom.13853 – ident: 6078_CR25 doi: 10.1101/19000489 – volume: 21 start-page: 1 issue: 1 year: 2020 ident: 6078_CR51 publication-title: BMC Bioinform doi: 10.1186/s12859-019-3325-0 – volume: 10 start-page: 1022 year: 2019 ident: 6078_CR8 publication-title: Front Genet doi: 10.3389/fgene.2019.01022 – volume: 25 start-page: 845 issue: 5 year: 2013 ident: 6078_CR43 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2292894 – volume: 37 start-page: 4652 issue: 24 year: 2021 ident: 6078_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab543 – volume: 11 start-page: 71 issue: 1 year: 2020 ident: 6078_CR44 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13315 – volume: 1 start-page: 1 issue: 1 year: 2024 ident: 6078_CR46 publication-title: Bayesian Anal – volume: 8 start-page: 365 year: 2017 ident: 6078_CR31 publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00365 – volume: 26 start-page: 2460 issue: 19 year: 2010 ident: 6078_CR5 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – year: 2017 ident: 6078_CR59 publication-title: Zenodo doi: 10.5281/zenodo.569601 – volume: 37 start-page: 852 issue: 8 year: 2019 ident: 6078_CR9 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0209-9 – volume: 31 start-page: 485 year: 2024 ident: 6078_CR30 publication-title: Environ Ecol Stat doi: 10.1007/s10651-024-00614-w – volume: 2014 start-page: 906168 year: 2014 ident: 6078_CR66 publication-title: BioMed Res Int doi: 10.1155/2014/906168 – volume: 23 start-page: 1099 issue: 4 year: 2022 ident: 6078_CR28 publication-title: Biostatistics doi: 10.1093/biostatistics/kxab048 – volume: 14 start-page: 829 issue: 3 year: 2019 ident: 6078_CR33 publication-title: Bayesian Anal doi: 10.1214/18-BA1132 – volume: 8 start-page: 1784 issue: 1 year: 2017 ident: 6078_CR60 publication-title: Nat Commun doi: 10.1038/s41467-017-01973-8 – volume: 17 start-page: 377 issue: 3 year: 2007 ident: 6078_CR2 publication-title: Genome Res doi: 10.1101/gr.5969107 – volume: 108 start-page: 1339 issue: 504 year: 2013 ident: 6078_CR52 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2013.829001 – volume: 6 start-page: 10 issue: 4 year: 2021 ident: 6078_CR32 publication-title: Msphere doi: 10.1128/mSphere.00191-21 – volume: 35 start-page: 807 issue: 5 year: 2019 ident: 6078_CR53 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty729 – volume: 40 start-page: 1 year: 2011 ident: 6078_CR55 publication-title: J Stat Softw doi: 10.18637/jss.v040.i08 – volume: 5 start-page: 10 issue: 2 year: 2020 ident: 6078_CR64 publication-title: Msystems doi: 10.1128/mSystems.00857-19 – volume: 70 start-page: 961 issue: 4 year: 2021 ident: 6078_CR23 publication-title: J R Stat Soc Ser C Appl Stat doi: 10.1111/rssc.12493 – volume: 21 start-page: 1 issue: 1 year: 2020 ident: 6078_CR16 publication-title: BMC Bioinform doi: 10.1186/s12859-020-03803-z – volume: 15 start-page: 1 issue: 3 year: 2014 ident: 6078_CR4 publication-title: Genome Biol doi: 10.1186/gb-2014-15-3-r46 – volume: 16 start-page: 1 issue: 1 year: 2015 ident: 6078_CR7 publication-title: BMC Bioinform doi: 10.1186/s12859-015-0747-1 – volume: 10 start-page: 1019 issue: 2 year: 2016 ident: 6078_CR14 publication-title: Ann Appl Stat doi: 10.1214/16-AOAS928 – volume: 32 start-page: 285 issue: 3 year: 2004 ident: 6078_CR40 publication-title: Can J Stat doi: 10.2307/3315930 – volume: 101 start-page: 71 issue: 1 year: 2007 ident: 6078_CR42 publication-title: RACSAM – volume: 26 start-page: 1 issue: 1 year: 2017 ident: 6078_CR54 publication-title: J Comput Graph Stat doi: 10.1080/10618600.2016.1154063 – volume: 10 start-page: e0129606 issue: 7 year: 2015 ident: 6078_CR34 publication-title: PloS One doi: 10.1371/journal.pone.0129606 – volume: 7 start-page: 418 issue: 1 year: 2013 ident: 6078_CR50 publication-title: Ann Appl Stat doi: 10.1214/12-AOAS592 – volume: 13 start-page: 1288 issue: 6 year: 2022 ident: 6078_CR47 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13831 – volume: 14 start-page: 1471 issue: 3 year: 2020 ident: 6078_CR18 publication-title: Ann Appl Stat doi: 10.1214/20-AOAS1354 – volume: 5 start-page: 28 issue: 1 year: 2019 ident: 6078_CR63 publication-title: NPJ Biofilms Microbiomes doi: 10.1038/s41522-019-0101-x – volume: 14 start-page: 494 issue: 1 year: 2020 ident: 6078_CR20 publication-title: Ann Appl Stat doi: 10.1214/19-AOAS1295 – volume: 76 start-page: 643 issue: 4 year: 1989 ident: 6078_CR36 publication-title: Biometrika doi: 10.1093/biomet/76.4.643 – volume: 9 start-page: 188 year: 2021 ident: 6078_CR37 publication-title: Front Ecol Evol doi: 10.3389/fevo.2021.588292 – volume: 21 start-page: 1 issue: 21 year: 2020 ident: 6078_CR19 publication-title: BMC Bioinform – volume: 2 start-page: 10 issue: 2 year: 2017 ident: 6078_CR12 publication-title: MSystems doi: 10.1128/mSystems.00191-16 – volume: 57 start-page: 601 issue: 2 year: 2013 ident: 6078_CR48 publication-title: Hepatology doi: 10.1002/hep.26093 – volume: 10 start-page: 996 issue: 10 year: 2013 ident: 6078_CR6 publication-title: Nat Methods doi: 10.1038/nmeth.2604 – volume: 31 start-page: 163 issue: 1 year: 2022 ident: 6078_CR24 publication-title: J Comput Graph Stat doi: 10.1080/10618600.2021.1935971 – volume: 22 start-page: 265 issue: 1 year: 2021 ident: 6078_CR61 publication-title: BMC Bioinform doi: 10.1186/s12859-021-04193-6 – volume: 13 start-page: 1528 issue: 7 year: 2022 ident: 6078_CR45 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13858 – volume: 149 start-page: 2174 issue: 12 year: 2019 ident: 6078_CR67 publication-title: J Nutr doi: 10.1093/jn/nxz198 |
SSID | ssj0017805 |
Score | 2.4638321 |
Snippet | The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role... Abstract The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 69 |
SubjectTerms | Algorithms Analysis Biology Care and treatment Child Classification Complications and side effects Composition Compositional Data analysis Gastrointestinal Microbiome High-dimensional Humans Identification and classification Inflation (Finance) Microbial activity Microbiomes Microbiota Microbiota (Symbiotic organisms) Microorganisms Modelling Multivariate count data Obesity Obesity - microbiology Obesity in children Phenetics Probability Sequences Sparsity Taxonomy |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYrgg4TbfG76JKd4nII-qAf7FtJ87B3ctee2C3p_vTNpd2UVfG2SlsxM5iOd-Q0hr2Z15jrpwGqrAlN18qAHIwQrMchoamkag8XJn7-Y4xP1aaEX04VbP6VVbnRiUdSxC3hHfoB2TqFONW8vfzDsGoV_V6cWGtfJDYQuw5Su-WIbcHHE698Uylhz0HNEa2PYwHVmwDQytWOMCmb_v5r5L3-z2J2jO-T25DDSw5HDd8m11N4jN8cWkr_uk_OCKnIFBohenI2gSheJYt4nxStWOvifY-UxDPcBXWXMDSrsoJjzvqSeXqVVx0DSzsHvjBSU4Fk4BXaykmyIi-H7pWPOA3Jy9OH7-2M2dVBgAdykgYl5kDbaHLVU0WcLuwZ_JhllQzJ18BIYImteW4hJM5zMRsQAR1pwE23KOsqHZK_t2vSYUJNVlIanlD0EOSk2jdJeS88briJ4URV5syGluxyBMlwJMKxxI-EdEN4VwjtVkXdI7e1MBLkuD7rV0k1nxok09xIkxmLQGuZ1I5RPStd2FjJPSlTkJfLKIYxFi3kyS7_ue_fx21d3aAXEoRCL6oq8niblblj54KeyA9gVIl_tzNzfmYls2R3eiISbznnv_khlRV5sh3El5q61qVuXOQLrhQW84tEoStt941oDLvWT_7_8KbklithiKdU-2RtW6_QMnKGheV4k_jd6_gcw priority: 102 providerName: ProQuest |
Title | Analyzing microbiome data with taxonomic misclassification using a zero-inflated Dirichlet-multinomial model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40016656 https://www.proquest.com/docview/3175400176 https://www.proquest.com/docview/3172269425 https://doaj.org/article/2e7a33d686144c79b24ae45980cf1e42 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagCIkL4k2gRAYhcUBWs2uv1z6mqKFEokItlXKzvH6USu0GZTcS9NczY28iAgcuXBIpHifxjO35Jpn5hpC3Ex2LKlSOaSUcEzpYuAc9BCvecS81l43E4uTPJ_L4XMwX1eK3Vl-YE5bpgbPiDspQWw7TFEYurtZNKWwQlVYTF4sg0u0LPm8TTA3_HyBT_6ZERsmDrkCeNoatWycSnCITO24osfX_fSf_gTSTx5k9IPcHqEin-Ss-JLdC-4jczc0jfz4mV4lP5AZcD72-zHRK14FixifFH1dpb3_kmmMY7hyCZMwKSoagmO1-QS29Caslgz12BYjTU7j-Lt03MCRLaYY4GT4_9cp5Qs5nR18_HLOhdwJzAJB6VtaOK6-ir7jwNipYNSCZIIVyQWpnOZiC60IriEYjnMmm9A4Oc1lIr0KsPH9K9tplG54TKqPwXBYhRAvhTfBNIypbcVs0hfCAn0bk_UaV5numyDAptFDSZMUbULxJijdiRA5R21tJpLdOL4DRzWB08y-jj8gbtJVBAosWM2Qu7LrrzKezUzNVJUSgEIVWI_JuEIrLfmWdHQoOYFXIebUjub8jiWbZHd5sCTOc8M4g7hK402D9r7fDOBOz1tqwXCeZEiuFS3iLZ3krbdeNcyWA6Rf_Qx8vyb0ybW4stdone_1qHV4BWOqbMbldL2p4VLOPY3JnOp2fzeH58Ojky-k4nZlfCu8UEA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggEEgDsjqxna8zgGh8lh26eMArdSbcWxnqdRuyiYraH8Uv5EZJ1m0IHHrNR47yfjzPJJ5EPJ8kJdpFjLHci0dk3mwIAc9OCveCa9yoQqFycm7e2p8ID8dZodr5FefC4Nhlb1MjILaVw6_kW-inpMoU9Wb0-8Mu0bh39W-hUYLi-1w9gNctvr15D3s7wvORx_2341Z11WAOTAdGsaHTmivS58J6W2p1WAIOj4oqV1QubMCHlLk4IuDn1YCWgvuHcCcp8rrUGZewLqXyGUpRI4nSo8-Lv9aYH-APjFHq806xepwDBvGDuAumskV5Rd7BPyrCf6yb6OeG90g1zsDlW61iLpJ1sLsFrnStqw8u02OYxWTc1B49OSoLeJ0EijGmVL8pEsb-7PNdIbh2qFpjrFIcfspxthPqaXnYV4xQPYx2LmegtA9ct8APiwGN-JkuH_s0HOHHFwIb--S9Vk1C_cJVaX0QqUhlBacquCLQmY2EzYtUunBakvIq56V5rQtzGGiQ6OVaRlvgPEmMt7IhLxFbi8psah2vFDNp6Y7o4aHoRWAUI1OshvmBZc2yCzXA1emQfKEPMO9Mlg2Y4ZxOVO7qGsz-fLZbGkOfi_4vllCXnZEZdXMrbNdmgO8FVbaWqHcWKHEbVkd7iFhOrlSmz-nICFPl8M4E2PlZqFaRBqO-ckclrjXQmn53jhXgQn_4P-LPyFXx_u7O2Znsrf9kFzjEcKYxrVB1pv5IjwCQ6wpHkf0U_L1oo_bb0weQ0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+microbiome+data+with+taxonomic+misclassification+using+a+zero-inflated+Dirichlet-multinomial+model&rft.jtitle=BMC+bioinformatics&rft.au=Koslovsky%2C+Matthew+D&rft.date=2025-02-27&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-025-06078-4&rft.externalDocID=A829171915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |