Improving the Performance of Lithium‐Ion Batteries Using a Two‐Layer, Hard Carbon‐Containing Silicon Anode for Use in High‐Energy Electrodes

Lithium‐ion battery cells with high‐energy density and good fast charging properties are subject of current research. One approach to achieve high‐energy densities is the use of higher mass loadings. The challenges of these so called “thick” electrodes are transport limitations: lithium ions cannot...

Full description

Saved in:
Bibliographic Details
Published inEnergy technology (Weinheim, Germany) Vol. 11; no. 5
Main Authors Gottschalk, Laura, Oertel, Christine, Strzelczyk, Nanny, Müller, Jannes, Krüger, Jannik, Haselrieder, Wolfgang, Kwade, Arno
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2023
Subjects
Online AccessGet full text
ISSN2194-4288
2194-4296
DOI10.1002/ente.202200858

Cover

Loading…
Abstract Lithium‐ion battery cells with high‐energy density and good fast charging properties are subject of current research. One approach to achieve high‐energy densities is the use of higher mass loadings. The challenges of these so called “thick” electrodes are transport limitations: lithium ions cannot reach all layers of the electrode, which results in a drop of performance. Possible concepts to overcome these limitations are the use of different active materials (silicon oxide, graphite, and hard carbon (HC)), and a two‐layer coating of the anode to create a defined pore network, which reduces the ionic resistance and ensure better fast charging capability even at higher mass loadings (8 mAh cm−2). It could be demonstrated that by using a two‐layered anode with HC in the upper layer, the electrical conductivity could be increased by a factor of 10 compared to the reference anode. Furthermore, the interporous HC leads to a capacity retention increase up to 20% with no loss of capacity at moderate C‐rates and a low electrode density. This can be explained by the low tortuosity that results in additional conductive paths for the ions through the coating, reduces the ionic resistance, and ultimately enables faster lithiation of the anode. In this investigation, the focus is on two‐layered anodes containing three different active materials (graphite, silicon, and hard carbon (HC)) to create a defined pore network within the anode. It could be demonstrated that the interporous HC leads to a capacity retention increase up to 20% with no loss of capacity at moderate C‐rates and a low electrode density.
AbstractList Lithium‐ion battery cells with high‐energy density and good fast charging properties are subject of current research. One approach to achieve high‐energy densities is the use of higher mass loadings. The challenges of these so called “thick” electrodes are transport limitations: lithium ions cannot reach all layers of the electrode, which results in a drop of performance. Possible concepts to overcome these limitations are the use of different active materials (silicon oxide, graphite, and hard carbon (HC)), and a two‐layer coating of the anode to create a defined pore network, which reduces the ionic resistance and ensure better fast charging capability even at higher mass loadings (8 mAh cm−2). It could be demonstrated that by using a two‐layered anode with HC in the upper layer, the electrical conductivity could be increased by a factor of 10 compared to the reference anode. Furthermore, the interporous HC leads to a capacity retention increase up to 20% with no loss of capacity at moderate C‐rates and a low electrode density. This can be explained by the low tortuosity that results in additional conductive paths for the ions through the coating, reduces the ionic resistance, and ultimately enables faster lithiation of the anode.
Lithium‐ion battery cells with high‐energy density and good fast charging properties are subject of current research. One approach to achieve high‐energy densities is the use of higher mass loadings. The challenges of these so called “thick” electrodes are transport limitations: lithium ions cannot reach all layers of the electrode, which results in a drop of performance. Possible concepts to overcome these limitations are the use of different active materials (silicon oxide, graphite, and hard carbon (HC)), and a two‐layer coating of the anode to create a defined pore network, which reduces the ionic resistance and ensure better fast charging capability even at higher mass loadings (8 mAh cm−2). It could be demonstrated that by using a two‐layered anode with HC in the upper layer, the electrical conductivity could be increased by a factor of 10 compared to the reference anode. Furthermore, the interporous HC leads to a capacity retention increase up to 20% with no loss of capacity at moderate C‐rates and a low electrode density. This can be explained by the low tortuosity that results in additional conductive paths for the ions through the coating, reduces the ionic resistance, and ultimately enables faster lithiation of the anode. In this investigation, the focus is on two‐layered anodes containing three different active materials (graphite, silicon, and hard carbon (HC)) to create a defined pore network within the anode. It could be demonstrated that the interporous HC leads to a capacity retention increase up to 20% with no loss of capacity at moderate C‐rates and a low electrode density.
Author Gottschalk, Laura
Haselrieder, Wolfgang
Kwade, Arno
Müller, Jannes
Krüger, Jannik
Strzelczyk, Nanny
Oertel, Christine
Author_xml – sequence: 1
  givenname: Laura
  orcidid: 0000-0002-1068-7905
  surname: Gottschalk
  fullname: Gottschalk, Laura
  email: l.gottschalk@tu-braunschweig.de
  organization: TU Braunschweig
– sequence: 2
  givenname: Christine
  surname: Oertel
  fullname: Oertel, Christine
  organization: TU Braunschweig
– sequence: 3
  givenname: Nanny
  orcidid: 0000-0002-4220-2773
  surname: Strzelczyk
  fullname: Strzelczyk, Nanny
  organization: TU Braunschweig
– sequence: 4
  givenname: Jannes
  orcidid: 0000-0002-7381-5070
  surname: Müller
  fullname: Müller, Jannes
  organization: TU Braunschweig
– sequence: 5
  givenname: Jannik
  surname: Krüger
  fullname: Krüger, Jannik
  organization: TU Braunschweig
– sequence: 6
  givenname: Wolfgang
  orcidid: 0000-0001-9349-9119
  surname: Haselrieder
  fullname: Haselrieder, Wolfgang
  organization: TU Braunschweig
– sequence: 7
  givenname: Arno
  orcidid: 0000-0002-6348-7309
  surname: Kwade
  fullname: Kwade, Arno
  organization: TU Braunschweig
BookMark eNqFkEFLIzEUgMNSwa569Rzwuq1JJjNNjt0yawtFBet5eDO-aSPTpJukK735Ezz4C_eXbErFBUE8JSTf9x5830nPOouEnHM25IyJS7QRh4IJwZjK1TfSF1zLgRS66L3flTomZyE8MsY4y7OcZX3yOltvvPtj7JLGFdJb9K3za7ANUtfSuYkrs13_fX6ZOUt_QozoDQZ6H_YC0MWTS39z2KH_QafgH-gEfO1sepw4G8HYPXdnOtMkf2zdA9I0P_lIjaVTs1wltLTolztadthEn5BwSo5a6AKevZ0n5P5XuZhMB_Obq9lkPB80UmRqoBGF0m0BGdTAZZsLZFqOag1cccnzGrRQQnE2alktsSjqTOu80bKVElKl7IRcHOamBL-3GGL16LbeppVV0lLLUSFYooYHqvEuBI9ttfFmDX5XcVbt41f7-NV7_CTID0JjIkSTingw3eeaPmhPpsPdF0uq8npR_nf_Ae1-n84
CitedBy_id crossref_primary_10_1002_batt_202300522
crossref_primary_10_1007_s11998_023_00877_1
crossref_primary_10_1002_celc_202400326
crossref_primary_10_14356_kona_2025004
crossref_primary_10_1002_ente_202300281
crossref_primary_10_1016_j_electacta_2023_143656
crossref_primary_10_1002_ente_202400583
crossref_primary_10_1002_ente_202400493
crossref_primary_10_3390_nano13172411
crossref_primary_10_3390_batteries10050160
crossref_primary_10_1002_ente_202400256
Cites_doi 10.1016/0378-7753(83)87040-2
10.1016/j.jpowsour.2015.09.105
10.1149/2.0401507jes
10.1002/ente.201900722
10.1002/ente.201901251
10.1016/j.carbon.2015.07.030
10.1016/j.jpowsour.2012.09.047
10.1016/j.jpowsour.2016.10.016
10.1007/s11998-015-9717-9
10.1002/ente.202200865
10.1016/j.ijadhadh.2015.03.002
10.1149/1.2054777
10.1016/j.jpowsour.2015.06.038
10.1016/j.nanoen.2016.11.013
10.1039/C8RA07170E
10.1002/ente.202101033
10.1002/ange.201902085
10.1149/2.1141607jes
10.1002/ente.201900167
10.1002/ente.201900161
10.1007/s10008-017-3610-7
10.1021/acs.jpclett.8b02229
10.1016/j.electacta.2012.03.161
10.1038/s41560-018-0130-3
10.1016/j.electacta.2014.04.171
10.1016/j.cej.2020.126603
10.1038/nclimate2564
10.1002/aenm.201301278
10.1002/ente.201900175
10.1016/j.est.2015.12.008
10.1002/aenm.201803170
10.1149/2.0321602jes
10.1002/ente.201600536
10.1149/2.1021814jes
10.1021/nl100086e
10.1088/2053-1591/aaa0f9
10.1016/j.est.2017.02.001
10.1016/j.nanoen.2016.11.043
10.1016/j.jpowsour.2021.229794
10.1016/j.matchar.2017.09.002
10.1016/j.jpowsour.2014.11.019
10.20964/2021.04.57
10.1149/2.007112jes
10.1039/C6CP06788C
10.1149/1.2054868
ContentType Journal Article
Copyright 2022 The Authors. Energy Technology published by Wiley‐VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Energy Technology published by Wiley‐VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1002/ente.202200858
DatabaseName Wiley Online Library Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2194-4296
EndPage n/a
ExternalDocumentID 10_1002_ente_202200858
ENTE202200858
Genre article
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  funderid: 03XP0243B
GroupedDBID 05W
0R~
1OC
24P
31~
33P
50Y
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
EBS
EDH
EJD
G-S
GODZA
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c4238-9ee289f6a3aba14f52e0947b9a181415ba92828107f0b4e66b3995c94f44a8583
IEDL.DBID 24P
ISSN 2194-4288
IngestDate Mon Jul 14 07:03:45 EDT 2025
Thu Apr 24 23:02:36 EDT 2025
Tue Jul 01 04:10:44 EDT 2025
Wed Jan 22 16:21:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4238-9ee289f6a3aba14f52e0947b9a181415ba92828107f0b4e66b3995c94f44a8583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1068-7905
0000-0001-9349-9119
0000-0002-4220-2773
0000-0002-6348-7309
0000-0002-7381-5070
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fente.202200858
PQID 2812207620
PQPubID 2034361
PageCount 11
ParticipantIDs proquest_journals_2812207620
crossref_primary_10_1002_ente_202200858
crossref_citationtrail_10_1002_ente_202200858
wiley_primary_10_1002_ente_202200858_ENTE202200858
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Energy technology (Weinheim, Germany)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 162
2021; 407
2017; 5
2015; 12
2019; 7
2010; 10
2011; 158
2019; 9
2018; 165
2015; 5
2015; 94
2004; 7
2017; 21
2003; 150
1983; 9
2013; 223
2016; 301
2016; 18
2017; 133
2016; 163
2014; 135
2020; 8
2012; 71
2015; 294
2016; 5
2017; 31
2018; 9
2018; 8
2018; 3
2014; 4
2018; 5
2015; 60
2022
2021
2020; 132
1994; 141
2017; 11
2015; 275
2019
2002; 149
2017
2022; 10
2016; 334
2021; 495
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
Ryu J. H. (e_1_2_8_48_1) 2004; 7
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Yoshio M. (e_1_2_8_6_1) 2002; 149
e_1_2_8_40_1
e_1_2_8_18_1
Obrovac M. N. (e_1_2_8_25_1) 2004; 7
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
Beaulieu L. Y. (e_1_2_8_30_1) 2003; 150
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 9
  start-page: 1803170
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 275
  start-page: 234
  year: 2015
  publication-title: J. Power Sources
– volume: 165
  start-page: A3459
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 21
  start-page: 1939
  year: 2017
  publication-title: J. Solid State Electrochem.
– volume: 5
  start-page: 329
  year: 2015
  publication-title: Nat. Clim. Change
– volume: 158
  start-page: A1260
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 365
  year: 1983
  publication-title: J. Power Sources
– volume: 294
  start-page: 173
  year: 2015
  publication-title: J. Power Sources
– volume: 7
  start-page: A306
  year: 2004
  publication-title: Electrochimica Acta
– volume: 223
  start-page: 306
  year: 2013
  publication-title: Journal of Power Sources
– volume: 5
  start-page: 1235
  year: 2017
  publication-title: Energy Technol.
– volume: 8
  start-page: 1900161
  year: 2020
  publication-title: Energy Technol.
– volume: 12
  start-page: 927
  year: 2015
  publication-title: J. Coat. Technol. Res.
– volume: 132
  start-page: 112
  year: 2020
  publication-title: Angew. Chem.
– volume: 162
  start-page: A1196
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 156
  year: 2016
  publication-title: J. Energy Storage
– year: 2022
  publication-title: Energy Technol.
– volume: 334
  start-page: 78
  year: 2016
  publication-title: J. Power Sources
– volume: 7
  start-page: A93
  year: 2004
  publication-title: Journal of Power Sources
– volume: 163
  start-page: A138
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 94
  start-page: 432
  year: 2015
  publication-title: Carbon
– volume: 11
  start-page: 76
  year: 2017
  publication-title: J. Energy Storage
– volume: 141
  start-page: 603
  year: 1994
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 2101033
  year: 2022
  publication-title: Energy Technol.
– year: 2019
– volume: 7
  start-page: 1900722
  year: 2019
  publication-title: Energy Technol.
– volume: 8
  start-page: 1900175
  year: 2020
  publication-title: Energy Technol.
– volume: 31
  start-page: 113
  year: 2017
  publication-title: Nano Energy
– volume: 31
  start-page: 377
  year: 2017
  publication-title: Nano Energy
– volume: 301
  start-page: 11
  year: 2016
  publication-title: J. Power Sources
– volume: 8
  start-page: 1901251
  year: 2020
  publication-title: Energy Technol.
– volume: 135
  start-page: 27
  year: 2014
  publication-title: Electrochim. Acta
– volume: 133
  start-page: 102
  year: 2017
  publication-title: Mater. Character.
– volume: 163
  start-page: A1373
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 141
  start-page: 982
  year: 1994
  publication-title: J. Electrochem. Soc.
– volume: 149
  start-page: A1598
  year: 2002
  publication-title: J. Power Sources
– volume: 9
  start-page: 5100
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 290
  year: 2018
  publication-title: Nat. Energy
– volume: 8
  start-page: 34682
  year: 2018
  publication-title: RSC Adv.
– volume: 10
  start-page: 1710
  year: 2010
  publication-title: Nano Lett.
– volume: 71
  start-page: 258
  year: 2012
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 1301278
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 1900167
  year: 2020
  publication-title: Energy Technol.
– volume: 60
  start-page: 1
  year: 2015
  publication-title: Int. J. Adhes. Adhes.
– volume: 5
  start-page: 14004
  year: 2018
  publication-title: Mater. Res. Express
– volume: 150
  start-page: A1457
  year: 2003
  publication-title: Solid State Ionics
– start-page: ArticleID:210432
  year: 2021
  publication-title: Int. J. Electrochem. Sci.
– volume: 18
  start-page: 30677
  year: 2016
  publication-title: Phys. Chem. Chem. Phys. PCCP
– volume: 407
  start-page: 126603
  year: 2021
  publication-title: Chem. Eng. J.
– year: 2017
– volume: 495
  start-page: 229794
  year: 2021
  publication-title: J. Power Sources
– ident: e_1_2_8_7_1
  doi: 10.1016/0378-7753(83)87040-2
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jpowsour.2015.09.105
– ident: e_1_2_8_18_1
  doi: 10.1149/2.0401507jes
– volume: 7
  start-page: A306
  year: 2004
  ident: e_1_2_8_48_1
  publication-title: Electrochimica Acta
– ident: e_1_2_8_3_1
– ident: e_1_2_8_40_1
  doi: 10.1002/ente.201900722
– ident: e_1_2_8_10_1
  doi: 10.1002/ente.201901251
– volume: 7
  start-page: A93
  year: 2004
  ident: e_1_2_8_25_1
  publication-title: Journal of Power Sources
– ident: e_1_2_8_8_1
  doi: 10.1016/j.carbon.2015.07.030
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jpowsour.2012.09.047
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jpowsour.2016.10.016
– ident: e_1_2_8_39_1
  doi: 10.1007/s11998-015-9717-9
– ident: e_1_2_8_51_1
  doi: 10.1002/ente.202200865
– ident: e_1_2_8_42_1
  doi: 10.1016/j.ijadhadh.2015.03.002
– ident: e_1_2_8_9_1
  doi: 10.1149/1.2054777
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jpowsour.2015.06.038
– ident: e_1_2_8_12_1
  doi: 10.1016/j.nanoen.2016.11.013
– ident: e_1_2_8_35_1
  doi: 10.1039/C8RA07170E
– ident: e_1_2_8_50_1
  doi: 10.1002/ente.202101033
– ident: e_1_2_8_11_1
  doi: 10.1002/ange.201902085
– ident: e_1_2_8_45_1
  doi: 10.1149/2.1141607jes
– ident: e_1_2_8_22_1
  doi: 10.1002/ente.201900167
– ident: e_1_2_8_23_1
– ident: e_1_2_8_15_1
  doi: 10.1002/ente.201900161
– ident: e_1_2_8_31_1
  doi: 10.1007/s10008-017-3610-7
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.jpclett.8b02229
– volume: 150
  start-page: A1457
  year: 2003
  ident: e_1_2_8_30_1
  publication-title: Solid State Ionics
– ident: e_1_2_8_16_1
  doi: 10.1016/j.electacta.2012.03.161
– ident: e_1_2_8_5_1
  doi: 10.1038/s41560-018-0130-3
– ident: e_1_2_8_34_1
  doi: 10.1016/j.electacta.2014.04.171
– ident: e_1_2_8_24_1
  doi: 10.1016/j.cej.2020.126603
– ident: e_1_2_8_2_1
  doi: 10.1038/nclimate2564
– ident: e_1_2_8_36_1
  doi: 10.1002/aenm.201301278
– ident: e_1_2_8_47_1
  doi: 10.1002/ente.201900175
– ident: e_1_2_8_38_1
  doi: 10.1016/j.est.2015.12.008
– ident: e_1_2_8_26_1
  doi: 10.1002/aenm.201803170
– ident: e_1_2_8_19_1
  doi: 10.1149/2.0321602jes
– ident: e_1_2_8_37_1
  doi: 10.1002/ente.201600536
– ident: e_1_2_8_52_1
  doi: 10.1149/2.1021814jes
– ident: e_1_2_8_27_1
  doi: 10.1021/nl100086e
– ident: e_1_2_8_28_1
  doi: 10.1088/2053-1591/aaa0f9
– ident: e_1_2_8_43_1
  doi: 10.1016/j.est.2017.02.001
– ident: e_1_2_8_13_1
  doi: 10.1016/j.nanoen.2016.11.043
– ident: e_1_2_8_46_1
– ident: e_1_2_8_53_1
  doi: 10.1016/j.jpowsour.2021.229794
– ident: e_1_2_8_44_1
  doi: 10.1016/j.matchar.2017.09.002
– volume: 149
  start-page: A1598
  year: 2002
  ident: e_1_2_8_6_1
  publication-title: J. Power Sources
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jpowsour.2014.11.019
– ident: e_1_2_8_33_1
  doi: 10.20964/2021.04.57
– ident: e_1_2_8_49_1
  doi: 10.1149/2.007112jes
– ident: e_1_2_8_4_1
  doi: 10.1039/C6CP06788C
– ident: e_1_2_8_14_1
  doi: 10.1149/1.2054868
SSID ssj0001053503
Score 2.319239
Snippet Lithium‐ion battery cells with high‐energy density and good fast charging properties are subject of current research. One approach to achieve high‐energy...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms blend anodes
Carbon
Charging
Electrical resistivity
Electrodes
gradient electrodes
hard carbon
high-energy lithium-ion batteries
Ions
Lithium
Lithium-ion batteries
multilayer anodes
Silicon
silicon oxide
Silicon oxides
Tortuosity
ultrathick anodes
Title Improving the Performance of Lithium‐Ion Batteries Using a Two‐Layer, Hard Carbon‐Containing Silicon Anode for Use in High‐Energy Electrodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fente.202200858
https://www.proquest.com/docview/2812207620
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60vehBfGK1ljkIXlxat5s0OZaaUqUthbbQW9hNNhioifSBV3-CB3-hv8TZJE3agwhCLsk-CDs7u9_M7nxDyK3CXYEFdkCb0vcot0ST2n6gKC6FrOUJw1dC-zsGQ7M35c8zY7YVxZ_yQ-QON60ZyXqtFVzIZb0gDdWUlWjfMX2Ab1j7pKzjazV7PuOjwsui6UuS9MiomZwi1rY2zI0NVt_tYndnKuDmNmhNdp3uMTnK4CK0U_mekD0VnZLDLRLBM_KV-wUAwRyMikgAiAPoh6uXcP36_fH5FEeQsmmicQzJVQEQMHmPsawvEHnfgz7Gh45YyDjCj5q4Ks0fAeNwjjMmgnYU-wqwf2yvIIxAXxPBqk4SQQhOmlPHV8tzMu06k06PZrkWqIeACtc8pdD0CkzRFFI88MBgCg2_lrQFQgDc5KWwtXGGxmLQkFyZptQxsZ7NA84FDl7zgpSiOFKXBFDDleCWbXrK45YnZMtW-JgGEwgWLVkhdDPOrpcRket8GHM3pVBmrpaLm8ulQu7y-m8pBcevNasbsbmZKi5d_GksxjW_USEsEeUfvbjOcOLkb1f_aXRNDnRa-vRiZJWUVou1ukHwspK1ZH7WSLn9OOiPfwBSIuwP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60HtSD-MRq1TkIXgyt202aHEtJqdqWgi14C7vJBgs1kT7w6k_w4C_0lziTV9uDCEIuyT4IOzu738zOfsPYtcZdgYdOaNRV4BvClnXDCUJt4FLIG740Ay3J39HrW52ReHg282hCuguT8kMUDjfSjGS9JgUnh3R1yRpKnJVo4HE6wTftTbYlLN4g3eRisHSzEH9Jkh8ZVVMYCLbtnLqxxqvrXaxvTUu8uYpak22nvc_2MrwIzVTAB2xDR4dsd4VF8Ih9FY4BQDQHg-VVAIhD6I7nL-PF6_fH530cQUqnidYxJLECIGH4HmNZVyL0vgU6x4eWnKo4wo_EXJUmkICn8QSnTATNKA40YP_YXsM4AooTwapucoUQ3DSpTqBnx2zUdoetjpElWzB8RFS46GmNtldoybpU8k6EJtdo-TWUIxED4C6vpEPWGVqLYU0JbVmKLsX6jgiFkDh49RNWiuJInzJAFddS2I7la1_YvlQNR-NjmVwiWrRVmRn5OHt-xkROCTEmXsqhzD2Si1fIpcxuivpvKQfHrzUrudi8TBdnHv40FuOiXysznojyj148tz90i7ez_zS6YtudYa_rde_7j-dsh3LUp1GSFVaaTxf6ApHMXF0mc_UHpZrt5w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60guhBfGK16hwEL4bWZJMmx1JTqtZSsIXewm6yi4G6KX3g1Z_gwV_oL3E2SdP2IIKQS7IPws7OzDf7-IaQa4FewZSeNCwehQZ1mWV4kRQGmkKzHjI7Ekyvdzx3nfaAPg7t4cot_owfolhw05qR2mut4ONIVpekoZqyEuM7U2_g2-4m2Up3_DS3M-0tV1k0fUmaHhk1kxqItd0Fc2PNrK53se6ZlnBzFbSmXqe1T_ZyuAiNTL4HZEOoQ7K7QiJ4RL6KdQFAMAe95U0ASCR04tlrPH_7_vh8SBRkbJoYHEN6VAAY9N8TLOswRN63oLfxockmPFH4URNXZfkj4CUe4YxR0FBJJAD7x_YCYgX6mAhW9dMbhOBnOXUiMT0mg5bfb7aNPNeCESKgQpsnBIZe0mEW4-yOStsUGPjVuccQAqCT58zTwRkGi7LGqXAcru_Ehh6VlDIcPOuElFSixCkB1HDBqOs5oQipGzJe9wQ-jm0yBIsuLxNjMc5BmBOR63wYoyCjUDYDLZegkEuZ3BT1xxkFx681KwuxBbkqTgP8aSxGm18rEzMV5R-9BH637xdvZ_9pdEW2e_etoPPQfTonOzpDfXZGskJKs8lcXCCOmfHLdKr-AFKd7Rk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Performance+of+Lithium%E2%80%90Ion+Batteries+Using+a+Two%E2%80%90Layer%2C+Hard+Carbon%E2%80%90Containing+Silicon+Anode+for+Use+in+High%E2%80%90Energy+Electrodes&rft.jtitle=Energy+technology+%28Weinheim%2C+Germany%29&rft.au=Gottschalk%2C+Laura&rft.au=Oertel%2C+Christine&rft.au=Strzelczyk%2C+Nanny&rft.au=M%C3%BCller%2C+Jannes&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2194-4288&rft.eissn=2194-4296&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1002%2Fente.202200858&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-4288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-4288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-4288&client=summon