Tactile detection of slip: surface microgeometry and peripheral neural codes
1. The role of the microgeometry of planar surfaces in the detection of sliding of the surfaces on human and monkey fingerpads was investigated. By the use of a servo-controlled tactile stimulator to press and stroke glass plates on passive fingerpads of human subjects, the ability of humans to disc...
Saved in:
Published in | Journal of neurophysiology Vol. 63; no. 6; p. 1323 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.1990
|
Subjects | |
Online Access | Get more information |
ISSN | 0022-3077 |
DOI | 10.1152/jn.1990.63.6.1323 |
Cover
Loading…
Abstract | 1. The role of the microgeometry of planar surfaces in the detection of sliding of the surfaces on human and monkey fingerpads was investigated. By the use of a servo-controlled tactile stimulator to press and stroke glass plates on passive fingerpads of human subjects, the ability of humans to discriminate the direction of skin stretch caused by friction and to detect the sliding motion (slip) of the plates with or without micrometer-sized surface features was determined. To identify the associated peripheral neural codes, evoked responses to the same stimuli were recorded from single, low-threshold mechanoreceptive afferent fibers innervating the fingerpads of anesthetized macaque monkeys. 2. Humans could not detect the slip of a smooth glass plate on the fingerpad. However, the direction of skin stretch was perceived based on the information conveyed by the slowly adapting afferents that respond differentially to the stretch directions. Whereas the direction of skin stretch signaled the direction of impending slip, the perception of relative motion between the plate and the finger required the existence of detectable surface features. 3. Barely detectable micrometer-sized protrusions on smooth surfaces led to the detection of slip of these surfaces, because of the exclusive activation of rapidly adapting fibers of either the Meissner (RA) or the Pacinian (PC) type to specific geometries of the microfeatures. The motion of a smooth plate with a very small single raised dot (4 microns high, 550 microns diam) caused the sequential activation of neighboring RAs along the dot path, thus providing a reliable spatiotemporal code. The stroking of the plate with a fine homogeneous texture composed of a matrix of dots (1 microns high, 50 microns diam, and spaced at 100 microns center-to-center) induced vibrations in the fingerpad that activated only the PCs and resulted in an intensive code. 4. The results show that surprisingly small features on smooth surfaces are detected by humans and lead to the detection of slip of these surfaces, with the geometry of the microfeatures governing the associated neural codes. When the surface features are of sizes greater than the response thresholds of all the receptors, redundant spatiotemporal and intensive information is available for the detection of slip. |
---|---|
AbstractList | 1. The role of the microgeometry of planar surfaces in the detection of sliding of the surfaces on human and monkey fingerpads was investigated. By the use of a servo-controlled tactile stimulator to press and stroke glass plates on passive fingerpads of human subjects, the ability of humans to discriminate the direction of skin stretch caused by friction and to detect the sliding motion (slip) of the plates with or without micrometer-sized surface features was determined. To identify the associated peripheral neural codes, evoked responses to the same stimuli were recorded from single, low-threshold mechanoreceptive afferent fibers innervating the fingerpads of anesthetized macaque monkeys. 2. Humans could not detect the slip of a smooth glass plate on the fingerpad. However, the direction of skin stretch was perceived based on the information conveyed by the slowly adapting afferents that respond differentially to the stretch directions. Whereas the direction of skin stretch signaled the direction of impending slip, the perception of relative motion between the plate and the finger required the existence of detectable surface features. 3. Barely detectable micrometer-sized protrusions on smooth surfaces led to the detection of slip of these surfaces, because of the exclusive activation of rapidly adapting fibers of either the Meissner (RA) or the Pacinian (PC) type to specific geometries of the microfeatures. The motion of a smooth plate with a very small single raised dot (4 microns high, 550 microns diam) caused the sequential activation of neighboring RAs along the dot path, thus providing a reliable spatiotemporal code. The stroking of the plate with a fine homogeneous texture composed of a matrix of dots (1 microns high, 50 microns diam, and spaced at 100 microns center-to-center) induced vibrations in the fingerpad that activated only the PCs and resulted in an intensive code. 4. The results show that surprisingly small features on smooth surfaces are detected by humans and lead to the detection of slip of these surfaces, with the geometry of the microfeatures governing the associated neural codes. When the surface features are of sizes greater than the response thresholds of all the receptors, redundant spatiotemporal and intensive information is available for the detection of slip. |
Author | LaMotte, R H Srinivasan, M A Whitehouse, J M |
Author_xml | – sequence: 1 givenname: M A surname: Srinivasan fullname: Srinivasan, M A organization: Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut 06510 – sequence: 2 givenname: J M surname: Whitehouse fullname: Whitehouse, J M – sequence: 3 givenname: R H surname: LaMotte fullname: LaMotte, R H |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/2358880$$D View this record in MEDLINE/PubMed |
BookMark | eNotj71OwzAYAD0UlbbwAAxIfoGEz3YS22yo4k-KxFLmyrE_Q6rEjuxk6NsDotPddNJtySrEgITcMSgZq_nDKZRMaygbUTYlE1ysyAaA80KAlNdkm_MJAGQNfE3WXNRKKdiQ9mDs3A9IHc74azHQ6Gke-umR5iV5Y5GOvU3xC-OIczpTExydMPXTNyYz0IDLH2x0mG_IlTdDxtsLd-Tz5fmwfyvaj9f3_VNb2IqLueACUGsDlQTlO935xhuslIPGSc4sMl9Lo0zTSeaE71SFRlcerQXJhWGa78j9f3dauhHdcUr9aNL5eLniP6FoUEA |
CitedBy_id | crossref_primary_10_3758_BF03206916 crossref_primary_10_1152_jn_00504_2020 crossref_primary_10_1109_TRO_2011_2162271 crossref_primary_10_1016_j_jphysparis_2016_11_001 crossref_primary_10_1121_1_2404631 crossref_primary_10_1038_nrn2993 crossref_primary_10_1109_TII_2020_2971643 crossref_primary_10_4139_sfj_70_133 crossref_primary_10_1016_0960_9822_93_90207_5 crossref_primary_10_1109_JSEN_2013_2252890 crossref_primary_10_1007_s00592_022_01903_1 crossref_primary_10_1016_j_neuroimage_2007_08_026 crossref_primary_10_3389_frobt_2017_00006 crossref_primary_10_1016_j_visres_2010_10_005 crossref_primary_10_1126_science_1166467 crossref_primary_10_1109_TOH_2010_56 crossref_primary_10_14814_phy2_14530 crossref_primary_10_1109_TRO_2005_847568 crossref_primary_10_1115_1_4064964 crossref_primary_10_1152_jn_00749_2014 crossref_primary_10_1523_JNEUROSCI_17_11_04486_1997 crossref_primary_10_1002_advs_202002606 crossref_primary_10_1073_pnas_2109109118 crossref_primary_10_1016_j_conengprac_2003_12_020 crossref_primary_10_1109_86_296346 crossref_primary_10_1109_LRA_2018_2852797 crossref_primary_10_1152_jn_00502_2009 crossref_primary_10_1016_j_neulet_2017_01_004 crossref_primary_10_1002_ange_200703693 crossref_primary_10_1098_rsif_2011_0086 crossref_primary_10_1016_j_neuropsychologia_2015_06_010 crossref_primary_10_1097_00004691_200011000_00002 crossref_primary_10_1109_86_296345 crossref_primary_10_1038_s41598_018_25226_w crossref_primary_10_1088_0964_1726_23_9_095008 crossref_primary_10_1121_1_423249 crossref_primary_10_1038_s41598_020_58247_5 crossref_primary_10_1002_cne_24655 crossref_primary_10_1038_s41598_023_48037_0 crossref_primary_10_1109_LRA_2016_2524068 crossref_primary_10_1523_JNEUROSCI_2161_12_2012 crossref_primary_10_1152_jn_00376_2024 crossref_primary_10_1098_rsif_2011_0577 crossref_primary_10_1007_s00221_005_2343_5 crossref_primary_10_1109_JSEN_2016_2593265 crossref_primary_10_1002_anie_200703693 crossref_primary_10_1016_S0957_4158_00_00058_1 crossref_primary_10_1093_braincomms_fcaa088 crossref_primary_10_1109_TOH_2022_3209072 crossref_primary_10_1162_imag_a_00341 crossref_primary_10_1016_j_neuroscience_2015_12_033 crossref_primary_10_1152_jn_1998_79_6_3238 crossref_primary_10_1101_lm_053880_123 crossref_primary_10_1016_S1474_6670_17_57707_1 crossref_primary_10_1097_JOM_0b013e31803225df crossref_primary_10_1109_TNB_2021_3072954 crossref_primary_10_1152_jn_01209_2007 crossref_primary_10_1016_j_tins_2014_08_012 crossref_primary_10_1109_JSEN_2017_2721740 crossref_primary_10_1523_JNEUROSCI_4666_09_2010 crossref_primary_10_1109_LRA_2020_2972793 crossref_primary_10_1080_00405000_2019_1661067 crossref_primary_10_1080_08990220802045244 crossref_primary_10_3390_prosthesis2010003 crossref_primary_10_1016_j_nanoen_2021_106001 crossref_primary_10_1016_S0894_1130_12_80287_0 crossref_primary_10_13104_imri_2022_1010 crossref_primary_10_3758_BF03213278 crossref_primary_10_1097_00001756_200109170_00013 crossref_primary_10_3390_app10124184 crossref_primary_10_1016_j_neulet_2006_02_068 crossref_primary_10_1016_j_neuron_2024_07_008 crossref_primary_10_1016_j_tins_2016_04_008 crossref_primary_10_1017_S0263574712000744 crossref_primary_10_3758_BF03193710 crossref_primary_10_1016_j_brainresbull_2008_01_018 crossref_primary_10_3390_s17122748 crossref_primary_10_1016_j_bsbt_2015_11_004 crossref_primary_10_1109_LRA_2018_2810940 crossref_primary_10_1123_mcj_2_1_13 crossref_primary_10_3390_mti7040035 crossref_primary_10_1109_JSEN_2014_2325794 crossref_primary_10_1109_TOH_2010_20 crossref_primary_10_1016_j_sna_2017_09_035 crossref_primary_10_3758_BF03212154 crossref_primary_10_1152_jn_00087_2021 crossref_primary_10_1177_1687814016660453 crossref_primary_10_1152_jn_1997_78_5_2503 crossref_primary_10_1177_0040517515586164 crossref_primary_10_53829_ntr201411fa4 crossref_primary_10_1299_jbse_23_00102 crossref_primary_10_1038_srep20738 crossref_primary_10_1016_j_biosx_2024_100553 crossref_primary_10_1109_TOH_2012_32 crossref_primary_10_1371_journal_pone_0101361 crossref_primary_10_1002_wsbm_1267 crossref_primary_10_1016_1350_4533_95_00003_6 crossref_primary_10_1177_0301006620976992 crossref_primary_10_1152_jn_2000_84_3_1430 crossref_primary_10_1155_2021_6694310 crossref_primary_10_1098_rsif_2012_0467 crossref_primary_10_1109_TOH_2021_3139890 crossref_primary_10_1038_srep40937 crossref_primary_10_1016_j_sxmr_2020_02_003 crossref_primary_10_1167_jov_21_10_20 crossref_primary_10_1002_adhm_201801345 crossref_primary_10_1186_s12984_020_0649_y crossref_primary_10_1016_j_jbiomech_2010_08_030 crossref_primary_10_1177_027836499401300501 crossref_primary_10_1016_j_wear_2016_11_014 crossref_primary_10_1152_jn_00280_2021 crossref_primary_10_1007_s00221_017_5151_9 crossref_primary_10_3389_fnhum_2017_00008 crossref_primary_10_1007_BF02738408 crossref_primary_10_1016_S0006_8993_98_00838_5 crossref_primary_10_1152_jn_00621_2015 crossref_primary_10_1109_JSEN_2024_3411548 crossref_primary_10_3390_s90503161 crossref_primary_10_1109_LRA_2025_3548406 crossref_primary_10_1152_jn_1999_81_2_845 crossref_primary_10_1007_s10209_020_00729_4 crossref_primary_10_1145_1060581_1060586 crossref_primary_10_1007_s00422_008_0279_0 crossref_primary_10_1145_1060581_1060588 crossref_primary_10_1163_156855394X00356 crossref_primary_10_1152_jn_00583_2020 crossref_primary_10_1016_j_tins_2004_08_006 crossref_primary_10_1007_s00221_010_2464_3 crossref_primary_10_1016_j_medengphy_2011_06_016 crossref_primary_10_1016_S0363_5023_97_80084_6 crossref_primary_10_1126_sciadv_abe6393 crossref_primary_10_1152_jn_1997_78_3_1619 crossref_primary_10_1002_cne_10196 crossref_primary_10_1523_JNEUROSCI_4822_03_2004 crossref_primary_10_1007_s12541_015_0181_3 crossref_primary_10_1038_s41583_021_00489_x crossref_primary_10_1109_LRA_2020_2972876 crossref_primary_10_1016_j_neulet_2008_01_067 crossref_primary_10_3109_08990229509063138 crossref_primary_10_1152_jn_00564_2017 crossref_primary_10_1523_JNEUROSCI_21_14_05289_2001 crossref_primary_10_1146_annurev_neuro_26_041002_131032 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1152/jn.1990.63.6.1323 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Anatomy & Physiology Mathematics |
ExternalDocumentID | 2358880 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: PHS HHS grantid: 15888 |
GroupedDBID | --- -DZ -~X .55 .GJ 0VX 18M 1CY 1Z7 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5VS 8M5 ABCQX ABHWK ABIVO ABJNI ABKWE ABTAH ACGFO ACGFS ACNCT ADBBV ADFNX ADIYS AENEX AFFNX AFOSN AI. AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD EMOBN F5P FRP GX1 H13 H~9 ITBOX KQ8 L7B MVM NEJ NPM OHT OK1 P2P RAP RHF RHI RPL RPRKH SJN TR2 UHB UPT UQL VH1 VXZ W8F WH7 WOQ WOW X7M XJT XOL XSW YBH YQT YSK ZGI ZXP ZY4 |
ID | FETCH-LOGICAL-c423t-230e99a04708fb9bf6fae48d06d721ce1f57a8a6b71d3fb84ea94fecc0723a192 |
ISSN | 0022-3077 |
IngestDate | Wed Feb 19 02:42:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c423t-230e99a04708fb9bf6fae48d06d721ce1f57a8a6b71d3fb84ea94fecc0723a192 |
PMID | 2358880 |
ParticipantIDs | pubmed_primary_2358880 |
PublicationCentury | 1900 |
PublicationDate | 1990-06-01 |
PublicationDateYYYYMMDD | 1990-06-01 |
PublicationDate_xml | – month: 06 year: 1990 text: 1990-06-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 1990 |
SSID | ssj0007502 |
Score | 1.74577 |
Snippet | 1. The role of the microgeometry of planar surfaces in the detection of sliding of the surfaces on human and monkey fingerpads was investigated. By the use of... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1323 |
SubjectTerms | Animals Fingers Humans Macaca fascicularis Mathematics Motion Perception - physiology Peripheral Nerves - physiology Psychophysics Skin - anatomy & histology Touch - physiology |
Title | Tactile detection of slip: surface microgeometry and peripheral neural codes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/2358880 |
Volume | 63 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eEPRBvOKdPIgv0tkuvaS-DVFEnIhu4JskTeIF146tE_TXe3Jx1U1FfSmlGaXL-ZKec3q-7yC0G7CYU6bqngJv3guJLzzOifCElIEkWsCLanJy8yI-bYdnN9FNVT9v2CUlr2WvX_JK_mNVuAZ21SzZP1h2eFO4AOdgXziCheH4OxtrVoJhPpUye3f9wHHs6ji_P-gpBqu2o0vu7mTRkWXPii1pcWOjJvC0r-UsjUKIcLWE436qUbw0CZBPGfhr_ennmfVtArVZ5URNy737YmA7Np5V6dZz1ixK243vynEihOPf-VVZ1Mfyf9_1XnFbqNujHsb2Q4h1ydcbdaSFXx9zzZb0azGpxbXR38JUdTvGcprOS23Dpx8HR5Sz3cgkmoQQQvdE1Ykc95IGR6kSkod_4z54w2MdjD3ULJpxtxqJPYwP0lpA884ouGGRsIgmZL6Elhs5K4vOC97Dl0MrLaG55lCQt7-Mzh1U8BAquFBYQ-UQO6DgT0DBABRcAQVboGADlBXUPjluHZ16rpGGl4G3XHoQZso0ZX6Y-FTxlKtYMRlS4cciqQeZDFSUMAqrNgkEUZyGkqWhgsXtJ3XCIAZYRVN5kcs1hCMqsrSuIgh8IRiQhBPKWKQllSIpScbX0aqdoduuVUu5dVO38d3AJpqtcLaFphUsTrkNnl7Jd4zN3gDG-VJD |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tactile+detection+of+slip%3A+surface+microgeometry+and+peripheral+neural+codes&rft.jtitle=Journal+of+neurophysiology&rft.au=Srinivasan%2C+M+A&rft.au=Whitehouse%2C+J+M&rft.au=LaMotte%2C+R+H&rft.date=1990-06-01&rft.issn=0022-3077&rft.volume=63&rft.issue=6&rft.spage=1323&rft_id=info:doi/10.1152%2Fjn.1990.63.6.1323&rft_id=info%3Apmid%2F2358880&rft_id=info%3Apmid%2F2358880&rft.externalDocID=2358880 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |