Molecular and Synaptic Bases of CDKL5 Disorder
The X‐linked gene cyclin‐dependent kinase‐like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early‐onset epileptic encephalopathy and severe intellectual disability, suggesting...
Saved in:
Published in | Developmental neurobiology (Hoboken, N.J.) Vol. 79; no. 1; pp. 8 - 19 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The X‐linked gene cyclin‐dependent kinase‐like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early‐onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC‐derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms. |
---|---|
AbstractList | The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early-onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC-derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms. The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early-onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC-derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms.The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early-onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC-derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms. The X‐linked gene cyclin‐dependent kinase‐like 5 ( CDKL5 ) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early‐onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC‐derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms. |
Author | Xiong, Zhi‐Qi Zhu, Yong‐Chuan |
Author_xml | – sequence: 1 givenname: Yong‐Chuan orcidid: 0000-0003-4979-0149 surname: Zhu fullname: Zhu, Yong‐Chuan organization: Chinese Academy of Sciences – sequence: 2 givenname: Zhi‐Qi surname: Xiong fullname: Xiong, Zhi‐Qi email: xiongzhiqi@ion.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30246934$$D View this record in MEDLINE/PubMed |
BookMark | eNp90MtKw0AUBuBBFHvRjQ8gATcitM4tk8xS23rBqgstuAuTmTOQkmbqTIL07U1t7aKIq3MW3384_D10WLkKEDojeEgwptemgmZIqWDyAHWJZHSQcvFxuNtj0kG9EOYYx4wKfIw6DFMuJONdNHx2JeimVD5SlYneVpVa1oWOblWAEDkbjcZP0zgaF8F5A_4EHVlVBjjdzj6a3U3eRw-D6ev94-hmOtCcMjnIwaQqjwWxGidMUgtCpTIFnZgkF6mhhmHLKeYpcAJGW44JgLUScqFImrI-utzcXXr32UCos0URNJSlqsA1IaOEkISzJE5aerFH567xVftdq4SMKZc0btX5VjX5Aky29MVC-VX220QLrjZAexeCB7sjBGfrmrN1zdlPzS3Ge1gXtaoLV9VeFeXfEbKJfBUlrP45no1fJrNN5hukbYzB |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e40165 crossref_primary_10_1002_dneu_22655 crossref_primary_10_1097_HEP_0000000000001147 crossref_primary_10_1172_JCI143655 crossref_primary_10_1212_NXG_0000000000000666 crossref_primary_10_3390_ijms24065552 crossref_primary_10_7759_cureus_41555 crossref_primary_10_3389_fneur_2021_805745 crossref_primary_10_1042_BST20220791 crossref_primary_10_1016_j_clineuro_2024_108603 crossref_primary_10_1177_15353702231209419 crossref_primary_10_3390_ijms20205098 crossref_primary_10_1007_s10048_023_00731_x crossref_primary_10_1016_j_nbd_2020_104791 crossref_primary_10_1093_brain_awaa371 crossref_primary_10_1016_j_jns_2022_120498 crossref_primary_10_1038_s41380_021_01104_2 crossref_primary_10_3390_ijms20174075 crossref_primary_10_1007_s00431_023_05006_z crossref_primary_10_1172_JCI168544 crossref_primary_10_1002_bies_202000316 crossref_primary_10_1111_jnc_15300 crossref_primary_10_1172_JCI178428 crossref_primary_10_3390_ijms26052204 crossref_primary_10_1016_j_xcrm_2024_101926 crossref_primary_10_1038_s41380_024_02434_7 crossref_primary_10_1111_jsr_14295 crossref_primary_10_7554_eLife_88206 crossref_primary_10_1352_1944_7558_129_2_101 crossref_primary_10_1038_s41431_022_01163_1 crossref_primary_10_3390_ijms22158132 crossref_primary_10_1080_14737175_2021_1904895 crossref_primary_10_1093_cercor_bhad235 crossref_primary_10_1016_j_mcn_2020_103535 crossref_primary_10_1016_j_neulet_2021_135772 crossref_primary_10_1093_hmg_ddaa122 crossref_primary_10_3390_genes15030266 crossref_primary_10_1016_j_braindev_2020_02_004 crossref_primary_10_1111_epi_17826 crossref_primary_10_1021_acschemneuro_3c00135 crossref_primary_10_1016_j_nbd_2021_105370 crossref_primary_10_1016_j_nbd_2020_105176 crossref_primary_10_1016_j_pediatrneurol_2019_02_015 crossref_primary_10_1523_JNEUROSCI_1010_21_2021 crossref_primary_10_1007_s12035_020_01884_8 crossref_primary_10_3389_fnmol_2022_1039990 crossref_primary_10_1016_j_nbd_2020_104758 crossref_primary_10_1016_j_ejpn_2021_02_004 crossref_primary_10_1016_j_neuropharm_2023_109491 crossref_primary_10_3390_ijms21176442 crossref_primary_10_1016_S1474_4422_22_00077_1 crossref_primary_10_1038_s41598_022_13364_1 crossref_primary_10_1111_cns_13907 crossref_primary_10_1016_S1474_4422_22_00035_7 crossref_primary_10_1111_jne_13033 crossref_primary_10_3389_fnmol_2019_00250 crossref_primary_10_1111_jnc_15168 crossref_primary_10_1016_j_ejpn_2021_04_007 crossref_primary_10_1016_j_neubiorev_2019_04_022 crossref_primary_10_1186_s13229_024_00601_9 |
Cites_doi | 10.1126/science.1075762 10.1038/35044547 10.1371/journal.pone.0091613 10.1046/j.1471-4159.2003.01648.x 10.1038/ncb2566 10.1016/j.ejcb.2009.11.024 10.1146/annurev-neuro-061010-113618 10.1093/hmg/ddw231 10.1016/j.neuron.2005.04.001 10.1111/gbb.12292 10.1038/aps.2012.59 10.1126/science.1086446 10.1007/s00439-011-1058-x 10.1016/j.cell.2012.09.037 10.1007/978-1-4939-3049-4_18 10.1016/j.nbd.2017.07.002 10.1006/geno.1998.5391 10.1016/j.bbagrm.2012.08.001 10.1146/annurev.biochem.74.082803.133339 10.1371/journal.pone.0148634 10.1523/JNEUROSCI.0539-17.2017 10.1212/WNL.0000000000003352 10.1016/j.neuron.2005.04.013 10.1073/pnas.0702044104 10.1086/375538 10.1073/pnas.1216988110 10.1002/embj.201488126 10.1016/S0092-8674(02)00683-9 10.1016/j.conb.2005.12.001 10.1038/s41598-017-05875-z 10.1016/j.neuron.2007.05.030 10.1093/hmg/ddp426 10.1093/hmg/ddy108 10.1016/j.nbd.2015.06.018 10.1038/13810 10.1016/j.nbd.2014.06.006 10.1093/hmg/ddi198 10.1093/hmg/ddi391 10.1523/JNEUROSCI.18-01-00093.1998 10.1016/j.abb.2013.04.012 10.1371/journal.pone.0196587 10.1111/j.1601-183X.2004.00071.x 10.1371/journal.pone.0157758 10.1016/j.bbrc.2008.10.113 10.1523/JNEUROSCI.2284-05.2005 10.1371/journal.pone.0083903 10.1086/316913 10.1073/pnas.1300003110 10.1016/j.bbrc.2016.11.048 10.1126/science.186.4169.1126 10.1083/jcb.200604160 10.1074/jbc.M114.589762 10.1523/JNEUROSCI.1102-10.2010 10.1038/nn1763 10.1038/336185a0 10.1016/j.neuron.2007.10.005 10.1523/JNEUROSCI.20-14-05329.2000 10.1074/jbc.M804613200 10.1002/ajmg.a.35401 10.1016/j.biopsych.2015.08.028 10.1523/JNEUROSCI.2270-05.2005 10.1523/JNEUROSCI.2089-12.2012 10.1093/hmg/ddx237 10.1016/j.neuron.2006.09.037 10.1038/jhg.2010.143 10.1038/35049064 10.1016/j.tins.2007.04.001 10.1074/jbc.272.49.30984 10.1146/annurev.cellbio.18.031802.150501 10.1038/nrm1587 10.1093/hmg/ddx279 10.1038/nature05453 10.1093/hmg/9.16.2395 10.1016/j.gene.2016.12.001 10.1073/pnas.0811648106 10.1093/hmg/ddy064 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. Copyright © 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: Copyright © 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/dneu.22639 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1932-846X |
EndPage | 19 |
ExternalDocumentID | 30246934 10_1002_dneu_22639 DNEU22639 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIVO ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GODZA H.T H.X HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT XV2 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4239-bed8ab561fc07392fe6a898ec7d7b68d2d30f42048e41edcf401eeff9eb6a1883 |
IEDL.DBID | DR2 |
ISSN | 1932-8451 1932-846X |
IngestDate | Fri Jul 11 00:13:50 EDT 2025 Fri Jul 25 09:25:12 EDT 2025 Wed Feb 19 02:30:38 EST 2025 Thu Apr 24 23:10:44 EDT 2025 Tue Jul 01 03:03:46 EDT 2025 Wed Jan 22 16:34:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | kinase dendritic spine CDKL5 intellectual disability Rett syndrome |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4239-bed8ab561fc07392fe6a898ec7d7b68d2d30f42048e41edcf401eeff9eb6a1883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4979-0149 |
PMID | 30246934 |
PQID | 2169524925 |
PQPubID | 946356 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2111743757 proquest_journals_2169524925 pubmed_primary_30246934 crossref_primary_10_1002_dneu_22639 crossref_citationtrail_10_1002_dneu_22639 wiley_primary_10_1002_dneu_22639_DNEU22639 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Developmental neurobiology (Hoboken, N.J.) |
PublicationTitleAlternate | Dev Neurobiol |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 104 2017; 7 2014; 70 2017; 1 2002; 18 1997; 272 2000; 9 2006; 175 2011; 56 2000; 1 2007; 30 1974; 186 2012; 14 2013; 8 2007; 76 2005; 25 1998; 18 2012; 131 2015; 290 2015; 82 2017; 37 2013; 10 2016; 87 2005; 74 2017; 482 2012; 1819 2002; 108 2013; 110 2016; 80 2014; 9 1998; 51 2003; 85 2010; 30 1988; 336 2009; 18 2007; 445 2006; 52 2017; 26 2000; 67 2006; 16 2006; 9 2002; 298 2000; 20 1999; 23 2012; 158A 2012; 35 2003; 72 2007; 55 2012; 33 2016; 15 2007; 56 2012; 32 2018; 27 2008; 283 2005; 46 2012; 109 2016; 11 2010; 89 2012; 151 2013; 535 2005; 6 2016; 1355 2001; 2 2008; 377 2003; 302 2016; 28 2016; 25 2014; 33 2017; 106 2005; 14 2018; 13 2009; 106 Pizzo R. (e_1_2_3_51_1) 2016; 28 e_1_2_3_73_1 e_1_2_3_50_1 e_1_2_3_71_1 e_1_2_3_2_1 e_1_2_3_6_1 e_1_2_3_16_1 e_1_2_3_39_1 e_1_2_3_18_1 e_1_2_3_12_1 e_1_2_3_35_1 e_1_2_3_58_1 e_1_2_3_56_1 e_1_2_3_8_1 e_1_2_3_14_1 e_1_2_3_37_1 Báez‐Mendoza R. (e_1_2_3_4_1) 2013; 10 e_1_2_3_79_1 e_1_2_3_31_1 e_1_2_3_52_1 e_1_2_3_77_1 e_1_2_3_10_1 e_1_2_3_33_1 e_1_2_3_54_1 e_1_2_3_75_1 e_1_2_3_62_1 e_1_2_3_60_1 e_1_2_3_28_1 e_1_2_3_49_1 e_1_2_3_24_1 e_1_2_3_45_1 e_1_2_3_26_1 e_1_2_3_47_1 e_1_2_3_68_1 e_1_2_3_20_1 e_1_2_3_41_1 e_1_2_3_66_1 e_1_2_3_22_1 e_1_2_3_43_1 e_1_2_3_64_1 e_1_2_3_72_1 e_1_2_3_70_1 e_1_2_3_5_1 e_1_2_3_17_1 e_1_2_3_38_1 e_1_2_3_3_1 e_1_2_3_19_1 e_1_2_3_57_1 e_1_2_3_9_1 e_1_2_3_13_1 e_1_2_3_34_1 e_1_2_3_59_1 e_1_2_3_78_1 e_1_2_3_7_1 e_1_2_3_15_1 e_1_2_3_36_1 e_1_2_3_30_1 e_1_2_3_53_1 e_1_2_3_76_1 e_1_2_3_55_1 e_1_2_3_74_1 e_1_2_3_11_1 e_1_2_3_32_1 e_1_2_3_61_1 e_1_2_3_40_1 e_1_2_3_27_1 e_1_2_3_29_1 e_1_2_3_23_1 e_1_2_3_46_1 e_1_2_3_69_1 e_1_2_3_25_1 e_1_2_3_48_1 e_1_2_3_67_1 e_1_2_3_42_1 e_1_2_3_65_1 e_1_2_3_21_1 e_1_2_3_44_1 e_1_2_3_63_1 |
References_xml | – volume: 8 start-page: e83903 issue: 12 year: 2013 article-title: The histone deacetylase HDAC4 regulates long‐term memory in Drosophila publication-title: PLoS One – volume: 6 start-page: 167 issue: 2 year: 2005 end-page: 180 article-title: GEF means go: turning on RHO GTPases with guanine nucleotide‐exchange factors publication-title: Nature Reviews Molecular Cell Biology – volume: 26 start-page: 3520 issue: 18 year: 2017 end-page: 3530 article-title: The neurosteroid pregnenolone reverts microtubule derangement induced by the loss of a functional CDKL5‐IQGAP1 complex publication-title: Human Molecular Genetics – volume: 15 start-page: 491 issue: 5 year: 2016 end-page: 502 article-title: CDKL5 knockout leads to altered inhibitory transmission in the cerebellum of adult mice publication-title: Genes, Brain and Behavior – volume: 1355 start-page: 263 year: 2016 end-page: 273 article-title: Identification of direct kinase substrates via kinase assay‐linked phosphoproteomics publication-title: Methods in Molecular Biology – volume: 1 start-page: 173 issue: 3 year: 2000 end-page: 180 article-title: Rho GTPases in neuronal morphogenesis publication-title: Nature Reviews Neuroscience – volume: 18 start-page: 4590 issue: 23 year: 2009 end-page: 4602 article-title: CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery publication-title: Human Molecular Genetics – volume: 535 start-page: 257 issue: 2 year: 2013 end-page: 267 article-title: Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X‐linked neurodevelopmental disorder publication-title: Archives of Biochemistry and Biophysics – volume: 25 start-page: 3887 issue: 18 year: 2016 end-page: 3907 article-title: HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder publication-title: Human Molecular Genetics – volume: 106 start-page: 4882 issue: 12 year: 2009 end-page: 4887 article-title: Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 30 start-page: 276 issue: 6 year: 2007 end-page: 283 article-title: The centrosome in neuronal development publication-title: Trends in Neurosciences – volume: 80 start-page: 302 issue: 4 year: 2016 end-page: 311 article-title: Dendritic spine instability in a mouse model of CDKL5 disorder is rescued by insulin‐like growth factor 1 publication-title: Biological Psychiatry – volume: 16 start-page: 95 issue: 1 year: 2006 end-page: 101 article-title: Molecular mechanisms of dendritic spine morphogenesis publication-title: Current Opinion in Neurobiology – volume: 51 start-page: 427 issue: 3 year: 1998 end-page: 433 article-title: Identification and characterization of a novel serine‐threonine kinase gene from the Xp22 region publication-title: Genomics – volume: 20 start-page: 5329 issue: 14 year: 2000 end-page: 5338 article-title: Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons publication-title: The Journal of Neuroscience – volume: 87 start-page: 2206 issue: 21 year: 2016 end-page: 2213 article-title: Seizure variables and their relationship to genotype and functional abilities in the CDKL5 disorder publication-title: Neurology – volume: 14 start-page: 3775 issue: 24 year: 2005 end-page: 3786 article-title: CDKL5/Stk9 kinase inactivation is associated with neuronal developmental disorders publication-title: Human Molecular Genetics – volume: 158A start-page: 1612 issue: 7 year: 2012 end-page: 1619 article-title: Recurrent mutations in the CDKL5 gene: genotype‐phenotype relationships publication-title: American Journal of Medical Genetics Part A – volume: 74 start-page: 219 year: 2005 end-page: 245 article-title: Membrane‐associated guanylate kinases regulate adhesion and plasticity at cell junctions publication-title: Annual Review of Biochemistry – volume: 10 start-page: 233 issue: 7 year: 2013 article-title: The role of the striatum in social behavior publication-title: Frontiers in Neuroscience – volume: 175 start-page: 147 issue: 1 year: 2006 end-page: 157 article-title: Shootin1: a protein involved in the organization of an asymmetric signal for neuronal polarization publication-title: The Journal of Cell Biology – volume: 37 start-page: 7420 issue: 31 year: 2017 end-page: 7437 article-title: Loss of CDKL5 in glutamatergic neurons disrupts hippocampal microcircuitry and leads to memory impairment in mice publication-title: Journal of Neuroscience – volume: 272 start-page: 30984 issue: 49 year: 1997 end-page: 30992 article-title: Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation‐dependent dephosphorylation in nerve terminals publication-title: Journal of Biological Chemistry – volume: 1 start-page: 21 issue: 603 year: 2017 end-page: 26 article-title: Characterisation of Cdkl5 transcript isoforms in rat publication-title: Gene – volume: 9 start-page: 1294 issue: 10 year: 2006 end-page: 301 article-title: NGL family PSD‐95‐interacting adhesion molecules regulate excitatory synapse formation publication-title: Nature Neuroscience – volume: 9 start-page: e91613 issue: 5 year: 2014 article-title: Mapping pathological phenotypes in a mouse model of CDKL5 disorder publication-title: PLoS One – volume: 25 start-page: 11300 issue: 49 year: 2005 end-page: 11312 article-title: Control of dendritic arborization by the phosphoinositide‐3′‐kinase‐Akt‐mammalian target of rapamycin pathway publication-title: The Journal of Neuroscience – volume: 89 start-page: 184 issue: 2–3 year: 2010 end-page: 193 article-title: Strategies for the identification of kinase substrates using analog‐sensitive kinases publication-title: European Journal of Cell Biology – volume: 1819 start-page: 1173 issue: 11–12 year: 2012 end-page: 1185 article-title: CDKL5, a novel MYCN‐repressed gene, blocks cell cycle and promotes differentiation of neuronal cells publication-title: Biochimica et Biophysica Acta – volume: 445 start-page: 168 year: 2007 end-page: 176 article-title: Genome‐wide atlas of gene expression in the adult mouse brain publication-title: Nature – volume: 85 start-page: 151 issue: 1 year: 2003 end-page: 159 article-title: Neuronal activity‐dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5 publication-title: Journal of Neurochemistry – volume: 28 start-page: 261 issue: 10 year: 2016 article-title: Lack of Cdkl5 disrupts the organization of excitatory and inhibitory synapses and parvalbumin interneurons in the primary visual cortex publication-title: Frontiers in Cellular Neuroscience – volume: 298 start-page: 1912 issue: 5600 year: 2002 end-page: 1934 article-title: The protein kinase complement of the human genome publication-title: Science – volume: 30 start-page: 12777 issue: 38 year: 2010 end-page: 12786 article-title: CDKL5, a protein associated with Rett syndrome, regulates neuronal morphogenesis via Rac1 signaling publication-title: The Journal of Neuroscience – volume: 82 start-page: 298 year: 2015 end-page: 310 article-title: Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder publication-title: Neurobiology of Disease – volume: 131 start-page: 187 issue: 2 year: 2012 end-page: 200 article-title: A novel transcript of cyclin‐dependent kinase‐like 5 (CDKL5) has an alternative C‐terminus and is the predominant transcript in brain publication-title: Human Genetics – volume: 52 start-page: 255 issue: 2 year: 2006 end-page: 269 article-title: Brain‐specific phosphorylation of MeCP2 regulates activity‐dependent Bdnf transcription, dendritic growth, and spine maturation publication-title: Neuron – volume: 377 start-page: 1162 issue: 4 year: 2008 end-page: 1167 article-title: Cyclin‐dependent kinase‐like 5 binds and phosphorylates DNA methyltransferase 1 publication-title: Biochemical and Biophysical Research Communications – volume: 18 start-page: 601 year: 2002 end-page: 635 article-title: Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity publication-title: Annual Review of Cell and Developmental Biology – volume: 76 start-page: 823 year: 2007 end-page: 847 article-title: The postsynaptic architecture of excitatory synapses: a more quantitative view publication-title: Annual Review of Biochemistry – volume: 9 start-page: 2395 issue: 16 year: 2000 end-page: 2402 article-title: The DNA methyltransferases of mammals publication-title: Human Molecular Genetics – volume: 27 start-page: 2052 issue: 12 year: 2018 end-page: 2063 article-title: The antidepressant tianeptine reverts synaptic AMPA receptor defects caused by deficiency of CDKL5 publication-title: Human Molecular Genetics – volume: 46 start-page: 383 issue: 3 year: 2005 end-page: 388 article-title: Nucleokinesis in neuronal migration publication-title: Neuron – volume: 7 start-page: 6228 issue: 1 year: 2017 article-title: CDKL5 localizes at the centrosome and midbody and is required for faithful cell division publication-title: Scientific Reports – volume: 2 start-page: 51 issue: 1 year: 2001 end-page: 61 article-title: Recognition memory: what are the roles of the perirhinal cortex and hippocampus? publication-title: Nature Reviews Neuroscience – volume: 26 start-page: 3922 issue: 20 year: 2017 end-page: 3934 article-title: Mice lacking cyclin‐dependent kinase‐like 5 manifest autistic and ADHD‐like behaviors publication-title: Human Molecular Genetics – volume: 35 start-page: 181 year: 2012 end-page: 201 article-title: Early events in axon/dendrite polarization publication-title: Annual Review of Neuroscience – volume: 11 start-page: e0148634 issue: 2 year: 2016 article-title: CDKL5 and Shootin1 interact and concur in regulating neuronal polarization publication-title: PLoS One – volume: 33 start-page: 861 issue: 7 year: 2012 end-page: 872 article-title: Atorvastatin enhances neurite outgrowth in cortical neurons in vitro via up‐regulating the Akt/mTOR and Akt/GSK‐3β signaling pathways publication-title: Acta Pharmacologica Sinica – volume: 25 start-page: 11288 issue: 49 year: 2005 end-page: 11299 article-title: Regulation of dendritic morphogenesis by Ras‐PI3K‐Akt‐mTOR and Ras‐MAPK signaling pathways publication-title: Journal of Neuroscience – volume: 482 start-page: 239 issue: 2 year: 2017 end-page: 245 article-title: Subcellular distribution of cyclin‐dependent kinase‐like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine‐phosphorylation‐regulated kinase 1A (DYRK1A) publication-title: Biochemical and Biophysical Research Communications – volume: 13 start-page: e0196587 issue: 4 year: 2018 article-title: Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety‐ and fear‐related behaviors and impairment in both acquisition and long‐term retention of spatial reference memory publication-title: PLoS One – volume: 14 start-page: 911 issue: 9 year: 2012 end-page: 923 article-title: CDKL5 ensures excitatory synapse stability by reinforcing NGL‐1‐PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC‐derived neurons publication-title: Nature Cell Biology – volume: 18 start-page: 93 issue: 1 year: 1998 end-page: 103 article-title: Amphiphysin I antisense oligonucleotides inhibit neurite outgrowth in cultured hippocampal neurons publication-title: The Journal of Neuroscience – volume: 14 start-page: 1935 issue: 14 year: 2005 end-page: 1946 article-title: CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early‐onset seizure variant of Rett syndrome publication-title: Human Molecular Genetics – volume: 23 start-page: 185 issue: 2 year: 1999 end-page: 188 article-title: Rett syndrome is caused by mutations in X‐linked MECP2, encoding methyl‐CpG‐binding protein 2 publication-title: Nature Genetics – volume: 283 start-page: 30101 issue: 44 year: 2008 end-page: 30111 article-title: CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C‐terminal tail publication-title: Journal of Biological Chemistry – volume: 67 start-page: 1428 issue: 6 year: 2000 end-page: 1436 article-title: Diagnostic testing for Rett syndrome by DHPLC and direct sequencing analysis of the MECP2 gene: identification of several novel mutations and polymorphisms publication-title: The American Journal of Human Genetics – volume: 290 start-page: 4512 issue: 7 year: 2015 end-page: 4527 article-title: Synaptic synthesis, dephosphorylation, and degradation: a novel paradigm for an activity‐dependent neuronal control of CDKL5 publication-title: Journal of Biological Chemistry – volume: 336 start-page: 185 issue: 6195 year: 1988 end-page: 186 article-title: Developments in neuronal cell culture publication-title: Nature – volume: 33 start-page: 1341 issue: 12 year: 2014 end-page: 1353 article-title: Capping of the N‐terminus of PSD‐95 by calmodulin triggers its postsynaptic release publication-title: The EMBO Journal – volume: 11 start-page: e0157758 issue: 6 year: 2016 article-title: Characterisation of CDKL5 transcript isoforms in human and mouse publication-title: PLoS One – volume: 110 start-page: 9118 issue: 22 year: 2013 end-page: 9123 article-title: Palmitoylation‐dependent CDKL5‐PSD‐95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 32 start-page: 10879 issue: 32 year: 2012 end-page: 10886 article-title: An essential role for histone deacetylase 4 in synaptic plasticity and memory formation publication-title: The Journal of Neuroscience – volume: 104 start-page: 7265 issue: 17 year: 2007 end-page: 7270 article-title: The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor‐dependent dendritic spine development publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 108 start-page: 849 issue: 6 year: 2002 end-page: 863 article-title: Synaptic strength regulated by palmitate cycling on PSD‐95 publication-title: Cell – volume: 186 start-page: 1126 issue: 4169 year: 1974 end-page: 1128 article-title: Dendritic spine “dysgenesis” and mental retardation publication-title: Science – volume: 151 start-page: 821 issue: 4 year: 2012 end-page: 834 article-title: HDAC4 governs a transcriptional program essential for synaptic plasticity and memory publication-title: Cell – volume: 46 start-page: 181 issue: 2 year: 2005 end-page: 189 article-title: Development of long‐term dendritic spine stability in diverse regions of cerebral cortex publication-title: Neuron – volume: 72 start-page: 1401 issue: 6 year: 2003 end-page: 1411 article-title: Disruption of the serine/threonine kinase 9 gene causes severe X‐linked infantile spasms and mental retardation publication-title: American Journal of Human Genetics – volume: 70 start-page: 53 year: 2014 end-page: 68 article-title: Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK‐3β signaling publication-title: Neurobiology of Disease – volume: 56 start-page: 640 issue: 4 year: 2007 end-page: 656 article-title: Kalirin‐7 controls activity‐dependent structural and functional plasticity of dendritic spines publication-title: Neuron – volume: 56 start-page: 52 issue: 1 year: 2011 end-page: 57 article-title: An isoform of the severe encephalopathy‐related CDKL5 gene, including a novel exon with extremely high sequence conservation, is specifically expressed in brain publication-title: Journal of Human Genetics – volume: 109 start-page: 21516 issue: 52 year: 2012 end-page: 21521 article-title: Loss of CDKL5 disrupts kinome profile and event‐related potentials leading to autistic‐like phenotypes in mice publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 55 start-page: 53 issue: 1 year: 2007 end-page: 68 article-title: Polarized signaling endosomes coordinate BDNF‐induced chemotaxis of cerebellar precursors publication-title: Neuron – volume: 27 start-page: 1572 issue: 9 year: 2018 end-page: 1592 article-title: CDKL5 protein substitution therapy rescues neurological phenotypes of a mouse model of CDKL5 disorder publication-title: Human Molecular Genetics – volume: 302 start-page: 885 issue: 5646 year: 2003 end-page: 889 article-title: Derepression of BDNF transcription involves calcium‐dependent phosphorylation of MeCP2 publication-title: Science – volume: 106 start-page: 158 year: 2017 end-page: 170 article-title: CDKL5 controls postsynaptic localization of GluN2B‐containing NMDA receptors in the hippocampus and regulates seizure susceptibility publication-title: Neurobiology Disease – ident: e_1_2_3_42_1 doi: 10.1126/science.1075762 – ident: e_1_2_3_41_1 doi: 10.1038/35044547 – ident: e_1_2_3_2_1 doi: 10.1371/journal.pone.0091613 – ident: e_1_2_3_13_1 doi: 10.1046/j.1471-4159.2003.01648.x – ident: e_1_2_3_54_1 doi: 10.1038/ncb2566 – ident: e_1_2_3_35_1 doi: 10.1016/j.ejcb.2009.11.024 – ident: e_1_2_3_16_1 doi: 10.1146/annurev-neuro-061010-113618 – ident: e_1_2_3_68_1 doi: 10.1093/hmg/ddw231 – ident: e_1_2_3_79_1 doi: 10.1016/j.neuron.2005.04.001 – ident: e_1_2_3_60_1 doi: 10.1111/gbb.12292 – ident: e_1_2_3_30_1 doi: 10.1038/aps.2012.59 – ident: e_1_2_3_15_1 doi: 10.1126/science.1086446 – ident: e_1_2_3_72_1 doi: 10.1007/s00439-011-1058-x – ident: e_1_2_3_57_1 doi: 10.1016/j.cell.2012.09.037 – ident: e_1_2_3_74_1 doi: 10.1007/978-1-4939-3049-4_18 – ident: e_1_2_3_49_1 doi: 10.1016/j.nbd.2017.07.002 – ident: e_1_2_3_44_1 doi: 10.1006/geno.1998.5391 – ident: e_1_2_3_70_1 doi: 10.1016/j.bbagrm.2012.08.001 – ident: e_1_2_3_24_1 doi: 10.1146/annurev.biochem.74.082803.133339 – ident: e_1_2_3_47_1 doi: 10.1371/journal.pone.0148634 – ident: e_1_2_3_62_1 doi: 10.1523/JNEUROSCI.0539-17.2017 – ident: e_1_2_3_19_1 doi: 10.1212/WNL.0000000000003352 – ident: e_1_2_3_69_1 doi: 10.1016/j.neuron.2005.04.013 – ident: e_1_2_3_64_1 doi: 10.1073/pnas.0702044104 – ident: e_1_2_3_31_1 doi: 10.1086/375538 – ident: e_1_2_3_71_1 doi: 10.1073/pnas.1216988110 – ident: e_1_2_3_75_1 doi: 10.1002/embj.201488126 – ident: e_1_2_3_18_1 doi: 10.1016/S0092-8674(02)00683-9 – ident: e_1_2_3_61_1 doi: 10.1016/j.conb.2005.12.001 – ident: e_1_2_3_8_1 doi: 10.1038/s41598-017-05875-z – ident: e_1_2_3_76_1 doi: 10.1016/j.neuron.2007.05.030 – ident: e_1_2_3_53_1 doi: 10.1093/hmg/ddp426 – ident: e_1_2_3_66_1 doi: 10.1093/hmg/ddy108 – ident: e_1_2_3_22_1 doi: 10.1016/j.nbd.2015.06.018 – ident: e_1_2_3_3_1 doi: 10.1038/13810 – ident: e_1_2_3_23_1 doi: 10.1016/j.nbd.2014.06.006 – ident: e_1_2_3_43_1 doi: 10.1093/hmg/ddi198 – ident: e_1_2_3_39_1 doi: 10.1093/hmg/ddi391 – ident: e_1_2_3_45_1 doi: 10.1523/JNEUROSCI.18-01-00093.1998 – ident: e_1_2_3_58_1 doi: 10.1016/j.abb.2013.04.012 – ident: e_1_2_3_50_1 doi: 10.1371/journal.pone.0196587 – ident: e_1_2_3_59_1 doi: 10.1111/j.1601-183X.2004.00071.x – ident: e_1_2_3_25_1 doi: 10.1371/journal.pone.0157758 – volume: 28 start-page: 261 issue: 10 year: 2016 ident: e_1_2_3_51_1 article-title: Lack of Cdkl5 disrupts the organization of excitatory and inhibitory synapses and parvalbumin interneurons in the primary visual cortex publication-title: Frontiers in Cellular Neuroscience – ident: e_1_2_3_32_1 doi: 10.1016/j.bbrc.2008.10.113 – ident: e_1_2_3_36_1 doi: 10.1523/JNEUROSCI.2284-05.2005 – ident: e_1_2_3_21_1 doi: 10.1371/journal.pone.0083903 – ident: e_1_2_3_12_1 doi: 10.1086/316913 – ident: e_1_2_3_78_1 doi: 10.1073/pnas.1300003110 – ident: e_1_2_3_48_1 doi: 10.1016/j.bbrc.2016.11.048 – ident: e_1_2_3_52_1 doi: 10.1126/science.186.4169.1126 – ident: e_1_2_3_65_1 doi: 10.1083/jcb.200604160 – ident: e_1_2_3_37_1 doi: 10.1074/jbc.M114.589762 – ident: e_1_2_3_14_1 doi: 10.1523/JNEUROSCI.1102-10.2010 – ident: e_1_2_3_34_1 doi: 10.1038/nn1763 – ident: e_1_2_3_6_1 doi: 10.1038/336185a0 – ident: e_1_2_3_73_1 doi: 10.1016/j.neuron.2007.10.005 – ident: e_1_2_3_46_1 doi: 10.1523/JNEUROSCI.20-14-05329.2000 – ident: e_1_2_3_56_1 doi: 10.1074/jbc.M804613200 – ident: e_1_2_3_5_1 doi: 10.1002/ajmg.a.35401 – ident: e_1_2_3_17_1 doi: 10.1016/j.biopsych.2015.08.028 – ident: e_1_2_3_28_1 doi: 10.1523/JNEUROSCI.2270-05.2005 – ident: e_1_2_3_33_1 doi: 10.1523/JNEUROSCI.2089-12.2012 – ident: e_1_2_3_7_1 doi: 10.1093/hmg/ddx237 – ident: e_1_2_3_77_1 doi: 10.1016/j.neuron.2006.09.037 – ident: e_1_2_3_20_1 doi: 10.1038/jhg.2010.143 – ident: e_1_2_3_11_1 doi: 10.1038/35049064 – ident: e_1_2_3_27_1 doi: 10.1016/j.tins.2007.04.001 – ident: e_1_2_3_9_1 doi: 10.1074/jbc.272.49.30984 – ident: e_1_2_3_40_1 doi: 10.1146/annurev.cellbio.18.031802.150501 – ident: e_1_2_3_55_1 doi: 10.1038/nrm1587 – volume: 10 start-page: 233 issue: 7 year: 2013 ident: e_1_2_3_4_1 article-title: The role of the striatum in social behavior publication-title: Frontiers in Neuroscience – ident: e_1_2_3_29_1 doi: 10.1093/hmg/ddx279 – ident: e_1_2_3_38_1 doi: 10.1038/nature05453 – ident: e_1_2_3_10_1 doi: 10.1093/hmg/9.16.2395 – ident: e_1_2_3_26_1 doi: 10.1016/j.gene.2016.12.001 – ident: e_1_2_3_63_1 doi: 10.1073/pnas.0811648106 – ident: e_1_2_3_67_1 doi: 10.1093/hmg/ddy064 |
SSID | ssj0053260 |
Score | 2.4895759 |
SecondaryResourceType | review_article |
Snippet | The X‐linked gene cyclin‐dependent kinase‐like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been... The X‐linked gene cyclin‐dependent kinase‐like 5 ( CDKL5 ) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been... The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8 |
SubjectTerms | Animal models Animals CDKL5 dendritic spine Encephalopathy Epilepsy Epileptic Syndromes - genetics Epileptic Syndromes - pathology Humans intellectual disability kinase Morphogenesis Neurodevelopmental disorders Phenotypes Protein-Serine-Threonine Kinases - genetics Protein-serine/threonine kinase Rett syndrome Rodents Spasms, Infantile - genetics Spasms, Infantile - pathology Synapses Synapses - pathology Synaptogenesis |
Title | Molecular and Synaptic Bases of CDKL5 Disorder |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdneu.22639 https://www.ncbi.nlm.nih.gov/pubmed/30246934 https://www.proquest.com/docview/2169524925 https://www.proquest.com/docview/2111743757 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7Ekxffj2iVFUVQSNsku2kCXnxUxNdBLfQiYZ8XNRXbHOqvd3bTRHwg6C2QCUl2dma-2dn9BmCXx9SyiAS-CBTzaRprn6Mj9BOZGiZijDnufMX1TXzeoxd91p-Cw-osTMkPUS-4Wctw_toaOBfD1gdpqMp10UTwENnTe3azlkVEtzV3FENc0i5LymjylAU1N2nY-nj0czT6BjE_I1YXcs7m4KH62HKnyWOzGImmfPvC4_jfv5mH2QkWJUfl5FmAKZ0vwtJRjnn485jsEbc71C27L0HzuuqjS3iuyN045-hsJDnGKDgkA0NOTi-vGKnIPJehd9a9Pzn3J70WfGkpAH2hVcIFgikjbe0uNDrmSZpo2VEdVJkKVdQ21LL8ahpoJQ3mZVobk2oR8yBJohWYzge5XgNC0W9woxSqxJV1E0FD20xCaon5neEe7FdjnskJEbnth_GUlRTKYWYHI3OD4cFOLftS0m_8KNWoVJdNTHCYhUGcMsuHyDzYrm-j8diKCM_1oLAygc3IOqzjwWqp8vo1EaKXOI2oBwdOcb-8Pzu96fbc1fpfhDdgBuFXWi7oNGB69FroTYQ4I7HlpvI7J73z6A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VeoALpUAhBVpXIKRWyi5JbG9y5Kml7O4BWIlb5PhxAbKou3ugv54ZJxvEQ0jtLVImsuLxzHzjsb8B2FWSE4tIFBaRESHPpA0VOsIw1ZkThcSY4-9X9AeyO-S_r8V1fTaH7sJU_BDNhhtZhvfXZOC0Id1-Yg01pZ22ED0k2Rx8pJbePqO6aNijBCKT_aqojEbPRdSwk8btp2-fx6NXIPM5ZvVB5_RT1Vl17LkK6azJTWs6KVr67wsmx__-n2VYquEoO6jWz2f4YMsVWD0oMRW_e2B7zB8Q9Tvvq9Dqz1rpMlUadvlQKvQ3mh1iIByzkWNHx-c9wWZ8nmswPD25OuqGdbuFUBMLYFhYk6oC8ZTTVL6LnZUqzVKrO6aDWjOxSfYdJ6JfyyNrtMPUzFrnMltIFaVp8gXmy1FpN4BxdB3KGZNI4Su7acFj6iehrcYUz6kAfs4mPdc1Fzm1xLjNKxblOKfJyP1kBLDTyN5XDBxvSm3NdJfXVjjO40hmgigRRQA_mtdoP1QUUaUdTUkmoqSsIzoBrFc6b4ZJEMDILOEB_PKae2f8_HhwMvRPX_9F-DssdK_6vbx3NjjfhEVEY1m1v7MF85M_U7uNiGdSfPPr-hFqMPgD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xRUJ74bkL4WkEWmlXSmkS200kLkCpeFaIpVIvKHL8uAApou0Bfj1jpwniISS4RcpESTyemW889jcA24JTyyIS-FmgmE8Trn2BjtCPZWJYxjHmuPMV5x1-1KUnPdabgN3yLEzBD1EtuFnLcP7aGvi9MjsvpKEq16M6goco-QGTlDdiO6dblxV5FENg0ihqymjzlAUVOWm48_Ls63D0DmO-hqwu5rRn4Lr82mKryU19NMzq8ukNkeN3f2cWpsdglOwVs2cOJnQ-Dwt7OSbid4_kD3HbQ926-wLUz8tGukTkivx_zAV6G0n2MQwOSN-Qg9bpGSMlm-cv6LYPrw6O_HGzBV9aDkA_0yoWGaIpI23xLjSaiziJtWyqJupMhSpqGGppfjUNtJIGEzOtjUl0xkUQx9FvqOX9XC8Boeg4hFEq4szVdeOMhrabhNQSEzwjPPhbjnkqx0zktiHGbVpwKIepHYzUDYYHW5XsfcG_8aHUaqm6dGyDgzQMeMIsISLzYLO6jdZjSyIi1_2RlQlsStZkTQ8WC5VXr4kQvvAkoh78c4r75P1pq3PYdVfLXxHegKmLVjs9O-6crsBPhGJJsbizCrXhw0ivIdwZZutuVj8DoOT2uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+and+Synaptic+Bases+of+CDKL5+Disorder&rft.jtitle=Developmental+neurobiology+%28Hoboken%2C+N.J.%29&rft.au=Zhu%2C+Yong-Chuan&rft.au=Xiong%2C+Zhi-Qi&rft.date=2019-01-01&rft.eissn=1932-846X&rft.volume=79&rft.issue=1&rft.spage=8&rft_id=info:doi/10.1002%2Fdneu.22639&rft_id=info%3Apmid%2F30246934&rft.externalDocID=30246934 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8451&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8451&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8451&client=summon |