Assessing the Impact of Defects on Lead‐Free Perovskite‐Inspired Photovoltaics via Photoinduced Current Transient Spectroscopy
The formidable rise of lead‐halide perovskite photovoltaics has energized the search for lead‐free perovskite‐inspired materials (PIMs) with related optoelectronic properties but free from toxicity limitations. The photovoltaic performance of PIMs closely depends on their defect tolerance. However,...
Saved in:
Published in | Advanced energy materials Vol. 11; no. 22 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The formidable rise of lead‐halide perovskite photovoltaics has energized the search for lead‐free perovskite‐inspired materials (PIMs) with related optoelectronic properties but free from toxicity limitations. The photovoltaic performance of PIMs closely depends on their defect tolerance. However, a comprehensive experimental characterization of their defect‐level parameters—concentration, energy depth, and capture cross‐section—has not been pursued to date, hindering the rational development of defect‐tolerant PIMs. While mainstream, capacitance‐based techniques for defect‐level characterization have sparked controversy in lead‐halide perovskite research, their use on PIMs is also problematic due to their typical near‐intrinsic character. This study demonstrates on four representative PIMs (Cs3Sb2I9, Rb3Sb2I9, BiOI, and AgBiI4) for which Photoinduced Current Transient Spectroscopy (PICTS) offers a facile, widely applicable route to the defect‐level characterization of PIMs embedded within solar cells. Going beyond the ambiguities of the current discussion of defect tolerance, a methodology is also presented to quantitatively assess the defect tolerance of PIMs in photovoltaics based on their experimental defect‐level parameters. Finally, PICTS applied to PIM photovoltaics is revealed to be ultimately sensitive to defect‐level concentrations <1 ppb. Therefore, this study provides a versatile platform for the defect‐level characterization of PIMs and related absorbers, which can catalyze the development of green, high‐performance photovoltaics.
Photoinduced Current Transient Spectroscopy (PICTS) is a versatile, high‐sensitivity technique for the defect‐level characterization of lead‐free perovskite‐inspired materials (PIMs). Applied to four representative PIMs (Cs3Sb2I9, Rb3Sb2I9, BiOI, and AgBiI4), PICTS quantifies their defect‐level parameters and delivers quantitative insight into their defect tolerance through the One‐Center Defect‐Tolerance Analysis. PICTS can catalyze the development of defect‐tolerant perovskites/perovskite‐inspired absorbers for high‐performance photovoltaics. |
---|---|
AbstractList | The formidable rise of lead‐halide perovskite photovoltaics has energized the search for lead‐free perovskite‐inspired materials (PIMs) with related optoelectronic properties but free from toxicity limitations. The photovoltaic performance of PIMs closely depends on their defect tolerance. However, a comprehensive experimental characterization of their defect‐level parameters—concentration, energy depth, and capture cross‐section—has not been pursued to date, hindering the rational development of defect‐tolerant PIMs. While mainstream, capacitance‐based techniques for defect‐level characterization have sparked controversy in lead‐halide perovskite research, their use on PIMs is also problematic due to their typical near‐intrinsic character. This study demonstrates on four representative PIMs (Cs3Sb2I9, Rb3Sb2I9, BiOI, and AgBiI4) for which Photoinduced Current Transient Spectroscopy (PICTS) offers a facile, widely applicable route to the defect‐level characterization of PIMs embedded within solar cells. Going beyond the ambiguities of the current discussion of defect tolerance, a methodology is also presented to quantitatively assess the defect tolerance of PIMs in photovoltaics based on their experimental defect‐level parameters. Finally, PICTS applied to PIM photovoltaics is revealed to be ultimately sensitive to defect‐level concentrations <1 ppb. Therefore, this study provides a versatile platform for the defect‐level characterization of PIMs and related absorbers, which can catalyze the development of green, high‐performance photovoltaics.
Photoinduced Current Transient Spectroscopy (PICTS) is a versatile, high‐sensitivity technique for the defect‐level characterization of lead‐free perovskite‐inspired materials (PIMs). Applied to four representative PIMs (Cs3Sb2I9, Rb3Sb2I9, BiOI, and AgBiI4), PICTS quantifies their defect‐level parameters and delivers quantitative insight into their defect tolerance through the One‐Center Defect‐Tolerance Analysis. PICTS can catalyze the development of defect‐tolerant perovskites/perovskite‐inspired absorbers for high‐performance photovoltaics. The formidable rise of lead‐halide perovskite photovoltaics has energized the search for lead‐free perovskite‐inspired materials (PIMs) with related optoelectronic properties but free from toxicity limitations. The photovoltaic performance of PIMs closely depends on their defect tolerance. However, a comprehensive experimental characterization of their defect‐level parameters—concentration, energy depth, and capture cross‐section—has not been pursued to date, hindering the rational development of defect‐tolerant PIMs. While mainstream, capacitance‐based techniques for defect‐level characterization have sparked controversy in lead‐halide perovskite research, their use on PIMs is also problematic due to their typical near‐intrinsic character. This study demonstrates on four representative PIMs (Cs 3 Sb 2 I 9 , Rb 3 Sb 2 I 9 , BiOI, and AgBiI 4 ) for which Photoinduced Current Transient Spectroscopy (PICTS) offers a facile, widely applicable route to the defect‐level characterization of PIMs embedded within solar cells. Going beyond the ambiguities of the current discussion of defect tolerance, a methodology is also presented to quantitatively assess the defect tolerance of PIMs in photovoltaics based on their experimental defect‐level parameters. Finally, PICTS applied to PIM photovoltaics is revealed to be ultimately sensitive to defect‐level concentrations <1 ppb. Therefore, this study provides a versatile platform for the defect‐level characterization of PIMs and related absorbers, which can catalyze the development of green, high‐performance photovoltaics. The formidable rise of lead‐halide perovskite photovoltaics has energized the search for lead‐free perovskite‐inspired materials (PIMs) with related optoelectronic properties but free from toxicity limitations. The photovoltaic performance of PIMs closely depends on their defect tolerance. However, a comprehensive experimental characterization of their defect‐level parameters—concentration, energy depth, and capture cross‐section—has not been pursued to date, hindering the rational development of defect‐tolerant PIMs. While mainstream, capacitance‐based techniques for defect‐level characterization have sparked controversy in lead‐halide perovskite research, their use on PIMs is also problematic due to their typical near‐intrinsic character. This study demonstrates on four representative PIMs (Cs3Sb2I9, Rb3Sb2I9, BiOI, and AgBiI4) for which Photoinduced Current Transient Spectroscopy (PICTS) offers a facile, widely applicable route to the defect‐level characterization of PIMs embedded within solar cells. Going beyond the ambiguities of the current discussion of defect tolerance, a methodology is also presented to quantitatively assess the defect tolerance of PIMs in photovoltaics based on their experimental defect‐level parameters. Finally, PICTS applied to PIM photovoltaics is revealed to be ultimately sensitive to defect‐level concentrations <1 ppb. Therefore, this study provides a versatile platform for the defect‐level characterization of PIMs and related absorbers, which can catalyze the development of green, high‐performance photovoltaics. |
Author | Kelly, Nicola D. Tuttle, Blair R. Mei, Jianjun Li, Fengzhu Kim, Chaewon Hoye, Robert L. Z. MacManus‐Driscoll, Judith L. Peng, Yueheng Huq, Tahmida N. Sirringhaus, Henning Zhao, Jing Xia, Kai Dutton, Siân E. Pecunia, Vincenzo |
Author_xml | – sequence: 1 givenname: Vincenzo orcidid: 0000-0003-3244-1620 surname: Pecunia fullname: Pecunia, Vincenzo email: vp293@suda.edu.cn organization: Soochow University – sequence: 2 givenname: Jing surname: Zhao fullname: Zhao, Jing organization: Soochow University – sequence: 3 givenname: Chaewon surname: Kim fullname: Kim, Chaewon organization: Soochow University – sequence: 4 givenname: Blair R. orcidid: 0000-0003-1940-3486 surname: Tuttle fullname: Tuttle, Blair R. organization: Penn State Behrend – sequence: 5 givenname: Jianjun surname: Mei fullname: Mei, Jianjun organization: Soochow University – sequence: 6 givenname: Fengzhu surname: Li fullname: Li, Fengzhu organization: Soochow University – sequence: 7 givenname: Yueheng surname: Peng fullname: Peng, Yueheng organization: Soochow University – sequence: 8 givenname: Tahmida N. orcidid: 0000-0002-3581-2151 surname: Huq fullname: Huq, Tahmida N. organization: University of Cambridge – sequence: 9 givenname: Robert L. Z. orcidid: 0000-0002-7675-0065 surname: Hoye fullname: Hoye, Robert L. Z. organization: Imperial College London – sequence: 10 givenname: Nicola D. surname: Kelly fullname: Kelly, Nicola D. organization: University of Cambridge – sequence: 11 givenname: Siân E. orcidid: 0000-0003-0984-5504 surname: Dutton fullname: Dutton, Siân E. organization: University of Cambridge – sequence: 12 givenname: Kai surname: Xia fullname: Xia, Kai organization: Soochow University – sequence: 13 givenname: Judith L. orcidid: 0000-0003-4987-6620 surname: MacManus‐Driscoll fullname: MacManus‐Driscoll, Judith L. organization: University of Cambridge – sequence: 14 givenname: Henning orcidid: 0000-0001-9827-6061 surname: Sirringhaus fullname: Sirringhaus, Henning organization: University of Cambridge |
BookMark | eNqFkM9qGzEQxkVJIH-vOQtytquR5F3t0ThOanBbQ5PzImtnayW2tJFkB99KnyDPmCepjEMCgVBdNDP6ft-I74QcOO-QkAtgfWCMf9XoVn3OOGOiKtQXcgwFyF6hJDt4qwU_Iucx3rN8ZAVMiGPydxgjxmjdb5oWSCerTptEfUuvsEWTIvWOTlE3L3-erwMinWHwm_hgE-bJxMXOBmzobOGT3_hl0tZEurF6P7GuWZv8PFqHgC7R26BdtLvqV5fNg4_Gd9szctjqZcTz1_uU3F2Pb0ffetOfN5PRcNozkgvV40IIBVxqpUAhQDFghkkAVjIuKlbNddWAKUXbliAGVc6hLJSaQwOtAZn7U3K59-2Cf1xjTPW9XweXV9Z8ICopB2UBWSX3KpO_FwO2tbFJJ-tdCtoua2D1LvB6F3j9FnjG-h-wLtiVDtvPgWoPPNklbv-jrofjH9_f2X-sNpeb |
CitedBy_id | crossref_primary_10_1021_acsenergylett_3c01429 crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_1021_acsenergylett_1c02076 crossref_primary_10_1088_1402_4896_ad5b95 crossref_primary_10_1002_adom_202200862 crossref_primary_10_1038_s41598_023_40162_0 crossref_primary_10_1021_acsanm_4c06892 crossref_primary_10_1021_acsphotonics_1c00702 crossref_primary_10_1002_aenm_202404871 crossref_primary_10_1021_acs_jpcc_3c06254 crossref_primary_10_1039_D2NJ05574K crossref_primary_10_1002_adfm_202106295 crossref_primary_10_1002_adts_202400128 crossref_primary_10_1002_adfm_202315942 crossref_primary_10_1021_acs_jpcc_2c06147 crossref_primary_10_1109_TED_2023_3308919 crossref_primary_10_1103_PhysRevMaterials_6_045401 crossref_primary_10_1021_acsami_4c02406 crossref_primary_10_1021_acs_jpclett_3c01520 crossref_primary_10_1039_D3NR02742B crossref_primary_10_1002_advs_202302706 crossref_primary_10_1038_s41467_023_39445_x crossref_primary_10_1002_eem2_12696 crossref_primary_10_1021_acsenergylett_3c02409 crossref_primary_10_1088_2399_1984_ad36ff crossref_primary_10_1063_5_0126718 crossref_primary_10_1002_adfm_202307441 crossref_primary_10_1109_TED_2024_3426428 crossref_primary_10_1002_adfm_202405291 crossref_primary_10_1002_aenm_202201482 crossref_primary_10_1063_5_0088980 crossref_primary_10_1002_aenm_202100698 crossref_primary_10_1002_adfm_202203300 crossref_primary_10_15541_jim20230008 crossref_primary_10_1002_jccs_202100279 |
Cites_doi | 10.1021/acsenergylett.6b00196 10.1039/C8EE00124C 10.1039/C6TA04657F 10.1021/acs.jpclett.7b01952 10.1103/PhysRev.140.A1133 10.1039/C9TA13352F 10.1103/PhysRevLett.77.3865 10.1002/adfm.201909983 10.1021/acs.jpclett.5b00480 10.1002/adma.201702176 10.1038/nmat4973 10.1063/5.0022271 10.1002/aenm.201902500 10.1002/anie.201709040 10.1038/s41467-020-16034-w 10.1002/0471749095.ch5 10.1021/acsaem.8b01202 10.1007/s40843-018-9355-0 10.1016/j.apmt.2020.100637 10.3390/nano9121760 10.1039/C9TC06499K 10.1002/aenm.202002761 10.1088/1361-6528/ab19dd 10.1063/1.370828 10.1063/1.89929 10.1002/anie.201905521 10.1039/C8TA08315K 10.1002/aenm.201801403 10.1002/adom.201801368 10.1039/C9TA01978B 10.1063/1.1663719 10.1002/advs.201903213 10.1038/s41578-019-0097-0 10.1016/j.joule.2020.01.012 10.1021/acs.jpclett.6b02800 10.1021/acs.chemmater.5b01989 10.1021/acsnano.7b02734 10.1038/s41467-018-05531-8 10.1103/PhysRev.97.322 10.1038/natrevmats.2015.7 10.1021/acs.chemmater.6b03310 10.1103/PhysRevB.89.155204 10.1557/mrc.2015.26 10.1002/anie.201603608 10.1142/9789811203176_0003 10.1021/acs.chemmater.6b04135 10.1002/chem.201505055 10.1021/acs.jpcc.0c01324 10.1021/acs.chemrev.8b00539 10.1002/smtd.201700419 10.1038/s41467-019-13910-y 10.1021/acs.jpcc.8b01921 10.1038/s41578-019-0125-0 10.1038/nmat4572 10.1038/s41586-018-0451-1 10.1002/cssc.201700980 10.1021/acs.chemmater.9b04925 10.1021/acs.jpclett.7b02008 10.1063/1.3573394 10.1039/C7EE00303J 10.1103/PhysRevApplied.6.064020 10.1002/advs.201903662 10.1038/s41928-020-00486-5 10.1021/nn501185h 10.1088/0022-3727/32/14/201 10.1021/acs.chemmater.6b05496 10.1002/aenm.202001959 10.1038/ncomms8081 10.1039/C7SE00477J 10.1002/cssc.201800815 10.1007/s40820-020-0371-0 10.1063/1.4813612 10.1088/2515-7639/ab336a 10.1038/s41586-018-0691-0 10.1039/C9TA02421B 10.1021/acsphotonics.5b00164 10.1038/nphoton.2016.139 10.1002/adma.201500099 10.1002/advs.201700256 10.1063/1.5132754 10.1039/C9MH00500E 10.1093/acprof:oso/9780198507802.001.0001 10.1039/C6CC06475B 10.1021/acs.jpclett.9b00601 10.1021/acsenergylett.7b00276 10.1103/PhysRevB.50.17953 10.1103/PhysRevB.54.11169 10.1088/1361-6528/abcf6d 10.1002/aenm.201803396 10.1063/1.341361 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202003968 |
DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202003968 AENM202003968 |
Genre | article |
GrantInformation_xml | – fundername: Jiangsu Province Natural Science Foundation funderid: BK20170345 – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions – fundername: Royal Academy of Engineering funderid: RF\201718\1701 – fundername: National Natural Science Foundation of China funderid: 61950410759; 61805166 – fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology – fundername: Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices – fundername: 111 Project |
GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4238-23338124a8818e11650c041107023909ba9d1c73ff713590397688b1d1fc14903 |
IEDL.DBID | 24P |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:10:27 EDT 2025 Tue Jul 01 01:43:39 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Wed Jan 22 16:28:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4238-23338124a8818e11650c041107023909ba9d1c73ff713590397688b1d1fc14903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0984-5504 0000-0003-4987-6620 0000-0001-9827-6061 0000-0003-3244-1620 0000-0002-7675-0065 0000-0002-3581-2151 0000-0003-1940-3486 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202003968 |
PQID | 2539445761 |
PQPubID | 886389 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2539445761 crossref_citationtrail_10_1002_aenm_202003968 crossref_primary_10_1002_aenm_202003968 wiley_primary_10_1002_aenm_202003968_AENM202003968 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 122 2017; 8 2018; 561 2017; 2 1978; 32 2019; 10 2018; 563 1965; 140 2020; 59 1999; 86 2020; 12 2020; 11 2020; 124 2020; 10 2020; 19 1996; 77 2020; 8 2020; 7 2018; 6 2018; 9 2018; 8 2021; 32 2020; 4 1974; 45 2018; 2 2020; 3 2018; 5 2019; 62 2001 2018; 1 2013; 114 2019; 119 1955; 97 2014; 8 1989 2015; 2 2019; 7 2019; 9 2019; 4 2015; 6 2015; 5 2019; 31 2019; 30 2019; 2 2016; 10 2005 2017; 29 1992 2020; 32 2016; 15 2014; 89 1996; 54 2016; 55 2016; 4 2017; 53 2016; 6 2011; 109 2016; 1 2015; 27 2021; 11 2020; 30 2020; 152 2017; 16 2020 2017; 11 2017; 10 2017; 56 2019 1963 1999; 32 1988; 64 2018; 11 2016; 28 1994; 50 2016; 22 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 Yuan Y. (e_1_2_9_79_1) 2019 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_92_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Xiao Z. (e_1_2_9_20_1) 2019; 31 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_95_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_93_1 Rose A. (e_1_2_9_38_1) 1963 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 Look D. C. (e_1_2_9_46_1) 1989 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 Bube R. H. (e_1_2_9_37_1) 1992 |
References_xml | – volume: 27 start-page: 5622 year: 2015 publication-title: Chem. Mater. – volume: 114 year: 2013 publication-title: J. Appl. Phys. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 8 start-page: 3213 year: 2014 publication-title: ACS Nano – volume: 10 start-page: 585 year: 2016 publication-title: Nat. Photonics – volume: 16 start-page: 964 year: 2017 publication-title: Nat. Mater. – start-page: 49 year: 2020 end-page: 91 – volume: 89 year: 2014 publication-title: Phys. Rev. B – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 4396 year: 2020 publication-title: J. Mater. Chem. A – year: 2001 – volume: 119 start-page: 3036 year: 2019 publication-title: Chem. Rev. – volume: 4 start-page: 573 year: 2019 publication-title: Nat. Rev. Mater. – volume: 97 start-page: 322 year: 1955 publication-title: Phys. Rev. – volume: 11 start-page: 2930 year: 2018 publication-title: ChemSusChem – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 561 start-page: 88 year: 2018 publication-title: Nature – volume: 7 start-page: 8818 year: 2019 publication-title: J. Mater. Chem. A – volume: 2 year: 2018 publication-title: Small Methods – volume: 3 start-page: 694 year: 2020 publication-title: Nat. Electron. – volume: 31 start-page: 1 year: 2019 publication-title: Adv. Mater. – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 2 start-page: 294 year: 2018 publication-title: Sustainable Energy Fuels – volume: 9 start-page: 1760 year: 2019 publication-title: Nanomaterials – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 6 year: 2016 publication-title: Phys. Rev. Appl. – volume: 29 start-page: 4667 year: 2017 publication-title: Chem. Mater. – volume: 10 start-page: 3754 year: 2017 publication-title: ChemSusChem – volume: 9 year: 2018 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1645 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 489 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 32 start-page: 821 year: 1978 publication-title: Appl. Phys. Lett. – volume: 32 start-page: 3385 year: 2020 publication-title: Chem. Mater. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 2 start-page: 1117 year: 2015 publication-title: ACS Photonics – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 10 start-page: 3661 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 152 year: 2020 publication-title: J. Chem. Phys. – volume: 109 year: 2011 publication-title: J. Appl. Phys. – volume: 4 start-page: 269 year: 2019 publication-title: Nat. Rev. Mater. – volume: 11 start-page: 310 year: 2020 publication-title: Nat. Commun. – volume: 563 start-page: 541 year: 2018 publication-title: Nature – volume: 62 start-page: 519 year: 2019 publication-title: Sci. China Mater. – volume: 27 start-page: 2804 year: 2015 publication-title: Adv. Mater. – volume: 28 start-page: 7496 year: 2016 publication-title: Chem. Mater. – volume: 15 start-page: 247 year: 2016 publication-title: Nat. Mater. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – start-page: 187 year: 1989 end-page: 216 – volume: 1 start-page: 360 year: 2016 publication-title: ACS Energy Lett. – volume: 11 start-page: 2304 year: 2020 publication-title: Nat. Commun. – volume: 7 start-page: 397 year: 2020 publication-title: Mater. Horiz. – volume: 11 start-page: 702 year: 2018 publication-title: Energy Environ. Sci. – volume: 22 start-page: 2605 year: 2016 publication-title: Chem. – Eur. J. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 8 start-page: 2436 year: 2020 publication-title: J. Mater. Chem. C – volume: 5 start-page: 265 year: 2015 publication-title: MRS Commun. – volume: 86 start-page: 940 year: 1999 publication-title: J. Appl. Phys. – volume: 1 start-page: 4485 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 3100 year: 2018 publication-title: Nat. Commun. – volume: 55 start-page: 9586 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 124 start-page: 6022 year: 2020 publication-title: J. Phys. Chem. C – volume: 32 start-page: R57 year: 1999 publication-title: J. Phys. D: Appl. Phys. – volume: 29 start-page: 1538 year: 2017 publication-title: Chem. Mater. – volume: 8 start-page: 4391 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 644 year: 2020 publication-title: Joule – year: 1992 – volume: 59 start-page: 6676 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 122 start-page: 9795 year: 2018 publication-title: J. Phys. Chem. C – year: 1963 – volume: 6 start-page: 7081 year: 2015 publication-title: Nat. Commun. – volume: 10 start-page: 1128 year: 2017 publication-title: Energy Environ. Sci. – volume: 140 year: 1965 publication-title: Phys. Rev. – volume: 2 year: 2019 publication-title: J. Phys. Mater. – start-page: 251 year: 2005 end-page: 317 – start-page: 1 year: 2019 end-page: 3 – volume: 12 start-page: 27 year: 2020 publication-title: Nano‐Micro Lett. – volume: 8 year: 2020 publication-title: APL Mater. – volume: 64 start-page: 4006 year: 1988 publication-title: J. Appl. Phys. – volume: 32 year: 2021 publication-title: Nanotechnology – volume: 19 year: 2020 publication-title: Appl. Mater. Today – volume: 8 start-page: 4300 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 53 start-page: 20 year: 2017 publication-title: Chem. Commun. – volume: 2 start-page: 1539 year: 2017 publication-title: ACS Energy Lett. – volume: 45 start-page: 3023 year: 1974 publication-title: J. Appl. Phys. – volume: 11 start-page: 7101 year: 2017 publication-title: ACS Nano – ident: e_1_2_9_9_1 doi: 10.1021/acsenergylett.6b00196 – ident: e_1_2_9_15_1 doi: 10.1039/C8EE00124C – ident: e_1_2_9_43_1 doi: 10.1039/C6TA04657F – ident: e_1_2_9_57_1 doi: 10.1021/acs.jpclett.7b01952 – ident: e_1_2_9_95_1 doi: 10.1103/PhysRev.140.A1133 – ident: e_1_2_9_62_1 doi: 10.1039/C9TA13352F – ident: e_1_2_9_93_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_9_34_1 doi: 10.1002/adfm.201909983 – ident: e_1_2_9_70_1 doi: 10.1021/acs.jpclett.5b00480 – ident: e_1_2_9_59_1 doi: 10.1002/adma.201702176 – ident: e_1_2_9_8_1 doi: 10.1038/nmat4973 – ident: e_1_2_9_21_1 doi: 10.1063/5.0022271 – ident: e_1_2_9_24_1 doi: 10.1002/aenm.201902500 – ident: e_1_2_9_42_1 doi: 10.1002/anie.201709040 – ident: e_1_2_9_28_1 doi: 10.1038/s41467-020-16034-w – ident: e_1_2_9_45_1 doi: 10.1002/0471749095.ch5 – ident: e_1_2_9_51_1 doi: 10.1021/acsaem.8b01202 – ident: e_1_2_9_55_1 doi: 10.1007/s40843-018-9355-0 – ident: e_1_2_9_60_1 doi: 10.1016/j.apmt.2020.100637 – ident: e_1_2_9_63_1 doi: 10.3390/nano9121760 – ident: e_1_2_9_80_1 doi: 10.1039/C9TC06499K – ident: e_1_2_9_25_1 doi: 10.1002/aenm.202002761 – ident: e_1_2_9_72_1 doi: 10.1088/1361-6528/ab19dd – ident: e_1_2_9_47_1 doi: 10.1063/1.370828 – ident: e_1_2_9_73_1 doi: 10.1063/1.89929 – ident: e_1_2_9_75_1 doi: 10.1002/anie.201905521 – ident: e_1_2_9_65_1 doi: 10.1039/C8TA08315K – ident: e_1_2_9_22_1 doi: 10.1002/aenm.201801403 – ident: e_1_2_9_44_1 doi: 10.1002/adom.201801368 – ident: e_1_2_9_56_1 doi: 10.1039/C9TA01978B – ident: e_1_2_9_85_1 doi: 10.1063/1.1663719 – ident: e_1_2_9_27_1 doi: 10.1002/advs.201903213 – ident: e_1_2_9_1_1 doi: 10.1038/s41578-019-0097-0 – ident: e_1_2_9_66_1 doi: 10.1016/j.joule.2020.01.012 – ident: e_1_2_9_18_1 doi: 10.1021/acs.jpclett.6b02800 – ident: e_1_2_9_50_1 doi: 10.1021/acs.chemmater.5b01989 – ident: e_1_2_9_13_1 doi: 10.1021/acsnano.7b02734 – ident: e_1_2_9_14_1 doi: 10.1038/s41467-018-05531-8 – ident: e_1_2_9_39_1 doi: 10.1103/PhysRev.97.322 – ident: e_1_2_9_11_1 doi: 10.1038/natrevmats.2015.7 – ident: e_1_2_9_61_1 doi: 10.1021/acs.chemmater.6b03310 – ident: e_1_2_9_88_1 doi: 10.1103/PhysRevB.89.155204 – ident: e_1_2_9_32_1 doi: 10.1557/mrc.2015.26 – ident: e_1_2_9_53_1 doi: 10.1002/anie.201603608 – ident: e_1_2_9_74_1 doi: 10.1142/9789811203176_0003 – ident: e_1_2_9_78_1 doi: 10.1021/acs.chemmater.6b04135 – ident: e_1_2_9_41_1 doi: 10.1002/chem.201505055 – ident: e_1_2_9_35_1 doi: 10.1021/acs.jpcc.0c01324 – ident: e_1_2_9_2_1 doi: 10.1021/acs.chemrev.8b00539 – ident: e_1_2_9_4_1 doi: 10.1002/smtd.201700419 – ident: e_1_2_9_17_1 doi: 10.1038/s41467-019-13910-y – volume-title: Concepts in Photoconductivity and Allied Problems year: 1963 ident: e_1_2_9_38_1 – ident: e_1_2_9_49_1 doi: 10.1021/acs.jpcc.8b01921 – ident: e_1_2_9_10_1 doi: 10.1038/s41578-019-0125-0 – ident: e_1_2_9_16_1 doi: 10.1038/nmat4572 – volume-title: Photoelectronic Properties of Semiconductors year: 1992 ident: e_1_2_9_37_1 – ident: e_1_2_9_30_1 doi: 10.1038/s41586-018-0451-1 – ident: e_1_2_9_77_1 doi: 10.1002/cssc.201700980 – ident: e_1_2_9_76_1 doi: 10.1021/acs.chemmater.9b04925 – ident: e_1_2_9_33_1 doi: 10.1021/acs.jpclett.7b02008 – ident: e_1_2_9_82_1 doi: 10.1063/1.3573394 – ident: e_1_2_9_87_1 doi: 10.1039/C7EE00303J – start-page: 187 volume-title: Electrical Characterization of GaAs Materials and Devices year: 1989 ident: e_1_2_9_46_1 – ident: e_1_2_9_48_1 doi: 10.1103/PhysRevApplied.6.064020 – ident: e_1_2_9_64_1 doi: 10.1002/advs.201903662 – ident: e_1_2_9_6_1 doi: 10.1038/s41928-020-00486-5 – ident: e_1_2_9_83_1 doi: 10.1021/nn501185h – ident: e_1_2_9_69_1 doi: 10.1088/0022-3727/32/14/201 – ident: e_1_2_9_7_1 doi: 10.1021/acs.chemmater.6b05496 – ident: e_1_2_9_12_1 doi: 10.1002/aenm.202001959 – volume: 31 start-page: 1 year: 2019 ident: e_1_2_9_20_1 publication-title: Adv. Mater. – ident: e_1_2_9_71_1 doi: 10.1038/ncomms8081 – ident: e_1_2_9_52_1 doi: 10.1039/C7SE00477J – start-page: 1 volume-title: 2019 IEEE Int. Conf. Flex. Printable Sensors Syst. year: 2019 ident: e_1_2_9_79_1 – ident: e_1_2_9_54_1 doi: 10.1002/cssc.201800815 – ident: e_1_2_9_26_1 doi: 10.1007/s40820-020-0371-0 – ident: e_1_2_9_81_1 doi: 10.1063/1.4813612 – ident: e_1_2_9_5_1 doi: 10.1088/2515-7639/ab336a – ident: e_1_2_9_29_1 doi: 10.1038/s41586-018-0691-0 – ident: e_1_2_9_58_1 doi: 10.1039/C9TA02421B – ident: e_1_2_9_91_1 doi: 10.1021/acsphotonics.5b00164 – ident: e_1_2_9_31_1 doi: 10.1038/nphoton.2016.139 – ident: e_1_2_9_90_1 doi: 10.1002/adma.201500099 – ident: e_1_2_9_3_1 doi: 10.1002/advs.201700256 – ident: e_1_2_9_68_1 doi: 10.1063/1.5132754 – ident: e_1_2_9_36_1 doi: 10.1039/C9MH00500E – ident: e_1_2_9_86_1 doi: 10.1093/acprof:oso/9780198507802.001.0001 – ident: e_1_2_9_19_1 doi: 10.1039/C6CC06475B – ident: e_1_2_9_67_1 doi: 10.1021/acs.jpclett.9b00601 – ident: e_1_2_9_89_1 doi: 10.1021/acsenergylett.7b00276 – ident: e_1_2_9_94_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_9_92_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_9_23_1 doi: 10.1088/1361-6528/abcf6d – ident: e_1_2_9_40_1 doi: 10.1002/aenm.201803396 – ident: e_1_2_9_84_1 doi: 10.1063/1.341361 |
SSID | ssj0000491033 |
Score | 2.5092325 |
Snippet | The formidable rise of lead‐halide perovskite photovoltaics has energized the search for lead‐free perovskite‐inspired materials (PIMs) with related... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | antimony‐based perovskites, bismuth‐based perovskites defect tolerance lead‐free perovskite‐inspired materials nonradiative recombination Optoelectronics Parameters Perovskites Photovoltaic cells PICTS Solar cells Spectrum analysis Sustainable development Toxicity Transient current spectroscopy |
Title | Assessing the Impact of Defects on Lead‐Free Perovskite‐Inspired Photovoltaics via Photoinduced Current Transient Spectroscopy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202003968 https://www.proquest.com/docview/2539445761 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60vehBfGK1lj0InkLzfhyLbWnFloIWegubzS4WJClNLHgTf4G_0V_izCZN24MI3pLNJofMzs43szPfEHKru4ILGZia5buuZluR0ILIjzTHk6CAsQwcqbJ8x-5gaj_MnNlWFX_BD1EF3FAz1H6NCs6irL0hDWUiwUpyTK4KXH-f1LG-FtnzTXtSRVkA_xq66icPyMbWXFi_a-ZG3WzvfmLXMm3g5jZoVVanf0yOSrhIO4V8T8ieSE7J4RaJ4Bn5LM5t4ZoCmKNDVfZIU0m7QqVq0DSh2Ejz--OrvxSCTsQyXWUYtIWRYYIn7SKmk5c0T2GrytmcZ3Q1Z8UIeOwg-5iWNE5UmTYsoaTYuD5HKsx08X5Opv3e8_1AKzsraBzgE6iGBZ4pWHbmg70WyMCjc91GVxBrXfUgYkFscM-SEjv4BTqCFt-PjNiQHFwq3bogtSRNxCWhDufwmAFMksyWUkaeJXxuOzzmtvBcp0G09V8NeUk7jt0vXsOCMNkMUQphJYUGuavmLwrCjV9nNtdCCkvFy0LTwUpfcKKMBjGV4P74StjpjUfV3dV_XromByZmuqjYTJPU8uWbuAGokkcttRpbpN7pjh6ffgAQAuO9 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIpCAQ9ITFHzcF5jBa1aaKsOrcQWJY4tKqGkakMlNsQv4DfyS7hzHm0HhMSWOE6GnM_33fnuO0JudUdwIX1TszzH0ZgVCc2PvEizXQkKGEvflirLd-h0J-zx2S6zCbEWJueHqAJuqBlqv0YFx4B0c8UaGooES8kxu8p3vG2ywxzTRd002agKswAANnTVUB6gDdMcWMAldaNuNjc_sWmaVnhzHbUqs9M5JAcFXqStXMBHZEskx2R_jUXwhHzmB7dwTQHN0Z6qe6SppA9C5WrQNKHYSfP746szF4KOxDxdLjBqCyO9BI_aRUxHL2mWwl6VhVO-oMtpmI-Ayw7Cj2nB40SVbcMaSoqd6zPkwkxn76dk0mmP77ta0VpB44CfQDcscE3BtIceGGyBFDw61xn6gljsqvtR6McGdy0psYWfryNq8bzIiA3JwafSrTNSS9JEnBNqcw6PQ8BJMmRSysi1hMeZzWPOhOvYdaKVfzXgBe84tr94DXLGZDNAKQSVFOrkrpo_yxk3fp3ZKIUUFJq3CEwbS33BizLqxFSC--MrQas9HFR3F_956YbsdseDftDvDZ8uyZ6JaS8qUNMgtWz-Jq4At2TRtVqZPziY5ZU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60guhBfGK16h4ET0vzfhyLbWh9lBws9BaSzS4KkpQ2FryJv8Df6C9xZpOm7UEEb8lmk0NmZ-eb2ZlvCLnWHMGF9A1meo7DLDMRzE-8hNmuBAVMpW9LleU7dPoj625sj1eq-Et-iDrghpqh9mtU8Ekq20vS0FhkWEmOyVW-422SLXXih9zOVlhHWQD_6prqJw_IxmIOrN8Fc6NmtNc_sW6ZlnBzFbQqqxPsk70KLtJOKd8DsiGyQ7K7QiJ4RD7Lc1u4pgDm6ECVPdJc0q5QqRo0zyg20vz--AqmQtBQTPP5DIO2MDLI8KRdpDR8zosctqoifuEzOn-JyxHw2EH2Ka1onKgybVhCSbFxfYFUmPnk_ZiMgt7TbZ9VnRUYB_gEqmGCZwqWPfbAXgtk4NG4ZqEriLWump_Efqpz15QSO_j5GoIWz0v0VJccXCrNPCGNLM_EKaE25_A4BpgkY0tKmbim8Lhl85RbwnXsJmGLvxrxinYcu1-8RiVhshGhFKJaCk1yU8-flIQbv85sLYQUVYo3iwwbK33BidKbxFCC--MrUac3fKzvzv7z0hXZDrtB9DAY3p-THQOTXlSYpkUaxfRNXABqKZJLtTB_APZj5Mc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+Impact+of+Defects+on+Lead%E2%80%90Free+Perovskite%E2%80%90Inspired+Photovoltaics+via+Photoinduced+Current+Transient+Spectroscopy&rft.jtitle=Advanced+energy+materials&rft.au=Pecunia%2C+Vincenzo&rft.au=Zhao%2C+Jing&rft.au=Kim%2C+Chaewon&rft.au=Tuttle%2C+Blair+R.&rft.date=2021-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202003968&rft.externalDBID=10.1002%252Faenm.202003968&rft.externalDocID=AENM202003968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |