Molecular and Synaptic Bases of CDKL5 Disorder

The X‐linked gene cyclin‐dependent kinase‐like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early‐onset epileptic encephalopathy and severe intellectual disability, suggesting...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental neurobiology (Hoboken, N.J.) Vol. 79; no. 1; pp. 8 - 19
Main Authors Zhu, Yong‐Chuan, Xiong, Zhi‐Qi
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The X‐linked gene cyclin‐dependent kinase‐like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early‐onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC‐derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms.
AbstractList The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early-onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC-derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms.
The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early-onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC-derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms.The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early-onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC-derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms.
The X‐linked gene cyclin‐dependent kinase‐like 5 ( CDKL5 ) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early‐onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC‐derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms.
Author Xiong, Zhi‐Qi
Zhu, Yong‐Chuan
Author_xml – sequence: 1
  givenname: Yong‐Chuan
  orcidid: 0000-0003-4979-0149
  surname: Zhu
  fullname: Zhu, Yong‐Chuan
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Zhi‐Qi
  surname: Xiong
  fullname: Xiong, Zhi‐Qi
  email: xiongzhiqi@ion.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30246934$$D View this record in MEDLINE/PubMed
BookMark eNp90MtKw0AUBuBBFHvRjQ8gATcitM4tk8xS23rBqgstuAuTmTOQkmbqTIL07U1t7aKIq3MW3384_D10WLkKEDojeEgwptemgmZIqWDyAHWJZHSQcvFxuNtj0kG9EOYYx4wKfIw6DFMuJONdNHx2JeimVD5SlYneVpVa1oWOblWAEDkbjcZP0zgaF8F5A_4EHVlVBjjdzj6a3U3eRw-D6ev94-hmOtCcMjnIwaQqjwWxGidMUgtCpTIFnZgkF6mhhmHLKeYpcAJGW44JgLUScqFImrI-utzcXXr32UCos0URNJSlqsA1IaOEkISzJE5aerFH567xVftdq4SMKZc0btX5VjX5Aky29MVC-VX220QLrjZAexeCB7sjBGfrmrN1zdlPzS3Ge1gXtaoLV9VeFeXfEbKJfBUlrP45no1fJrNN5hukbYzB
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e40165
crossref_primary_10_1002_dneu_22655
crossref_primary_10_1097_HEP_0000000000001147
crossref_primary_10_1172_JCI143655
crossref_primary_10_1212_NXG_0000000000000666
crossref_primary_10_3390_ijms24065552
crossref_primary_10_7759_cureus_41555
crossref_primary_10_3389_fneur_2021_805745
crossref_primary_10_1042_BST20220791
crossref_primary_10_1016_j_clineuro_2024_108603
crossref_primary_10_1177_15353702231209419
crossref_primary_10_3390_ijms20205098
crossref_primary_10_1007_s10048_023_00731_x
crossref_primary_10_1016_j_nbd_2020_104791
crossref_primary_10_1093_brain_awaa371
crossref_primary_10_1016_j_jns_2022_120498
crossref_primary_10_1038_s41380_021_01104_2
crossref_primary_10_3390_ijms20174075
crossref_primary_10_1007_s00431_023_05006_z
crossref_primary_10_1172_JCI168544
crossref_primary_10_1002_bies_202000316
crossref_primary_10_1111_jnc_15300
crossref_primary_10_1172_JCI178428
crossref_primary_10_3390_ijms26052204
crossref_primary_10_1016_j_xcrm_2024_101926
crossref_primary_10_1038_s41380_024_02434_7
crossref_primary_10_1111_jsr_14295
crossref_primary_10_7554_eLife_88206
crossref_primary_10_1352_1944_7558_129_2_101
crossref_primary_10_1038_s41431_022_01163_1
crossref_primary_10_3390_ijms22158132
crossref_primary_10_1080_14737175_2021_1904895
crossref_primary_10_1093_cercor_bhad235
crossref_primary_10_1016_j_mcn_2020_103535
crossref_primary_10_1016_j_neulet_2021_135772
crossref_primary_10_1093_hmg_ddaa122
crossref_primary_10_3390_genes15030266
crossref_primary_10_1016_j_braindev_2020_02_004
crossref_primary_10_1111_epi_17826
crossref_primary_10_1021_acschemneuro_3c00135
crossref_primary_10_1016_j_nbd_2021_105370
crossref_primary_10_1016_j_nbd_2020_105176
crossref_primary_10_1016_j_pediatrneurol_2019_02_015
crossref_primary_10_1523_JNEUROSCI_1010_21_2021
crossref_primary_10_1007_s12035_020_01884_8
crossref_primary_10_3389_fnmol_2022_1039990
crossref_primary_10_1016_j_nbd_2020_104758
crossref_primary_10_1016_j_ejpn_2021_02_004
crossref_primary_10_1016_j_neuropharm_2023_109491
crossref_primary_10_3390_ijms21176442
crossref_primary_10_1016_S1474_4422_22_00077_1
crossref_primary_10_1038_s41598_022_13364_1
crossref_primary_10_1111_cns_13907
crossref_primary_10_1016_S1474_4422_22_00035_7
crossref_primary_10_1111_jne_13033
crossref_primary_10_3389_fnmol_2019_00250
crossref_primary_10_1111_jnc_15168
crossref_primary_10_1016_j_ejpn_2021_04_007
crossref_primary_10_1016_j_neubiorev_2019_04_022
crossref_primary_10_1186_s13229_024_00601_9
Cites_doi 10.1126/science.1075762
10.1038/35044547
10.1371/journal.pone.0091613
10.1046/j.1471-4159.2003.01648.x
10.1038/ncb2566
10.1016/j.ejcb.2009.11.024
10.1146/annurev-neuro-061010-113618
10.1093/hmg/ddw231
10.1016/j.neuron.2005.04.001
10.1111/gbb.12292
10.1038/aps.2012.59
10.1126/science.1086446
10.1007/s00439-011-1058-x
10.1016/j.cell.2012.09.037
10.1007/978-1-4939-3049-4_18
10.1016/j.nbd.2017.07.002
10.1006/geno.1998.5391
10.1016/j.bbagrm.2012.08.001
10.1146/annurev.biochem.74.082803.133339
10.1371/journal.pone.0148634
10.1523/JNEUROSCI.0539-17.2017
10.1212/WNL.0000000000003352
10.1016/j.neuron.2005.04.013
10.1073/pnas.0702044104
10.1086/375538
10.1073/pnas.1216988110
10.1002/embj.201488126
10.1016/S0092-8674(02)00683-9
10.1016/j.conb.2005.12.001
10.1038/s41598-017-05875-z
10.1016/j.neuron.2007.05.030
10.1093/hmg/ddp426
10.1093/hmg/ddy108
10.1016/j.nbd.2015.06.018
10.1038/13810
10.1016/j.nbd.2014.06.006
10.1093/hmg/ddi198
10.1093/hmg/ddi391
10.1523/JNEUROSCI.18-01-00093.1998
10.1016/j.abb.2013.04.012
10.1371/journal.pone.0196587
10.1111/j.1601-183X.2004.00071.x
10.1371/journal.pone.0157758
10.1016/j.bbrc.2008.10.113
10.1523/JNEUROSCI.2284-05.2005
10.1371/journal.pone.0083903
10.1086/316913
10.1073/pnas.1300003110
10.1016/j.bbrc.2016.11.048
10.1126/science.186.4169.1126
10.1083/jcb.200604160
10.1074/jbc.M114.589762
10.1523/JNEUROSCI.1102-10.2010
10.1038/nn1763
10.1038/336185a0
10.1016/j.neuron.2007.10.005
10.1523/JNEUROSCI.20-14-05329.2000
10.1074/jbc.M804613200
10.1002/ajmg.a.35401
10.1016/j.biopsych.2015.08.028
10.1523/JNEUROSCI.2270-05.2005
10.1523/JNEUROSCI.2089-12.2012
10.1093/hmg/ddx237
10.1016/j.neuron.2006.09.037
10.1038/jhg.2010.143
10.1038/35049064
10.1016/j.tins.2007.04.001
10.1074/jbc.272.49.30984
10.1146/annurev.cellbio.18.031802.150501
10.1038/nrm1587
10.1093/hmg/ddx279
10.1038/nature05453
10.1093/hmg/9.16.2395
10.1016/j.gene.2016.12.001
10.1073/pnas.0811648106
10.1093/hmg/ddy064
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright © 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: Copyright © 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/dneu.22639
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1932-846X
EndPage 19
ExternalDocumentID 30246934
10_1002_dneu_22639
DNEU22639
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
XV2
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4239-bed8ab561fc07392fe6a898ec7d7b68d2d30f42048e41edcf401eeff9eb6a1883
IEDL.DBID DR2
ISSN 1932-8451
1932-846X
IngestDate Fri Jul 11 00:13:50 EDT 2025
Fri Jul 25 09:25:12 EDT 2025
Wed Feb 19 02:30:38 EST 2025
Thu Apr 24 23:10:44 EDT 2025
Tue Jul 01 03:03:46 EDT 2025
Wed Jan 22 16:34:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords kinase
dendritic spine
CDKL5
intellectual disability
Rett syndrome
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4239-bed8ab561fc07392fe6a898ec7d7b68d2d30f42048e41edcf401eeff9eb6a1883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4979-0149
PMID 30246934
PQID 2169524925
PQPubID 946356
PageCount 12
ParticipantIDs proquest_miscellaneous_2111743757
proquest_journals_2169524925
pubmed_primary_30246934
crossref_primary_10_1002_dneu_22639
crossref_citationtrail_10_1002_dneu_22639
wiley_primary_10_1002_dneu_22639_DNEU22639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Developmental neurobiology (Hoboken, N.J.)
PublicationTitleAlternate Dev Neurobiol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 104
2017; 7
2014; 70
2017; 1
2002; 18
1997; 272
2000; 9
2006; 175
2011; 56
2000; 1
2007; 30
1974; 186
2012; 14
2013; 8
2007; 76
2005; 25
1998; 18
2012; 131
2015; 290
2015; 82
2017; 37
2013; 10
2016; 87
2005; 74
2017; 482
2012; 1819
2002; 108
2013; 110
2016; 80
2014; 9
1998; 51
2003; 85
2010; 30
1988; 336
2009; 18
2007; 445
2006; 52
2017; 26
2000; 67
2006; 16
2006; 9
2002; 298
2000; 20
1999; 23
2012; 158A
2012; 35
2003; 72
2007; 55
2012; 33
2016; 15
2007; 56
2012; 32
2018; 27
2008; 283
2005; 46
2012; 109
2016; 11
2010; 89
2012; 151
2013; 535
2005; 6
2016; 1355
2001; 2
2008; 377
2003; 302
2016; 28
2016; 25
2014; 33
2017; 106
2005; 14
2018; 13
2009; 106
Pizzo R. (e_1_2_3_51_1) 2016; 28
e_1_2_3_73_1
e_1_2_3_50_1
e_1_2_3_71_1
e_1_2_3_2_1
e_1_2_3_6_1
e_1_2_3_16_1
e_1_2_3_39_1
e_1_2_3_18_1
e_1_2_3_12_1
e_1_2_3_35_1
e_1_2_3_58_1
e_1_2_3_56_1
e_1_2_3_8_1
e_1_2_3_14_1
e_1_2_3_37_1
Báez‐Mendoza R. (e_1_2_3_4_1) 2013; 10
e_1_2_3_79_1
e_1_2_3_31_1
e_1_2_3_52_1
e_1_2_3_77_1
e_1_2_3_10_1
e_1_2_3_33_1
e_1_2_3_54_1
e_1_2_3_75_1
e_1_2_3_62_1
e_1_2_3_60_1
e_1_2_3_28_1
e_1_2_3_49_1
e_1_2_3_24_1
e_1_2_3_45_1
e_1_2_3_26_1
e_1_2_3_47_1
e_1_2_3_68_1
e_1_2_3_20_1
e_1_2_3_41_1
e_1_2_3_66_1
e_1_2_3_22_1
e_1_2_3_43_1
e_1_2_3_64_1
e_1_2_3_72_1
e_1_2_3_70_1
e_1_2_3_5_1
e_1_2_3_17_1
e_1_2_3_38_1
e_1_2_3_3_1
e_1_2_3_19_1
e_1_2_3_57_1
e_1_2_3_9_1
e_1_2_3_13_1
e_1_2_3_34_1
e_1_2_3_59_1
e_1_2_3_78_1
e_1_2_3_7_1
e_1_2_3_15_1
e_1_2_3_36_1
e_1_2_3_30_1
e_1_2_3_53_1
e_1_2_3_76_1
e_1_2_3_55_1
e_1_2_3_74_1
e_1_2_3_11_1
e_1_2_3_32_1
e_1_2_3_61_1
e_1_2_3_40_1
e_1_2_3_27_1
e_1_2_3_29_1
e_1_2_3_23_1
e_1_2_3_46_1
e_1_2_3_69_1
e_1_2_3_25_1
e_1_2_3_48_1
e_1_2_3_67_1
e_1_2_3_42_1
e_1_2_3_65_1
e_1_2_3_21_1
e_1_2_3_44_1
e_1_2_3_63_1
References_xml – volume: 8
  start-page: e83903
  issue: 12
  year: 2013
  article-title: The histone deacetylase HDAC4 regulates long‐term memory in Drosophila
  publication-title: PLoS One
– volume: 6
  start-page: 167
  issue: 2
  year: 2005
  end-page: 180
  article-title: GEF means go: turning on RHO GTPases with guanine nucleotide‐exchange factors
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 26
  start-page: 3520
  issue: 18
  year: 2017
  end-page: 3530
  article-title: The neurosteroid pregnenolone reverts microtubule derangement induced by the loss of a functional CDKL5‐IQGAP1 complex
  publication-title: Human Molecular Genetics
– volume: 15
  start-page: 491
  issue: 5
  year: 2016
  end-page: 502
  article-title: CDKL5 knockout leads to altered inhibitory transmission in the cerebellum of adult mice
  publication-title: Genes, Brain and Behavior
– volume: 1355
  start-page: 263
  year: 2016
  end-page: 273
  article-title: Identification of direct kinase substrates via kinase assay‐linked phosphoproteomics
  publication-title: Methods in Molecular Biology
– volume: 1
  start-page: 173
  issue: 3
  year: 2000
  end-page: 180
  article-title: Rho GTPases in neuronal morphogenesis
  publication-title: Nature Reviews Neuroscience
– volume: 18
  start-page: 4590
  issue: 23
  year: 2009
  end-page: 4602
  article-title: CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery
  publication-title: Human Molecular Genetics
– volume: 535
  start-page: 257
  issue: 2
  year: 2013
  end-page: 267
  article-title: Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X‐linked neurodevelopmental disorder
  publication-title: Archives of Biochemistry and Biophysics
– volume: 25
  start-page: 3887
  issue: 18
  year: 2016
  end-page: 3907
  article-title: HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder
  publication-title: Human Molecular Genetics
– volume: 106
  start-page: 4882
  issue: 12
  year: 2009
  end-page: 4887
  article-title: Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 30
  start-page: 276
  issue: 6
  year: 2007
  end-page: 283
  article-title: The centrosome in neuronal development
  publication-title: Trends in Neurosciences
– volume: 80
  start-page: 302
  issue: 4
  year: 2016
  end-page: 311
  article-title: Dendritic spine instability in a mouse model of CDKL5 disorder is rescued by insulin‐like growth factor 1
  publication-title: Biological Psychiatry
– volume: 16
  start-page: 95
  issue: 1
  year: 2006
  end-page: 101
  article-title: Molecular mechanisms of dendritic spine morphogenesis
  publication-title: Current Opinion in Neurobiology
– volume: 51
  start-page: 427
  issue: 3
  year: 1998
  end-page: 433
  article-title: Identification and characterization of a novel serine‐threonine kinase gene from the Xp22 region
  publication-title: Genomics
– volume: 20
  start-page: 5329
  issue: 14
  year: 2000
  end-page: 5338
  article-title: Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons
  publication-title: The Journal of Neuroscience
– volume: 87
  start-page: 2206
  issue: 21
  year: 2016
  end-page: 2213
  article-title: Seizure variables and their relationship to genotype and functional abilities in the CDKL5 disorder
  publication-title: Neurology
– volume: 14
  start-page: 3775
  issue: 24
  year: 2005
  end-page: 3786
  article-title: CDKL5/Stk9 kinase inactivation is associated with neuronal developmental disorders
  publication-title: Human Molecular Genetics
– volume: 158A
  start-page: 1612
  issue: 7
  year: 2012
  end-page: 1619
  article-title: Recurrent mutations in the CDKL5 gene: genotype‐phenotype relationships
  publication-title: American Journal of Medical Genetics Part A
– volume: 74
  start-page: 219
  year: 2005
  end-page: 245
  article-title: Membrane‐associated guanylate kinases regulate adhesion and plasticity at cell junctions
  publication-title: Annual Review of Biochemistry
– volume: 10
  start-page: 233
  issue: 7
  year: 2013
  article-title: The role of the striatum in social behavior
  publication-title: Frontiers in Neuroscience
– volume: 175
  start-page: 147
  issue: 1
  year: 2006
  end-page: 157
  article-title: Shootin1: a protein involved in the organization of an asymmetric signal for neuronal polarization
  publication-title: The Journal of Cell Biology
– volume: 37
  start-page: 7420
  issue: 31
  year: 2017
  end-page: 7437
  article-title: Loss of CDKL5 in glutamatergic neurons disrupts hippocampal microcircuitry and leads to memory impairment in mice
  publication-title: Journal of Neuroscience
– volume: 272
  start-page: 30984
  issue: 49
  year: 1997
  end-page: 30992
  article-title: Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation‐dependent dephosphorylation in nerve terminals
  publication-title: Journal of Biological Chemistry
– volume: 1
  start-page: 21
  issue: 603
  year: 2017
  end-page: 26
  article-title: Characterisation of Cdkl5 transcript isoforms in rat
  publication-title: Gene
– volume: 9
  start-page: 1294
  issue: 10
  year: 2006
  end-page: 301
  article-title: NGL family PSD‐95‐interacting adhesion molecules regulate excitatory synapse formation
  publication-title: Nature Neuroscience
– volume: 9
  start-page: e91613
  issue: 5
  year: 2014
  article-title: Mapping pathological phenotypes in a mouse model of CDKL5 disorder
  publication-title: PLoS One
– volume: 25
  start-page: 11300
  issue: 49
  year: 2005
  end-page: 11312
  article-title: Control of dendritic arborization by the phosphoinositide‐3′‐kinase‐Akt‐mammalian target of rapamycin pathway
  publication-title: The Journal of Neuroscience
– volume: 89
  start-page: 184
  issue: 2–3
  year: 2010
  end-page: 193
  article-title: Strategies for the identification of kinase substrates using analog‐sensitive kinases
  publication-title: European Journal of Cell Biology
– volume: 1819
  start-page: 1173
  issue: 11–12
  year: 2012
  end-page: 1185
  article-title: CDKL5, a novel MYCN‐repressed gene, blocks cell cycle and promotes differentiation of neuronal cells
  publication-title: Biochimica et Biophysica Acta
– volume: 445
  start-page: 168
  year: 2007
  end-page: 176
  article-title: Genome‐wide atlas of gene expression in the adult mouse brain
  publication-title: Nature
– volume: 85
  start-page: 151
  issue: 1
  year: 2003
  end-page: 159
  article-title: Neuronal activity‐dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5
  publication-title: Journal of Neurochemistry
– volume: 28
  start-page: 261
  issue: 10
  year: 2016
  article-title: Lack of Cdkl5 disrupts the organization of excitatory and inhibitory synapses and parvalbumin interneurons in the primary visual cortex
  publication-title: Frontiers in Cellular Neuroscience
– volume: 298
  start-page: 1912
  issue: 5600
  year: 2002
  end-page: 1934
  article-title: The protein kinase complement of the human genome
  publication-title: Science
– volume: 30
  start-page: 12777
  issue: 38
  year: 2010
  end-page: 12786
  article-title: CDKL5, a protein associated with Rett syndrome, regulates neuronal morphogenesis via Rac1 signaling
  publication-title: The Journal of Neuroscience
– volume: 82
  start-page: 298
  year: 2015
  end-page: 310
  article-title: Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder
  publication-title: Neurobiology of Disease
– volume: 131
  start-page: 187
  issue: 2
  year: 2012
  end-page: 200
  article-title: A novel transcript of cyclin‐dependent kinase‐like 5 (CDKL5) has an alternative C‐terminus and is the predominant transcript in brain
  publication-title: Human Genetics
– volume: 52
  start-page: 255
  issue: 2
  year: 2006
  end-page: 269
  article-title: Brain‐specific phosphorylation of MeCP2 regulates activity‐dependent Bdnf transcription, dendritic growth, and spine maturation
  publication-title: Neuron
– volume: 377
  start-page: 1162
  issue: 4
  year: 2008
  end-page: 1167
  article-title: Cyclin‐dependent kinase‐like 5 binds and phosphorylates DNA methyltransferase 1
  publication-title: Biochemical and Biophysical Research Communications
– volume: 18
  start-page: 601
  year: 2002
  end-page: 635
  article-title: Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity
  publication-title: Annual Review of Cell and Developmental Biology
– volume: 76
  start-page: 823
  year: 2007
  end-page: 847
  article-title: The postsynaptic architecture of excitatory synapses: a more quantitative view
  publication-title: Annual Review of Biochemistry
– volume: 9
  start-page: 2395
  issue: 16
  year: 2000
  end-page: 2402
  article-title: The DNA methyltransferases of mammals
  publication-title: Human Molecular Genetics
– volume: 27
  start-page: 2052
  issue: 12
  year: 2018
  end-page: 2063
  article-title: The antidepressant tianeptine reverts synaptic AMPA receptor defects caused by deficiency of CDKL5
  publication-title: Human Molecular Genetics
– volume: 46
  start-page: 383
  issue: 3
  year: 2005
  end-page: 388
  article-title: Nucleokinesis in neuronal migration
  publication-title: Neuron
– volume: 7
  start-page: 6228
  issue: 1
  year: 2017
  article-title: CDKL5 localizes at the centrosome and midbody and is required for faithful cell division
  publication-title: Scientific Reports
– volume: 2
  start-page: 51
  issue: 1
  year: 2001
  end-page: 61
  article-title: Recognition memory: what are the roles of the perirhinal cortex and hippocampus?
  publication-title: Nature Reviews Neuroscience
– volume: 26
  start-page: 3922
  issue: 20
  year: 2017
  end-page: 3934
  article-title: Mice lacking cyclin‐dependent kinase‐like 5 manifest autistic and ADHD‐like behaviors
  publication-title: Human Molecular Genetics
– volume: 35
  start-page: 181
  year: 2012
  end-page: 201
  article-title: Early events in axon/dendrite polarization
  publication-title: Annual Review of Neuroscience
– volume: 11
  start-page: e0148634
  issue: 2
  year: 2016
  article-title: CDKL5 and Shootin1 interact and concur in regulating neuronal polarization
  publication-title: PLoS One
– volume: 33
  start-page: 861
  issue: 7
  year: 2012
  end-page: 872
  article-title: Atorvastatin enhances neurite outgrowth in cortical neurons in vitro via up‐regulating the Akt/mTOR and Akt/GSK‐3β signaling pathways
  publication-title: Acta Pharmacologica Sinica
– volume: 25
  start-page: 11288
  issue: 49
  year: 2005
  end-page: 11299
  article-title: Regulation of dendritic morphogenesis by Ras‐PI3K‐Akt‐mTOR and Ras‐MAPK signaling pathways
  publication-title: Journal of Neuroscience
– volume: 482
  start-page: 239
  issue: 2
  year: 2017
  end-page: 245
  article-title: Subcellular distribution of cyclin‐dependent kinase‐like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine‐phosphorylation‐regulated kinase 1A (DYRK1A)
  publication-title: Biochemical and Biophysical Research Communications
– volume: 13
  start-page: e0196587
  issue: 4
  year: 2018
  article-title: Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety‐ and fear‐related behaviors and impairment in both acquisition and long‐term retention of spatial reference memory
  publication-title: PLoS One
– volume: 14
  start-page: 911
  issue: 9
  year: 2012
  end-page: 923
  article-title: CDKL5 ensures excitatory synapse stability by reinforcing NGL‐1‐PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC‐derived neurons
  publication-title: Nature Cell Biology
– volume: 18
  start-page: 93
  issue: 1
  year: 1998
  end-page: 103
  article-title: Amphiphysin I antisense oligonucleotides inhibit neurite outgrowth in cultured hippocampal neurons
  publication-title: The Journal of Neuroscience
– volume: 14
  start-page: 1935
  issue: 14
  year: 2005
  end-page: 1946
  article-title: CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early‐onset seizure variant of Rett syndrome
  publication-title: Human Molecular Genetics
– volume: 23
  start-page: 185
  issue: 2
  year: 1999
  end-page: 188
  article-title: Rett syndrome is caused by mutations in X‐linked MECP2, encoding methyl‐CpG‐binding protein 2
  publication-title: Nature Genetics
– volume: 283
  start-page: 30101
  issue: 44
  year: 2008
  end-page: 30111
  article-title: CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C‐terminal tail
  publication-title: Journal of Biological Chemistry
– volume: 67
  start-page: 1428
  issue: 6
  year: 2000
  end-page: 1436
  article-title: Diagnostic testing for Rett syndrome by DHPLC and direct sequencing analysis of the MECP2 gene: identification of several novel mutations and polymorphisms
  publication-title: The American Journal of Human Genetics
– volume: 290
  start-page: 4512
  issue: 7
  year: 2015
  end-page: 4527
  article-title: Synaptic synthesis, dephosphorylation, and degradation: a novel paradigm for an activity‐dependent neuronal control of CDKL5
  publication-title: Journal of Biological Chemistry
– volume: 336
  start-page: 185
  issue: 6195
  year: 1988
  end-page: 186
  article-title: Developments in neuronal cell culture
  publication-title: Nature
– volume: 33
  start-page: 1341
  issue: 12
  year: 2014
  end-page: 1353
  article-title: Capping of the N‐terminus of PSD‐95 by calmodulin triggers its postsynaptic release
  publication-title: The EMBO Journal
– volume: 11
  start-page: e0157758
  issue: 6
  year: 2016
  article-title: Characterisation of CDKL5 transcript isoforms in human and mouse
  publication-title: PLoS One
– volume: 110
  start-page: 9118
  issue: 22
  year: 2013
  end-page: 9123
  article-title: Palmitoylation‐dependent CDKL5‐PSD‐95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 32
  start-page: 10879
  issue: 32
  year: 2012
  end-page: 10886
  article-title: An essential role for histone deacetylase 4 in synaptic plasticity and memory formation
  publication-title: The Journal of Neuroscience
– volume: 104
  start-page: 7265
  issue: 17
  year: 2007
  end-page: 7270
  article-title: The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor‐dependent dendritic spine development
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 108
  start-page: 849
  issue: 6
  year: 2002
  end-page: 863
  article-title: Synaptic strength regulated by palmitate cycling on PSD‐95
  publication-title: Cell
– volume: 186
  start-page: 1126
  issue: 4169
  year: 1974
  end-page: 1128
  article-title: Dendritic spine “dysgenesis” and mental retardation
  publication-title: Science
– volume: 151
  start-page: 821
  issue: 4
  year: 2012
  end-page: 834
  article-title: HDAC4 governs a transcriptional program essential for synaptic plasticity and memory
  publication-title: Cell
– volume: 46
  start-page: 181
  issue: 2
  year: 2005
  end-page: 189
  article-title: Development of long‐term dendritic spine stability in diverse regions of cerebral cortex
  publication-title: Neuron
– volume: 72
  start-page: 1401
  issue: 6
  year: 2003
  end-page: 1411
  article-title: Disruption of the serine/threonine kinase 9 gene causes severe X‐linked infantile spasms and mental retardation
  publication-title: American Journal of Human Genetics
– volume: 70
  start-page: 53
  year: 2014
  end-page: 68
  article-title: Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK‐3β signaling
  publication-title: Neurobiology of Disease
– volume: 56
  start-page: 640
  issue: 4
  year: 2007
  end-page: 656
  article-title: Kalirin‐7 controls activity‐dependent structural and functional plasticity of dendritic spines
  publication-title: Neuron
– volume: 56
  start-page: 52
  issue: 1
  year: 2011
  end-page: 57
  article-title: An isoform of the severe encephalopathy‐related CDKL5 gene, including a novel exon with extremely high sequence conservation, is specifically expressed in brain
  publication-title: Journal of Human Genetics
– volume: 109
  start-page: 21516
  issue: 52
  year: 2012
  end-page: 21521
  article-title: Loss of CDKL5 disrupts kinome profile and event‐related potentials leading to autistic‐like phenotypes in mice
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 55
  start-page: 53
  issue: 1
  year: 2007
  end-page: 68
  article-title: Polarized signaling endosomes coordinate BDNF‐induced chemotaxis of cerebellar precursors
  publication-title: Neuron
– volume: 27
  start-page: 1572
  issue: 9
  year: 2018
  end-page: 1592
  article-title: CDKL5 protein substitution therapy rescues neurological phenotypes of a mouse model of CDKL5 disorder
  publication-title: Human Molecular Genetics
– volume: 302
  start-page: 885
  issue: 5646
  year: 2003
  end-page: 889
  article-title: Derepression of BDNF transcription involves calcium‐dependent phosphorylation of MeCP2
  publication-title: Science
– volume: 106
  start-page: 158
  year: 2017
  end-page: 170
  article-title: CDKL5 controls postsynaptic localization of GluN2B‐containing NMDA receptors in the hippocampus and regulates seizure susceptibility
  publication-title: Neurobiology Disease
– ident: e_1_2_3_42_1
  doi: 10.1126/science.1075762
– ident: e_1_2_3_41_1
  doi: 10.1038/35044547
– ident: e_1_2_3_2_1
  doi: 10.1371/journal.pone.0091613
– ident: e_1_2_3_13_1
  doi: 10.1046/j.1471-4159.2003.01648.x
– ident: e_1_2_3_54_1
  doi: 10.1038/ncb2566
– ident: e_1_2_3_35_1
  doi: 10.1016/j.ejcb.2009.11.024
– ident: e_1_2_3_16_1
  doi: 10.1146/annurev-neuro-061010-113618
– ident: e_1_2_3_68_1
  doi: 10.1093/hmg/ddw231
– ident: e_1_2_3_79_1
  doi: 10.1016/j.neuron.2005.04.001
– ident: e_1_2_3_60_1
  doi: 10.1111/gbb.12292
– ident: e_1_2_3_30_1
  doi: 10.1038/aps.2012.59
– ident: e_1_2_3_15_1
  doi: 10.1126/science.1086446
– ident: e_1_2_3_72_1
  doi: 10.1007/s00439-011-1058-x
– ident: e_1_2_3_57_1
  doi: 10.1016/j.cell.2012.09.037
– ident: e_1_2_3_74_1
  doi: 10.1007/978-1-4939-3049-4_18
– ident: e_1_2_3_49_1
  doi: 10.1016/j.nbd.2017.07.002
– ident: e_1_2_3_44_1
  doi: 10.1006/geno.1998.5391
– ident: e_1_2_3_70_1
  doi: 10.1016/j.bbagrm.2012.08.001
– ident: e_1_2_3_24_1
  doi: 10.1146/annurev.biochem.74.082803.133339
– ident: e_1_2_3_47_1
  doi: 10.1371/journal.pone.0148634
– ident: e_1_2_3_62_1
  doi: 10.1523/JNEUROSCI.0539-17.2017
– ident: e_1_2_3_19_1
  doi: 10.1212/WNL.0000000000003352
– ident: e_1_2_3_69_1
  doi: 10.1016/j.neuron.2005.04.013
– ident: e_1_2_3_64_1
  doi: 10.1073/pnas.0702044104
– ident: e_1_2_3_31_1
  doi: 10.1086/375538
– ident: e_1_2_3_71_1
  doi: 10.1073/pnas.1216988110
– ident: e_1_2_3_75_1
  doi: 10.1002/embj.201488126
– ident: e_1_2_3_18_1
  doi: 10.1016/S0092-8674(02)00683-9
– ident: e_1_2_3_61_1
  doi: 10.1016/j.conb.2005.12.001
– ident: e_1_2_3_8_1
  doi: 10.1038/s41598-017-05875-z
– ident: e_1_2_3_76_1
  doi: 10.1016/j.neuron.2007.05.030
– ident: e_1_2_3_53_1
  doi: 10.1093/hmg/ddp426
– ident: e_1_2_3_66_1
  doi: 10.1093/hmg/ddy108
– ident: e_1_2_3_22_1
  doi: 10.1016/j.nbd.2015.06.018
– ident: e_1_2_3_3_1
  doi: 10.1038/13810
– ident: e_1_2_3_23_1
  doi: 10.1016/j.nbd.2014.06.006
– ident: e_1_2_3_43_1
  doi: 10.1093/hmg/ddi198
– ident: e_1_2_3_39_1
  doi: 10.1093/hmg/ddi391
– ident: e_1_2_3_45_1
  doi: 10.1523/JNEUROSCI.18-01-00093.1998
– ident: e_1_2_3_58_1
  doi: 10.1016/j.abb.2013.04.012
– ident: e_1_2_3_50_1
  doi: 10.1371/journal.pone.0196587
– ident: e_1_2_3_59_1
  doi: 10.1111/j.1601-183X.2004.00071.x
– ident: e_1_2_3_25_1
  doi: 10.1371/journal.pone.0157758
– volume: 28
  start-page: 261
  issue: 10
  year: 2016
  ident: e_1_2_3_51_1
  article-title: Lack of Cdkl5 disrupts the organization of excitatory and inhibitory synapses and parvalbumin interneurons in the primary visual cortex
  publication-title: Frontiers in Cellular Neuroscience
– ident: e_1_2_3_32_1
  doi: 10.1016/j.bbrc.2008.10.113
– ident: e_1_2_3_36_1
  doi: 10.1523/JNEUROSCI.2284-05.2005
– ident: e_1_2_3_21_1
  doi: 10.1371/journal.pone.0083903
– ident: e_1_2_3_12_1
  doi: 10.1086/316913
– ident: e_1_2_3_78_1
  doi: 10.1073/pnas.1300003110
– ident: e_1_2_3_48_1
  doi: 10.1016/j.bbrc.2016.11.048
– ident: e_1_2_3_52_1
  doi: 10.1126/science.186.4169.1126
– ident: e_1_2_3_65_1
  doi: 10.1083/jcb.200604160
– ident: e_1_2_3_37_1
  doi: 10.1074/jbc.M114.589762
– ident: e_1_2_3_14_1
  doi: 10.1523/JNEUROSCI.1102-10.2010
– ident: e_1_2_3_34_1
  doi: 10.1038/nn1763
– ident: e_1_2_3_6_1
  doi: 10.1038/336185a0
– ident: e_1_2_3_73_1
  doi: 10.1016/j.neuron.2007.10.005
– ident: e_1_2_3_46_1
  doi: 10.1523/JNEUROSCI.20-14-05329.2000
– ident: e_1_2_3_56_1
  doi: 10.1074/jbc.M804613200
– ident: e_1_2_3_5_1
  doi: 10.1002/ajmg.a.35401
– ident: e_1_2_3_17_1
  doi: 10.1016/j.biopsych.2015.08.028
– ident: e_1_2_3_28_1
  doi: 10.1523/JNEUROSCI.2270-05.2005
– ident: e_1_2_3_33_1
  doi: 10.1523/JNEUROSCI.2089-12.2012
– ident: e_1_2_3_7_1
  doi: 10.1093/hmg/ddx237
– ident: e_1_2_3_77_1
  doi: 10.1016/j.neuron.2006.09.037
– ident: e_1_2_3_20_1
  doi: 10.1038/jhg.2010.143
– ident: e_1_2_3_11_1
  doi: 10.1038/35049064
– ident: e_1_2_3_27_1
  doi: 10.1016/j.tins.2007.04.001
– ident: e_1_2_3_9_1
  doi: 10.1074/jbc.272.49.30984
– ident: e_1_2_3_40_1
  doi: 10.1146/annurev.cellbio.18.031802.150501
– ident: e_1_2_3_55_1
  doi: 10.1038/nrm1587
– volume: 10
  start-page: 233
  issue: 7
  year: 2013
  ident: e_1_2_3_4_1
  article-title: The role of the striatum in social behavior
  publication-title: Frontiers in Neuroscience
– ident: e_1_2_3_29_1
  doi: 10.1093/hmg/ddx279
– ident: e_1_2_3_38_1
  doi: 10.1038/nature05453
– ident: e_1_2_3_10_1
  doi: 10.1093/hmg/9.16.2395
– ident: e_1_2_3_26_1
  doi: 10.1016/j.gene.2016.12.001
– ident: e_1_2_3_63_1
  doi: 10.1073/pnas.0811648106
– ident: e_1_2_3_67_1
  doi: 10.1093/hmg/ddy064
SSID ssj0053260
Score 2.4895759
SecondaryResourceType review_article
Snippet The X‐linked gene cyclin‐dependent kinase‐like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been...
The X‐linked gene cyclin‐dependent kinase‐like 5 ( CDKL5 ) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been...
The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8
SubjectTerms Animal models
Animals
CDKL5
dendritic spine
Encephalopathy
Epilepsy
Epileptic Syndromes - genetics
Epileptic Syndromes - pathology
Humans
intellectual disability
kinase
Morphogenesis
Neurodevelopmental disorders
Phenotypes
Protein-Serine-Threonine Kinases - genetics
Protein-serine/threonine kinase
Rett syndrome
Rodents
Spasms, Infantile - genetics
Spasms, Infantile - pathology
Synapses
Synapses - pathology
Synaptogenesis
Title Molecular and Synaptic Bases of CDKL5 Disorder
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdneu.22639
https://www.ncbi.nlm.nih.gov/pubmed/30246934
https://www.proquest.com/docview/2169524925
https://www.proquest.com/docview/2111743757
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7Ekxffj2iVFUVQSNsku2kCXnxUxNdBLfQiYZ8XNRXbHOqvd3bTRHwg6C2QCUl2dma-2dn9BmCXx9SyiAS-CBTzaRprn6Mj9BOZGiZijDnufMX1TXzeoxd91p-Cw-osTMkPUS-4Wctw_toaOBfD1gdpqMp10UTwENnTe3azlkVEtzV3FENc0i5LymjylAU1N2nY-nj0czT6BjE_I1YXcs7m4KH62HKnyWOzGImmfPvC4_jfv5mH2QkWJUfl5FmAKZ0vwtJRjnn485jsEbc71C27L0HzuuqjS3iuyN045-hsJDnGKDgkA0NOTi-vGKnIPJehd9a9Pzn3J70WfGkpAH2hVcIFgikjbe0uNDrmSZpo2VEdVJkKVdQ21LL8ahpoJQ3mZVobk2oR8yBJohWYzge5XgNC0W9woxSqxJV1E0FD20xCaon5neEe7FdjnskJEbnth_GUlRTKYWYHI3OD4cFOLftS0m_8KNWoVJdNTHCYhUGcMsuHyDzYrm-j8diKCM_1oLAygc3IOqzjwWqp8vo1EaKXOI2oBwdOcb-8Pzu96fbc1fpfhDdgBuFXWi7oNGB69FroTYQ4I7HlpvI7J73z6A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VeoALpUAhBVpXIKRWyi5JbG9y5Kml7O4BWIlb5PhxAbKou3ugv54ZJxvEQ0jtLVImsuLxzHzjsb8B2FWSE4tIFBaRESHPpA0VOsIw1ZkThcSY4-9X9AeyO-S_r8V1fTaH7sJU_BDNhhtZhvfXZOC0Id1-Yg01pZ22ED0k2Rx8pJbePqO6aNijBCKT_aqojEbPRdSwk8btp2-fx6NXIPM5ZvVB5_RT1Vl17LkK6azJTWs6KVr67wsmx__-n2VYquEoO6jWz2f4YMsVWD0oMRW_e2B7zB8Q9Tvvq9Dqz1rpMlUadvlQKvQ3mh1iIByzkWNHx-c9wWZ8nmswPD25OuqGdbuFUBMLYFhYk6oC8ZTTVL6LnZUqzVKrO6aDWjOxSfYdJ6JfyyNrtMPUzFrnMltIFaVp8gXmy1FpN4BxdB3KGZNI4Su7acFj6iehrcYUz6kAfs4mPdc1Fzm1xLjNKxblOKfJyP1kBLDTyN5XDBxvSm3NdJfXVjjO40hmgigRRQA_mtdoP1QUUaUdTUkmoqSsIzoBrFc6b4ZJEMDILOEB_PKae2f8_HhwMvRPX_9F-DssdK_6vbx3NjjfhEVEY1m1v7MF85M_U7uNiGdSfPPr-hFqMPgD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xRUJ74bkL4WkEWmlXSmkS200kLkCpeFaIpVIvKHL8uAApou0Bfj1jpwniISS4RcpESTyemW889jcA24JTyyIS-FmgmE8Trn2BjtCPZWJYxjHmuPMV5x1-1KUnPdabgN3yLEzBD1EtuFnLcP7aGvi9MjsvpKEq16M6goco-QGTlDdiO6dblxV5FENg0ihqymjzlAUVOWm48_Ls63D0DmO-hqwu5rRn4Lr82mKryU19NMzq8ukNkeN3f2cWpsdglOwVs2cOJnQ-Dwt7OSbid4_kD3HbQ926-wLUz8tGukTkivx_zAV6G0n2MQwOSN-Qg9bpGSMlm-cv6LYPrw6O_HGzBV9aDkA_0yoWGaIpI23xLjSaiziJtWyqJupMhSpqGGppfjUNtJIGEzOtjUl0xkUQx9FvqOX9XC8Boeg4hFEq4szVdeOMhrabhNQSEzwjPPhbjnkqx0zktiHGbVpwKIepHYzUDYYHW5XsfcG_8aHUaqm6dGyDgzQMeMIsISLzYLO6jdZjSyIi1_2RlQlsStZkTQ8WC5VXr4kQvvAkoh78c4r75P1pq3PYdVfLXxHegKmLVjs9O-6crsBPhGJJsbizCrXhw0ivIdwZZutuVj8DoOT2uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+and+Synaptic+Bases+of+CDKL5+Disorder&rft.jtitle=Developmental+neurobiology+%28Hoboken%2C+N.J.%29&rft.au=Zhu%2C+Yong-Chuan&rft.au=Xiong%2C+Zhi-Qi&rft.date=2019-01-01&rft.eissn=1932-846X&rft.volume=79&rft.issue=1&rft.spage=8&rft_id=info:doi/10.1002%2Fdneu.22639&rft_id=info%3Apmid%2F30246934&rft.externalDocID=30246934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8451&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8451&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8451&client=summon