Improving the Performance of Lithium‐Ion Batteries Using a Two‐Layer, Hard Carbon‐Containing Silicon Anode for Use in High‐Energy Electrodes
Lithium‐ion battery cells with high‐energy density and good fast charging properties are subject of current research. One approach to achieve high‐energy densities is the use of higher mass loadings. The challenges of these so called “thick” electrodes are transport limitations: lithium ions cannot...
Saved in:
Published in | Energy technology (Weinheim, Germany) Vol. 11; no. 5 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2194-4288 2194-4296 |
DOI | 10.1002/ente.202200858 |
Cover
Loading…
Abstract | Lithium‐ion battery cells with high‐energy density and good fast charging properties are subject of current research. One approach to achieve high‐energy densities is the use of higher mass loadings. The challenges of these so called “thick” electrodes are transport limitations: lithium ions cannot reach all layers of the electrode, which results in a drop of performance. Possible concepts to overcome these limitations are the use of different active materials (silicon oxide, graphite, and hard carbon (HC)), and a two‐layer coating of the anode to create a defined pore network, which reduces the ionic resistance and ensure better fast charging capability even at higher mass loadings (8 mAh cm−2). It could be demonstrated that by using a two‐layered anode with HC in the upper layer, the electrical conductivity could be increased by a factor of 10 compared to the reference anode. Furthermore, the interporous HC leads to a capacity retention increase up to 20% with no loss of capacity at moderate C‐rates and a low electrode density. This can be explained by the low tortuosity that results in additional conductive paths for the ions through the coating, reduces the ionic resistance, and ultimately enables faster lithiation of the anode.
In this investigation, the focus is on two‐layered anodes containing three different active materials (graphite, silicon, and hard carbon (HC)) to create a defined pore network within the anode. It could be demonstrated that the interporous HC leads to a capacity retention increase up to 20% with no loss of capacity at moderate C‐rates and a low electrode density. |
---|---|
AbstractList | Lithium‐ion battery cells with high‐energy density and good fast charging properties are subject of current research. One approach to achieve high‐energy densities is the use of higher mass loadings. The challenges of these so called “thick” electrodes are transport limitations: lithium ions cannot reach all layers of the electrode, which results in a drop of performance. Possible concepts to overcome these limitations are the use of different active materials (silicon oxide, graphite, and hard carbon (HC)), and a two‐layer coating of the anode to create a defined pore network, which reduces the ionic resistance and ensure better fast charging capability even at higher mass loadings (8 mAh cm−2). It could be demonstrated that by using a two‐layered anode with HC in the upper layer, the electrical conductivity could be increased by a factor of 10 compared to the reference anode. Furthermore, the interporous HC leads to a capacity retention increase up to 20% with no loss of capacity at moderate C‐rates and a low electrode density. This can be explained by the low tortuosity that results in additional conductive paths for the ions through the coating, reduces the ionic resistance, and ultimately enables faster lithiation of the anode. Lithium‐ion battery cells with high‐energy density and good fast charging properties are subject of current research. One approach to achieve high‐energy densities is the use of higher mass loadings. The challenges of these so called “thick” electrodes are transport limitations: lithium ions cannot reach all layers of the electrode, which results in a drop of performance. Possible concepts to overcome these limitations are the use of different active materials (silicon oxide, graphite, and hard carbon (HC)), and a two‐layer coating of the anode to create a defined pore network, which reduces the ionic resistance and ensure better fast charging capability even at higher mass loadings (8 mAh cm−2). It could be demonstrated that by using a two‐layered anode with HC in the upper layer, the electrical conductivity could be increased by a factor of 10 compared to the reference anode. Furthermore, the interporous HC leads to a capacity retention increase up to 20% with no loss of capacity at moderate C‐rates and a low electrode density. This can be explained by the low tortuosity that results in additional conductive paths for the ions through the coating, reduces the ionic resistance, and ultimately enables faster lithiation of the anode. In this investigation, the focus is on two‐layered anodes containing three different active materials (graphite, silicon, and hard carbon (HC)) to create a defined pore network within the anode. It could be demonstrated that the interporous HC leads to a capacity retention increase up to 20% with no loss of capacity at moderate C‐rates and a low electrode density. |
Author | Gottschalk, Laura Haselrieder, Wolfgang Kwade, Arno Müller, Jannes Krüger, Jannik Strzelczyk, Nanny Oertel, Christine |
Author_xml | – sequence: 1 givenname: Laura orcidid: 0000-0002-1068-7905 surname: Gottschalk fullname: Gottschalk, Laura email: l.gottschalk@tu-braunschweig.de organization: TU Braunschweig – sequence: 2 givenname: Christine surname: Oertel fullname: Oertel, Christine organization: TU Braunschweig – sequence: 3 givenname: Nanny orcidid: 0000-0002-4220-2773 surname: Strzelczyk fullname: Strzelczyk, Nanny organization: TU Braunschweig – sequence: 4 givenname: Jannes orcidid: 0000-0002-7381-5070 surname: Müller fullname: Müller, Jannes organization: TU Braunschweig – sequence: 5 givenname: Jannik surname: Krüger fullname: Krüger, Jannik organization: TU Braunschweig – sequence: 6 givenname: Wolfgang orcidid: 0000-0001-9349-9119 surname: Haselrieder fullname: Haselrieder, Wolfgang organization: TU Braunschweig – sequence: 7 givenname: Arno orcidid: 0000-0002-6348-7309 surname: Kwade fullname: Kwade, Arno organization: TU Braunschweig |
BookMark | eNqFkEFLIzEUgMNSwa569Rzwuq1JJjNNjt0yawtFBet5eDO-aSPTpJukK735Ezz4C_eXbErFBUE8JSTf9x5830nPOouEnHM25IyJS7QRh4IJwZjK1TfSF1zLgRS66L3flTomZyE8MsY4y7OcZX3yOltvvPtj7JLGFdJb9K3za7ANUtfSuYkrs13_fX6ZOUt_QozoDQZ6H_YC0MWTS39z2KH_QafgH-gEfO1sepw4G8HYPXdnOtMkf2zdA9I0P_lIjaVTs1wltLTolztadthEn5BwSo5a6AKevZ0n5P5XuZhMB_Obq9lkPB80UmRqoBGF0m0BGdTAZZsLZFqOag1cccnzGrRQQnE2alktsSjqTOu80bKVElKl7IRcHOamBL-3GGL16LbeppVV0lLLUSFYooYHqvEuBI9ttfFmDX5XcVbt41f7-NV7_CTID0JjIkSTingw3eeaPmhPpsPdF0uq8npR_nf_Ae1-n84 |
CitedBy_id | crossref_primary_10_1002_batt_202300522 crossref_primary_10_1007_s11998_023_00877_1 crossref_primary_10_1002_celc_202400326 crossref_primary_10_14356_kona_2025004 crossref_primary_10_1002_ente_202300281 crossref_primary_10_1016_j_electacta_2023_143656 crossref_primary_10_1002_ente_202400583 crossref_primary_10_1002_ente_202400493 crossref_primary_10_3390_nano13172411 crossref_primary_10_3390_batteries10050160 crossref_primary_10_1002_ente_202400256 |
Cites_doi | 10.1016/0378-7753(83)87040-2 10.1016/j.jpowsour.2015.09.105 10.1149/2.0401507jes 10.1002/ente.201900722 10.1002/ente.201901251 10.1016/j.carbon.2015.07.030 10.1016/j.jpowsour.2012.09.047 10.1016/j.jpowsour.2016.10.016 10.1007/s11998-015-9717-9 10.1002/ente.202200865 10.1016/j.ijadhadh.2015.03.002 10.1149/1.2054777 10.1016/j.jpowsour.2015.06.038 10.1016/j.nanoen.2016.11.013 10.1039/C8RA07170E 10.1002/ente.202101033 10.1002/ange.201902085 10.1149/2.1141607jes 10.1002/ente.201900167 10.1002/ente.201900161 10.1007/s10008-017-3610-7 10.1021/acs.jpclett.8b02229 10.1016/j.electacta.2012.03.161 10.1038/s41560-018-0130-3 10.1016/j.electacta.2014.04.171 10.1016/j.cej.2020.126603 10.1038/nclimate2564 10.1002/aenm.201301278 10.1002/ente.201900175 10.1016/j.est.2015.12.008 10.1002/aenm.201803170 10.1149/2.0321602jes 10.1002/ente.201600536 10.1149/2.1021814jes 10.1021/nl100086e 10.1088/2053-1591/aaa0f9 10.1016/j.est.2017.02.001 10.1016/j.nanoen.2016.11.043 10.1016/j.jpowsour.2021.229794 10.1016/j.matchar.2017.09.002 10.1016/j.jpowsour.2014.11.019 10.20964/2021.04.57 10.1149/2.007112jes 10.1039/C6CP06788C 10.1149/1.2054868 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Energy Technology published by Wiley‐VCH GmbH 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Energy Technology published by Wiley‐VCH GmbH – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1002/ente.202200858 |
DatabaseName | Wiley Online Library Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2194-4296 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ente_202200858 ENTE202200858 |
Genre | article |
GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung funderid: 03XP0243B |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 50Y 8-1 A00 AAESR AAHHS AAHQN AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BFHJK BMXJE BRXPI D-B DCZOG EBS EDH EJD G-S GODZA HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c4238-9ee289f6a3aba14f52e0947b9a181415ba92828107f0b4e66b3995c94f44a8583 |
IEDL.DBID | 24P |
ISSN | 2194-4288 |
IngestDate | Mon Jul 14 07:03:45 EDT 2025 Thu Apr 24 23:02:36 EDT 2025 Tue Jul 01 04:10:44 EDT 2025 Wed Jan 22 16:21:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4238-9ee289f6a3aba14f52e0947b9a181415ba92828107f0b4e66b3995c94f44a8583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1068-7905 0000-0001-9349-9119 0000-0002-4220-2773 0000-0002-6348-7309 0000-0002-7381-5070 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fente.202200858 |
PQID | 2812207620 |
PQPubID | 2034361 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2812207620 crossref_primary_10_1002_ente_202200858 crossref_citationtrail_10_1002_ente_202200858 wiley_primary_10_1002_ente_202200858_ENTE202200858 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Energy technology (Weinheim, Germany) |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 162 2021; 407 2017; 5 2015; 12 2019; 7 2010; 10 2011; 158 2019; 9 2018; 165 2015; 5 2015; 94 2004; 7 2017; 21 2003; 150 1983; 9 2013; 223 2016; 301 2016; 18 2017; 133 2016; 163 2014; 135 2020; 8 2012; 71 2015; 294 2016; 5 2017; 31 2018; 9 2018; 8 2018; 3 2014; 4 2018; 5 2015; 60 2022 2021 2020; 132 1994; 141 2017; 11 2015; 275 2019 2002; 149 2017 2022; 10 2016; 334 2021; 495 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_29_1 e_1_2_8_46_1 e_1_2_8_27_1 Ryu J. H. (e_1_2_8_48_1) 2004; 7 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 Yoshio M. (e_1_2_8_6_1) 2002; 149 e_1_2_8_40_1 e_1_2_8_18_1 Obrovac M. N. (e_1_2_8_25_1) 2004; 7 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 Beaulieu L. Y. (e_1_2_8_30_1) 2003; 150 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 9 start-page: 1803170 year: 2019 publication-title: Adv. Energy Mater. – volume: 275 start-page: 234 year: 2015 publication-title: J. Power Sources – volume: 165 start-page: A3459 year: 2018 publication-title: J. Electrochem. Soc. – volume: 21 start-page: 1939 year: 2017 publication-title: J. Solid State Electrochem. – volume: 5 start-page: 329 year: 2015 publication-title: Nat. Clim. Change – volume: 158 start-page: A1260 year: 2011 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 365 year: 1983 publication-title: J. Power Sources – volume: 294 start-page: 173 year: 2015 publication-title: J. Power Sources – volume: 7 start-page: A306 year: 2004 publication-title: Electrochimica Acta – volume: 223 start-page: 306 year: 2013 publication-title: Journal of Power Sources – volume: 5 start-page: 1235 year: 2017 publication-title: Energy Technol. – volume: 8 start-page: 1900161 year: 2020 publication-title: Energy Technol. – volume: 12 start-page: 927 year: 2015 publication-title: J. Coat. Technol. Res. – volume: 132 start-page: 112 year: 2020 publication-title: Angew. Chem. – volume: 162 start-page: A1196 year: 2015 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 156 year: 2016 publication-title: J. Energy Storage – year: 2022 publication-title: Energy Technol. – volume: 334 start-page: 78 year: 2016 publication-title: J. Power Sources – volume: 7 start-page: A93 year: 2004 publication-title: Journal of Power Sources – volume: 163 start-page: A138 year: 2016 publication-title: J. Electrochem. Soc. – volume: 94 start-page: 432 year: 2015 publication-title: Carbon – volume: 11 start-page: 76 year: 2017 publication-title: J. Energy Storage – volume: 141 start-page: 603 year: 1994 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 2101033 year: 2022 publication-title: Energy Technol. – year: 2019 – volume: 7 start-page: 1900722 year: 2019 publication-title: Energy Technol. – volume: 8 start-page: 1900175 year: 2020 publication-title: Energy Technol. – volume: 31 start-page: 113 year: 2017 publication-title: Nano Energy – volume: 31 start-page: 377 year: 2017 publication-title: Nano Energy – volume: 301 start-page: 11 year: 2016 publication-title: J. Power Sources – volume: 8 start-page: 1901251 year: 2020 publication-title: Energy Technol. – volume: 135 start-page: 27 year: 2014 publication-title: Electrochim. Acta – volume: 133 start-page: 102 year: 2017 publication-title: Mater. Character. – volume: 163 start-page: A1373 year: 2016 publication-title: J. Electrochem. Soc. – volume: 141 start-page: 982 year: 1994 publication-title: J. Electrochem. Soc. – volume: 149 start-page: A1598 year: 2002 publication-title: J. Power Sources – volume: 9 start-page: 5100 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 290 year: 2018 publication-title: Nat. Energy – volume: 8 start-page: 34682 year: 2018 publication-title: RSC Adv. – volume: 10 start-page: 1710 year: 2010 publication-title: Nano Lett. – volume: 71 start-page: 258 year: 2012 publication-title: Electrochim. Acta – volume: 4 start-page: 1301278 year: 2014 publication-title: Adv. Energy Mater. – volume: 8 start-page: 1900167 year: 2020 publication-title: Energy Technol. – volume: 60 start-page: 1 year: 2015 publication-title: Int. J. Adhes. Adhes. – volume: 5 start-page: 14004 year: 2018 publication-title: Mater. Res. Express – volume: 150 start-page: A1457 year: 2003 publication-title: Solid State Ionics – start-page: ArticleID:210432 year: 2021 publication-title: Int. J. Electrochem. Sci. – volume: 18 start-page: 30677 year: 2016 publication-title: Phys. Chem. Chem. Phys. PCCP – volume: 407 start-page: 126603 year: 2021 publication-title: Chem. Eng. J. – year: 2017 – volume: 495 start-page: 229794 year: 2021 publication-title: J. Power Sources – ident: e_1_2_8_7_1 doi: 10.1016/0378-7753(83)87040-2 – ident: e_1_2_8_17_1 doi: 10.1016/j.jpowsour.2015.09.105 – ident: e_1_2_8_18_1 doi: 10.1149/2.0401507jes – volume: 7 start-page: A306 year: 2004 ident: e_1_2_8_48_1 publication-title: Electrochimica Acta – ident: e_1_2_8_3_1 – ident: e_1_2_8_40_1 doi: 10.1002/ente.201900722 – ident: e_1_2_8_10_1 doi: 10.1002/ente.201901251 – volume: 7 start-page: A93 year: 2004 ident: e_1_2_8_25_1 publication-title: Journal of Power Sources – ident: e_1_2_8_8_1 doi: 10.1016/j.carbon.2015.07.030 – ident: e_1_2_8_32_1 doi: 10.1016/j.jpowsour.2012.09.047 – ident: e_1_2_8_20_1 doi: 10.1016/j.jpowsour.2016.10.016 – ident: e_1_2_8_39_1 doi: 10.1007/s11998-015-9717-9 – ident: e_1_2_8_51_1 doi: 10.1002/ente.202200865 – ident: e_1_2_8_42_1 doi: 10.1016/j.ijadhadh.2015.03.002 – ident: e_1_2_8_9_1 doi: 10.1149/1.2054777 – ident: e_1_2_8_29_1 doi: 10.1016/j.jpowsour.2015.06.038 – ident: e_1_2_8_12_1 doi: 10.1016/j.nanoen.2016.11.013 – ident: e_1_2_8_35_1 doi: 10.1039/C8RA07170E – ident: e_1_2_8_50_1 doi: 10.1002/ente.202101033 – ident: e_1_2_8_11_1 doi: 10.1002/ange.201902085 – ident: e_1_2_8_45_1 doi: 10.1149/2.1141607jes – ident: e_1_2_8_22_1 doi: 10.1002/ente.201900167 – ident: e_1_2_8_23_1 – ident: e_1_2_8_15_1 doi: 10.1002/ente.201900161 – ident: e_1_2_8_31_1 doi: 10.1007/s10008-017-3610-7 – ident: e_1_2_8_21_1 doi: 10.1021/acs.jpclett.8b02229 – volume: 150 start-page: A1457 year: 2003 ident: e_1_2_8_30_1 publication-title: Solid State Ionics – ident: e_1_2_8_16_1 doi: 10.1016/j.electacta.2012.03.161 – ident: e_1_2_8_5_1 doi: 10.1038/s41560-018-0130-3 – ident: e_1_2_8_34_1 doi: 10.1016/j.electacta.2014.04.171 – ident: e_1_2_8_24_1 doi: 10.1016/j.cej.2020.126603 – ident: e_1_2_8_2_1 doi: 10.1038/nclimate2564 – ident: e_1_2_8_36_1 doi: 10.1002/aenm.201301278 – ident: e_1_2_8_47_1 doi: 10.1002/ente.201900175 – ident: e_1_2_8_38_1 doi: 10.1016/j.est.2015.12.008 – ident: e_1_2_8_26_1 doi: 10.1002/aenm.201803170 – ident: e_1_2_8_19_1 doi: 10.1149/2.0321602jes – ident: e_1_2_8_37_1 doi: 10.1002/ente.201600536 – ident: e_1_2_8_52_1 doi: 10.1149/2.1021814jes – ident: e_1_2_8_27_1 doi: 10.1021/nl100086e – ident: e_1_2_8_28_1 doi: 10.1088/2053-1591/aaa0f9 – ident: e_1_2_8_43_1 doi: 10.1016/j.est.2017.02.001 – ident: e_1_2_8_13_1 doi: 10.1016/j.nanoen.2016.11.043 – ident: e_1_2_8_46_1 – ident: e_1_2_8_53_1 doi: 10.1016/j.jpowsour.2021.229794 – ident: e_1_2_8_44_1 doi: 10.1016/j.matchar.2017.09.002 – volume: 149 start-page: A1598 year: 2002 ident: e_1_2_8_6_1 publication-title: J. Power Sources – ident: e_1_2_8_41_1 doi: 10.1016/j.jpowsour.2014.11.019 – ident: e_1_2_8_33_1 doi: 10.20964/2021.04.57 – ident: e_1_2_8_49_1 doi: 10.1149/2.007112jes – ident: e_1_2_8_4_1 doi: 10.1039/C6CP06788C – ident: e_1_2_8_14_1 doi: 10.1149/1.2054868 |
SSID | ssj0001053503 |
Score | 2.319239 |
Snippet | Lithium‐ion battery cells with high‐energy density and good fast charging properties are subject of current research. One approach to achieve high‐energy... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | blend anodes Carbon Charging Electrical resistivity Electrodes gradient electrodes hard carbon high-energy lithium-ion batteries Ions Lithium Lithium-ion batteries multilayer anodes Silicon silicon oxide Silicon oxides Tortuosity ultrathick anodes |
Title | Improving the Performance of Lithium‐Ion Batteries Using a Two‐Layer, Hard Carbon‐Containing Silicon Anode for Use in High‐Energy Electrodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fente.202200858 https://www.proquest.com/docview/2812207620 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60vehBfGK1ljkIXlxat5s0OZaaUqUthbbQW9hNNhioifSBV3-CB3-hv8TZJE3agwhCLsk-CDs7u9_M7nxDyK3CXYEFdkCb0vcot0ST2n6gKC6FrOUJw1dC-zsGQ7M35c8zY7YVxZ_yQ-QON60ZyXqtFVzIZb0gDdWUlWjfMX2Ab1j7pKzjazV7PuOjwsui6UuS9MiomZwi1rY2zI0NVt_tYndnKuDmNmhNdp3uMTnK4CK0U_mekD0VnZLDLRLBM_KV-wUAwRyMikgAiAPoh6uXcP36_fH5FEeQsmmicQzJVQEQMHmPsawvEHnfgz7Gh45YyDjCj5q4Ks0fAeNwjjMmgnYU-wqwf2yvIIxAXxPBqk4SQQhOmlPHV8tzMu06k06PZrkWqIeACtc8pdD0CkzRFFI88MBgCg2_lrQFQgDc5KWwtXGGxmLQkFyZptQxsZ7NA84FDl7zgpSiOFKXBFDDleCWbXrK45YnZMtW-JgGEwgWLVkhdDPOrpcRket8GHM3pVBmrpaLm8ulQu7y-m8pBcevNasbsbmZKi5d_GksxjW_USEsEeUfvbjOcOLkb1f_aXRNDnRa-vRiZJWUVou1ukHwspK1ZH7WSLn9OOiPfwBSIuwP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60HtSD-MRq1TkIXgyt202aHEtJqdqWgi14C7vJBgs1kT7w6k_w4C_0lziTV9uDCEIuyT4IOzu738zOfsPYtcZdgYdOaNRV4BvClnXDCUJt4FLIG740Ay3J39HrW52ReHg282hCuguT8kMUDjfSjGS9JgUnh3R1yRpKnJVo4HE6wTftTbYlLN4g3eRisHSzEH9Jkh8ZVVMYCLbtnLqxxqvrXaxvTUu8uYpak22nvc_2MrwIzVTAB2xDR4dsd4VF8Ih9FY4BQDQHg-VVAIhD6I7nL-PF6_fH530cQUqnidYxJLECIGH4HmNZVyL0vgU6x4eWnKo4wo_EXJUmkICn8QSnTATNKA40YP_YXsM4AooTwapucoUQ3DSpTqBnx2zUdoetjpElWzB8RFS46GmNtldoybpU8k6EJtdo-TWUIxED4C6vpEPWGVqLYU0JbVmKLsX6jgiFkDh49RNWiuJInzJAFddS2I7la1_YvlQNR-NjmVwiWrRVmRn5OHt-xkROCTEmXsqhzD2Si1fIpcxuivpvKQfHrzUrudi8TBdnHv40FuOiXysznojyj148tz90i7ez_zS6YtudYa_rde_7j-dsh3LUp1GSFVaaTxf6ApHMXF0mc_UHpZrt5w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60guhBfGK16hwEL4bWZJMmx1JTqtZSsIXewm6yi4G6KX3g1Z_gwV_oL3E2SdP2IIKQS7IPws7OzDf7-IaQa4FewZSeNCwehQZ1mWV4kRQGmkKzHjI7Ekyvdzx3nfaAPg7t4cot_owfolhw05qR2mut4ONIVpekoZqyEuM7U2_g2-4m2Up3_DS3M-0tV1k0fUmaHhk1kxqItd0Fc2PNrK53se6ZlnBzFbSmXqe1T_ZyuAiNTL4HZEOoQ7K7QiJ4RL6KdQFAMAe95U0ASCR04tlrPH_7_vh8SBRkbJoYHEN6VAAY9N8TLOswRN63oLfxockmPFH4URNXZfkj4CUe4YxR0FBJJAD7x_YCYgX6mAhW9dMbhOBnOXUiMT0mg5bfb7aNPNeCESKgQpsnBIZe0mEW4-yOStsUGPjVuccQAqCT58zTwRkGi7LGqXAcru_Ehh6VlDIcPOuElFSixCkB1HDBqOs5oQipGzJe9wQ-jm0yBIsuLxNjMc5BmBOR63wYoyCjUDYDLZegkEuZ3BT1xxkFx681KwuxBbkqTgP8aSxGm18rEzMV5R-9BH637xdvZ_9pdEW2e_etoPPQfTonOzpDfXZGskJKs8lcXCCOmfHLdKr-AFKd7Rk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Performance+of+Lithium%E2%80%90Ion+Batteries+Using+a+Two%E2%80%90Layer%2C+Hard+Carbon%E2%80%90Containing+Silicon+Anode+for+Use+in+High%E2%80%90Energy+Electrodes&rft.jtitle=Energy+technology+%28Weinheim%2C+Germany%29&rft.au=Gottschalk%2C+Laura&rft.au=Oertel%2C+Christine&rft.au=Strzelczyk%2C+Nanny&rft.au=M%C3%BCller%2C+Jannes&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2194-4288&rft.eissn=2194-4296&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1002%2Fente.202200858&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-4288&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-4288&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-4288&client=summon |