Plant neighbour-modulated susceptibility to pathogens in intraspecific mixtures

Susceptibility to fungal pathogens and plant immunity in rice and wheat can be modulated by the presence of intraspecific neighbours and does not require the neighbours to be infected. Abstract As part of a trend towards diversifying cultivated areas, varietal mixtures are subject to renewed interes...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 72; no. 18; pp. 6570 - 6580
Main Authors Pélissier, Rémi, Buendia, Luis, Brousse, Andy, Temple, Coline, Ballini, Elsa, Fort, Florian, Violle, Cyrille, Morel, Jean-Benoit
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 30.09.2021
Oxford University Press (OUP)
Subjects
Online AccessGet full text
ISSN0022-0957
1460-2431
1460-2431
DOI10.1093/jxb/erab277

Cover

Loading…
Abstract Susceptibility to fungal pathogens and plant immunity in rice and wheat can be modulated by the presence of intraspecific neighbours and does not require the neighbours to be infected. Abstract As part of a trend towards diversifying cultivated areas, varietal mixtures are subject to renewed interest as a means to manage diseases. Besides the epidemiological effects of varietal mixtures on pathogen propagation, little is known about the effect of intraspecific plant–plant interactions and their impact on responses to disease. In this study, genotypes of rice (Oryza sativa) or durum wheat (Triticum turgidum) were grown with different conspecific neighbours and manually inoculated under conditions preventing pathogen propagation. Disease susceptibility was measured together with the expression of basal immunity genes as part of the response to intra-specific neighbours. The results showed that in many cases for both rice and wheat susceptibility to pathogens and immunity was modified by the presence of intraspecific neighbours. This phenomenon, which we term ‘neighbour-modulated susceptibility’ (NMS), could be caused by the production of below-ground signals and does not require the neighbours to be infected. Our results suggest that the mechanisms responsible for reducing disease in varietal mixtures in the field need to be re-examined.
AbstractList Susceptibility to fungal pathogens and plant immunity in rice and wheat can be modulated by the presence of intraspecific neighbours and does not require the neighbours to be infected. As part of a trend towards diversifying cultivated areas, varietal mixtures are subject to renewed interest as a means to manage diseases. Besides the epidemiological effects of varietal mixtures on pathogen propagation, little is known about the effect of intraspecific plant–plant interactions and their impact on responses to disease. In this study, genotypes of rice ( Oryza sativa ) or durum wheat ( Triticum turgidum ) were grown with different conspecific neighbours and manually inoculated under conditions preventing pathogen propagation. Disease susceptibility was measured together with the expression of basal immunity genes as part of the response to intra-specific neighbours. The results showed that in many cases for both rice and wheat susceptibility to pathogens and immunity was modified by the presence of intraspecific neighbours. This phenomenon, which we term ‘neighbour-modulated susceptibility’ (NMS), could be caused by the production of below-ground signals and does not require the neighbours to be infected. Our results suggest that the mechanisms responsible for reducing disease in varietal mixtures in the field need to be re-examined.
As part of a trend towards diversifying cultivated areas, varietal mixtures are subject to renewed interest as a means to manage diseases. Besides the epidemiological effects of varietal mixtures on pathogen propagation, little is known about the effect of intraspecific plant-plant interactions and their impact on responses to disease. In this study, genotypes of rice (Oryza sativa) or durum wheat (Triticum turgidum) were grown with different conspecific neighbours and manually inoculated under conditions preventing pathogen propagation. Disease susceptibility was measured together with the expression of basal immunity genes as part of the response to intra-specific neighbours. The results showed that in many cases for both rice and wheat susceptibility to pathogens and immunity was modified by the presence of intraspecific neighbours. This phenomenon, which we term 'neighbour-modulated susceptibility' (NMS), could be caused by the production of below-ground signals and does not require the neighbours to be infected. Our results suggest that the mechanisms responsible for reducing disease in varietal mixtures in the field need to be re-examined.As part of a trend towards diversifying cultivated areas, varietal mixtures are subject to renewed interest as a means to manage diseases. Besides the epidemiological effects of varietal mixtures on pathogen propagation, little is known about the effect of intraspecific plant-plant interactions and their impact on responses to disease. In this study, genotypes of rice (Oryza sativa) or durum wheat (Triticum turgidum) were grown with different conspecific neighbours and manually inoculated under conditions preventing pathogen propagation. Disease susceptibility was measured together with the expression of basal immunity genes as part of the response to intra-specific neighbours. The results showed that in many cases for both rice and wheat susceptibility to pathogens and immunity was modified by the presence of intraspecific neighbours. This phenomenon, which we term 'neighbour-modulated susceptibility' (NMS), could be caused by the production of below-ground signals and does not require the neighbours to be infected. Our results suggest that the mechanisms responsible for reducing disease in varietal mixtures in the field need to be re-examined.
Susceptibility to fungal pathogens and plant immunity in rice and wheat can be modulated by the presence of intraspecific neighbours and does not require the neighbours to be infected. Abstract As part of a trend towards diversifying cultivated areas, varietal mixtures are subject to renewed interest as a means to manage diseases. Besides the epidemiological effects of varietal mixtures on pathogen propagation, little is known about the effect of intraspecific plant–plant interactions and their impact on responses to disease. In this study, genotypes of rice (Oryza sativa) or durum wheat (Triticum turgidum) were grown with different conspecific neighbours and manually inoculated under conditions preventing pathogen propagation. Disease susceptibility was measured together with the expression of basal immunity genes as part of the response to intra-specific neighbours. The results showed that in many cases for both rice and wheat susceptibility to pathogens and immunity was modified by the presence of intraspecific neighbours. This phenomenon, which we term ‘neighbour-modulated susceptibility’ (NMS), could be caused by the production of below-ground signals and does not require the neighbours to be infected. Our results suggest that the mechanisms responsible for reducing disease in varietal mixtures in the field need to be re-examined.
As part of a trend towards diversifying cultivated areas, varietal mixtures are subject to renewed interest as a means to manage diseases. Besides the epidemiological effects of varietal mixtures on pathogen propagation, little is known about the effect of intraspecific plant–plant interactions and their impact on responses to disease. In this study, genotypes of rice (Oryza sativa) or durum wheat (Triticum turgidum) were grown with different conspecific neighbours and manually inoculated under conditions preventing pathogen propagation. Disease susceptibility was measured together with the expression of basal immunity genes as part of the response to intra-specific neighbours. The results showed that in many cases for both rice and wheat susceptibility to pathogens and immunity was modified by the presence of intraspecific neighbours. This phenomenon, which we term ‘neighbour-modulated susceptibility’ (NMS), could be caused by the production of below-ground signals and does not require the neighbours to be infected. Our results suggest that the mechanisms responsible for reducing disease in varietal mixtures in the field need to be re-examined.
Author Morel, Jean-Benoit
Temple, Coline
Buendia, Luis
Ballini, Elsa
Brousse, Andy
Violle, Cyrille
Pélissier, Rémi
Fort, Florian
AuthorAffiliation 3 PHIM Plant Health Institute, Université de Montpellier, INRAE, CIRAD, Institut Agro, IRD , Montpellier , France
6 University of Warwick , UK
1 PHIM Plant Health Institute, Université de Montpellier, Institut Agro, CIRAD, INRAE, IRD , Montpellier , France
2 PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD , Montpellier , France
4 CEFE, Université de Montpellier, CNRS, EPHE, IRD, Institut Agro , Montpellier , France
5 CEFE, Université de Montpellier, CNRS, EPHE, IRD , Montpellier , France
AuthorAffiliation_xml – name: 1 PHIM Plant Health Institute, Université de Montpellier, Institut Agro, CIRAD, INRAE, IRD , Montpellier , France
– name: 5 CEFE, Université de Montpellier, CNRS, EPHE, IRD , Montpellier , France
– name: 4 CEFE, Université de Montpellier, CNRS, EPHE, IRD, Institut Agro , Montpellier , France
– name: 6 University of Warwick , UK
– name: 2 PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD , Montpellier , France
– name: 3 PHIM Plant Health Institute, Université de Montpellier, INRAE, CIRAD, Institut Agro, IRD , Montpellier , France
Author_xml – sequence: 1
  givenname: Rémi
  surname: Pélissier
  fullname: Pélissier, Rémi
  organization: PHIM Plant Health Institute, Université de Montpellier, Institut Agro, CIRAD, INRAE, IRD, Montpellier, France
– sequence: 2
  givenname: Luis
  surname: Buendia
  fullname: Buendia, Luis
  organization: PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
– sequence: 3
  givenname: Andy
  surname: Brousse
  fullname: Brousse, Andy
  organization: PHIM Plant Health Institute, Université de Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
– sequence: 4
  givenname: Coline
  surname: Temple
  fullname: Temple, Coline
  organization: PHIM Plant Health Institute, Université de Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
– sequence: 5
  givenname: Elsa
  surname: Ballini
  fullname: Ballini, Elsa
  organization: PHIM Plant Health Institute, Université de Montpellier, Institut Agro, CIRAD, INRAE, IRD, Montpellier, France
– sequence: 6
  givenname: Florian
  surname: Fort
  fullname: Fort, Florian
  organization: CEFE, Université de Montpellier, CNRS, EPHE, IRD, Institut Agro, Montpellier, France
– sequence: 7
  givenname: Cyrille
  surname: Violle
  fullname: Violle, Cyrille
  organization: CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
– sequence: 8
  givenname: Jean-Benoit
  orcidid: 0000-0003-1988-956X
  surname: Morel
  fullname: Morel, Jean-Benoit
  email: jean-benoit.morel@inrae.fr
  organization: PHIM Plant Health Institute, Université de Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
BackLink https://hal.inrae.fr/hal-03594773$$DView record in HAL
BookMark eNp9kVtr3DAQhUVJaTaXp_4BP5WG4mZGF8t-KYTQNoGF9KF5FrIk7yrYlivJIfn39bJLoIEGxAg053wa5pyQozGMjpCPCF8RGnb58NReuqhbKuU7skJeQUk5wyOyAqC0hEbIY3KS0gMACBDiAzlmHKnARq7I3a9ej7kYnd9s2zDHcgh27nV2tkhzMm7KvvW9z89FDsWk8zZs3JgKPy4nR50mZ3znTTH4pzxHl87I-073yZ0f7lNy_-P77-ubcn338_b6al0aTlkusW2xqxq0glWoOeUdQsWp5byra46WIUgtpaHcoQXbwFJqYyqwVou6EeyUfNtzp7kdnDVuN02vpugHHZ9V0F792xn9Vm3Co6p5zWRNF8DFHrB9Zbu5WqvdGzDRcCnZIy7az4fPYvgzu5TV4Jfd9MvqXJiTooKDpA0CX6Rf9lITQ0rRdS9sBLWLSy1xqUNcixpfqY3POvuwm9n3__F82nvCPL0J_wtwCalV
CitedBy_id crossref_primary_10_1016_j_fgb_2022_103744
crossref_primary_10_1093_jxb_erab377
crossref_primary_10_1016_j_pbi_2024_102547
crossref_primary_10_1007_s11104_022_05508_z
crossref_primary_10_1111_ppa_13493
crossref_primary_10_1093_jpe_rtad017
crossref_primary_10_1016_j_baae_2025_03_001
crossref_primary_10_3389_fpls_2023_1266704
crossref_primary_10_1371_journal_ppat_1011294
crossref_primary_10_3389_fpls_2021_782960
crossref_primary_10_1371_journal_ppat_1011072
crossref_primary_10_1371_journal_pbio_3002287
crossref_primary_10_1007_s13593_024_00984_2
crossref_primary_10_1111_nph_18778
crossref_primary_10_1016_j_tplants_2022_08_014
crossref_primary_10_3390_biology13080616
crossref_primary_10_1016_j_tplants_2023_08_007
Cites_doi 10.3389/fpls.2013.00296
10.1016/j.tplants.2017.06.010
10.1093/emboj/19.15.4004
10.1146/annurev.phyto.40.011402.113723
10.3389/fpls.2019.00751
10.1007/s11104-007-9288-3
10.7554/eLife.04490
10.1038/nature05286
10.1186/1471-2229-10-206
10.1016/j.bioelechem.2019.05.003
10.1007/s13593-017-0418-x
10.1105/tpc.16.00931
10.1890/0012-9658(2006)87[922:DRISVA]2.0.CO;2
10.1016/j.pbi.2019.02.003
10.1111/j.1365-3059.2012.02602.x
10.1046/j.1365-313X.1999.00405.x
10.1093/aob/mcw152
10.1016/j.pmpp.2016.01.002
10.1038/s41587-019-0267-z
10.1094/PD-64-788
10.1094/PHYTO.1999.89.11.984
10.1111/tpj.13799
10.4161/psb.6.10.16525
10.1371/journal.ppat.1007740
10.1038/s41467-018-06429-1
10.3389/fpls.2014.00611
10.1105/tpc.15.00585
10.1016/j.micres.2018.04.008
10.1016/j.pbi.2021.102045
10.1094/PHYTO-07-15-0169-R
10.1038/nature01014
10.1146/annurev-phyto-081211-172955
10.1111/j.1364-3703.2011.00731.x
10.1016/j.tplants.2006.03.005
10.1094/MPMI-06-17-0145-CR
10.3389/fpls.2016.00594
10.1007/s10681-020-02631-9
10.3390/ijms19041138
10.1111/j.1469-8137.2005.01613.x
10.1007/s13593-014-0272-z
10.1016/j.tplants.2016.07.009
10.1111/pce.12914
10.3389/fpls.2015.00830
10.1016/j.tree.2009.09.010
10.1038/s41467-019-11798-2
10.1093/mp/ssu049
10.1080/15592324.2019.1634993
10.3389/fpls.2016.00508
10.1094/MPMI-03-18-0058-CR
10.1111/eva.12175
10.1007/s00122-003-1349-2
10.1007/PL00008892
10.1111/j.1469-8137.2007.01971.x
10.3389/fevo.2019.00385
10.1111/j.1364-3703.2008.00487.x
10.1038/35021046
10.1111/nph.15296
10.1016/j.chom.2018.03.003
10.1016/j.fcr.2019.107696
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2021
The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Attribution
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2021
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology.
– notice: Attribution
DBID TOX
AAYXX
CITATION
7X8
1XC
VOOES
5PM
DOI 10.1093/jxb/erab277
DatabaseName Oxford Journals Open Access Collection
CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: TOX
  name: Open Access: Oxford University Press Open Journals
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 6580
ExternalDocumentID PMC8483782
oai_HAL_hal_03594773v1
10_1093_jxb_erab277
10.1093/jxb/erab277
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: ERC-StG-2014-639706-CONSTRAINTS
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
3O-
4.4
482
48X
53G
5GY
5VS
5WA
5WD
6.Y
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
ABBHK
ABEUO
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXSQ
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ACZBC
ADACV
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQVQM
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
C1A
CAG
CDBKE
COF
CS3
CXTWN
CZ4
D-I
DAKXR
DATOO
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
ELUNK
ESX
F20
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JXSIZ
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TLC
TN5
TOX
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZCG
ZKX
~02
~91
~KM
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AGORE
AHGBF
AJBYB
AJNCP
ALXQX
CITATION
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c423t-1bb1f691d5361a424f10642d44f8841d3107a77c24e1d0d90d0d8cc60dda58953
IEDL.DBID TOX
ISSN 0022-0957
1460-2431
IngestDate Thu Aug 21 14:02:26 EDT 2025
Fri May 09 12:14:07 EDT 2025
Fri Jul 11 06:25:00 EDT 2025
Tue Jul 01 03:05:49 EDT 2025
Thu Apr 24 23:12:44 EDT 2025
Wed Aug 28 03:20:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Disease
plant–plant interactions
neighbour
wheat
immunity
rice
intraspecific mixture
Oryza sativa
Triticum turgidum
plant-plant interactions
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-1bb1f691d5361a424f10642d44f8841d3107a77c24e1d0d90d0d8cc60dda58953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC8483782
These authors contributed equally to this work.
ORCID 0000-0003-1988-956X
0000-0001-7983-6254
0000-0001-7168-4727
0000-0002-2571-2069
0000-0002-2471-9226
OpenAccessLink https://dx.doi.org/10.1093/jxb/erab277
PMID 34125197
PQID 2540729104
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8483782
hal_primary_oai_HAL_hal_03594773v1
proquest_miscellaneous_2540729104
crossref_primary_10_1093_jxb_erab277
crossref_citationtrail_10_1093_jxb_erab277
oup_primary_10_1093_jxb_erab277
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-30
PublicationDateYYYYMMDD 2021-09-30
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-30
  day: 30
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
PublicationTitle Journal of experimental botany
PublicationYear 2021
Publisher Oxford University Press
Oxford University Press (OUP)
Publisher_xml – name: Oxford University Press
– name: Oxford University Press (OUP)
References Berruyer (2021093021172510600_CIT0005) 2003; 107
Bolton (2021093021172510600_CIT0007) 2008; 9
Nobori (2021093021172510600_CIT0037) 2019; 50
Cheol Song (2021093021172510600_CIT0010) 2016; 118
Ballaré (2021093021172510600_CIT0002) 2017; 40
Chen (2021093021172510600_CIT0009) 2019; 10
Stenberg (2021093021172510600_CIT0045) 2017; 22
Volkov (2021093021172510600_CIT0054) 2019; 129
Donaldson (2021093021172510600_CIT0015) 2006; 169
Huot (2021093021172510600_CIT0024) 2014; 7
Jia (2021093021172510600_CIT0025) 2000; 19
Zhu (2021093021172510600_CIT0059) 2000; 406
Ding (2021093021172510600_CIT0013) 2016; 93
Venturelli (2021093021172510600_CIT0051) 2015; 27
Jones (2021093021172510600_CIT0026) 2006; 444
van Kan (2021093021172510600_CIT0049) 2006; 11
Oliva (2021093021172510600_CIT0038) 2019; 37
Ninkovic (2021093021172510600_CIT0036) 2019; 14
Schuman (2021093021172510600_CIT0044) 2015; 4
Zhu (2021093021172510600_CIT0058) 2019; 32
Heil (2021093021172510600_CIT0023) 2010; 25
Fernandez (2021093021172510600_CIT0018) 2016; 7
Peng (2021093021172510600_CIT0040) 2017; 31
Kettles (2021093021172510600_CIT0030) 2016; 7
Garrett (2021093021172510600_CIT0021) 1999; 89
Ballini (2021093021172510600_CIT0003) 2020; 216
Duba (2021093021172510600_CIT0016) 2018; 19
Martinez-Medina (2021093021172510600_CIT0033) 2016; 21
Schmid (2021093021172510600_CIT0043) 2013; 4
Hau (2021093021172510600_CIT0022) 1980; 64
Gallet (2021093021172510600_CIT0020) 2015; 106
Wang (2021093021172510600_CIT0055) 2007; 296
Kristoffersen (2021093021172510600_CIT0032) 2020; 249
Barot (2021093021172510600_CIT0004) 2017; 37
Karasov (2021093021172510600_CIT0027) 2017; 29
Karban (2021093021172510600_CIT0029) 2006; 87
Gaba (2021093021172510600_CIT0019) 2015; 35
Vergne (2021093021172510600_CIT0052) 2007; 174
Wenig (2021093021172510600_CIT0056) 2019; 10
Mundt (2021093021172510600_CIT0035) 2002; 40
Ding (2021093021172510600_CIT0014) 2015; 6
Rebolleda-Gómez (2021093021172510600_CIT0042) 2019; 7
Takahashi (2021093021172510600_CIT0047) 1999; 17
Burdon (2021093021172510600_CIT0008) 2014; 7
Delteil (2021093021172510600_CIT0012) 2012; 13
Raboin (2021093021172510600_CIT0041) 2012; 61
Vannier (2021093021172510600_CIT0050) 2019; 15
Vergne (2021093021172510600_CIT0053) 2010; 10
Karban (2021093021172510600_CIT0028) 2000; 125
Biedrzycki (2021093021172510600_CIT0006) 2011; 6
De Vleesschauwer (2021093021172510600_CIT0011) 2014; 5
Kong (2021093021172510600_CIT0031) 2018; 9
Fan (2021093021172510600_CIT0017) 2018; 23
Subrahmaniam (2021093021172510600_CIT0046) 2018; 93
Pélissier (2021093021172510600_CIT0039) 2021; 62
Ali (2021093021172510600_CIT0001) 2018; 212–213
Tilman (2021093021172510600_CIT0048) 2002; 418
Mengiste (2021093021172510600_CIT0034) 2012; 50
Yang (2021093021172510600_CIT0057) 2018; 220
References_xml – volume: 4
  start-page: 296
  year: 2013
  ident: 2021093021172510600_CIT0043
  article-title: Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2013.00296
– volume: 22
  start-page: 759
  year: 2017
  ident: 2021093021172510600_CIT0045
  article-title: A conceptual framework for integrated pest management
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2017.06.010
– volume: 19
  start-page: 4004
  year: 2000
  ident: 2021093021172510600_CIT0025
  article-title: Direct interaction of resistance gene and avirulence gene products confers rice blast resistance
  publication-title: EMBO Journal
  doi: 10.1093/emboj/19.15.4004
– volume: 40
  start-page: 381
  year: 2002
  ident: 2021093021172510600_CIT0035
  article-title: Use of multiline cultivars and cultivar mixtures for disease management
  publication-title: Annual Review of Phytopathology
  doi: 10.1146/annurev.phyto.40.011402.113723
– volume: 10
  start-page: 751
  year: 2019
  ident: 2021093021172510600_CIT0009
  article-title: Presence of belowground neighbors activates defense pathways at the expense of growth in tobacco plants
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2019.00751
– volume: 296
  start-page: 43
  year: 2007
  ident: 2021093021172510600_CIT0055
  article-title: Allantoin involved in species interactions with rice and other organisms in paddy soil
  publication-title: Plant and Soil
  doi: 10.1007/s11104-007-9288-3
– volume: 4
  start-page: e04490
  year: 2015
  ident: 2021093021172510600_CIT0044
  article-title: Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors
  publication-title: eLife
  doi: 10.7554/eLife.04490
– volume: 444
  start-page: 323
  year: 2006
  ident: 2021093021172510600_CIT0026
  article-title: The plant immune system
  publication-title: Nature
  doi: 10.1038/nature05286
– volume: 10
  start-page: 206
  year: 2010
  ident: 2021093021172510600_CIT0053
  article-title: Preformed expression of defense is a hallmark of partial resistance to rice blast fungal pathogen Magnaporthe oryzae
  publication-title: BMC Plant Biology
  doi: 10.1186/1471-2229-10-206
– volume: 129
  start-page: 70
  year: 2019
  ident: 2021093021172510600_CIT0054
  article-title: Electrical signal transmission in the plant-wide web
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2019.05.003
– volume: 37
  start-page: 13
  year: 2017
  ident: 2021093021172510600_CIT0004
  article-title: Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review
  publication-title: Agronomy for Sustainable Development
  doi: 10.1007/s13593-017-0418-x
– volume: 29
  start-page: 666
  year: 2017
  ident: 2021093021172510600_CIT0027
  article-title: Mechanisms to mitigate the tradeoff between growth and defense
  publication-title: The Plant Cell
  doi: 10.1105/tpc.16.00931
– volume: 87
  start-page: 922
  year: 2006
  ident: 2021093021172510600_CIT0029
  article-title: Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication
  publication-title: Ecology
  doi: 10.1890/0012-9658(2006)87[922:DRISVA]2.0.CO;2
– volume: 50
  start-page: 58
  year: 2019
  ident: 2021093021172510600_CIT0037
  article-title: The plant immune system in heterogeneous environments
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2019.02.003
– volume: 61
  start-page: 1103
  year: 2012
  ident: 2021093021172510600_CIT0041
  article-title: Two-component cultivar mixtures reduce rice blast epidemics in an upland agrosystem
  publication-title: Plant Pathology
  doi: 10.1111/j.1365-3059.2012.02602.x
– volume: 17
  start-page: 535
  year: 1999
  ident: 2021093021172510600_CIT0047
  article-title: Lesion mimic mutants of rice with alterations in early signaling events of defense
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313X.1999.00405.x
– volume: 118
  start-page: 821
  year: 2016
  ident: 2021093021172510600_CIT0010
  article-title: Root-mediated signal transmission of systemic acquired resistance against above-ground and below-ground pathogens
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcw152
– volume: 93
  start-page: 67
  year: 2016
  ident: 2021093021172510600_CIT0013
  article-title: Investigating interactions of salicylic acid and jasmonic acid signaling pathways in monocots wheat
  publication-title: Physiological and Molecular Plant Pathology
  doi: 10.1016/j.pmpp.2016.01.002
– volume: 37
  start-page: 1344
  year: 2019
  ident: 2021093021172510600_CIT0038
  article-title: Broad-spectrum resistance to bacterial blight in rice using genome editing
  publication-title: Nature Biotechnology
  doi: 10.1038/s41587-019-0267-z
– volume: 64
  start-page: 788
  year: 1980
  ident: 2021093021172510600_CIT0022
  article-title: A system for inducing sporulation of Bipolaris oryzae
  publication-title: Plant Disease
  doi: 10.1094/PD-64-788
– volume: 89
  start-page: 984
  year: 1999
  ident: 2021093021172510600_CIT0021
  article-title: Epidemiology in mixed host populations
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.1999.89.11.984
– volume: 93
  start-page: 747
  year: 2018
  ident: 2021093021172510600_CIT0046
  article-title: The genetics underlying natural variation of plant–plant interactions, a beloved but forgotten member of the family of biotic interactions
  publication-title: The Plant Journal
  doi: 10.1111/tpj.13799
– volume: 6
  start-page: 1515
  year: 2011
  ident: 2021093021172510600_CIT0006
  article-title: Transcriptome analysis of Arabidopsis thaliana plants in response to kin and stranger recognition
  publication-title: Plant Signaling & Behavior
  doi: 10.4161/psb.6.10.16525
– volume: 15
  start-page: e1007740
  year: 2019
  ident: 2021093021172510600_CIT0050
  article-title: Microbiota-mediated disease resistance in plants
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1007740
– volume: 9
  start-page: 3867
  year: 2018
  ident: 2021093021172510600_CIT0031
  article-title: Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-06429-1
– volume: 5
  start-page: 611
  year: 2014
  ident: 2021093021172510600_CIT0011
  article-title: Making sense of hormone-mediated defense networking: from rice to Arabidopsis
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2014.00611
– volume: 27
  start-page: 3175
  year: 2015
  ident: 2021093021172510600_CIT0051
  article-title: Plants release precursors of histone deacetylase inhibitors to suppress growth of competitors
  publication-title: The Plant Cell
  doi: 10.1105/tpc.15.00585
– volume: 212–213
  start-page: 29
  year: 2018
  ident: 2021093021172510600_CIT0001
  article-title: Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance
  publication-title: Microbiological Research
  doi: 10.1016/j.micres.2018.04.008
– volume: 62
  start-page: 102045
  year: 2021
  ident: 2021093021172510600_CIT0039
  article-title: Plant immunity: good fences make good neighbors?
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2021.102045
– volume: 106
  start-page: 348
  year: 2015
  ident: 2021093021172510600_CIT0020
  article-title: Evolution of compatibility range in the rice−Magnaporthe oryzae system: an uneven distribution of R genes between rice subspecies
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-07-15-0169-R
– volume: 418
  start-page: 671
  year: 2002
  ident: 2021093021172510600_CIT0048
  article-title: Agricultural sustainability and intensive production practices
  publication-title: Nature
  doi: 10.1038/nature01014
– volume: 50
  start-page: 267
  year: 2012
  ident: 2021093021172510600_CIT0034
  article-title: Plant immunity to necrotrophs
  publication-title: Annual Review of Phytopathology
  doi: 10.1146/annurev-phyto-081211-172955
– volume: 13
  start-page: 72
  year: 2012
  ident: 2021093021172510600_CIT0012
  article-title: Building a mutant resource for the study of disease resistance in rice reveals the pivotal role of several genes involved in defence
  publication-title: Molecular Plant Pathology
  doi: 10.1111/j.1364-3703.2011.00731.x
– volume: 11
  start-page: 247
  year: 2006
  ident: 2021093021172510600_CIT0049
  article-title: Licensed to kill: the lifestyle of a necrotrophic plant pathogen
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2006.03.005
– volume: 31
  start-page: 403
  year: 2017
  ident: 2021093021172510600_CIT0040
  article-title: Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity
  publication-title: Molecular Plant-Microbe Interactions
  doi: 10.1094/MPMI-06-17-0145-CR
– volume: 7
  start-page: 594
  year: 2016
  ident: 2021093021172510600_CIT0018
  article-title: The impact of competition and allelopathy on the trade-off between plant defense and growth in two contrasting tree species
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.00594
– volume: 216
  start-page: 92
  year: 2020
  ident: 2021093021172510600_CIT0003
  article-title: Genome wide association mapping for resistance to multiple fungal pathogens in a panel issued from a broad composite cross-population of tetraploid wheat Triticum turgidum
  publication-title: Euphytica
  doi: 10.1007/s10681-020-02631-9
– volume: 19
  start-page: 1138
  year: 2018
  ident: 2021093021172510600_CIT0016
  article-title: A review of the interactions between wheat and wheat pathogens: Zymoseptoria tritici, Fusarium spp. and Parastagonospora nodorum
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms19041138
– volume: 169
  start-page: 561
  year: 2006
  ident: 2021093021172510600_CIT0015
  article-title: Competition- and resource-mediated tradeoffs between growth and defensive chemistry in trembling aspen (Populus tremuloides)
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2005.01613.x
– volume: 35
  start-page: 607
  year: 2015
  ident: 2021093021172510600_CIT0019
  article-title: Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design
  publication-title: Agronomy for Sustainable Development
  doi: 10.1007/s13593-014-0272-z
– volume: 21
  start-page: 818
  year: 2016
  ident: 2021093021172510600_CIT0033
  article-title: Recognizing plant defense priming
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2016.07.009
– volume: 40
  start-page: 2530
  year: 2017
  ident: 2021093021172510600_CIT0002
  article-title: The shade-avoidance syndrome: multiple signals and ecological consequences
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.12914
– volume: 6
  start-page: 830
  year: 2015
  ident: 2021093021172510600_CIT0014
  article-title: Priming maize resistance by its neighbors: activating 1,4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2015.00830
– volume: 25
  start-page: 137
  year: 2010
  ident: 2021093021172510600_CIT0023
  article-title: Explaining evolution of plant communication by airborne signals
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/j.tree.2009.09.010
– volume: 10
  start-page: 3813
  year: 2019
  ident: 2021093021172510600_CIT0056
  article-title: Systemic acquired resistance networks amplify airborne defense cues
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-11798-2
– volume: 7
  start-page: 1267
  year: 2014
  ident: 2021093021172510600_CIT0024
  article-title: Growth–defense tradeoffs in plants: a balancing act to optimize fitness
  publication-title: Molecular Plant
  doi: 10.1093/mp/ssu049
– volume: 14
  start-page: 1634993
  year: 2019
  ident: 2021093021172510600_CIT0036
  article-title: Who is my neighbor? Volatile cues in plant interactions
  publication-title: Plant Signaling & Behavior
  doi: 10.1080/15592324.2019.1634993
– volume: 7
  start-page: 508
  year: 2016
  ident: 2021093021172510600_CIT0030
  article-title: Dissecting the molecular interactions between wheat and the fungal pathogen Zymoseptoria tritici
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.00508
– volume: 32
  start-page: 20
  year: 2019
  ident: 2021093021172510600_CIT0058
  article-title: Molecular mechanisms underlying microbial disease control in intercropping
  publication-title: Molecular Plant-Microbe Interactions
  doi: 10.1094/MPMI-03-18-0058-CR
– volume: 7
  start-page: 609
  year: 2014
  ident: 2021093021172510600_CIT0008
  article-title: Guiding deployment of resistance in cereals using evolutionary principles
  publication-title: Evolutionary Applications
  doi: 10.1111/eva.12175
– volume: 107
  start-page: 1139
  year: 2003
  ident: 2021093021172510600_CIT0005
  article-title: Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-003-1349-2
– volume: 125
  start-page: 66
  year: 2000
  ident: 2021093021172510600_CIT0028
  article-title: Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush
  publication-title: Oecologia
  doi: 10.1007/PL00008892
– volume: 174
  start-page: 159
  year: 2007
  ident: 2021093021172510600_CIT0052
  article-title: Early and specific gene expression triggered by rice resistance gene Pi33 in response to infection by ACE1 avirulent blast fungus
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2007.01971.x
– volume: 7
  start-page: 385
  year: 2019
  ident: 2021093021172510600_CIT0042
  article-title: Unclear intentions: eavesdropping in microbial and plant systems
  publication-title: Frontiers in Ecology and Evolution
  doi: 10.3389/fevo.2019.00385
– volume: 9
  start-page: 563
  year: 2008
  ident: 2021093021172510600_CIT0007
  article-title: Wheat leaf rust caused by Puccinia triticina
  publication-title: Molecular Plant Pathology
  doi: 10.1111/j.1364-3703.2008.00487.x
– volume: 406
  start-page: 718
  year: 2000
  ident: 2021093021172510600_CIT0059
  article-title: Genetic diversity and disease control in rice
  publication-title: Nature
  doi: 10.1038/35021046
– volume: 220
  start-page: 567
  year: 2018
  ident: 2021093021172510600_CIT0057
  article-title: Kin recognition in rice (Oryza sativa) lines
  publication-title: New Phytologist
  doi: 10.1111/nph.15296
– volume: 23
  start-page: 498
  year: 2018
  ident: 2021093021172510600_CIT0017
  article-title: The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice
  publication-title: Cell Host & Microbe
  doi: 10.1016/j.chom.2018.03.003
– volume: 249
  start-page: 107696
  year: 2020
  ident: 2021093021172510600_CIT0032
  article-title: Control of Septoria tritici blotch by winter wheat cultivar mixtures: meta-analysis of 19 years of cultivar trials
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2019.107696
SSID ssj0005055
Score 2.4608183
Snippet Susceptibility to fungal pathogens and plant immunity in rice and wheat can be modulated by the presence of intraspecific neighbours and does not require the...
As part of a trend towards diversifying cultivated areas, varietal mixtures are subject to renewed interest as a means to manage diseases. Besides the...
SourceID pubmedcentral
hal
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6570
SubjectTerms Life Sciences
Phytopathology and phytopharmacy
Research Papers
Vegetal Biology
Title Plant neighbour-modulated susceptibility to pathogens in intraspecific mixtures
URI https://www.proquest.com/docview/2540729104
https://hal.inrae.fr/hal-03594773
https://pubmed.ncbi.nlm.nih.gov/PMC8483782
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PS8MwFA46PHgRf-L8MavsJJQ1bdqkxynOIeouG-xW2iRlE9fK2sn23_te100rQ6H0kKYNvJeQr3nf-x4hTdfVmiorNkXMuclEzMxIOwpWvKOtWDHJiioKL69ed8Cehu6wJMhmG0L4vtN6m0ctPQ0jm2PSOGy_KJHf7w2_mRyW665EwQEx8DIN79e7lY1ne4S0x0pKGyLLKi_yx0bT2Sd7JUI02kuXHpAtnRySnbsUUNziiPSwylBuJHiiiQeS5iRVWIFLKyObZQVHpaC7Low8NbDccAozJDPGCVwwGiZWIjnImIznGDvIjsmg89C_75plUQRTAvLJTRpFNPZ8qlzHoyGzWUzxH0IxFgvBqAK4xkPOpc3QB8q34Cak9CylQlf4rnNCakma6FNiaBX6DuBBRSXgKCYjETER-tDMuSWpXSe3K4sFslQMx8IV78Eycu0EYN6gNG-dNNedP5ZCGZu73YDp1z1Q3Lrbfg6wDcUEGefOJ62TK_DM35-5XnktgPWAQY4w0eksC2xUFLQBBLE64RV3VgatPknGo0JZWxT6-vbZv-Ofk10byS0FceSC1PLpTF8COsmjBtl-HNJGMUO_AGa25ss
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+neighbour-modulated+susceptibility+to+pathogens+in+intraspecific+mixtures&rft.jtitle=Journal+of+experimental+botany&rft.au=P%C3%A9lissier%2C+R%C3%A9mi&rft.au=Buendia%2C+Luis&rft.au=Brousse%2C+Andy&rft.au=Temple%2C+Coline&rft.date=2021-09-30&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=72&rft.issue=18&rft.spage=6570&rft.epage=6580&rft_id=info:doi/10.1093%2Fjxb%2Ferab277&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_jxb_erab277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon