Assessing the Impact of Defects on Lead‐Free Perovskite‐Inspired Photovoltaics via Photoinduced Current Transient Spectroscopy

The formidable rise of lead‐halide perovskite photovoltaics has energized the search for lead‐free perovskite‐inspired materials (PIMs) with related optoelectronic properties but free from toxicity limitations. The photovoltaic performance of PIMs closely depends on their defect tolerance. However,...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 11; no. 22
Main Authors Pecunia, Vincenzo, Zhao, Jing, Kim, Chaewon, Tuttle, Blair R., Mei, Jianjun, Li, Fengzhu, Peng, Yueheng, Huq, Tahmida N., Hoye, Robert L. Z., Kelly, Nicola D., Dutton, Siân E., Xia, Kai, MacManus‐Driscoll, Judith L., Sirringhaus, Henning
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The formidable rise of lead‐halide perovskite photovoltaics has energized the search for lead‐free perovskite‐inspired materials (PIMs) with related optoelectronic properties but free from toxicity limitations. The photovoltaic performance of PIMs closely depends on their defect tolerance. However, a comprehensive experimental characterization of their defect‐level parameters—concentration, energy depth, and capture cross‐section—has not been pursued to date, hindering the rational development of defect‐tolerant PIMs. While mainstream, capacitance‐based techniques for defect‐level characterization have sparked controversy in lead‐halide perovskite research, their use on PIMs is also problematic due to their typical near‐intrinsic character. This study demonstrates on four representative PIMs (Cs3Sb2I9, Rb3Sb2I9, BiOI, and AgBiI4) for which Photoinduced Current Transient Spectroscopy (PICTS) offers a facile, widely applicable route to the defect‐level characterization of PIMs embedded within solar cells. Going beyond the ambiguities of the current discussion of defect tolerance, a methodology is also presented to quantitatively assess the defect tolerance of PIMs in photovoltaics based on their experimental defect‐level parameters. Finally, PICTS applied to PIM photovoltaics is revealed to be ultimately sensitive to defect‐level concentrations <1 ppb. Therefore, this study provides a versatile platform for the defect‐level characterization of PIMs and related absorbers, which can catalyze the development of green, high‐performance photovoltaics. Photoinduced Current Transient Spectroscopy (PICTS) is a versatile, high‐sensitivity technique for the defect‐level characterization of lead‐free perovskite‐inspired materials (PIMs). Applied to four representative PIMs (Cs3Sb2I9, Rb3Sb2I9, BiOI, and AgBiI4), PICTS quantifies their defect‐level parameters and delivers quantitative insight into their defect tolerance through the One‐Center Defect‐Tolerance Analysis. PICTS can catalyze the development of defect‐tolerant perovskites/perovskite‐inspired absorbers for high‐performance photovoltaics.
AbstractList The formidable rise of lead‐halide perovskite photovoltaics has energized the search for lead‐free perovskite‐inspired materials (PIMs) with related optoelectronic properties but free from toxicity limitations. The photovoltaic performance of PIMs closely depends on their defect tolerance. However, a comprehensive experimental characterization of their defect‐level parameters—concentration, energy depth, and capture cross‐section—has not been pursued to date, hindering the rational development of defect‐tolerant PIMs. While mainstream, capacitance‐based techniques for defect‐level characterization have sparked controversy in lead‐halide perovskite research, their use on PIMs is also problematic due to their typical near‐intrinsic character. This study demonstrates on four representative PIMs (Cs3Sb2I9, Rb3Sb2I9, BiOI, and AgBiI4) for which Photoinduced Current Transient Spectroscopy (PICTS) offers a facile, widely applicable route to the defect‐level characterization of PIMs embedded within solar cells. Going beyond the ambiguities of the current discussion of defect tolerance, a methodology is also presented to quantitatively assess the defect tolerance of PIMs in photovoltaics based on their experimental defect‐level parameters. Finally, PICTS applied to PIM photovoltaics is revealed to be ultimately sensitive to defect‐level concentrations <1 ppb. Therefore, this study provides a versatile platform for the defect‐level characterization of PIMs and related absorbers, which can catalyze the development of green, high‐performance photovoltaics. Photoinduced Current Transient Spectroscopy (PICTS) is a versatile, high‐sensitivity technique for the defect‐level characterization of lead‐free perovskite‐inspired materials (PIMs). Applied to four representative PIMs (Cs3Sb2I9, Rb3Sb2I9, BiOI, and AgBiI4), PICTS quantifies their defect‐level parameters and delivers quantitative insight into their defect tolerance through the One‐Center Defect‐Tolerance Analysis. PICTS can catalyze the development of defect‐tolerant perovskites/perovskite‐inspired absorbers for high‐performance photovoltaics.
The formidable rise of lead‐halide perovskite photovoltaics has energized the search for lead‐free perovskite‐inspired materials (PIMs) with related optoelectronic properties but free from toxicity limitations. The photovoltaic performance of PIMs closely depends on their defect tolerance. However, a comprehensive experimental characterization of their defect‐level parameters—concentration, energy depth, and capture cross‐section—has not been pursued to date, hindering the rational development of defect‐tolerant PIMs. While mainstream, capacitance‐based techniques for defect‐level characterization have sparked controversy in lead‐halide perovskite research, their use on PIMs is also problematic due to their typical near‐intrinsic character. This study demonstrates on four representative PIMs (Cs 3 Sb 2 I 9 , Rb 3 Sb 2 I 9 , BiOI, and AgBiI 4 ) for which Photoinduced Current Transient Spectroscopy (PICTS) offers a facile, widely applicable route to the defect‐level characterization of PIMs embedded within solar cells. Going beyond the ambiguities of the current discussion of defect tolerance, a methodology is also presented to quantitatively assess the defect tolerance of PIMs in photovoltaics based on their experimental defect‐level parameters. Finally, PICTS applied to PIM photovoltaics is revealed to be ultimately sensitive to defect‐level concentrations <1 ppb. Therefore, this study provides a versatile platform for the defect‐level characterization of PIMs and related absorbers, which can catalyze the development of green, high‐performance photovoltaics.
The formidable rise of lead‐halide perovskite photovoltaics has energized the search for lead‐free perovskite‐inspired materials (PIMs) with related optoelectronic properties but free from toxicity limitations. The photovoltaic performance of PIMs closely depends on their defect tolerance. However, a comprehensive experimental characterization of their defect‐level parameters—concentration, energy depth, and capture cross‐section—has not been pursued to date, hindering the rational development of defect‐tolerant PIMs. While mainstream, capacitance‐based techniques for defect‐level characterization have sparked controversy in lead‐halide perovskite research, their use on PIMs is also problematic due to their typical near‐intrinsic character. This study demonstrates on four representative PIMs (Cs3Sb2I9, Rb3Sb2I9, BiOI, and AgBiI4) for which Photoinduced Current Transient Spectroscopy (PICTS) offers a facile, widely applicable route to the defect‐level characterization of PIMs embedded within solar cells. Going beyond the ambiguities of the current discussion of defect tolerance, a methodology is also presented to quantitatively assess the defect tolerance of PIMs in photovoltaics based on their experimental defect‐level parameters. Finally, PICTS applied to PIM photovoltaics is revealed to be ultimately sensitive to defect‐level concentrations <1 ppb. Therefore, this study provides a versatile platform for the defect‐level characterization of PIMs and related absorbers, which can catalyze the development of green, high‐performance photovoltaics.
Author Kelly, Nicola D.
Tuttle, Blair R.
Mei, Jianjun
Li, Fengzhu
Kim, Chaewon
Hoye, Robert L. Z.
MacManus‐Driscoll, Judith L.
Peng, Yueheng
Huq, Tahmida N.
Sirringhaus, Henning
Zhao, Jing
Xia, Kai
Dutton, Siân E.
Pecunia, Vincenzo
Author_xml – sequence: 1
  givenname: Vincenzo
  orcidid: 0000-0003-3244-1620
  surname: Pecunia
  fullname: Pecunia, Vincenzo
  email: vp293@suda.edu.cn
  organization: Soochow University
– sequence: 2
  givenname: Jing
  surname: Zhao
  fullname: Zhao, Jing
  organization: Soochow University
– sequence: 3
  givenname: Chaewon
  surname: Kim
  fullname: Kim, Chaewon
  organization: Soochow University
– sequence: 4
  givenname: Blair R.
  orcidid: 0000-0003-1940-3486
  surname: Tuttle
  fullname: Tuttle, Blair R.
  organization: Penn State Behrend
– sequence: 5
  givenname: Jianjun
  surname: Mei
  fullname: Mei, Jianjun
  organization: Soochow University
– sequence: 6
  givenname: Fengzhu
  surname: Li
  fullname: Li, Fengzhu
  organization: Soochow University
– sequence: 7
  givenname: Yueheng
  surname: Peng
  fullname: Peng, Yueheng
  organization: Soochow University
– sequence: 8
  givenname: Tahmida N.
  orcidid: 0000-0002-3581-2151
  surname: Huq
  fullname: Huq, Tahmida N.
  organization: University of Cambridge
– sequence: 9
  givenname: Robert L. Z.
  orcidid: 0000-0002-7675-0065
  surname: Hoye
  fullname: Hoye, Robert L. Z.
  organization: Imperial College London
– sequence: 10
  givenname: Nicola D.
  surname: Kelly
  fullname: Kelly, Nicola D.
  organization: University of Cambridge
– sequence: 11
  givenname: Siân E.
  orcidid: 0000-0003-0984-5504
  surname: Dutton
  fullname: Dutton, Siân E.
  organization: University of Cambridge
– sequence: 12
  givenname: Kai
  surname: Xia
  fullname: Xia, Kai
  organization: Soochow University
– sequence: 13
  givenname: Judith L.
  orcidid: 0000-0003-4987-6620
  surname: MacManus‐Driscoll
  fullname: MacManus‐Driscoll, Judith L.
  organization: University of Cambridge
– sequence: 14
  givenname: Henning
  orcidid: 0000-0001-9827-6061
  surname: Sirringhaus
  fullname: Sirringhaus, Henning
  organization: University of Cambridge
BookMark eNqFkM9qGzEQxkVJIH-vOQtytquR5F3t0ThOanBbQ5PzImtnayW2tJFkB99KnyDPmCepjEMCgVBdNDP6ft-I74QcOO-QkAtgfWCMf9XoVn3OOGOiKtQXcgwFyF6hJDt4qwU_Iucx3rN8ZAVMiGPydxgjxmjdb5oWSCerTptEfUuvsEWTIvWOTlE3L3-erwMinWHwm_hgE-bJxMXOBmzobOGT3_hl0tZEurF6P7GuWZv8PFqHgC7R26BdtLvqV5fNg4_Gd9szctjqZcTz1_uU3F2Pb0ffetOfN5PRcNozkgvV40IIBVxqpUAhQDFghkkAVjIuKlbNddWAKUXbliAGVc6hLJSaQwOtAZn7U3K59-2Cf1xjTPW9XweXV9Z8ICopB2UBWSX3KpO_FwO2tbFJJ-tdCtoua2D1LvB6F3j9FnjG-h-wLtiVDtvPgWoPPNklbv-jrofjH9_f2X-sNpeb
CitedBy_id crossref_primary_10_1021_acsenergylett_3c01429
crossref_primary_10_1088_2515_7639_acc550
crossref_primary_10_1021_acsenergylett_1c02076
crossref_primary_10_1088_1402_4896_ad5b95
crossref_primary_10_1002_adom_202200862
crossref_primary_10_1038_s41598_023_40162_0
crossref_primary_10_1021_acsanm_4c06892
crossref_primary_10_1021_acsphotonics_1c00702
crossref_primary_10_1002_aenm_202404871
crossref_primary_10_1021_acs_jpcc_3c06254
crossref_primary_10_1039_D2NJ05574K
crossref_primary_10_1002_adfm_202106295
crossref_primary_10_1002_adts_202400128
crossref_primary_10_1002_adfm_202315942
crossref_primary_10_1021_acs_jpcc_2c06147
crossref_primary_10_1109_TED_2023_3308919
crossref_primary_10_1103_PhysRevMaterials_6_045401
crossref_primary_10_1021_acsami_4c02406
crossref_primary_10_1021_acs_jpclett_3c01520
crossref_primary_10_1039_D3NR02742B
crossref_primary_10_1002_advs_202302706
crossref_primary_10_1038_s41467_023_39445_x
crossref_primary_10_1002_eem2_12696
crossref_primary_10_1021_acsenergylett_3c02409
crossref_primary_10_1088_2399_1984_ad36ff
crossref_primary_10_1063_5_0126718
crossref_primary_10_1002_adfm_202307441
crossref_primary_10_1109_TED_2024_3426428
crossref_primary_10_1002_adfm_202405291
crossref_primary_10_1002_aenm_202201482
crossref_primary_10_1063_5_0088980
crossref_primary_10_1002_aenm_202100698
crossref_primary_10_1002_adfm_202203300
crossref_primary_10_15541_jim20230008
crossref_primary_10_1002_jccs_202100279
Cites_doi 10.1021/acsenergylett.6b00196
10.1039/C8EE00124C
10.1039/C6TA04657F
10.1021/acs.jpclett.7b01952
10.1103/PhysRev.140.A1133
10.1039/C9TA13352F
10.1103/PhysRevLett.77.3865
10.1002/adfm.201909983
10.1021/acs.jpclett.5b00480
10.1002/adma.201702176
10.1038/nmat4973
10.1063/5.0022271
10.1002/aenm.201902500
10.1002/anie.201709040
10.1038/s41467-020-16034-w
10.1002/0471749095.ch5
10.1021/acsaem.8b01202
10.1007/s40843-018-9355-0
10.1016/j.apmt.2020.100637
10.3390/nano9121760
10.1039/C9TC06499K
10.1002/aenm.202002761
10.1088/1361-6528/ab19dd
10.1063/1.370828
10.1063/1.89929
10.1002/anie.201905521
10.1039/C8TA08315K
10.1002/aenm.201801403
10.1002/adom.201801368
10.1039/C9TA01978B
10.1063/1.1663719
10.1002/advs.201903213
10.1038/s41578-019-0097-0
10.1016/j.joule.2020.01.012
10.1021/acs.jpclett.6b02800
10.1021/acs.chemmater.5b01989
10.1021/acsnano.7b02734
10.1038/s41467-018-05531-8
10.1103/PhysRev.97.322
10.1038/natrevmats.2015.7
10.1021/acs.chemmater.6b03310
10.1103/PhysRevB.89.155204
10.1557/mrc.2015.26
10.1002/anie.201603608
10.1142/9789811203176_0003
10.1021/acs.chemmater.6b04135
10.1002/chem.201505055
10.1021/acs.jpcc.0c01324
10.1021/acs.chemrev.8b00539
10.1002/smtd.201700419
10.1038/s41467-019-13910-y
10.1021/acs.jpcc.8b01921
10.1038/s41578-019-0125-0
10.1038/nmat4572
10.1038/s41586-018-0451-1
10.1002/cssc.201700980
10.1021/acs.chemmater.9b04925
10.1021/acs.jpclett.7b02008
10.1063/1.3573394
10.1039/C7EE00303J
10.1103/PhysRevApplied.6.064020
10.1002/advs.201903662
10.1038/s41928-020-00486-5
10.1021/nn501185h
10.1088/0022-3727/32/14/201
10.1021/acs.chemmater.6b05496
10.1002/aenm.202001959
10.1038/ncomms8081
10.1039/C7SE00477J
10.1002/cssc.201800815
10.1007/s40820-020-0371-0
10.1063/1.4813612
10.1088/2515-7639/ab336a
10.1038/s41586-018-0691-0
10.1039/C9TA02421B
10.1021/acsphotonics.5b00164
10.1038/nphoton.2016.139
10.1002/adma.201500099
10.1002/advs.201700256
10.1063/1.5132754
10.1039/C9MH00500E
10.1093/acprof:oso/9780198507802.001.0001
10.1039/C6CC06475B
10.1021/acs.jpclett.9b00601
10.1021/acsenergylett.7b00276
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.54.11169
10.1088/1361-6528/abcf6d
10.1002/aenm.201803396
10.1063/1.341361
ContentType Journal Article
Copyright 2021 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202003968
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202003968
AENM202003968
Genre article
GrantInformation_xml – fundername: Jiangsu Province Natural Science Foundation
  funderid: BK20170345
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
– fundername: Royal Academy of Engineering
  funderid: RF\201718\1701
– fundername: National Natural Science Foundation of China
  funderid: 61950410759; 61805166
– fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology
– fundername: Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices
– fundername: 111 Project
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4238-23338124a8818e11650c041107023909ba9d1c73ff713590397688b1d1fc14903
IEDL.DBID 24P
ISSN 1614-6832
IngestDate Fri Jul 25 12:10:27 EDT 2025
Tue Jul 01 01:43:39 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Wed Jan 22 16:28:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4238-23338124a8818e11650c041107023909ba9d1c73ff713590397688b1d1fc14903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0984-5504
0000-0003-4987-6620
0000-0001-9827-6061
0000-0003-3244-1620
0000-0002-7675-0065
0000-0002-3581-2151
0000-0003-1940-3486
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202003968
PQID 2539445761
PQPubID 886389
PageCount 15
ParticipantIDs proquest_journals_2539445761
crossref_citationtrail_10_1002_aenm_202003968
crossref_primary_10_1002_aenm_202003968
wiley_primary_10_1002_aenm_202003968_AENM202003968
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 122
2017; 8
2018; 561
2017; 2
1978; 32
2019; 10
2018; 563
1965; 140
2020; 59
1999; 86
2020; 12
2020; 11
2020; 124
2020; 10
2020; 19
1996; 77
2020; 8
2020; 7
2018; 6
2018; 9
2018; 8
2021; 32
2020; 4
1974; 45
2018; 2
2020; 3
2018; 5
2019; 62
2001
2018; 1
2013; 114
2019; 119
1955; 97
2014; 8
1989
2015; 2
2019; 7
2019; 9
2019; 4
2015; 6
2015; 5
2019; 31
2019; 30
2019; 2
2016; 10
2005
2017; 29
1992
2020; 32
2016; 15
2014; 89
1996; 54
2016; 55
2016; 4
2017; 53
2016; 6
2011; 109
2016; 1
2015; 27
2021; 11
2020; 30
2020; 152
2017; 16
2020
2017; 11
2017; 10
2017; 56
2019
1963
1999; 32
1988; 64
2018; 11
2016; 28
1994; 50
2016; 22
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
Yuan Y. (e_1_2_9_79_1) 2019
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Xiao Z. (e_1_2_9_20_1) 2019; 31
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_95_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_93_1
Rose A. (e_1_2_9_38_1) 1963
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
Look D. C. (e_1_2_9_46_1) 1989
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
Bube R. H. (e_1_2_9_37_1) 1992
References_xml – volume: 27
  start-page: 5622
  year: 2015
  publication-title: Chem. Mater.
– volume: 114
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 3213
  year: 2014
  publication-title: ACS Nano
– volume: 10
  start-page: 585
  year: 2016
  publication-title: Nat. Photonics
– volume: 16
  start-page: 964
  year: 2017
  publication-title: Nat. Mater.
– start-page: 49
  year: 2020
  end-page: 91
– volume: 89
  year: 2014
  publication-title: Phys. Rev. B
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 4396
  year: 2020
  publication-title: J. Mater. Chem. A
– year: 2001
– volume: 119
  start-page: 3036
  year: 2019
  publication-title: Chem. Rev.
– volume: 4
  start-page: 573
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 97
  start-page: 322
  year: 1955
  publication-title: Phys. Rev.
– volume: 11
  start-page: 2930
  year: 2018
  publication-title: ChemSusChem
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 561
  start-page: 88
  year: 2018
  publication-title: Nature
– volume: 7
  start-page: 8818
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 3
  start-page: 694
  year: 2020
  publication-title: Nat. Electron.
– volume: 31
  start-page: 1
  year: 2019
  publication-title: Adv. Mater.
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 294
  year: 2018
  publication-title: Sustainable Energy Fuels
– volume: 9
  start-page: 1760
  year: 2019
  publication-title: Nanomaterials
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 6
  year: 2016
  publication-title: Phys. Rev. Appl.
– volume: 29
  start-page: 4667
  year: 2017
  publication-title: Chem. Mater.
– volume: 10
  start-page: 3754
  year: 2017
  publication-title: ChemSusChem
– volume: 9
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1645
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 489
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2019
  publication-title: Nanotechnology
– volume: 32
  start-page: 821
  year: 1978
  publication-title: Appl. Phys. Lett.
– volume: 32
  start-page: 3385
  year: 2020
  publication-title: Chem. Mater.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1117
  year: 2015
  publication-title: ACS Photonics
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 10
  start-page: 3661
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 152
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 109
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 4
  start-page: 269
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 11
  start-page: 310
  year: 2020
  publication-title: Nat. Commun.
– volume: 563
  start-page: 541
  year: 2018
  publication-title: Nature
– volume: 62
  start-page: 519
  year: 2019
  publication-title: Sci. China Mater.
– volume: 27
  start-page: 2804
  year: 2015
  publication-title: Adv. Mater.
– volume: 28
  start-page: 7496
  year: 2016
  publication-title: Chem. Mater.
– volume: 15
  start-page: 247
  year: 2016
  publication-title: Nat. Mater.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– start-page: 187
  year: 1989
  end-page: 216
– volume: 1
  start-page: 360
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 2304
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 397
  year: 2020
  publication-title: Mater. Horiz.
– volume: 11
  start-page: 702
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 2605
  year: 2016
  publication-title: Chem. – Eur. J.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 2436
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 5
  start-page: 265
  year: 2015
  publication-title: MRS Commun.
– volume: 86
  start-page: 940
  year: 1999
  publication-title: J. Appl. Phys.
– volume: 1
  start-page: 4485
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3100
  year: 2018
  publication-title: Nat. Commun.
– volume: 55
  start-page: 9586
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 124
  start-page: 6022
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 32
  start-page: R57
  year: 1999
  publication-title: J. Phys. D: Appl. Phys.
– volume: 29
  start-page: 1538
  year: 2017
  publication-title: Chem. Mater.
– volume: 8
  start-page: 4391
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 644
  year: 2020
  publication-title: Joule
– year: 1992
– volume: 59
  start-page: 6676
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 122
  start-page: 9795
  year: 2018
  publication-title: J. Phys. Chem. C
– year: 1963
– volume: 6
  start-page: 7081
  year: 2015
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1128
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 140
  year: 1965
  publication-title: Phys. Rev.
– volume: 2
  year: 2019
  publication-title: J. Phys. Mater.
– start-page: 251
  year: 2005
  end-page: 317
– start-page: 1
  year: 2019
  end-page: 3
– volume: 12
  start-page: 27
  year: 2020
  publication-title: Nano‐Micro Lett.
– volume: 8
  year: 2020
  publication-title: APL Mater.
– volume: 64
  start-page: 4006
  year: 1988
  publication-title: J. Appl. Phys.
– volume: 32
  year: 2021
  publication-title: Nanotechnology
– volume: 19
  year: 2020
  publication-title: Appl. Mater. Today
– volume: 8
  start-page: 4300
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 53
  start-page: 20
  year: 2017
  publication-title: Chem. Commun.
– volume: 2
  start-page: 1539
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 45
  start-page: 3023
  year: 1974
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 7101
  year: 2017
  publication-title: ACS Nano
– ident: e_1_2_9_9_1
  doi: 10.1021/acsenergylett.6b00196
– ident: e_1_2_9_15_1
  doi: 10.1039/C8EE00124C
– ident: e_1_2_9_43_1
  doi: 10.1039/C6TA04657F
– ident: e_1_2_9_57_1
  doi: 10.1021/acs.jpclett.7b01952
– ident: e_1_2_9_95_1
  doi: 10.1103/PhysRev.140.A1133
– ident: e_1_2_9_62_1
  doi: 10.1039/C9TA13352F
– ident: e_1_2_9_93_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_9_34_1
  doi: 10.1002/adfm.201909983
– ident: e_1_2_9_70_1
  doi: 10.1021/acs.jpclett.5b00480
– ident: e_1_2_9_59_1
  doi: 10.1002/adma.201702176
– ident: e_1_2_9_8_1
  doi: 10.1038/nmat4973
– ident: e_1_2_9_21_1
  doi: 10.1063/5.0022271
– ident: e_1_2_9_24_1
  doi: 10.1002/aenm.201902500
– ident: e_1_2_9_42_1
  doi: 10.1002/anie.201709040
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-020-16034-w
– ident: e_1_2_9_45_1
  doi: 10.1002/0471749095.ch5
– ident: e_1_2_9_51_1
  doi: 10.1021/acsaem.8b01202
– ident: e_1_2_9_55_1
  doi: 10.1007/s40843-018-9355-0
– ident: e_1_2_9_60_1
  doi: 10.1016/j.apmt.2020.100637
– ident: e_1_2_9_63_1
  doi: 10.3390/nano9121760
– ident: e_1_2_9_80_1
  doi: 10.1039/C9TC06499K
– ident: e_1_2_9_25_1
  doi: 10.1002/aenm.202002761
– ident: e_1_2_9_72_1
  doi: 10.1088/1361-6528/ab19dd
– ident: e_1_2_9_47_1
  doi: 10.1063/1.370828
– ident: e_1_2_9_73_1
  doi: 10.1063/1.89929
– ident: e_1_2_9_75_1
  doi: 10.1002/anie.201905521
– ident: e_1_2_9_65_1
  doi: 10.1039/C8TA08315K
– ident: e_1_2_9_22_1
  doi: 10.1002/aenm.201801403
– ident: e_1_2_9_44_1
  doi: 10.1002/adom.201801368
– ident: e_1_2_9_56_1
  doi: 10.1039/C9TA01978B
– ident: e_1_2_9_85_1
  doi: 10.1063/1.1663719
– ident: e_1_2_9_27_1
  doi: 10.1002/advs.201903213
– ident: e_1_2_9_1_1
  doi: 10.1038/s41578-019-0097-0
– ident: e_1_2_9_66_1
  doi: 10.1016/j.joule.2020.01.012
– ident: e_1_2_9_18_1
  doi: 10.1021/acs.jpclett.6b02800
– ident: e_1_2_9_50_1
  doi: 10.1021/acs.chemmater.5b01989
– ident: e_1_2_9_13_1
  doi: 10.1021/acsnano.7b02734
– ident: e_1_2_9_14_1
  doi: 10.1038/s41467-018-05531-8
– ident: e_1_2_9_39_1
  doi: 10.1103/PhysRev.97.322
– ident: e_1_2_9_11_1
  doi: 10.1038/natrevmats.2015.7
– ident: e_1_2_9_61_1
  doi: 10.1021/acs.chemmater.6b03310
– ident: e_1_2_9_88_1
  doi: 10.1103/PhysRevB.89.155204
– ident: e_1_2_9_32_1
  doi: 10.1557/mrc.2015.26
– ident: e_1_2_9_53_1
  doi: 10.1002/anie.201603608
– ident: e_1_2_9_74_1
  doi: 10.1142/9789811203176_0003
– ident: e_1_2_9_78_1
  doi: 10.1021/acs.chemmater.6b04135
– ident: e_1_2_9_41_1
  doi: 10.1002/chem.201505055
– ident: e_1_2_9_35_1
  doi: 10.1021/acs.jpcc.0c01324
– ident: e_1_2_9_2_1
  doi: 10.1021/acs.chemrev.8b00539
– ident: e_1_2_9_4_1
  doi: 10.1002/smtd.201700419
– ident: e_1_2_9_17_1
  doi: 10.1038/s41467-019-13910-y
– volume-title: Concepts in Photoconductivity and Allied Problems
  year: 1963
  ident: e_1_2_9_38_1
– ident: e_1_2_9_49_1
  doi: 10.1021/acs.jpcc.8b01921
– ident: e_1_2_9_10_1
  doi: 10.1038/s41578-019-0125-0
– ident: e_1_2_9_16_1
  doi: 10.1038/nmat4572
– volume-title: Photoelectronic Properties of Semiconductors
  year: 1992
  ident: e_1_2_9_37_1
– ident: e_1_2_9_30_1
  doi: 10.1038/s41586-018-0451-1
– ident: e_1_2_9_77_1
  doi: 10.1002/cssc.201700980
– ident: e_1_2_9_76_1
  doi: 10.1021/acs.chemmater.9b04925
– ident: e_1_2_9_33_1
  doi: 10.1021/acs.jpclett.7b02008
– ident: e_1_2_9_82_1
  doi: 10.1063/1.3573394
– ident: e_1_2_9_87_1
  doi: 10.1039/C7EE00303J
– start-page: 187
  volume-title: Electrical Characterization of GaAs Materials and Devices
  year: 1989
  ident: e_1_2_9_46_1
– ident: e_1_2_9_48_1
  doi: 10.1103/PhysRevApplied.6.064020
– ident: e_1_2_9_64_1
  doi: 10.1002/advs.201903662
– ident: e_1_2_9_6_1
  doi: 10.1038/s41928-020-00486-5
– ident: e_1_2_9_83_1
  doi: 10.1021/nn501185h
– ident: e_1_2_9_69_1
  doi: 10.1088/0022-3727/32/14/201
– ident: e_1_2_9_7_1
  doi: 10.1021/acs.chemmater.6b05496
– ident: e_1_2_9_12_1
  doi: 10.1002/aenm.202001959
– volume: 31
  start-page: 1
  year: 2019
  ident: e_1_2_9_20_1
  publication-title: Adv. Mater.
– ident: e_1_2_9_71_1
  doi: 10.1038/ncomms8081
– ident: e_1_2_9_52_1
  doi: 10.1039/C7SE00477J
– start-page: 1
  volume-title: 2019 IEEE Int. Conf. Flex. Printable Sensors Syst.
  year: 2019
  ident: e_1_2_9_79_1
– ident: e_1_2_9_54_1
  doi: 10.1002/cssc.201800815
– ident: e_1_2_9_26_1
  doi: 10.1007/s40820-020-0371-0
– ident: e_1_2_9_81_1
  doi: 10.1063/1.4813612
– ident: e_1_2_9_5_1
  doi: 10.1088/2515-7639/ab336a
– ident: e_1_2_9_29_1
  doi: 10.1038/s41586-018-0691-0
– ident: e_1_2_9_58_1
  doi: 10.1039/C9TA02421B
– ident: e_1_2_9_91_1
  doi: 10.1021/acsphotonics.5b00164
– ident: e_1_2_9_31_1
  doi: 10.1038/nphoton.2016.139
– ident: e_1_2_9_90_1
  doi: 10.1002/adma.201500099
– ident: e_1_2_9_3_1
  doi: 10.1002/advs.201700256
– ident: e_1_2_9_68_1
  doi: 10.1063/1.5132754
– ident: e_1_2_9_36_1
  doi: 10.1039/C9MH00500E
– ident: e_1_2_9_86_1
  doi: 10.1093/acprof:oso/9780198507802.001.0001
– ident: e_1_2_9_19_1
  doi: 10.1039/C6CC06475B
– ident: e_1_2_9_67_1
  doi: 10.1021/acs.jpclett.9b00601
– ident: e_1_2_9_89_1
  doi: 10.1021/acsenergylett.7b00276
– ident: e_1_2_9_94_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_9_92_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_9_23_1
  doi: 10.1088/1361-6528/abcf6d
– ident: e_1_2_9_40_1
  doi: 10.1002/aenm.201803396
– ident: e_1_2_9_84_1
  doi: 10.1063/1.341361
SSID ssj0000491033
Score 2.5092325
Snippet The formidable rise of lead‐halide perovskite photovoltaics has energized the search for lead‐free perovskite‐inspired materials (PIMs) with related...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms antimony‐based perovskites, bismuth‐based perovskites
defect tolerance
lead‐free perovskite‐inspired materials
nonradiative recombination
Optoelectronics
Parameters
Perovskites
Photovoltaic cells
PICTS
Solar cells
Spectrum analysis
Sustainable development
Toxicity
Transient current spectroscopy
Title Assessing the Impact of Defects on Lead‐Free Perovskite‐Inspired Photovoltaics via Photoinduced Current Transient Spectroscopy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202003968
https://www.proquest.com/docview/2539445761
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60vehBfGK1lj0InkLzfhyLbWnFloIWegubzS4WJClNLHgTf4G_0V_izCZN24MI3pLNJofMzs43szPfEHKru4ILGZia5buuZluR0ILIjzTHk6CAsQwcqbJ8x-5gaj_MnNlWFX_BD1EF3FAz1H6NCs6irL0hDWUiwUpyTK4KXH-f1LG-FtnzTXtSRVkA_xq66icPyMbWXFi_a-ZG3WzvfmLXMm3g5jZoVVanf0yOSrhIO4V8T8ieSE7J4RaJ4Bn5LM5t4ZoCmKNDVfZIU0m7QqVq0DSh2Ejz--OrvxSCTsQyXWUYtIWRYYIn7SKmk5c0T2GrytmcZ3Q1Z8UIeOwg-5iWNE5UmTYsoaTYuD5HKsx08X5Opv3e8_1AKzsraBzgE6iGBZ4pWHbmg70WyMCjc91GVxBrXfUgYkFscM-SEjv4BTqCFt-PjNiQHFwq3bogtSRNxCWhDufwmAFMksyWUkaeJXxuOzzmtvBcp0G09V8NeUk7jt0vXsOCMNkMUQphJYUGuavmLwrCjV9nNtdCCkvFy0LTwUpfcKKMBjGV4P74StjpjUfV3dV_XromByZmuqjYTJPU8uWbuAGokkcttRpbpN7pjh6ffgAQAuO9
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIpCAQ9ITFHzcF5jBa1aaKsOrcQWJY4tKqGkakMlNsQv4DfyS7hzHm0HhMSWOE6GnM_33fnuO0JudUdwIX1TszzH0ZgVCc2PvEizXQkKGEvflirLd-h0J-zx2S6zCbEWJueHqAJuqBlqv0YFx4B0c8UaGooES8kxu8p3vG2ywxzTRd002agKswAANnTVUB6gDdMcWMAldaNuNjc_sWmaVnhzHbUqs9M5JAcFXqStXMBHZEskx2R_jUXwhHzmB7dwTQHN0Z6qe6SppA9C5WrQNKHYSfP746szF4KOxDxdLjBqCyO9BI_aRUxHL2mWwl6VhVO-oMtpmI-Ayw7Cj2nB40SVbcMaSoqd6zPkwkxn76dk0mmP77ta0VpB44CfQDcscE3BtIceGGyBFDw61xn6gljsqvtR6McGdy0psYWfryNq8bzIiA3JwafSrTNSS9JEnBNqcw6PQ8BJMmRSysi1hMeZzWPOhOvYdaKVfzXgBe84tr94DXLGZDNAKQSVFOrkrpo_yxk3fp3ZKIUUFJq3CEwbS33BizLqxFSC--MrQas9HFR3F_956YbsdseDftDvDZ8uyZ6JaS8qUNMgtWz-Jq4At2TRtVqZPziY5ZU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60guhBfGK16h4ET0vzfhyLbWh9lBws9BaSzS4KkpQ2FryJv8Df6C9xZpOm7UEEb8lmk0NmZ-eb2ZlvCLnWHMGF9A1meo7DLDMRzE-8hNmuBAVMpW9LleU7dPoj625sj1eq-Et-iDrghpqh9mtU8Ekq20vS0FhkWEmOyVW-422SLXXih9zOVlhHWQD_6prqJw_IxmIOrN8Fc6NmtNc_sW6ZlnBzFbQqqxPsk70KLtJOKd8DsiGyQ7K7QiJ4RD7Lc1u4pgDm6ECVPdJc0q5QqRo0zyg20vz--AqmQtBQTPP5DIO2MDLI8KRdpDR8zosctqoifuEzOn-JyxHw2EH2Ka1onKgybVhCSbFxfYFUmPnk_ZiMgt7TbZ9VnRUYB_gEqmGCZwqWPfbAXgtk4NG4ZqEriLWump_Efqpz15QSO_j5GoIWz0v0VJccXCrNPCGNLM_EKaE25_A4BpgkY0tKmbim8Lhl85RbwnXsJmGLvxrxinYcu1-8RiVhshGhFKJaCk1yU8-flIQbv85sLYQUVYo3iwwbK33BidKbxFCC--MrUac3fKzvzv7z0hXZDrtB9DAY3p-THQOTXlSYpkUaxfRNXABqKZJLtTB_APZj5Mc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+Impact+of+Defects+on+Lead%E2%80%90Free+Perovskite%E2%80%90Inspired+Photovoltaics+via+Photoinduced+Current+Transient+Spectroscopy&rft.jtitle=Advanced+energy+materials&rft.au=Pecunia%2C+Vincenzo&rft.au=Zhao%2C+Jing&rft.au=Kim%2C+Chaewon&rft.au=Tuttle%2C+Blair+R.&rft.date=2021-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202003968&rft.externalDBID=10.1002%252Faenm.202003968&rft.externalDocID=AENM202003968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon