The VENUS/NWChem software package. Tight coupling between chemical dynamics simulations and electronic structure theory

The interface for VENUS and NWChem, and the resulting software package for direct dynamics simulations are described. The coupling of the two codes is considered to be a tight coupling since the two codes are compiled and linked together and act as one executable with data being passed between the t...

Full description

Saved in:
Bibliographic Details
Published inComputer physics communications Vol. 185; no. 3; pp. 1074 - 1080
Main Authors Lourderaj, Upakarasamy, Sun, Rui, Kohale, Swapnil C., Barnes, George L., de Jong, Wibe A., Windus, Theresa L., Hase, William L.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The interface for VENUS and NWChem, and the resulting software package for direct dynamics simulations are described. The coupling of the two codes is considered to be a tight coupling since the two codes are compiled and linked together and act as one executable with data being passed between the two codes through routine calls. The advantages of this type of coupling are discussed. The interface has been designed to have as little interference as possible with the core codes of both VENUS and NWChem. VENUS is the code that propagates the direct dynamics trajectories and, therefore, is the program that drives the overall execution of VENUS/NWChem. VENUS has remained an essentially sequential code, which uses the highly parallel structure of NWChem. Subroutines of the interface that accomplish the data transmission and communication between the two computer programs are described. Recent examples of the use of VENUS/NWChem for direct dynamics simulations are summarized. Program title: VENUS/NWChem Catalogue identifier: AERS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERS_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Open Source Educational Community License No. of lines in distributed program, including test data, etc.: 10,831,970 No. of bytes in distributed program, including test data, etc.: 77,141,871 Distribution format: tar.gz Programming language: Fortran 77 with some C in NWChem, MPI. Computer: All Linux based workstations and parallel supercomputers. Operating system: Linux. Has the code been vectorized or parallelized?: Venus is a sequential code; NWChem can run in parallel. Classification: 16.8. Subprograms used:Cat IdTitleReferenceAEGI_v1_0NWChemCPC 181(2010)1477Nature of problem: Direct dynamics simulations play an important role in investigating and understanding atomic-level chemical dynamics information such as atomistic reaction mechanisms, unimolecular and bimolecular rate constants, intramolecular vibrational energy redistribution rates, etc. The ability to couple direct dynamics with electronic structure methods brings a level of fidelity to the simulations that is important for complex systems. However, a tight coupling between two codes that have their own development teams and schedules can be challenging. Solution method: The VENUS/NWChem interface is designed to link the general electronic structure program (NWChem) and classical chemical dynamics simulation program (VENUS) to perform direct dynamics simulation in which the trajectories “on the fly” with the potential and its derivatives obtained directly from electronic structure theory. One of the design goals is to build interfaces that require as little interference in NWChem and VENUS as possible so that each of the code developments can continue independently. This is especially important since VENUS is currently a sequential code and NWChem is a parallel code and being able to compute the energies, gradients, and Hessian in parallel is an important aspect of making the software useful to users. In this manuscript, the tight coupling interface between the two codes is described and examples of its use are given. In the classical chemical dynamics simulation an ensemble of trajectories is calculated, and the initial sampling represents the conditions of the reactants for the chemical reaction under investigation. Each trajectory is evaluated by numerically integrating either Hamilton’s or Newton’s equations of motion. The Schrödinger equation is solved and the energy and energy gradient are calculated in the electronic structure program (NWChem), and this information is passed to the classical trajectory program (VENUS) to solve the equations of motion. Additional comments: Full documentation is provided in the distribution file. This includes a README file giving the names and brief description of all the files that make up the package and instructions on the installation and execution of the program. Sample input and output data for test run will also be provided. The software is free to download and use once a signed license agreement has been received. The agreement will be displayed when the program is requested. Running time: The running time depends on the size of the chemical system, simulation time, complexity of the ab initio method and number of CPUs. The ab initio method is the most time consuming part of each step in the calculations and scaling for different types of systems and levels of theory is available in Valiev et al. (2010). Again, there are many factors that affect the running time for the full simulation and it can range from several hours for simulations of a few atoms with DFT and a small basis set running on a single compute node to several days for the simulation of tens of heavy atoms with larger basis set running parallel.
AbstractList The interface for VENUS and NWChem, and the resulting software package for direct dynamics simulations are described. The coupling of the two codes is considered to be a tight coupling since the two codes are compiled and linked together and act as one executable with data being passed between the two codes through routine calls. The advantages of this type of coupling are discussed. The interface has been designed to have as little interference as possible with the core codes of both VENUS and NWChem. VENUS is the code that propagates the direct dynamics trajectories and, therefore, is the program that drives the overall execution of VENUS/NWChem. VENUS has remained an essentially sequential code, which uses the highly parallel structure of NWChem. Subroutines of the interface that accomplish the data transmission and communication between the two computer programs are described. Recent examples of the use of VENUS/NWChem for direct dynamics simulations are summarized. Program summary Program title: VENUS/NWChem Catalogue identifier: AERS_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open Source Educational Community License No. of lines in distributed program, including test data, etc.: 10,831,970 No. of bytes in distributed program, including test data, etc.: 77,141,871 Distribution format: tar.gz Programming language: Fortran 77 with some C in NWChem, MPI. Computer: All Linux based workstations and parallel supercomputers. Operating system: Linux. Has the code been vectorized or parallelized?: Venus is a sequential code; NWChem can run in parallel. Classification: 16.8. Subprograms used: Cat Id Title Reference AEGI_v1_0 NWChem CPC 181(2010)1477 Nature of problem: Direct dynamics simulations play an important role in investigating and understanding atomic-level chemical dynamics information such as atomistic reaction mechanisms, unimolecular and bimolecular rate constants, intramolecular vibrational energy redistribution rates, etc. The ability to couple direct dynamics with electronic structure methods brings a level of fidelity to the simulations that is important for complex systems. However, a tight coupling between two codes that have their own development teams and schedules can be challenging. Solution method: The VENUS/NWChem interface is designed to link the general electronic structure program (NWChem) and classical chemical dynamics simulation program (VENUS) to perform direct dynamics simulation in which the trajectories "on the fly" with the potential and its derivatives obtained directly from electronic structure theory. One of the design goals is to build interfaces that require as little interference in NWChem and VENUS as possible so that each of the code developments can continue independently. This is especially important since VENUS is currently a sequential code and NWChem is a parallel code and being able to compute the energies, gradients, and Hessian in parallel is an important aspect of making the software useful to users. In this manuscript, the tight coupling interface between the two codes is described and examples of its use are given. In the classical chemical dynamics simulation an ensemble of trajectories is calculated, and the initial sampling represents the conditions of the reactants for the chemical reaction under investigation. Each trajectory is evaluated by numerically integrating either Hamilton's or Newton's equations of motion. The Schrodinger equation is solved and the energy and energy gradient are calculated in the electronic structure program (NWChem), and this information is passed to the classical trajectory program (VENUS) to solve the equations of motion. Additional comments: Full documentation is provided in the distribution file. This includes a README file giving the names and brief description of all the files that make up the package and instructions on the installation and execution of the program. Sample input and output data for test run will also be provided. The software is free to download and use once a signed license agreement has been received. The agreement will be displayed when the program is requested. Running time: The running time depends on the size of the chemical system, simulation time, complexity of the ab initio method and number of CPUs. The ab initio method is the most time consuming part of each step in the calculations and scaling for different types of systems and levels of theory is available in Valiev et al. (2010). Again, there are many factors that affect the running time for the full simulation and it can range from several hours for simulations of a few atoms with DFT and a small basis set running on a single compute node to several days for the simulation of tens of heavy atoms with larger basis set running parallel.
The interface for VENUS and NWChem, and the resulting software package for direct dynamics simulations are described. The coupling of the two codes is considered to be a tight coupling since the two codes are compiled and linked together and act as one executable with data being passed between the two codes through routine calls. The advantages of this type of coupling are discussed. The interface has been designed to have as little interference as possible with the core codes of both VENUS and NWChem. VENUS is the code that propagates the direct dynamics trajectories and, therefore, is the program that drives the overall execution of VENUS/NWChem. VENUS has remained an essentially sequential code, which uses the highly parallel structure of NWChem. Subroutines of the interface that accomplish the data transmission and communication between the two computer programs are described. Recent examples of the use of VENUS/NWChem for direct dynamics simulations are summarized. Program title: VENUS/NWChem Catalogue identifier: AERS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERS_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Open Source Educational Community License No. of lines in distributed program, including test data, etc.: 10,831,970 No. of bytes in distributed program, including test data, etc.: 77,141,871 Distribution format: tar.gz Programming language: Fortran 77 with some C in NWChem, MPI. Computer: All Linux based workstations and parallel supercomputers. Operating system: Linux. Has the code been vectorized or parallelized?: Venus is a sequential code; NWChem can run in parallel. Classification: 16.8. Subprograms used:Cat IdTitleReferenceAEGI_v1_0NWChemCPC 181(2010)1477Nature of problem: Direct dynamics simulations play an important role in investigating and understanding atomic-level chemical dynamics information such as atomistic reaction mechanisms, unimolecular and bimolecular rate constants, intramolecular vibrational energy redistribution rates, etc. The ability to couple direct dynamics with electronic structure methods brings a level of fidelity to the simulations that is important for complex systems. However, a tight coupling between two codes that have their own development teams and schedules can be challenging. Solution method: The VENUS/NWChem interface is designed to link the general electronic structure program (NWChem) and classical chemical dynamics simulation program (VENUS) to perform direct dynamics simulation in which the trajectories “on the fly” with the potential and its derivatives obtained directly from electronic structure theory. One of the design goals is to build interfaces that require as little interference in NWChem and VENUS as possible so that each of the code developments can continue independently. This is especially important since VENUS is currently a sequential code and NWChem is a parallel code and being able to compute the energies, gradients, and Hessian in parallel is an important aspect of making the software useful to users. In this manuscript, the tight coupling interface between the two codes is described and examples of its use are given. In the classical chemical dynamics simulation an ensemble of trajectories is calculated, and the initial sampling represents the conditions of the reactants for the chemical reaction under investigation. Each trajectory is evaluated by numerically integrating either Hamilton’s or Newton’s equations of motion. The Schrödinger equation is solved and the energy and energy gradient are calculated in the electronic structure program (NWChem), and this information is passed to the classical trajectory program (VENUS) to solve the equations of motion. Additional comments: Full documentation is provided in the distribution file. This includes a README file giving the names and brief description of all the files that make up the package and instructions on the installation and execution of the program. Sample input and output data for test run will also be provided. The software is free to download and use once a signed license agreement has been received. The agreement will be displayed when the program is requested. Running time: The running time depends on the size of the chemical system, simulation time, complexity of the ab initio method and number of CPUs. The ab initio method is the most time consuming part of each step in the calculations and scaling for different types of systems and levels of theory is available in Valiev et al. (2010). Again, there are many factors that affect the running time for the full simulation and it can range from several hours for simulations of a few atoms with DFT and a small basis set running on a single compute node to several days for the simulation of tens of heavy atoms with larger basis set running parallel.
Author Windus, Theresa L.
Kohale, Swapnil C.
Barnes, George L.
de Jong, Wibe A.
Lourderaj, Upakarasamy
Hase, William L.
Sun, Rui
Author_xml – sequence: 1
  givenname: Upakarasamy
  surname: Lourderaj
  fullname: Lourderaj, Upakarasamy
  organization: School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 751005, India
– sequence: 2
  givenname: Rui
  surname: Sun
  fullname: Sun, Rui
  organization: Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
– sequence: 3
  givenname: Swapnil C.
  surname: Kohale
  fullname: Kohale, Swapnil C.
  organization: Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
– sequence: 4
  givenname: George L.
  surname: Barnes
  fullname: Barnes, George L.
  organization: Department of Chemistry and Biochemistry, Siena College, Loudonville, NY 12211, United States
– sequence: 5
  givenname: Wibe A.
  surname: de Jong
  fullname: de Jong, Wibe A.
  organization: Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
– sequence: 6
  givenname: Theresa L.
  surname: Windus
  fullname: Windus, Theresa L.
  organization: Department of Chemistry, Iowa State University, Ames, IA 50011, United States
– sequence: 7
  givenname: William L.
  surname: Hase
  fullname: Hase, William L.
  email: bill.hase@ttu.edu
  organization: Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
BookMark eNp9kE1vEzEYhC1UJNLCD-DmI5fd-l3b-yFOKCoFqWoPpHC0bO-bxGFjL7a3Uf49rsKZ08xhZqR5rsmVDx4J-QisBgbt7aG2s60bBrwGqBnAG7KCvhuqZhDiiqwYA1aJVsp35DqlA2Os6wa-IqfNHunPu8fnH7ePv9Z7PNIUtvmkI9JZ2996hzXduN0-UxuWeXJ-Rw3mE6KntqSd1RMdz14Xl2hyx2XS2QWfqPYjxQltjsE7S1OOi81Lmc17DPH8nrzd6inhh396Q56_3m3W36qHp_vv6y8PlRUNz1UjW5CasZYZI3tbrGk5DBI4a_vOcMFbwXs-mq6BXvdGt4ZboVEOQ2_YKPkN-XTZnWP4s2DK6uiSxWnSHsOSFLQSRCN4x0sULlEbQ0oRt2qO7qjjWQFTr5DVQRXI6hWyAlAFcul8vnSwfHhxGFWyDr3F0cXyXY3B_af9FwSChuQ
CitedBy_id crossref_primary_10_1021_acs_jpclett_5b02780
crossref_primary_10_1021_acs_jpca_0c06211
crossref_primary_10_1021_jacs_6b12017
crossref_primary_10_1021_acs_jpca_6b08739
crossref_primary_10_1063_5_0004997
crossref_primary_10_1021_acs_jpca_7b01359
crossref_primary_10_1002_poc_4339
crossref_primary_10_1021_acs_jpca_8b01002
crossref_primary_10_1039_D3CP01849K
crossref_primary_10_1016_j_ijms_2016_10_017
crossref_primary_10_1039_D2CP01987F
crossref_primary_10_1021_acs_chemrev_0c00901
crossref_primary_10_1063_1_5054399
crossref_primary_10_1039_C5CP03735B
crossref_primary_10_1021_acs_jpca_0c05323
crossref_primary_10_3390_metabo12010068
crossref_primary_10_1016_j_chemphys_2021_111173
crossref_primary_10_1002_jccs_202300036
crossref_primary_10_1016_j_ijms_2020_116515
crossref_primary_10_1002_jcc_25604
crossref_primary_10_1021_jacs_8b04529
crossref_primary_10_1021_acs_jpca_5b09487
crossref_primary_10_1063_1_4922451
crossref_primary_10_1021_acs_jpca_0c10464
crossref_primary_10_1016_j_ijms_2020_116470
crossref_primary_10_1039_C7CP00294G
crossref_primary_10_1038_s41467_017_00065_x
crossref_primary_10_1021_acs_jpca_8b07532
crossref_primary_10_1021_jp5002622
crossref_primary_10_1016_j_cartre_2023_100257
crossref_primary_10_1039_D3CP03832G
crossref_primary_10_1088_2516_1075_ac391f
crossref_primary_10_1016_j_ijms_2018_01_011
crossref_primary_10_1021_jp5042734
crossref_primary_10_1146_annurev_physchem_052516_044918
crossref_primary_10_1063_1_5126805
crossref_primary_10_1039_C7CP04199C
crossref_primary_10_1016_j_ijms_2020_116468
crossref_primary_10_1021_acsomega_1c04651
crossref_primary_10_1063_1_4985894
crossref_primary_10_1016_j_ijms_2021_116522
crossref_primary_10_1021_prechem_3c00088
crossref_primary_10_1080_08927022_2018_1560440
crossref_primary_10_1021_acs_jpca_2c07624
crossref_primary_10_1016_j_bdr_2017_06_005
crossref_primary_10_1080_00268976_2021_1977405
crossref_primary_10_1002_mas_21705
crossref_primary_10_1002_qua_26447
crossref_primary_10_1039_C4CP03589E
crossref_primary_10_1039_D0CP04590J
crossref_primary_10_1016_j_comptc_2016_06_001
crossref_primary_10_1016_j_ijms_2017_07_011
crossref_primary_10_1021_acs_jpca_2c04950
crossref_primary_10_1021_acs_jpca_0c09945
crossref_primary_10_1039_D1CP02427B
crossref_primary_10_1021_acs_jpca_5b07052
crossref_primary_10_1021_jasms_2c00366
crossref_primary_10_1039_D1CP04443E
crossref_primary_10_1021_jp511898y
crossref_primary_10_1063_5_0004179
crossref_primary_10_1002_chem_201706032
crossref_primary_10_1021_acs_jpca_9b06564
crossref_primary_10_1016_j_ijms_2018_12_004
crossref_primary_10_1021_acs_jpca_9b11513
crossref_primary_10_1021_acs_jpclett_1c01665
crossref_primary_10_1021_acs_jpca_5b05624
crossref_primary_10_1016_j_comptc_2021_113199
crossref_primary_10_1021_prechem_3c00053
crossref_primary_10_1039_C7CS00623C
crossref_primary_10_1039_D0CP05567K
crossref_primary_10_1021_acs_jpca_4c01159
crossref_primary_10_1021_acs_jpca_7b06557
crossref_primary_10_1039_C7CP02998E
crossref_primary_10_1063_1_5024908
crossref_primary_10_1021_acs_jpclett_7b00577
crossref_primary_10_1039_D3CP00491K
crossref_primary_10_1134_S1560354721020027
crossref_primary_10_1021_acs_jpca_0c01611
crossref_primary_10_1073_pnas_2019257117
crossref_primary_10_1021_acs_jpca_0c04366
crossref_primary_10_1039_D0CP02126A
crossref_primary_10_1021_acs_jpca_3c08204
crossref_primary_10_1021_acs_jpca_9b02656
crossref_primary_10_1021_acs_jpca_3c07553
crossref_primary_10_1039_D2CP03654A
crossref_primary_10_1039_D4CP01121J
crossref_primary_10_1021_acs_jpca_7b06880
crossref_primary_10_1039_D0CP02918A
crossref_primary_10_1039_D0CP06516A
crossref_primary_10_1039_D2FD00026A
crossref_primary_10_1021_acs_jpca_3c08447
crossref_primary_10_1063_1_5028117
Cites_doi 10.1021/jz1010658
10.1021/j150608a008
10.1002/jcc.540120814
10.1063/1.4736843
10.1063/1.2206785
10.1063/1.437060
10.1021/ct300573h
10.1016/j.comptc.2011.11.012
10.1063/1.480037
10.1063/1.1680672
10.1021/jp811208g
10.1021/j100370a012
10.1063/1.4789759
10.1021/ja00805a033
10.1039/c2fd20013a
10.1002/0471466638.ch3
10.1063/1.4714219
10.1088/1742-6596/16/1/073
10.1021/ja201730y
10.1177/1094342006064503
10.1063/1.3407922
10.1021/ja0717360
10.1021/jp982988d
10.1016/j.cpc.2010.04.018
10.1021/ja308042v
10.1021/ct300037p
10.1177/1094342006064504
10.1063/1.2437214
10.1063/1.438693
10.1021/ct200459v
10.1063/1.474069
10.1063/1.435520
10.1021/jp806659f
10.1021/jp211387c
10.1002/jcc.20091
10.1080/01442350802045446
10.1063/1.451787
10.1063/1.473694
10.1016/0010-4655(93)90172-9
10.1021/jp900919s
10.1126/science.1150238
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cpc.2013.11.011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
EndPage 1080
ExternalDocumentID 10_1016_j_cpc_2013_11_011
S0010465513004049
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c423t-25615a0060bb58c5a0b63195130687b34364383db7218a8ba6b3c4ae5998b0d53
IEDL.DBID AIKHN
ISSN 0010-4655
IngestDate Fri Aug 16 22:43:07 EDT 2024
Thu Sep 26 15:57:19 EDT 2024
Fri Feb 23 02:30:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Direct dynamics
Molecular simulation
Classical trajectories
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-25615a0060bb58c5a0b63195130687b34364383db7218a8ba6b3c4ae5998b0d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651424373
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1651424373
crossref_primary_10_1016_j_cpc_2013_11_011
elsevier_sciencedirect_doi_10_1016_j_cpc_2013_11_011
PublicationCentury 2000
PublicationDate March 2014
2014-03-00
20140301
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: March 2014
PublicationDecade 2010
PublicationTitle Computer physics communications
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gordon, Schmidt (br000120) 2005
Kakhiani, Lourderaj, Hu, Birney, Hase (br000200) 2009; 113
Bunker (br000140) 1971; 10
Schlick (br000145) 2000
Bunker (br000040) 1971; 10
Lourderaj, Park, Hase (br000280) 2008; 27
Sun, Park, de Jong, Lischka, Windus, Hase (br000245) 2012; 137
Otto, Xie, Brox, Trippel, Stei, Best, Siebert, Hase, Wester (br000250) 2012; 157
Barnes, Hase (br000205) 2009; 113
de Sainte Claire, Hass, Schneider, Hase (br000030) 1997; 106
Mikosch, Zhang, Trippel, Otto, Sun, deJong, Weidemüller, Hase, Wester (br000215) 2013; 135
Manikandan, Zhang, Hase (br000275) 2012; 116
Kenny, Benson, Alexeev, Sarich, Janssen, Curfman Mcinnes, Krishnan, Nieplocha, Jurrus, Fahlstrom, Windus (br000175) 2004; 25
Valiev, Bylaska, Wang, Kowalski, Govind, Straatsma, Nieplocha, Aprà, Windus, de Jong (br000115) 2010; 181
R. Rajagopalan, Parallelizing the Calculation of a Classical Trajectory, Master Thesis, Texas Tech University, 2007.
J. Zheng, S. Zhang, J.C. Corchado, Y.-Y. Chuang, E.L. Coitino, B.A. Ellingson, D.G. Truhlar, GAUSSRATE-Version 2009-a, University of Minnesota, Minneapolis, 2010.
J. Zheng, D.G. Truhlar, JAGUARATE-Version 2007, University of Minnesota, Minneapolis, 2007.
Zhuang, Siebert, Hase, Kay, Ceotto (br000255) 2013; 9
H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, D.P. O’Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO, version 2010.1, A package of ab initio programs, see
Wu, Rahman, Wang, Lourderaj, Hase, Zhuang (br000065) 2010; 133
Peng, Wu, Sosonkina, Windus, Bentz, Gordon, Kenny, Janssen (br000170) 2007; 2007
.
Peslherbe, Wang, Hase (br000045) 1999; 105
J. Zheng, M.A. Iron, B.A. Ellingson, J.C. Corchado, Y.-Y. Chuang, D.G. Truhlar, NWCHEMRATE-Version 2007, University of Minnesota, Minneapolis, 2007.
Hase, Wolf, Sloane (br000015) 1979; 71
T.P. Gulabani, M. Sosonkina, M.S. Gordon, C.L. Janssen, J.P. Kenny, H. Netzloff, T.L. Windus, Proceedings of the 2009 Spring Simulation Multiconference (San Diego, California, March 22–27, 2009). Society for Computer Simulation International, San Diego, CA, pp. 1–6.
Nieplocha, Tipparaju, Krishnan, Panda (br000155) 2006; 20
Sun, Hase (br000050) 2003; 19
Hu, Hase, Pirraglia, J (br000135) 1991; 12
Hase, Mrowka, Brudzynski, Sloane (br000075) 1978; 69
Truong, Lu, Lynch, Liu, Melissas, Stewart, Steckler, Garrett, Isaacson, Gonzalez-Lafont, Sachchida, Hancock, Joseph, Truhlar (br000095) 1993; 75
Siebert, Manikandan, Sun, Tantillo, Hase (br000225) 2012; 8
Janssen, Nielsen, Leininger, Valeev, Kenny, Seidl (br000165) 2008
Mikosch, Trippel, Eichhorn, Otto, Lourderaj, Zhang, Hase, Weidemüller, Wester (br000195) 2008; 319
Lu, Hase, Wolf (br000025) 1986; 85
Lourderaj, Song, Windus, Zhuang, Hase (br000060) 2007; 126
Manikandan, Hase (br000240) 2012; 136
Siebert, Zhang, Addepalli, Tantillo, Hase (br000220) 2011; 133
Wang, Karplus (br000085) 1973; 95
Schultz, Weinhaus, Hanley, de Sainte Claire, Hase (br000010) 1997; 106
Vayner, Addepalli, Song, Hase (br000185) 2006; 125
Zhang, Mikosch, Trippel, Otto, Weidemüller, Wester, Hase (br000210) 2010; 1
Vande Linde, Hase (br000080) 1990; 94
Bunker, Hase (br000020) 1973; 59
Bolton, Hase, Doubleday (br000035) 1999; 103
Hase, Ludlow, Wolf, Schlick (br000005) 1981; 85
Lourderaj, Hase (br000270) 2009; 113
Alexeev, Allan, Armstrong, Bernholdt, Dahlgren, Gannon, Janssen, Kenny, Krishnan, Kohl, Kumfert, Curfman McInnes, Nieplocha, Parker, Rasmussen, Windus (br000160) 2005; 16
López, Vayner, Lourderaj, Addepalli, Kato, de Jong, Windus, Hase (br000190) 2007; 129
Millam, Bakken, Chen, Hase, Schlegel (br000055) 1999; 111
Yang, Sun, Hase (br000235) 2012; 990
Hase, Duchovic, Hu, Komornicki, Lim, Lu, Peslherbe, Swamy, Vande Linde, Varandas, Wang, Wolf (br000130) 1996; 16
Yang, Sun, Hase (br000230) 2011; 7
Leforestier (br000090) 1978; 68
Ceotto, Zhuang, Hase (br000260) 2013; 138
Burkert, Allinger (br000070) 1982; vol. 177
Nieplocha, Palmer, Tipparaju, Krishnan, Trease, Apra (br000150) 2006; 20
S. Kohale, W.L. Hase, in preparation.
Bunker (10.1016/j.cpc.2013.11.011_br000020) 1973; 59
Zhang (10.1016/j.cpc.2013.11.011_br000210) 2010; 1
de Sainte Claire (10.1016/j.cpc.2013.11.011_br000030) 1997; 106
Hase (10.1016/j.cpc.2013.11.011_br000130) 1996; 16
Ceotto (10.1016/j.cpc.2013.11.011_br000260) 2013; 138
Nieplocha (10.1016/j.cpc.2013.11.011_br000155) 2006; 20
Wang (10.1016/j.cpc.2013.11.011_br000085) 1973; 95
Kenny (10.1016/j.cpc.2013.11.011_br000175) 2004; 25
Gordon (10.1016/j.cpc.2013.11.011_br000120) 2005
Hase (10.1016/j.cpc.2013.11.011_br000005) 1981; 85
Yang (10.1016/j.cpc.2013.11.011_br000235) 2012; 990
Sun (10.1016/j.cpc.2013.11.011_br000245) 2012; 137
Valiev (10.1016/j.cpc.2013.11.011_br000115) 2010; 181
Wu (10.1016/j.cpc.2013.11.011_br000065) 2010; 133
Siebert (10.1016/j.cpc.2013.11.011_br000220) 2011; 133
Mikosch (10.1016/j.cpc.2013.11.011_br000215) 2013; 135
10.1016/j.cpc.2013.11.011_br000125
Schlick (10.1016/j.cpc.2013.11.011_br000145) 2000
Burkert (10.1016/j.cpc.2013.11.011_br000070) 1982; vol. 177
10.1016/j.cpc.2013.11.011_br000285
Otto (10.1016/j.cpc.2013.11.011_br000250) 2012; 157
Bolton (10.1016/j.cpc.2013.11.011_br000035) 1999; 103
Vayner (10.1016/j.cpc.2013.11.011_br000185) 2006; 125
Mikosch (10.1016/j.cpc.2013.11.011_br000195) 2008; 319
Peslherbe (10.1016/j.cpc.2013.11.011_br000045) 1999; 105
Hase (10.1016/j.cpc.2013.11.011_br000075) 1978; 69
10.1016/j.cpc.2013.11.011_br000110
Peng (10.1016/j.cpc.2013.11.011_br000170) 2007; 2007
López (10.1016/j.cpc.2013.11.011_br000190) 2007; 129
Lourderaj (10.1016/j.cpc.2013.11.011_br000270) 2009; 113
Hase (10.1016/j.cpc.2013.11.011_br000015) 1979; 71
Zhuang (10.1016/j.cpc.2013.11.011_br000255) 2013; 9
Manikandan (10.1016/j.cpc.2013.11.011_br000240) 2012; 136
Truong (10.1016/j.cpc.2013.11.011_br000095) 1993; 75
Millam (10.1016/j.cpc.2013.11.011_br000055) 1999; 111
Barnes (10.1016/j.cpc.2013.11.011_br000205) 2009; 113
Sun (10.1016/j.cpc.2013.11.011_br000050) 2003; 19
Yang (10.1016/j.cpc.2013.11.011_br000230) 2011; 7
10.1016/j.cpc.2013.11.011_br000105
10.1016/j.cpc.2013.11.011_br000100
10.1016/j.cpc.2013.11.011_br000265
Leforestier (10.1016/j.cpc.2013.11.011_br000090) 1978; 68
Siebert (10.1016/j.cpc.2013.11.011_br000225) 2012; 8
Kakhiani (10.1016/j.cpc.2013.11.011_br000200) 2009; 113
10.1016/j.cpc.2013.11.011_br000180
Nieplocha (10.1016/j.cpc.2013.11.011_br000150) 2006; 20
Lu (10.1016/j.cpc.2013.11.011_br000025) 1986; 85
Lourderaj (10.1016/j.cpc.2013.11.011_br000060) 2007; 126
Janssen (10.1016/j.cpc.2013.11.011_br000165) 2008
Bunker (10.1016/j.cpc.2013.11.011_br000040) 1971; 10
Manikandan (10.1016/j.cpc.2013.11.011_br000275) 2012; 116
Hu (10.1016/j.cpc.2013.11.011_br000135) 1991; 12
Schultz (10.1016/j.cpc.2013.11.011_br000010) 1997; 106
Bunker (10.1016/j.cpc.2013.11.011_br000140) 1971; 10
Vande Linde (10.1016/j.cpc.2013.11.011_br000080) 1990; 94
Alexeev (10.1016/j.cpc.2013.11.011_br000160) 2005; 16
Lourderaj (10.1016/j.cpc.2013.11.011_br000280) 2008; 27
References_xml – volume: 181
  start-page: 1477
  year: 2010
  ident: br000115
  publication-title: Comput. Phys. Comm.
  contributor:
    fullname: de Jong
– volume: 68
  start-page: 4406
  year: 1978
  ident: br000090
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Leforestier
– volume: 136
  start-page: 184110
  year: 2012
  ident: br000240
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Hase
– volume: 10
  start-page: 287
  year: 1971
  ident: br000040
  publication-title: Methods Comput. Phys.
  contributor:
    fullname: Bunker
– volume: 16
  start-page: 536
  year: 2005
  ident: br000160
  publication-title: J. Phys. Conf. Ser.
  contributor:
    fullname: Windus
– volume: 137
  start-page: 044305
  year: 2012
  ident: br000245
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Hase
– volume: 59
  start-page: 4621
  year: 1973
  ident: br000020
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Hase
– volume: 8
  start-page: 1212
  year: 2012
  ident: br000225
  publication-title: J. Chem. Theory Comput.
  contributor:
    fullname: Hase
– volume: 71
  start-page: 2911
  year: 1979
  ident: br000015
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Sloane
– volume: 103
  start-page: 3691
  year: 1999
  ident: br000035
  publication-title: J. Phys. Chem. B
  contributor:
    fullname: Doubleday
– volume: 113
  start-page: 7543
  year: 2009
  ident: br000205
  publication-title: J. Phys. Chem. A
  contributor:
    fullname: Hase
– volume: 9
  start-page: 54
  year: 2013
  ident: br000255
  publication-title: J. Chem. Theory Comput.
  contributor:
    fullname: Ceotto
– volume: 111
  start-page: 3800
  year: 1999
  ident: br000055
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Schlegel
– volume: 95
  start-page: 8160
  year: 1973
  ident: br000085
  publication-title: J. Amer. Chem. Soc.
  contributor:
    fullname: Karplus
– year: 2008
  ident: br000165
  article-title: The Massively Parallel Quantum Chemistry Program (MPQC), Version III
  contributor:
    fullname: Seidl
– volume: 113
  start-page: 4570
  year: 2009
  ident: br000200
  publication-title: J. Phys. Chem. A
  contributor:
    fullname: Hase
– volume: 85
  start-page: 958
  year: 1981
  ident: br000005
  publication-title: J. Phys. Chem.
  contributor:
    fullname: Schlick
– volume: 25
  start-page: 1717
  year: 2004
  ident: br000175
  publication-title: J. Comput. Chem.
  contributor:
    fullname: Windus
– volume: 133
  start-page: 8335
  year: 2011
  ident: br000220
  publication-title: J. Amer. Chem. Soc.
  contributor:
    fullname: Hase
– start-page: 1167
  year: 2005
  ident: br000120
  publication-title: Advances in Electronic Structure Theory: GAMESS A Decade Later
  contributor:
    fullname: Schmidt
– volume: 85
  start-page: 4422
  year: 1986
  ident: br000025
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Wolf
– volume: 106
  start-page: 10337
  year: 1997
  ident: br000010
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Hase
– volume: 129
  start-page: 9976
  year: 2007
  ident: br000190
  publication-title: J. Amer. Chem. Soc.
  contributor:
    fullname: Hase
– volume: 116
  start-page: 3061
  year: 2012
  ident: br000275
  publication-title: J. Phys. Chem. A
  contributor:
    fullname: Hase
– volume: 133
  start-page: 074101
  year: 2010
  ident: br000065
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Zhuang
– volume: 157
  start-page: 41
  year: 2012
  ident: br000250
  publication-title: Faraday Discuss.
  contributor:
    fullname: Wester
– volume: 138
  start-page: 054116
  year: 2013
  ident: br000260
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Hase
– volume: 319
  start-page: 183
  year: 2008
  ident: br000195
  publication-title: Science
  contributor:
    fullname: Wester
– volume: 126
  start-page: 044105
  year: 2007
  ident: br000060
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Hase
– year: 2000
  ident: br000145
  article-title: Molecular Modeling and Simulation
  contributor:
    fullname: Schlick
– volume: 16
  start-page: 671
  year: 1996
  ident: br000130
  publication-title: Bull. Quant. Chem. Program Exchange (QCPE)
  contributor:
    fullname: Wolf
– volume: 20
  start-page: 203
  year: 2006
  ident: br000150
  publication-title: Int. J. High Perf. Comput. Appl.
  contributor:
    fullname: Apra
– volume: 1
  start-page: 2747
  year: 2010
  ident: br000210
  publication-title: J. Phys. Chem. Lett.
  contributor:
    fullname: Hase
– volume: 135
  start-page: 4250
  year: 2013
  ident: br000215
  publication-title: J. Amer. Chem. Soc.
  contributor:
    fullname: Wester
– volume: 69
  start-page: 3548
  year: 1978
  ident: br000075
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Sloane
– volume: 75
  start-page: 143
  year: 1993
  ident: br000095
  publication-title: Comput. Phys. Comm.
  contributor:
    fullname: Truhlar
– volume: 12
  start-page: 1014
  year: 1991
  ident: br000135
  publication-title: Comput. Chem.
  contributor:
    fullname: Pirraglia, J
– volume: 105
  start-page: 171
  year: 1999
  ident: br000045
  publication-title: Adv. Chem. Phys.
  contributor:
    fullname: Hase
– volume: 7
  start-page: 3478
  year: 2011
  ident: br000230
  publication-title: J. Chem. Theory Comput.
  contributor:
    fullname: Hase
– volume: 27
  start-page: 361
  year: 2008
  ident: br000280
  publication-title: Int. Rev. Phys. Chem.
  contributor:
    fullname: Hase
– volume: vol. 177
  year: 1982
  ident: br000070
  publication-title: Molecular Mechanics
  contributor:
    fullname: Allinger
– volume: 94
  start-page: 2778
  year: 1990
  ident: br000080
  publication-title: J. Phys. Chem.
  contributor:
    fullname: Hase
– volume: 113
  start-page: 2236
  year: 2009
  ident: br000270
  publication-title: J. Phys. Chem. A
  contributor:
    fullname: Hase
– volume: 106
  start-page: 7331
  year: 1997
  ident: br000030
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Hase
– volume: 20
  start-page: 233
  year: 2006
  ident: br000155
  publication-title: Int. J. High Perf. Comput. Appl.
  contributor:
    fullname: Panda
– volume: 2007
  start-page: 101
  year: 2007
  ident: br000170
  publication-title: Proc. of HPC-GECO/CompFrame
  contributor:
    fullname: Janssen
– volume: 990
  start-page: 62
  year: 2012
  ident: br000235
  publication-title: Comput. Theoret. Chem.
  contributor:
    fullname: Hase
– volume: 19
  start-page: 79
  year: 2003
  ident: br000050
  publication-title: Rev. Comput. Chem.
  contributor:
    fullname: Hase
– volume: 10
  start-page: 287
  year: 1971
  ident: br000140
  publication-title: Methods Comput. Phys.
  contributor:
    fullname: Bunker
– volume: 125
  start-page: 014317
  year: 2006
  ident: br000185
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Hase
– volume: 2007
  start-page: 101
  year: 2007
  ident: 10.1016/j.cpc.2013.11.011_br000170
  publication-title: Proc. of HPC-GECO/CompFrame
  contributor:
    fullname: Peng
– volume: 1
  start-page: 2747
  year: 2010
  ident: 10.1016/j.cpc.2013.11.011_br000210
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1010658
  contributor:
    fullname: Zhang
– volume: 85
  start-page: 958
  year: 1981
  ident: 10.1016/j.cpc.2013.11.011_br000005
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150608a008
  contributor:
    fullname: Hase
– volume: 12
  start-page: 1014
  year: 1991
  ident: 10.1016/j.cpc.2013.11.011_br000135
  publication-title: Comput. Chem.
  doi: 10.1002/jcc.540120814
  contributor:
    fullname: Hu
– volume: 137
  start-page: 044305
  year: 2012
  ident: 10.1016/j.cpc.2013.11.011_br000245
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4736843
  contributor:
    fullname: Sun
– volume: 125
  start-page: 014317
  year: 2006
  ident: 10.1016/j.cpc.2013.11.011_br000185
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2206785
  contributor:
    fullname: Vayner
– volume: 69
  start-page: 3548
  year: 1978
  ident: 10.1016/j.cpc.2013.11.011_br000075
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437060
  contributor:
    fullname: Hase
– volume: 9
  start-page: 54
  year: 2013
  ident: 10.1016/j.cpc.2013.11.011_br000255
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300573h
  contributor:
    fullname: Zhuang
– volume: 990
  start-page: 62
  year: 2012
  ident: 10.1016/j.cpc.2013.11.011_br000235
  publication-title: Comput. Theoret. Chem.
  doi: 10.1016/j.comptc.2011.11.012
  contributor:
    fullname: Yang
– volume: 111
  start-page: 3800
  year: 1999
  ident: 10.1016/j.cpc.2013.11.011_br000055
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480037
  contributor:
    fullname: Millam
– ident: 10.1016/j.cpc.2013.11.011_br000125
– volume: 59
  start-page: 4621
  year: 1973
  ident: 10.1016/j.cpc.2013.11.011_br000020
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1680672
  contributor:
    fullname: Bunker
– volume: 113
  start-page: 4570
  year: 2009
  ident: 10.1016/j.cpc.2013.11.011_br000200
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp811208g
  contributor:
    fullname: Kakhiani
– volume: 94
  start-page: 2778
  year: 1990
  ident: 10.1016/j.cpc.2013.11.011_br000080
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100370a012
  contributor:
    fullname: Vande Linde
– ident: 10.1016/j.cpc.2013.11.011_br000180
– volume: 138
  start-page: 054116
  year: 2013
  ident: 10.1016/j.cpc.2013.11.011_br000260
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4789759
  contributor:
    fullname: Ceotto
– volume: 95
  start-page: 8160
  year: 1973
  ident: 10.1016/j.cpc.2013.11.011_br000085
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja00805a033
  contributor:
    fullname: Wang
– volume: 16
  start-page: 671
  year: 1996
  ident: 10.1016/j.cpc.2013.11.011_br000130
  publication-title: Bull. Quant. Chem. Program Exchange (QCPE)
  contributor:
    fullname: Hase
– volume: 157
  start-page: 41
  year: 2012
  ident: 10.1016/j.cpc.2013.11.011_br000250
  publication-title: Faraday Discuss.
  doi: 10.1039/c2fd20013a
  contributor:
    fullname: Otto
– volume: vol. 177
  year: 1982
  ident: 10.1016/j.cpc.2013.11.011_br000070
  contributor:
    fullname: Burkert
– volume: 19
  start-page: 79
  year: 2003
  ident: 10.1016/j.cpc.2013.11.011_br000050
  publication-title: Rev. Comput. Chem.
  doi: 10.1002/0471466638.ch3
  contributor:
    fullname: Sun
– volume: 136
  start-page: 184110
  year: 2012
  ident: 10.1016/j.cpc.2013.11.011_br000240
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4714219
  contributor:
    fullname: Manikandan
– volume: 16
  start-page: 536
  year: 2005
  ident: 10.1016/j.cpc.2013.11.011_br000160
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/16/1/073
  contributor:
    fullname: Alexeev
– ident: 10.1016/j.cpc.2013.11.011_br000105
– ident: 10.1016/j.cpc.2013.11.011_br000110
– year: 2008
  ident: 10.1016/j.cpc.2013.11.011_br000165
  contributor:
    fullname: Janssen
– volume: 133
  start-page: 8335
  year: 2011
  ident: 10.1016/j.cpc.2013.11.011_br000220
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja201730y
  contributor:
    fullname: Siebert
– volume: 20
  start-page: 203
  year: 2006
  ident: 10.1016/j.cpc.2013.11.011_br000150
  publication-title: Int. J. High Perf. Comput. Appl.
  doi: 10.1177/1094342006064503
  contributor:
    fullname: Nieplocha
– volume: 133
  start-page: 074101
  year: 2010
  ident: 10.1016/j.cpc.2013.11.011_br000065
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3407922
  contributor:
    fullname: Wu
– volume: 129
  start-page: 9976
  year: 2007
  ident: 10.1016/j.cpc.2013.11.011_br000190
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja0717360
  contributor:
    fullname: López
– ident: 10.1016/j.cpc.2013.11.011_br000265
– volume: 103
  start-page: 3691
  year: 1999
  ident: 10.1016/j.cpc.2013.11.011_br000035
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp982988d
  contributor:
    fullname: Bolton
– year: 2000
  ident: 10.1016/j.cpc.2013.11.011_br000145
  contributor:
    fullname: Schlick
– volume: 105
  start-page: 171
  year: 1999
  ident: 10.1016/j.cpc.2013.11.011_br000045
  publication-title: Adv. Chem. Phys.
  contributor:
    fullname: Peslherbe
– start-page: 1167
  year: 2005
  ident: 10.1016/j.cpc.2013.11.011_br000120
  contributor:
    fullname: Gordon
– volume: 181
  start-page: 1477
  year: 2010
  ident: 10.1016/j.cpc.2013.11.011_br000115
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2010.04.018
  contributor:
    fullname: Valiev
– ident: 10.1016/j.cpc.2013.11.011_br000100
– volume: 135
  start-page: 4250
  year: 2013
  ident: 10.1016/j.cpc.2013.11.011_br000215
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja308042v
  contributor:
    fullname: Mikosch
– volume: 8
  start-page: 1212
  year: 2012
  ident: 10.1016/j.cpc.2013.11.011_br000225
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300037p
  contributor:
    fullname: Siebert
– volume: 20
  start-page: 233
  year: 2006
  ident: 10.1016/j.cpc.2013.11.011_br000155
  publication-title: Int. J. High Perf. Comput. Appl.
  doi: 10.1177/1094342006064504
  contributor:
    fullname: Nieplocha
– volume: 10
  start-page: 287
  year: 1971
  ident: 10.1016/j.cpc.2013.11.011_br000140
  publication-title: Methods Comput. Phys.
  contributor:
    fullname: Bunker
– volume: 126
  start-page: 044105
  year: 2007
  ident: 10.1016/j.cpc.2013.11.011_br000060
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2437214
  contributor:
    fullname: Lourderaj
– volume: 71
  start-page: 2911
  year: 1979
  ident: 10.1016/j.cpc.2013.11.011_br000015
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438693
  contributor:
    fullname: Hase
– volume: 7
  start-page: 3478
  year: 2011
  ident: 10.1016/j.cpc.2013.11.011_br000230
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200459v
  contributor:
    fullname: Yang
– volume: 106
  start-page: 10337
  year: 1997
  ident: 10.1016/j.cpc.2013.11.011_br000010
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474069
  contributor:
    fullname: Schultz
– volume: 68
  start-page: 4406
  year: 1978
  ident: 10.1016/j.cpc.2013.11.011_br000090
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.435520
  contributor:
    fullname: Leforestier
– volume: 10
  start-page: 287
  year: 1971
  ident: 10.1016/j.cpc.2013.11.011_br000040
  publication-title: Methods Comput. Phys.
  contributor:
    fullname: Bunker
– volume: 113
  start-page: 2236
  year: 2009
  ident: 10.1016/j.cpc.2013.11.011_br000270
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp806659f
  contributor:
    fullname: Lourderaj
– volume: 116
  start-page: 3061
  year: 2012
  ident: 10.1016/j.cpc.2013.11.011_br000275
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp211387c
  contributor:
    fullname: Manikandan
– volume: 25
  start-page: 1717
  year: 2004
  ident: 10.1016/j.cpc.2013.11.011_br000175
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20091
  contributor:
    fullname: Kenny
– ident: 10.1016/j.cpc.2013.11.011_br000285
– volume: 27
  start-page: 361
  year: 2008
  ident: 10.1016/j.cpc.2013.11.011_br000280
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/01442350802045446
  contributor:
    fullname: Lourderaj
– volume: 85
  start-page: 4422
  year: 1986
  ident: 10.1016/j.cpc.2013.11.011_br000025
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451787
  contributor:
    fullname: Lu
– volume: 106
  start-page: 7331
  year: 1997
  ident: 10.1016/j.cpc.2013.11.011_br000030
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473694
  contributor:
    fullname: de Sainte Claire
– volume: 75
  start-page: 143
  issue: 1
  year: 1993
  ident: 10.1016/j.cpc.2013.11.011_br000095
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/0010-4655(93)90172-9
  contributor:
    fullname: Truong
– volume: 113
  start-page: 7543
  year: 2009
  ident: 10.1016/j.cpc.2013.11.011_br000205
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp900919s
  contributor:
    fullname: Barnes
– volume: 319
  start-page: 183
  year: 2008
  ident: 10.1016/j.cpc.2013.11.011_br000195
  publication-title: Science
  doi: 10.1126/science.1150238
  contributor:
    fullname: Mikosch
SSID ssj0007793
Score 2.468509
Snippet The interface for VENUS and NWChem, and the resulting software package for direct dynamics simulations are described. The coupling of the two codes is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1074
SubjectTerms Classical trajectories
Computer programs
Computer simulation
Direct dynamics
Dynamics
Electronic structure
Joining
Mathematical models
Molecular simulation
Running
Trajectories
Title The VENUS/NWChem software package. Tight coupling between chemical dynamics simulations and electronic structure theory
URI https://dx.doi.org/10.1016/j.cpc.2013.11.011
https://search.proquest.com/docview/1651424373
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MDcGL-InfRPAkdFtNmnbHIcp0uIM63S0kbSpT7IZ1DC_-7b7XpoqCHjz1AxLKL8kv7zXv_R7AkUkjmaLR5vmdwHqCm9iLrBSe4bIjLO3YheLN1UD2huJyFIxqcFrlwlBYpeP-ktMLtnZvWg7N1nQ8phxfOp-kAiU0E0VnARq4HQlRh0b3ot8bfBJyGDrtXaQcalAdbhZhXvGUhAx93iQtT9__bXv6QdTF7nO-AsvObGTd8stWoWazNVgswjfjfB3mONrs7mwwvGkN7kkDgOVIr3P9Yhn6xE_IGU12S244iyczysF9YC5Ai8VOMYAlZW36nOXjZ1fTK2c6S9hXpRxWqs3OsNsiAfJtA4bnZ7enPc-VVPBitJtePTRw_ECTCIsxQRTjrZG4CAlDGYWGCy5JuzQx6BhGOjJaGh4LbQP0ykw7Cfgm1LNJZreAUfWqUHO00NFESJNIp_R34qTNw0QHadrZhuMKSTUtlTNUFVL2qBB2RbCjB6IQ9m0QFdbq2_ArZPa_mh1W46JwWdBZh87sZJYrXwaUw8dDvvO_rndhCZ9EGW62B3XE1-6j_fFqDmCh-e4fuFlG1_71ff8D0TvZ2Q
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RfQiPvFtBE9CXWse7R5FlPXVi7vqLSRtKqvYXayL-O-daVNFQQ_eSkpC-ZJ8mWlmvgHYs3mscjTagrAjXSC4TYPYKRFYrjrC0YldKd5cJ6rbFxf38n4CTppcGAqr9Nxfc3rF1r6l7dFsjwYDyvGl-0kqUEIrUXQmYUrIKDxqwdTx-WU3-STkKPLau0g51KG53KzCvNIRCRmG_IC0PMPwt-PpB1FXp8_ZPMx5s5Ed11-2ABOuWITpKnwzLZfgDWeb3Z4m_Zt2ckcaAKxEen0zL46hT_yEnHHAeuSGs3Q4phzcB-YDtFjqFQNYVtemL1k5ePY1vUpmiox9VcphtdrsGIetEiDfl6F_dto76Qa-pEKQot30GqCBE0pDIizWyjjFR6twExKGKo4sF1yRdmlm0TGMTWyNsjwVxkn0yuxhJvkKtIph4VaBUfWqyHC00NFEyLPY5PR34uiQR5mRed5Zg_0GST2qlTN0E1L2qBF2TbCjB6IR9jUQDdb62_RrZPa_uu0286JxW9BdhynccFzqUEnK4eMRX__f0Dsw0-1dX-mr8-RyA2bxjahDzzahhVi7LbRFXu22X2sfPknaJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+VENUS%2FNWChem+software+package.+Tight+coupling+between+chemical+dynamics+simulations+and+electronic+structure+theory&rft.jtitle=Computer+physics+communications&rft.au=Lourderaj%2C+Upakarasamy&rft.au=Sun%2C+Rui&rft.au=Kohale%2C+Swapnil+C.&rft.au=Barnes%2C+George+L.&rft.date=2014-03-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=185&rft.issue=3&rft.spage=1074&rft.epage=1080&rft_id=info:doi/10.1016%2Fj.cpc.2013.11.011&rft.externalDocID=S0010465513004049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon