MNE Scan: Software for real-time processing of electrophysiological data

•MNE Scan is a new software for acquiring and processing electrophysiological data in real-time.•This work is a first step in establishing a standardized real-time processing software targeting large parts of the neuroscience community.•The employed software development cycle considers the requireme...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 303; pp. 55 - 67
Main Authors Esch, Lorenz, Sun, Limin, Klüber, Viktor, Lew, Seok, Baumgarten, Daniel, Grant, P. Ellen, Okada, Yoshio, Haueisen, Jens, Hämäläinen, Matti S, Dinh, Christoph
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •MNE Scan is a new software for acquiring and processing electrophysiological data in real-time.•This work is a first step in establishing a standardized real-time processing software targeting large parts of the neuroscience community.•The employed software development cycle considers the requirements needed for clinical software approval processes.•MNE Scan was tested in multiple real-time scenarios. It is in active use with a new pediatric MEG system, which was already approved by the FDA.•MNE Scan is developed under an open-source license and is freely available as source code or pre-built binaries. Magnetoencephalography (MEG) and Electroencephalography (EEG) are noninvasive techniques to study the electrophysiological activity of the human brain. Thus, they are well suited for real-time monitoring and analysis of neuronal activity. Real-time MEG/EEG data processing allows adjustment of the stimuli to the subject’s responses for optimizing the acquired information especially by providing dynamically changing displays to enable neurofeedback. We introduce MNE Scan, an acquisition and real-time analysis software based on the multipurpose software library MNE-CPP. MNE Scan allows the development and application of acquisition and novel real-time processing methods in both research and clinical studies. The MNE Scan development follows a strict software engineering process to enable approvals required for clinical software. We tested the performance of MNE Scan in several device-independent use cases, including, a clinical epilepsy study, real-time source estimation, and Brain Computer Interface (BCI) application. Compared to existing tools we propose a modular software considering clinical software requirements expected by certification authorities. At the same time the software is extendable and freely accessible. We conclude that MNE Scan is the first step in creating a device-independent open-source software to facilitate the transition from basic neuroscience research to both applied sciences and clinical applications.
AbstractList •MNE Scan is a new software for acquiring and processing electrophysiological data in real-time.•This work is a first step in establishing a standardized real-time processing software targeting large parts of the neuroscience community.•The employed software development cycle considers the requirements needed for clinical software approval processes.•MNE Scan was tested in multiple real-time scenarios. It is in active use with a new pediatric MEG system, which was already approved by the FDA.•MNE Scan is developed under an open-source license and is freely available as source code or pre-built binaries. Magnetoencephalography (MEG) and Electroencephalography (EEG) are noninvasive techniques to study the electrophysiological activity of the human brain. Thus, they are well suited for real-time monitoring and analysis of neuronal activity. Real-time MEG/EEG data processing allows adjustment of the stimuli to the subject’s responses for optimizing the acquired information especially by providing dynamically changing displays to enable neurofeedback. We introduce MNE Scan, an acquisition and real-time analysis software based on the multipurpose software library MNE-CPP. MNE Scan allows the development and application of acquisition and novel real-time processing methods in both research and clinical studies. The MNE Scan development follows a strict software engineering process to enable approvals required for clinical software. We tested the performance of MNE Scan in several device-independent use cases, including, a clinical epilepsy study, real-time source estimation, and Brain Computer Interface (BCI) application. Compared to existing tools we propose a modular software considering clinical software requirements expected by certification authorities. At the same time the software is extendable and freely accessible. We conclude that MNE Scan is the first step in creating a device-independent open-source software to facilitate the transition from basic neuroscience research to both applied sciences and clinical applications.
Magnetoencephalography (MEG) and Electroencephalography (EEG) are noninvasive techniques to study the electrophysiological activity of the human brain. Thus, they are well suited for real-time monitoring and analysis of neuronal activity. Real-time MEG/EEG data processing allows adjustment of the stimuli to the subject's responses for optimizing the acquired information especially by providing dynamically changing displays to enable neurofeedback. We introduce MNE Scan, an acquisition and real-time analysis software based on the multipurpose software library MNE-CPP. MNE Scan allows the development and application of acquisition and novel real-time processing methods in both research and clinical studies. The MNE Scan development follows a strict software engineering process to enable approvals required for clinical software. We tested the performance of MNE Scan in several device-independent use cases, including, a clinical epilepsy study, real-time source estimation, and Brain Computer Interface (BCI) application. Compared to existing tools we propose a modular software considering clinical software requirements expected by certification authorities. At the same time the software is extendable and freely accessible. We conclude that MNE Scan is the first step in creating a device-independent open-source software to facilitate the transition from basic neuroscience research to both applied sciences and clinical applications.
Magnetoencephalography (MEG) and Electroencephalography (EEG) are noninvasive techniques to study the electrophysiological activity of the human brain. Thus, they are well suited for real-time monitoring and analysis of neuronal activity. Real-time MEG/EEG data processing allows adjustment of the stimuli to the subject's responses for optimizing the acquired information especially by providing dynamically changing displays to enable neurofeedback.BACKGROUNDMagnetoencephalography (MEG) and Electroencephalography (EEG) are noninvasive techniques to study the electrophysiological activity of the human brain. Thus, they are well suited for real-time monitoring and analysis of neuronal activity. Real-time MEG/EEG data processing allows adjustment of the stimuli to the subject's responses for optimizing the acquired information especially by providing dynamically changing displays to enable neurofeedback.We introduce MNE Scan, an acquisition and real-time analysis software based on the multipurpose software library MNE-CPP. MNE Scan allows the development and application of acquisition and novel real-time processing methods in both research and clinical studies. The MNE Scan development follows a strict software engineering process to enable approvals required for clinical software.NEW METHODWe introduce MNE Scan, an acquisition and real-time analysis software based on the multipurpose software library MNE-CPP. MNE Scan allows the development and application of acquisition and novel real-time processing methods in both research and clinical studies. The MNE Scan development follows a strict software engineering process to enable approvals required for clinical software.We tested the performance of MNE Scan in several device-independent use cases, including, a clinical epilepsy study, real-time source estimation, and Brain Computer Interface (BCI) application.RESULTSWe tested the performance of MNE Scan in several device-independent use cases, including, a clinical epilepsy study, real-time source estimation, and Brain Computer Interface (BCI) application.Compared to existing tools we propose a modular software considering clinical software requirements expected by certification authorities. At the same time the software is extendable and freely accessible.COMPARISON WITH EXISTING METHOD(S)Compared to existing tools we propose a modular software considering clinical software requirements expected by certification authorities. At the same time the software is extendable and freely accessible.We conclude that MNE Scan is the first step in creating a device-independent open-source software to facilitate the transition from basic neuroscience research to both applied sciences and clinical applications.CONCLUSIONWe conclude that MNE Scan is the first step in creating a device-independent open-source software to facilitate the transition from basic neuroscience research to both applied sciences and clinical applications.
Author Sun, Limin
Baumgarten, Daniel
Grant, P. Ellen
Dinh, Christoph
Klüber, Viktor
Okada, Yoshio
Esch, Lorenz
Hämäläinen, Matti S
Lew, Seok
Haueisen, Jens
AuthorAffiliation 7 Department of Engineering, Olivet Nazarene University, 1 University Ave, Bourbonnais, 60914, IL, USA
6 Institute of Nuclear and Energy Technologies, KIT – Karlsruher Institut für Technologie, 76344 Eggenstein-Leopoldshafen, Germany
8 Boston Children’s Hospital, Division of Neuroradiology, Department of Radiology, Harvard Medical School, Boston, MA 02115 USA
5 Institute of Electrical and Biomedical Engineering, UMIT - University of Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria
1 Massachusetts General Hospital - Massachusetts Institute of Technology - Harvard Medical School; Athinoula A. Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
3 Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhoff- Str. 2, 98693 Ilmenau, Germany
4 Biomagnetic Center, Clinic for Neurology, Jena University Hospital, Erlanger Allee 101, 07743 Jena, Germany
2 Boston Children’s Hospital, Division of Newborn
AuthorAffiliation_xml – name: 3 Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhoff- Str. 2, 98693 Ilmenau, Germany
– name: 6 Institute of Nuclear and Energy Technologies, KIT – Karlsruher Institut für Technologie, 76344 Eggenstein-Leopoldshafen, Germany
– name: 5 Institute of Electrical and Biomedical Engineering, UMIT - University of Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria
– name: 8 Boston Children’s Hospital, Division of Neuroradiology, Department of Radiology, Harvard Medical School, Boston, MA 02115 USA
– name: 7 Department of Engineering, Olivet Nazarene University, 1 University Ave, Bourbonnais, 60914, IL, USA
– name: 1 Massachusetts General Hospital - Massachusetts Institute of Technology - Harvard Medical School; Athinoula A. Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
– name: 2 Boston Children’s Hospital, Division of Newborn Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
– name: 4 Biomagnetic Center, Clinic for Neurology, Jena University Hospital, Erlanger Allee 101, 07743 Jena, Germany
Author_xml – sequence: 1
  givenname: Lorenz
  surname: Esch
  fullname: Esch, Lorenz
  email: lesch@mgh.harvard.edu
  organization: Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
– sequence: 2
  givenname: Limin
  orcidid: 0000-0003-0526-9474
  surname: Sun
  fullname: Sun, Limin
  organization: Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
– sequence: 3
  givenname: Viktor
  orcidid: 0000-0003-0067-8981
  surname: Klüber
  fullname: Klüber, Viktor
  organization: Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhoff- Str. 2, 98693 Ilmenau, Germany
– sequence: 4
  givenname: Seok
  surname: Lew
  fullname: Lew, Seok
  organization: Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
– sequence: 5
  givenname: Daniel
  surname: Baumgarten
  fullname: Baumgarten, Daniel
  organization: Institute of Electrical and Biomedical Engineering, UMIT – University of Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria
– sequence: 6
  givenname: P. Ellen
  surname: Grant
  fullname: Grant, P. Ellen
  organization: Boston Children’s Hospital, Division of Newborn Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
– sequence: 7
  givenname: Yoshio
  orcidid: 0000-0001-7627-0216
  surname: Okada
  fullname: Okada, Yoshio
  organization: Boston Children’s Hospital, Division of Newborn Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
– sequence: 8
  givenname: Jens
  surname: Haueisen
  fullname: Haueisen, Jens
  organization: Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhoff- Str. 2, 98693 Ilmenau, Germany
– sequence: 9
  givenname: Matti S
  surname: Hämäläinen
  fullname: Hämäläinen, Matti S
  organization: Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
– sequence: 10
  givenname: Christoph
  surname: Dinh
  fullname: Dinh, Christoph
  organization: Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29621570$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFv1DlyCVh7MT2BiFEVRWKVOBQkLhZjj3e9SqJF9tb1H-PV9tWwKWag6Xx996M5p2QoznMSMgZhYYCFW82zWbG3YR53TCgywbaBhg8Iwu6lKwWcvnziCwKyGtgEo7JSUobAOh6EC_IMesFo1zCglx9-XpZ3Rg9v61ugsu_dcTKhVhF1GOd_YTVNgaDKfl5VQVX4Ygmx7Bd3yUfxrDyRo-V1Vm_JM-dHhO-un9PyY-Pl98vrurrb58-X5xf16Zjba6pRt52OHBu0VkhrHQtdtxBqdKjnZC0FwNdMt27wsEgtAQ5IHe9tb1uT8n7g-92N0xoDc456lFto590vFNBe_Xvz-zXahVuFe874FwUg9f3BjH82mHKavLJ4DjqGcMuKQaM9X0rOyjo2d-zHoc8nK8A4gCYGFKK6B4RCmqfk9qoh5zUPicFrSo5FeG7_4TGZ5192O_sx6flHw5yLJe-9RhVMh5ng9bHko-ywT9l8QeIJLUk
CitedBy_id crossref_primary_10_3390_s23125601
crossref_primary_10_1088_2057_1976_aad627
crossref_primary_10_1515_bmt_2019_0128
crossref_primary_10_1109_TBME_2020_3040373
crossref_primary_10_1088_1757_899X_917_1_012047
crossref_primary_10_21105_joss_05854
crossref_primary_10_1007_s10270_020_00797_3
crossref_primary_10_1016_j_clinph_2024_01_005
crossref_primary_10_1016_j_jneumeth_2019_02_002
crossref_primary_10_1002_ana_25779
crossref_primary_10_3390_brainsci9080181
crossref_primary_10_1371_journal_pone_0280822
crossref_primary_10_1162_imag_a_00296
Cites_doi 10.1016/j.neuroimage.2014.09.032
10.1007/s10548-015-0431-9
10.1109/TBME.2004.827072
10.1007/s10548-015-0435-5
10.1063/1.4983080
10.1126/science.161.3843.784
10.1155/2011/879716
10.1007/BF02534144
10.1007/BF02512476
10.1155/2011/156869
10.1371/journal.pcbi.1005430
10.1162/pres.19.1.35
10.1371/journal.pone.0121741
10.1016/j.neuroimage.2012.01.021
10.1007/s10548-017-0586-7
10.1186/1475-925X-9-45
10.1016/j.neuroimage.2013.10.027
10.1007/BF01797193
10.1016/j.jneumeth.2003.10.009
10.1088/1741-2560/10/5/056014
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jneumeth.2018.03.020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 67
ExternalDocumentID PMC5940556
29621570
10_1016_j_jneumeth_2018_03_020
S0165027018300979
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB009048
– fundername: NCRR NIH HHS
  grantid: S10 RR031599
– fundername: NIBIB NIH HHS
  grantid: P41 EB015896
– fundername: NIBIB NIH HHS
  grantid: U01 EB023820
– fundername: NCRR NIH HHS
  grantid: P41 RR014075
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c423t-1ae534eb55defd66d7f3e45f0f0f55d1467196b182a9f4eb0b6a707be5f9dd9a3
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Thu Aug 21 18:13:01 EDT 2025
Fri Jul 11 05:23:22 EDT 2025
Mon Jul 21 05:45:18 EDT 2025
Thu Apr 24 22:57:49 EDT 2025
Tue Jul 01 02:57:09 EDT 2025
Fri Feb 23 02:33:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data processing
MEG/EEG
Neurofeedback/BCI
Data acquisition
Medical software
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-1ae534eb55defd66d7f3e45f0f0f55d1467196b182a9f4eb0b6a707be5f9dd9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0526-9474
0000-0003-0067-8981
0000-0001-7627-0216
PMID 29621570
PQID 2022993740
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5940556
proquest_miscellaneous_2022993740
pubmed_primary_29621570
crossref_primary_10_1016_j_jneumeth_2018_03_020
crossref_citationtrail_10_1016_j_jneumeth_2018_03_020
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2018_03_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Graichen, Eichardt, Fiedler, Strohmeier, Zanow, Haueisen (bib0090) 2015; 10
Gramfort, Papadopoulo, Olivi, Clerc (bib0095) 2010; 9
Bergmann, Karabanov, Hartwigsen, Thielscher, Roman (bib0020) 2016; 135
Renard (bib0150) 2010; 19
Hämäläinen, Ilmoniemi (bib0115) 1994; 32
Uusitalo, Ilmoniemi (bib0175) 1997; 35
EGI, EMSE 2017. ([Online], Available
Gramfort (bib0105) 2014; 86
Guennebaud, Jacob (bib0110) 2010
Dinh (bib0050) 2015; 28
Valbuena, Sugiarto, Gräser (bib0180) 2008
Okada (bib0130) 2016; 87
Fiedler (bib0070) 2015; 28
Kothe, Makeig (bib0125) 2013; 10
Schalk, McFarland, Hinterberger, Birbaumer, Wolpaw (bib0155) 2004; 51
ANT Neuro, asa 2017. [Online]. Available
Dinh, Luessi, Sun, Haueisen, Hamalainen (bib0045) 2013; 58
Dinh (bib0055) 2017; 31
Cohen (bib0030) 1968; 161
Delorme, Makeig (bib0040) 2004; 134
BESA GmbH (bib0010) 2017
OpenBCI, OpenBCI, 2017. [Online], Available
Patel, George, Dorval, White, Christini, Butera (bib0145) 2017; 13
Tadel, Baillet, Mosher, Pantazis, Leahy (bib0165) 2011; 2011
Oostenveld, Fries, Maris, Schoffelen (bib0135) 2011; 2011
Gramfort (bib0100) 2013; 7
Berger (bib0015) 1929; 87
.
Compumedics NeuroScan (bib0035) 2017
IEC (bib0120) 2015
Dinh (bib0060) 2015
The Qt Company, Digia Plc, Nokia, and Trolltech, Qt 5.7.1. Oslo, 2016.
Bogner (bib0025) 2014; 103
Gamma, Helm, Johnson, Vlissides (bib0080) 2002
(bib0085) 1992
Sun (bib0160) 2017; 88
Fischl (bib0075) 2012; 62
Dinh (10.1016/j.jneumeth.2018.03.020_bib0060) 2015
Gramfort (10.1016/j.jneumeth.2018.03.020_bib0100) 2013; 7
Gramfort (10.1016/j.jneumeth.2018.03.020_bib0105) 2014; 86
Tadel (10.1016/j.jneumeth.2018.03.020_bib0165) 2011; 2011
IEC (10.1016/j.jneumeth.2018.03.020_bib0120) 2015
Bogner (10.1016/j.jneumeth.2018.03.020_bib0025) 2014; 103
Oostenveld (10.1016/j.jneumeth.2018.03.020_bib0135) 2011; 2011
Fischl (10.1016/j.jneumeth.2018.03.020_bib0075) 2012; 62
Dinh (10.1016/j.jneumeth.2018.03.020_bib0055) 2017; 31
Hämäläinen (10.1016/j.jneumeth.2018.03.020_bib0115) 1994; 32
10.1016/j.jneumeth.2018.03.020_bib0170
Gramfort (10.1016/j.jneumeth.2018.03.020_bib0095) 2010; 9
(10.1016/j.jneumeth.2018.03.020_bib0085) 1992
Guennebaud (10.1016/j.jneumeth.2018.03.020_bib0110) 2010
Schalk (10.1016/j.jneumeth.2018.03.020_bib0155) 2004; 51
Cohen (10.1016/j.jneumeth.2018.03.020_bib0030) 1968; 161
Dinh (10.1016/j.jneumeth.2018.03.020_bib0045) 2013; 58
Bergmann (10.1016/j.jneumeth.2018.03.020_bib0020) 2016; 135
Compumedics NeuroScan (10.1016/j.jneumeth.2018.03.020_bib0035) 2017
Graichen (10.1016/j.jneumeth.2018.03.020_bib0090) 2015; 10
Fiedler (10.1016/j.jneumeth.2018.03.020_bib0070) 2015; 28
Berger (10.1016/j.jneumeth.2018.03.020_bib0015) 1929; 87
BESA GmbH (10.1016/j.jneumeth.2018.03.020_bib0010) 2017
Kothe (10.1016/j.jneumeth.2018.03.020_bib0125) 2013; 10
Delorme (10.1016/j.jneumeth.2018.03.020_bib0040) 2004; 134
Sun (10.1016/j.jneumeth.2018.03.020_bib0160) 2017; 88
Uusitalo (10.1016/j.jneumeth.2018.03.020_bib0175) 1997; 35
Valbuena (10.1016/j.jneumeth.2018.03.020_bib0180) 2008
Dinh (10.1016/j.jneumeth.2018.03.020_bib0050) 2015; 28
10.1016/j.jneumeth.2018.03.020_bib0140
Patel (10.1016/j.jneumeth.2018.03.020_bib0145) 2017; 13
Renard (10.1016/j.jneumeth.2018.03.020_bib0150) 2010; 19
10.1016/j.jneumeth.2018.03.020_bib0065
10.1016/j.jneumeth.2018.03.020_bib0005
Gamma (10.1016/j.jneumeth.2018.03.020_bib0080) 2002
Okada (10.1016/j.jneumeth.2018.03.020_bib0130) 2016; 87
References_xml – volume: 28
  start-page: 771
  year: 2015
  end-page: 784
  ident: bib0050
  article-title: Real-time MEG source localization using regional clustering
  publication-title: Brain Topogr.
– reference: ANT Neuro, asa 2017. [Online]. Available:
– volume: 10
  year: 2013
  ident: bib0125
  article-title: BCILAB: a platform for brain-computer interface development
  publication-title: J. Neural Eng.
– year: 2015
  ident: bib0060
  article-title: Brain Monitoring Real-Time Localization of Neuronal Activity
– volume: 7
  start-page: 1
  year: 2013
  end-page: 13
  ident: bib0100
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Front. Neurosci.
– volume: 2011
  year: 2011
  ident: bib0135
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
– volume: 58
  year: 2013
  ident: bib0045
  article-title: MNE-X: MEG/EEG real-time acquisition, real-time processing, and real-time source localization framework
  publication-title: Biomed. Eng.
– start-page: 291
  year: 2008
  end-page: 296
  ident: bib0180
  article-title: Spelling with the Bremen brain-computer interface and the integrated SSVEP stimulator
  publication-title: Proc. 4th Int. Brain-Computer Interface Work. Train. Course, No. September
– volume: 31
  start-page: 125
  year: 2017
  end-page: 128
  ident: bib0055
  article-title: Real-time clustered multiple signal classification (RTC-MUSIC)
  publication-title: Brain Topogr.
– volume: 87
  start-page: 527
  year: 1929
  end-page: 570
  ident: bib0015
  article-title: Über das Elektrenkephalogramm des Menschen
  publication-title: Arch. Psychiatr.
– reference: ).
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: bib0040
  article-title: EEGLAB: an open source toolbox for analysis of single-trail EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
– reference: OpenBCI, OpenBCI, 2017. [Online], Available:
– volume: 13
  start-page: 1
  year: 2017
  end-page: 22
  ident: bib0145
  article-title: Hard real-time closed-loop electrophysiology with the real-time eXperiment Interface (RTXI)
  publication-title: PLoS Comput. Biol.
– volume: 88
  year: 2017
  ident: bib0160
  article-title: Versatile synchronized real-time controller for large-scale fast data acquisition
  publication-title: Rev. Sci. Instrum.
– year: 2017
  ident: bib0010
  article-title: BESA: Brain Electrical Source Analysis
– volume: 103
  start-page: 290
  year: 2014
  end-page: 302
  ident: bib0025
  article-title: 3D GABA imaging with real-time motion correction, shim update and reacquisition of adiabatic spiral MRSI
  publication-title: Neuroimage
– year: 2002
  ident: bib0080
  article-title: Design Patterns – Elements of Reusable Object-Oriented Software
– volume: 87
  year: 2016
  ident: bib0130
  article-title: BabyMEG: a whole-head pediatric magnetoencephalography system for human brain development research
  publication-title: Rev. Sci. Instrum.
– volume: 135
  year: 2016
  ident: bib0020
  article-title: Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives
  publication-title: Neuroimage
– year: 1992
  ident: bib0085
  article-title: German Directive 250, Software Development Standard for the German Federal Armed Forces, V-Model, Software Lifecycle Process Model
– volume: 51
  start-page: 1034
  year: 2004
  end-page: 1043
  ident: bib0155
  article-title: BCI2000: a general-purpose brain-computer interface (BCI) system
  publication-title: IEEE Trans. Biomed. Eng.
– reference: The Qt Company, Digia Plc, Nokia, and Trolltech, Qt 5.7.1. Oslo, 2016.
– year: 2015
  ident: bib0120
  article-title: IEC 62304:2006 + AMD1: Medical Device Software – Software Life Cycle Processes
– year: 2010
  ident: bib0110
  article-title: Eigen v3
– year: 2017
  ident: bib0035
  article-title: Curry
– volume: 28
  start-page: 647
  year: 2015
  end-page: 656
  ident: bib0070
  article-title: Novel multipin electrode cap system for dry electroencephalography
  publication-title: Brain Topogr.
– volume: 161
  start-page: 784
  year: 1968
  end-page: 786
  ident: bib0030
  article-title: Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents
  publication-title: Science (80-.)
– volume: 86
  start-page: 446
  year: 2014
  end-page: 460
  ident: bib0105
  article-title: MNE software for processing MEG and EEG data
  publication-title: Neuroimage
– volume: 19
  start-page: 35
  year: 2010
  end-page: 53
  ident: bib0150
  article-title: OpenViBE: an open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments
  publication-title: Presence
– reference: .
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib0075
  article-title: FreeSurfer
  publication-title: Neuroimage
– volume: 32
  start-page: 35
  year: 1994
  end-page: 42
  ident: bib0115
  article-title: Interpreting magnetic fields of the brain: minimum norm estimates
  publication-title: Med. Biol. Eng. Comput.
– volume: 10
  start-page: 1
  year: 2015
  end-page: 22
  ident: bib0090
  article-title: SPHARA – a generalized spatial fourier analysis for multi-Sensor systems with non-uniformly arranged sensors: application to EEG
  publication-title: PLoS One
– volume: 9
  year: 2010
  ident: bib0095
  article-title: OpenMEEG: opensource software for quasistatic bioelectromagnetics
  publication-title: Biomed. Eng. Online
– volume: 35
  start-page: 135
  year: 1997
  end-page: 140
  ident: bib0175
  article-title: Signal-space projection method for separating MEG or EEG into components
  publication-title: Med. Biol. Eng. Comput.
– reference: EGI, EMSE 2017. ([Online], Available:
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 13
  ident: bib0165
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
– year: 2015
  ident: 10.1016/j.jneumeth.2018.03.020_bib0120
– volume: 135
  year: 2016
  ident: 10.1016/j.jneumeth.2018.03.020_bib0020
  article-title: Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives
  publication-title: Neuroimage
– year: 1992
  ident: 10.1016/j.jneumeth.2018.03.020_bib0085
– volume: 103
  start-page: 290
  issue: December (7453)
  year: 2014
  ident: 10.1016/j.jneumeth.2018.03.020_bib0025
  article-title: 3D GABA imaging with real-time motion correction, shim update and reacquisition of adiabatic spiral MRSI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.032
– volume: 28
  start-page: 771
  issue: 6
  year: 2015
  ident: 10.1016/j.jneumeth.2018.03.020_bib0050
  article-title: Real-time MEG source localization using regional clustering
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-015-0431-9
– year: 2010
  ident: 10.1016/j.jneumeth.2018.03.020_bib0110
– ident: 10.1016/j.jneumeth.2018.03.020_bib0140
– volume: 51
  start-page: 1034
  issue: 6
  year: 2004
  ident: 10.1016/j.jneumeth.2018.03.020_bib0155
  article-title: BCI2000: a general-purpose brain-computer interface (BCI) system
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827072
– ident: 10.1016/j.jneumeth.2018.03.020_bib0005
– volume: 58
  issue: September (1)
  year: 2013
  ident: 10.1016/j.jneumeth.2018.03.020_bib0045
  article-title: MNE-X: MEG/EEG real-time acquisition, real-time processing, and real-time source localization framework
  publication-title: Biomed. Eng.
– volume: 28
  start-page: 647
  issue: 5
  year: 2015
  ident: 10.1016/j.jneumeth.2018.03.020_bib0070
  article-title: Novel multipin electrode cap system for dry electroencephalography
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-015-0435-5
– volume: 88
  issue: 5
  year: 2017
  ident: 10.1016/j.jneumeth.2018.03.020_bib0160
  article-title: Versatile synchronized real-time controller for large-scale fast data acquisition
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4983080
– volume: 161
  start-page: 784
  issue: August (3843)
  year: 1968
  ident: 10.1016/j.jneumeth.2018.03.020_bib0030
  article-title: Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents
  publication-title: Science (80-.)
  doi: 10.1126/science.161.3843.784
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.jneumeth.2018.03.020_bib0165
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/879716
– volume: 35
  start-page: 135
  issue: 2
  year: 1997
  ident: 10.1016/j.jneumeth.2018.03.020_bib0175
  article-title: Signal-space projection method for separating MEG or EEG into components
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02534144
– volume: 32
  start-page: 35
  issue: 1
  year: 1994
  ident: 10.1016/j.jneumeth.2018.03.020_bib0115
  article-title: Interpreting magnetic fields of the brain: minimum norm estimates
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02512476
– volume: 2011
  year: 2011
  ident: 10.1016/j.jneumeth.2018.03.020_bib0135
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/156869
– volume: 13
  start-page: 1
  issue: 5
  year: 2017
  ident: 10.1016/j.jneumeth.2018.03.020_bib0145
  article-title: Hard real-time closed-loop electrophysiology with the real-time eXperiment Interface (RTXI)
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005430
– year: 2017
  ident: 10.1016/j.jneumeth.2018.03.020_bib0035
– year: 2017
  ident: 10.1016/j.jneumeth.2018.03.020_bib0010
– volume: 87
  issue: September (9)
  year: 2016
  ident: 10.1016/j.jneumeth.2018.03.020_bib0130
  article-title: BabyMEG: a whole-head pediatric magnetoencephalography system for human brain development research
  publication-title: Rev. Sci. Instrum.
– ident: 10.1016/j.jneumeth.2018.03.020_bib0065
– volume: 19
  start-page: 35
  issue: 1
  year: 2010
  ident: 10.1016/j.jneumeth.2018.03.020_bib0150
  article-title: OpenViBE: an open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments
  publication-title: Presence
  doi: 10.1162/pres.19.1.35
– volume: 10
  start-page: 1
  year: 2015
  ident: 10.1016/j.jneumeth.2018.03.020_bib0090
  article-title: SPHARA – a generalized spatial fourier analysis for multi-Sensor systems with non-uniformly arranged sensors: application to EEG
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0121741
– volume: 62
  start-page: 774
  issue: August (2)
  year: 2012
  ident: 10.1016/j.jneumeth.2018.03.020_bib0075
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: 10.1016/j.jneumeth.2018.03.020_bib0170
– year: 2002
  ident: 10.1016/j.jneumeth.2018.03.020_bib0080
– start-page: 291
  year: 2008
  ident: 10.1016/j.jneumeth.2018.03.020_bib0180
  article-title: Spelling with the Bremen brain-computer interface and the integrated SSVEP stimulator
  publication-title: Proc. 4th Int. Brain-Computer Interface Work. Train. Course, No. September
– volume: 31
  start-page: 125
  issue: 1
  year: 2017
  ident: 10.1016/j.jneumeth.2018.03.020_bib0055
  article-title: Real-time clustered multiple signal classification (RTC-MUSIC)
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-017-0586-7
– volume: 9
  year: 2010
  ident: 10.1016/j.jneumeth.2018.03.020_bib0095
  article-title: OpenMEEG: opensource software for quasistatic bioelectromagnetics
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-9-45
– volume: 86
  start-page: 446
  year: 2014
  ident: 10.1016/j.jneumeth.2018.03.020_bib0105
  article-title: MNE software for processing MEG and EEG data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.027
– volume: 87
  start-page: 527
  issue: 1
  year: 1929
  ident: 10.1016/j.jneumeth.2018.03.020_bib0015
  article-title: Über das Elektrenkephalogramm des Menschen
  publication-title: Arch. Psychiatr.
  doi: 10.1007/BF01797193
– year: 2015
  ident: 10.1016/j.jneumeth.2018.03.020_bib0060
– volume: 7
  start-page: 1
  issue: December (7)
  year: 2013
  ident: 10.1016/j.jneumeth.2018.03.020_bib0100
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Front. Neurosci.
– volume: 134
  start-page: 9
  year: 2004
  ident: 10.1016/j.jneumeth.2018.03.020_bib0040
  article-title: EEGLAB: an open source toolbox for analysis of single-trail EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 10
  issue: 5
  year: 2013
  ident: 10.1016/j.jneumeth.2018.03.020_bib0125
  article-title: BCILAB: a platform for brain-computer interface development
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/5/056014
SSID ssj0004906
Score 2.3457942
Snippet •MNE Scan is a new software for acquiring and processing electrophysiological data in real-time.•This work is a first step in establishing a standardized...
Magnetoencephalography (MEG) and Electroencephalography (EEG) are noninvasive techniques to study the electrophysiological activity of the human brain. Thus,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55
SubjectTerms Adult
Brain-Computer Interfaces
Child, Preschool
Data acquisition
Data processing
Electroencephalography - methods
Humans
Infant
Infant, Newborn
Magnetoencephalography - methods
Medical software
MEG/EEG
Neurofeedback - methods
Neurofeedback/BCI
Neurosciences - methods
Signal Processing, Computer-Assisted
Software Design
Title MNE Scan: Software for real-time processing of electrophysiological data
URI https://dx.doi.org/10.1016/j.jneumeth.2018.03.020
https://www.ncbi.nlm.nih.gov/pubmed/29621570
https://www.proquest.com/docview/2022993740
https://pubmed.ncbi.nlm.nih.gov/PMC5940556
Volume 303
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8IJsaLUfADP0hNjLfB2LqNeSMEghq4IAm3pl27CMGxIMR48W_3vX0gqAkHs8vWvi5N39t7v67vg5BbaammpZQ0Qht_3disaUhLwF1gClfDDkAFeKLbH7i9EXscO-MCaeexMOhWmen-VKcn2jprqWerWY8nk_oQA3FgU2WCUGI0AgbxMeahlNc-v908mJ_U10RiPK80N6KEp7VppFdYqRldvJpJslOs-_23gfoNQH_6UW4Ypu4ROcwQJW2lkz4mBR2VSLkVwW769YPe0cTHM_l5XiL7_ewovUx6_UGHDmFh7-kQVPG7WGgKAJYCiJwZWHGexmkMAdg2Og9pVi8nzt-GzKXoX3pCRt3Oc7tnZGUVjACw09JoCO3YTEvHUTpUrqu80NbMCU24oA1VJ3yWEjYewg-BzpSu8ExPaif0lfKFfUqK0TzS54R6MgDbZgvTlZLB64QN8KuhpATYBUwWFeLka8mDLOc4lr6Y8dy5bMpzHnDkATdtDjyokPp6XJxm3dg5ws9Zxbfkh4Np2Dn2Jucth48LT0xEpOerNyCyLARwDGjOUl6v52P5LsAlD3q8LSlYE2Di7u2eaPKSJPB2fIY5jC7-MedLcoBPqdPaFSkuFyt9DfBoKauJ_FfJXuvhqTf4Ai2OEmM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90gvoifn9rBPGtrmubdvVtiFI_tpcp-BaSJsUN7YZuiP-9d206nQo-SF9Kcgkhl9z9ktwHwLHydNPTWjmZT1c3ftB0lCfxL3VlaPAEoFN60W13wuQ-uH7gDzNwXvnCkFmllf2lTC-ktS2p29msD3u9epcccfBQ5eKiJG-EeBbmKDoVr8Fc6-om6Xy6R8ZFik2ipydL94ujcP-0n5sxJWsmK69mEe-UUn__rqN-YtDvppRfdNPlMixZUMla5bhXYMbkq7DWyvFA_fzOTlhh5lncn6_CfNu-pq9B0u5csC7O7RnrojR-ky-GIYZliCOfHEo6z4alGwGqNzbImE2ZM6x6I_4yMjFdh_vLi7vzxLGZFZwU4dPIaUjD_cAozrXJdBjqKPNNwDMXPywj6Yk7U-HZQ8YZ0rkqlJEbKcOzWOtY-htQywe52QIWqRTVmy_dUKkAu5M-IrCGVgqRF_JZbgOv5lKkNuw4Zb94EpV9WV9UPBDEA-H6AnmwDfVJu2EZeOPPFnHFKjG1hARqhz_bHlW8Fbi_6NFE5mYwfkUizyMMFyDNZsnryXi8OETEFGFNNLUKJgQUu3u6Ju89FjG8eRxQGKOdf4z5EBaSu_atuL3q3OzCItWUNmx7UBu9jM0-oqWROrC74QN_bhUU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MNE+Scan%3A+Software+for+real-time+processing+of+electrophysiological+data&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Esch%2C+Lorenz&rft.au=Sun%2C+Limin&rft.au=Kl%C3%BCber%2C+Viktor&rft.au=Lew%2C+Seok&rft.date=2018-06-01&rft.issn=0165-0270&rft.volume=303&rft.spage=55&rft.epage=67&rft_id=info:doi/10.1016%2Fj.jneumeth.2018.03.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2018_03_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon