Achieving reactive species specificity within plasma‐activated water through selective generation using air spark and glow discharges

Plasma‐activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive species which can serve as chemical diagnostics of PAL systems. Here, we tailor aqueous reactive species inside plasma‐activated water (PAW) throug...

Full description

Saved in:
Bibliographic Details
Published inPlasma processes and polymers Vol. 14; no. 8
Main Authors Lu, Peng, Boehm, Daniela, Bourke, Paula, Cullen, Patrick J.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2017
Subjects
Online AccessGet full text
ISSN1612-8850
1612-8869
DOI10.1002/ppap.201600207

Cover

Loading…
Abstract Plasma‐activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive species which can serve as chemical diagnostics of PAL systems. Here, we tailor aqueous reactive species inside plasma‐activated water (PAW) through treating water with AC air spark and glow discharges in contact with water. Chemical probing demonstrated species specificity between two types of PAW. Spark discharge PAW contains H2O2 and NO3−, while NO2−and NO3− are generated in glow discharge PAW. Species formation in different PAWs have been discussed in terms of discharge mechanisms and liquid phase chemistry process. Species specificity can provide richer parametric spaces for producing PALs with controlled impact and dosage achievable by combining discharge modes or mixing different PALs. We present a study on tailoring aqueous reactive species for plasma‐activated water (PAW) by treating deionized water with air spark and glow discharges in contact with water. Spark discharge PAW contains H2O2 and NO3−, while NO2− and NO3− are generated in glow discharge PAW. Species specificity can provide richer parametric spaces for producing PALs with controlled impact and dosage achievable.
AbstractList Plasma‐activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive species which can serve as chemical diagnostics of PAL systems. Here, we tailor aqueous reactive species inside plasma‐activated water (PAW) through treating water with AC air spark and glow discharges in contact with water. Chemical probing demonstrated species specificity between two types of PAW. Spark discharge PAW contains H2O2 and NO3−, while NO2−and NO3− are generated in glow discharge PAW. Species formation in different PAWs have been discussed in terms of discharge mechanisms and liquid phase chemistry process. Species specificity can provide richer parametric spaces for producing PALs with controlled impact and dosage achievable by combining discharge modes or mixing different PALs. We present a study on tailoring aqueous reactive species for plasma‐activated water (PAW) by treating deionized water with air spark and glow discharges in contact with water. Spark discharge PAW contains H2O2 and NO3−, while NO2− and NO3− are generated in glow discharge PAW. Species specificity can provide richer parametric spaces for producing PALs with controlled impact and dosage achievable.
Plasma-activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive species which can serve as chemical diagnostics of PAL systems. Here, we tailor aqueous reactive species inside plasma-activated water (PAW) through treating water with AC air spark and glow discharges in contact with water. Chemical probing demonstrated species specificity between two types of PAW. Spark discharge PAW contains H 2 O 2 and N O 3 -, while N O 2 -and N O 3 - are generated in glow discharge PAW. Species formation in different PAWs have been discussed in terms of discharge mechanisms and liquid phase chemistry process. Species specificity can provide richer parametric spaces for producing PALs with controlled impact and dosage achievable by combining discharge modes or mixing different PALs.
Author Cullen, Patrick J.
Lu, Peng
Bourke, Paula
Boehm, Daniela
Author_xml – sequence: 1
  givenname: Peng
  surname: Lu
  fullname: Lu, Peng
  organization: Civil Aviation University of China
– sequence: 2
  givenname: Daniela
  surname: Boehm
  fullname: Boehm, Daniela
  organization: Dublin Institute of Technology
– sequence: 3
  givenname: Paula
  surname: Bourke
  fullname: Bourke, Paula
  email: paula.bourke@dit.ie
  organization: Dublin Institute of Technology
– sequence: 4
  givenname: Patrick J.
  surname: Cullen
  fullname: Cullen, Patrick J.
  organization: University of New South Wales
BookMark eNqFkE1Lw0AQhhdR8PPqecFz68xukybHIn5BwR70HKabSbI1JnE3tfTmzau_0V9iaqSCIF7mA97nHeY9FLtVXbEQpwhDBFDnTUPNUAGG3QLjHXGAIapBFIXx7nYOYF8cer8A0BBEcCDeJqaw_GKrXDom09oXlr5hY9n3PbPGtmu5sm1hK9mU5J_o4_X9S0otp3LVVSfbwtXLvJCeS-5dcq7YUWvrSi79xp-s6yzJPUqqUpmX9Uqm1puCXM7-WOxlVHo--e5H4uHq8v7iZjC9u769mEwHZqT0eMAjDRDOkXDcDTiONOiUMsyUDtEQRoAaGFDFRlHAAUfpPJpHOp5jqjNt9JE4630bVz8v2bfJol66qjuZYKxRhRiA6lSjXmVc7b3jLOlC-PqldWTLBCHZRJ5sIk-2kXfY8BfWOPtEbv03EPfAypa8_kedzGaT2Q_7CWZLmjA
CitedBy_id crossref_primary_10_1088_1361_6463_aae807
crossref_primary_10_1094_PDIS_05_24_0957_SC
crossref_primary_10_1007_s11947_019_02323_w
crossref_primary_10_1109_TPS_2024_3522911
crossref_primary_10_3390_eng5030097
crossref_primary_10_1002_ppap_201700212
crossref_primary_10_3389_fmicb_2019_02674
crossref_primary_10_1016_j_foodcont_2021_108683
crossref_primary_10_1016_j_foodchem_2025_142960
crossref_primary_10_1038_s41598_017_15184_0
crossref_primary_10_1007_s11090_018_9920_4
crossref_primary_10_1016_j_cej_2024_149915
crossref_primary_10_3390_cancers12020476
crossref_primary_10_1007_s11090_020_10082_2
crossref_primary_10_1093_jambio_lxae182
crossref_primary_10_1002_ppap_202000058
crossref_primary_10_1080_10408398_2021_1895058
crossref_primary_10_1371_journal_pone_0274524
crossref_primary_10_1016_j_scitotenv_2018_02_269
crossref_primary_10_1088_2058_6272_ab9ddd
crossref_primary_10_3390_app11031178
crossref_primary_10_1007_s11947_020_02515_9
crossref_primary_10_1063_1_5030099
crossref_primary_10_1063_1_5080184
crossref_primary_10_1116_6_0002460
crossref_primary_10_1007_s11090_023_10372_5
crossref_primary_10_1111_1541_4337_12644
crossref_primary_10_3164_jcbn_22_17
crossref_primary_10_1016_j_tifs_2023_104282
crossref_primary_10_1088_1361_6463_abb624
crossref_primary_10_1007_s11090_021_10161_y
crossref_primary_10_1088_2516_1067_ac777e
crossref_primary_10_3390_foods9070898
crossref_primary_10_1002_ppap_202400190
crossref_primary_10_1016_j_chemosphere_2024_143105
crossref_primary_10_1016_j_lwt_2024_116677
crossref_primary_10_1080_10408398_2021_2002257
crossref_primary_10_1016_j_lwt_2018_05_059
crossref_primary_10_3390_app11157053
crossref_primary_10_1016_j_ijfoodmicro_2023_110419
crossref_primary_10_3390_life13020257
crossref_primary_10_1002_ppap_202200133
crossref_primary_10_1016_j_crfs_2022_02_007
crossref_primary_10_3390_app10030801
crossref_primary_10_1002_ppap_201900001
crossref_primary_10_1088_1361_6463_ad5f99
crossref_primary_10_1088_1361_6587_ad9950
crossref_primary_10_1016_j_elstat_2022_103671
crossref_primary_10_1002_ppap_201900260
crossref_primary_10_1007_s11090_019_10014_9
crossref_primary_10_3390_foods12132461
crossref_primary_10_1063_1_5037660
crossref_primary_10_1088_2058_6272_acde34
crossref_primary_10_3390_nano14010040
crossref_primary_10_1016_j_ifset_2021_102664
crossref_primary_10_1016_j_jwpe_2024_105477
crossref_primary_10_1063_5_0039253
crossref_primary_10_3390_foods11131833
crossref_primary_10_1149_2162_8777_ab9c78
crossref_primary_10_1007_s11270_022_05965_3
crossref_primary_10_1002_ppap_201900259
crossref_primary_10_1002_cben_202300044
crossref_primary_10_1016_j_cej_2024_153946
crossref_primary_10_1063_5_0078823
crossref_primary_10_1515_hsz_2018_0235
crossref_primary_10_1109_TPS_2022_3179734
crossref_primary_10_1111_ijfs_14708
crossref_primary_10_3390_cancers15194858
crossref_primary_10_1016_j_jwpe_2024_105043
crossref_primary_10_1038_s41598_023_28736_4
crossref_primary_10_3390_app10093198
crossref_primary_10_1088_1361_6463_ac2969
crossref_primary_10_1111_jam_14677
crossref_primary_10_3389_fmicb_2019_01539
crossref_primary_10_1002_ppap_201800148
crossref_primary_10_1063_5_0063255
crossref_primary_10_1111_1541_4337_13126
crossref_primary_10_1111_jfpe_14156
crossref_primary_10_1002_ppap_201800030
crossref_primary_10_1063_1_4990525
crossref_primary_10_1016_j_tibtech_2018_03_007
crossref_primary_10_1016_j_foodres_2022_111368
crossref_primary_10_1140_epjd_s10053_022_00397_4
crossref_primary_10_1038_s41598_020_63732_y
crossref_primary_10_1109_TPS_2022_3176455
crossref_primary_10_1002_ppap_202000250
crossref_primary_10_1088_1402_4896_ac6d1b
crossref_primary_10_3390_foods10010166
crossref_primary_10_3390_w13111480
crossref_primary_10_1002_ppap_202000135
crossref_primary_10_1016_j_fm_2019_05_010
crossref_primary_10_1016_j_cej_2019_01_018
crossref_primary_10_3389_fphy_2020_614684
crossref_primary_10_1088_1361_6463_ac026d
crossref_primary_10_1063_1_5037249
crossref_primary_10_1088_1361_6595_abff72
crossref_primary_10_1016_j_foodcont_2020_107168
crossref_primary_10_1038_s41598_019_40352_9
crossref_primary_10_1016_j_cap_2020_02_003
crossref_primary_10_1016_j_ejmech_2021_113736
crossref_primary_10_1016_j_bioflm_2024_100230
crossref_primary_10_1002_ppap_201900157
crossref_primary_10_1111_1541_4337_13250
crossref_primary_10_1016_j_ifset_2018_07_013
crossref_primary_10_1016_j_foodchem_2020_128283
crossref_primary_10_1088_1361_6595_ac61a9
crossref_primary_10_1007_s00253_023_12849_x
crossref_primary_10_1016_j_aquaculture_2024_741049
crossref_primary_10_1016_j_chemosphere_2023_140820
crossref_primary_10_1088_2058_6272_ad0c1f
crossref_primary_10_1002_ppap_202000205
crossref_primary_10_3390_pathogens13070535
crossref_primary_10_1007_s11090_023_10439_3
crossref_primary_10_1016_j_cej_2017_05_178
crossref_primary_10_1016_j_jwpe_2024_106127
crossref_primary_10_1080_09593330_2024_2440659
crossref_primary_10_1088_1361_6463_abecb1
crossref_primary_10_1007_s11090_018_9944_9
crossref_primary_10_1038_s41598_021_81977_z
crossref_primary_10_1007_s11051_024_06054_8
crossref_primary_10_1155_2020_4205640
crossref_primary_10_1016_j_ifset_2021_102867
crossref_primary_10_1039_D0GC02619K
crossref_primary_10_1038_s41522_020_00180_6
crossref_primary_10_1063_5_0039171
crossref_primary_10_1088_1361_6463_aad427
crossref_primary_10_1016_j_lwt_2023_114969
crossref_primary_10_1016_j_foodchem_2022_133421
crossref_primary_10_1063_5_0114274
crossref_primary_10_1088_1361_6463_ac07e0
crossref_primary_10_1134_S1063780X18090040
crossref_primary_10_1016_j_jece_2020_104761
crossref_primary_10_1002_cctc_202401838
crossref_primary_10_1088_1361_6463_ace634
crossref_primary_10_1016_j_vacuum_2020_109644
crossref_primary_10_1007_s11090_024_10464_w
Cites_doi 10.1002/ppap.201500156
10.1007/s11090-006-9014-6
10.1088/0022-3727/31/10/013
10.1088/0963-0252/19/4/045025
10.1088/0022-3727/44/47/472001
10.1038/srep26016
10.1088/0022-3727/44/1/013002
10.1088/0022-3727/47/50/505202
10.1038/srep21421
10.1088/1367-2630/13/5/053025
10.1016/j.cpme.2015.11.003
10.1002/ppap.201200113
10.1002/ppap.201200104
10.1063/1.4807133
10.1088/0022-3727/45/26/263001
10.1088/0022-3727/38/16/010
10.1615/PlasmaMed.2012006275
10.1088/0963-0252/23/1/015019
10.4236/aim.2014.416128
10.1088/0963-0252/23/6/065036
10.1002/9781118437704
10.1088/0022-3727/36/6/308
10.1038/srep21464
10.1039/b905535e
10.1088/0022-3727/44/37/372001
10.1109/TPS.2008.917294
10.1002/ppap.201500170
10.1128/AEM.01615-10
10.1088/0022-3727/49/30/304005
ContentType Journal Article
Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/ppap.201600207
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1612-8869
EndPage n/a
ExternalDocumentID 10_1002_ppap_201600207
PPAP201600207
Genre article
GrantInformation_xml – fundername: China Tianjin Research Program of Fundamental and Applied Technology
  funderid: 14JCYBJC43000
– fundername: Science Foundation Ireland
  funderid: 14/IA/2626
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c4237-e43006b1a17300178303daf1f2361ca180130e0129c2a5e5e8db8b839b1d3f3c3
IEDL.DBID DR2
ISSN 1612-8850
IngestDate Fri Jul 25 12:15:20 EDT 2025
Thu Apr 24 22:52:19 EDT 2025
Tue Jul 01 01:25:46 EDT 2025
Wed Jan 22 16:51:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4237-e43006b1a17300178303daf1f2361ca180130e0129c2a5e5e8db8b839b1d3f3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://arrow.dit.ie/schfsehart/297
PQID 1931261502
PQPubID 1036335
PageCount 9
ParticipantIDs proquest_journals_1931261502
crossref_citationtrail_10_1002_ppap_201600207
crossref_primary_10_1002_ppap_201600207
wiley_primary_10_1002_ppap_201600207_PPAP201600207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2017
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Plasma processes and polymers
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 12
2015; 1
2010; 76
2011; 1
2015; 3
2010; 19
2008; 36
2003; 36
2014; 47
2013; 102
2011; 13
2014; 23
2016; 13
2009; 29
2016; 6
2014; 4
2013; 10
2006; 26
2011; 44
2008; 41
2013
2005; 38
2012; 45
2016; 49
1998; 31
2005; 33
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Lu X. (e_1_2_7_24_1) 2005; 33
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
Bruggeman P. (e_1_2_7_27_1) 2008; 41
e_1_2_7_28_1
e_1_2_7_29_1
Schnabel U. (e_1_2_7_10_1) 2015; 1
Fridman A (e_1_2_7_3_1) 2013
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 13
  start-page: 306
  year: 2016
  publication-title: Plasma Process. Polym
– volume: 76
  start-page: 7662
  year: 2010
  publication-title: Appl. Environ. Microbiol
– volume: 13
  start-page: 053025
  year: 2011
  publication-title: New J. Phys
– volume: 1
  start-page: 29
  year: 2015
  publication-title: Mod. Agric. Sci. Technol
– volume: 29
  start-page: 5730
  year: 2009
  publication-title: Dalton Trans
– volume: 44
  start-page: 013002
  year: 2011
  publication-title: J. Phys. D
– volume: 47
  start-page: 505202
  year: 2014
  publication-title: J. Phys. D
– volume: 23
  start-page: 015019
  year: 2014
  publication-title: Plasma Sources Sci. Technol
– volume: 19
  start-page: 045025
  year: 2010
  publication-title: Plasma Sources Sci. Technol
– volume: 45
  start-page: 263001
  year: 2012
  publication-title: J. Phys. D
– volume: 23
  start-page: 065036
  year: 2014
  publication-title: Plasma Sources Sci. Technol
– volume: 1
  start-page: 265
  year: 2011
  publication-title: Plasma Med
– volume: 26
  start-page: 543
  year: 2006
  publication-title: Plasma Chem. Plasma Process
– volume: 38
  start-page: 2804
  year: 2005
  publication-title: J. Phys. D
– volume: 4
  start-page: 1188
  year: 2014
  publication-title: Adv. Microbiol
– volume: 6
  start-page: 21464
  year: 2016
  publication-title: Sci. Rep
– volume: 44
  start-page: 472001
  year: 2011
  publication-title: J. Phys. D
– volume: 49
  start-page: 304005
  year: 2016
  publication-title: J. Phys. D
– volume: 44
  start-page: 372001
  year: 2011
  publication-title: J. Phys. D
– volume: 102
  start-page: 203701
  year: 2013
  publication-title: Appl. Phys. Lett
– volume: 10
  start-page: 649
  year: 2013
  publication-title: Plasma Process. Polym
– volume: 33
  start-page: 27
  year: 2005
  publication-title: IEEE Trans. Plasma Sci
– volume: 36
  start-page: 1138
  year: 2008
  publication-title: IEEE Trans. Plasma Sci
– volume: 6
  start-page: 26016
  year: 2016
  publication-title: Sci. Rep
– volume: 31
  start-page: 1212
  year: 1998
  publication-title: J. Phys. D
– volume: 41
  start-page: 212501
  year: 2008
  publication-title: J. Phys. D
– volume: 12
  start-page: 1410
  year: 2015
  publication-title: Plasma Process. Polym
– volume: 10
  start-page: 544
  year: 2013
  publication-title: Plasma Process. Polym
– volume: 6
  start-page: 21421
  year: 2016
  publication-title: Sci. Rep
– volume: 3
  start-page: 42
  year: 2015
  publication-title: Clin. Plasma Med
– volume: 36
  start-page: 661
  year: 2003
  publication-title: J. Phys. D
– year: 2013
– volume: 33
  start-page: 27
  year: 2005
  ident: e_1_2_7_24_1
  publication-title: IEEE Trans. Plasma Sci
– ident: e_1_2_7_23_1
  doi: 10.1002/ppap.201500156
– ident: e_1_2_7_29_1
  doi: 10.1007/s11090-006-9014-6
– ident: e_1_2_7_31_1
  doi: 10.1088/0022-3727/31/10/013
– ident: e_1_2_7_33_1
  doi: 10.1088/0963-0252/19/4/045025
– ident: e_1_2_7_22_1
  doi: 10.1088/0022-3727/44/47/472001
– ident: e_1_2_7_13_1
  doi: 10.1038/srep26016
– ident: e_1_2_7_2_1
  doi: 10.1088/0022-3727/44/1/013002
– ident: e_1_2_7_21_1
  doi: 10.1088/0022-3727/47/50/505202
– ident: e_1_2_7_11_1
  doi: 10.1038/srep21421
– ident: e_1_2_7_16_1
  doi: 10.1088/1367-2630/13/5/053025
– ident: e_1_2_7_15_1
  doi: 10.1016/j.cpme.2015.11.003
– ident: e_1_2_7_18_1
  doi: 10.1002/ppap.201200113
– ident: e_1_2_7_5_1
  doi: 10.1002/ppap.201200104
– ident: e_1_2_7_8_1
  doi: 10.1063/1.4807133
– volume: 1
  start-page: 29
  year: 2015
  ident: e_1_2_7_10_1
  publication-title: Mod. Agric. Sci. Technol
– ident: e_1_2_7_14_1
  doi: 10.1088/0022-3727/45/26/263001
– ident: e_1_2_7_30_1
  doi: 10.1088/0022-3727/38/16/010
– ident: e_1_2_7_9_1
  doi: 10.1615/PlasmaMed.2012006275
– ident: e_1_2_7_19_1
  doi: 10.1088/0963-0252/23/1/015019
– ident: e_1_2_7_6_1
  doi: 10.4236/aim.2014.416128
– ident: e_1_2_7_20_1
  doi: 10.1088/0963-0252/23/6/065036
– volume-title: Plasma Medicine
  year: 2013
  ident: e_1_2_7_3_1
  doi: 10.1002/9781118437704
– ident: e_1_2_7_25_1
  doi: 10.1088/0022-3727/36/6/308
– ident: e_1_2_7_12_1
  doi: 10.1038/srep21464
– ident: e_1_2_7_32_1
  doi: 10.1039/b905535e
– ident: e_1_2_7_17_1
  doi: 10.1088/0022-3727/44/37/372001
– ident: e_1_2_7_26_1
  doi: 10.1109/TPS.2008.917294
– volume: 41
  start-page: 212501
  year: 2008
  ident: e_1_2_7_27_1
  publication-title: J. Phys. D
– ident: e_1_2_7_4_1
  doi: 10.1002/ppap.201500170
– ident: e_1_2_7_7_1
  doi: 10.1128/AEM.01615-10
– ident: e_1_2_7_28_1
  doi: 10.1088/0022-3727/49/30/304005
SSID ssj0030580
Score 2.5225656
Snippet Plasma‐activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive...
Plasma-activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atmospheric pressure
Biological effects
Discharge
Dosage
Electric sparks
electrolysis
glow discharge
Glow discharges
Plasma
Plasmas (physics)
plasma‐activated water
reactive species
spark discharge
Title Achieving reactive species specificity within plasma‐activated water through selective generation using air spark and glow discharges
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fppap.201600207
https://www.proquest.com/docview/1931261502
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqexA8pe1umjQeS1FEUIpY6C3sbia1VNPQB6Inb179jf4SZzYPqyCCXhICu0uyO7PzZXbmG8aOhfQ1mVUnjiNwmqrRctAINhxo-rEHbqCkdV1cXfsXveZl3-svZPFn_BClw400w-7XpOBKT-ufpKFpqohvUtDBkk0np4AtQkU3JX8UyrItnYaoBtU-8BoFa2ND1r92_2qVPqHmImC1Fud8naniXbNAk1FtPtM18_yNxvE_H7PB1nI4ytuZ_GyyJUi22EqnqAK3zV7b5m4I5HXgCC_t5sgpOxN_sLM7MVDMnjj5c4cJTxGMP6j3lzfbFHFsxB_xOuF5PSA-tXV3aJSBJbwmueAUfD_gajjBIdVkxFUS8cH9-JFTzjBROcF0h_XOz247F05evMExFGmDi-2iQmuhBDHii1aAtjJSsYiJ7cUoEdCRKZAbzEjlgQdBpAONcE2LyI1d4-6y5WScwB7jAMRC77eA0N2pCwqgaVoGpD7VvmdEhTnF4oUmZzanAhv3YcbJLEOa3rCc3go7KdunGafHjy2rhSyEuW5PQ4S8KOEIpGWFSbuov4wSdrvtbvm0_5dOB2xVEp6wkYdVtjybzOEQ0dBMH1mJ_wBytgSY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ED_XiW6zPPQieot1Nk8Zj8UF9UkTBW9jdTGppTUtbET158-pv9Jc4s3lUBRH0khDYXZLdmZ0vszPfMLYtpK_JrDpxHIFTVZWag0aw4kDVjz1wAyWt6-Li0m_cVE9vvTyakHJhUn6IwuFGmmH3a1JwckjvjVlD-31FhJOCTpYon3yKynpTEYPDq4JBCqXZFk9DXIOKH3iVnLexIve-9v9ql8Zg8zNktTbneJbp_G3TUJPO7sNI75rnb0SO__qcOTaTIVJeT0Vonk1AssBKB3khuEX2Wjd3bSDHA0eEafdHTgma-I-d3omEYvTEyaXbTngf8fi9en95s00Rykb8Ea8DnpUE4kNbeodGaVnOaxINTvH3La7aAxxSDTpcJRFvdXuPnNKGic0Jhkvs5vjo-qDhZPUbHEPBNrjeLuq0FkoQKb6oBWguIxWLmAhfjBIBnZoCecKMVB54EEQ60IjYtIjc2DXuMptMegmsMA5ARPR-DQjg7bugAKqmZkDqfe17RpSZk69eaDJyc6qx0Q1TWmYZ0vSGxfSW2U7Rvp_SevzYcj0XhjBT72GIqBeFHLG0LDNpV_WXUcJms94snlb_0mmLlRrXF-fh-cnl2RqblgQvbCDiOpscDR5gA8HRSG9a8f8ArXsIsg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6ioF58i-szB8FTdZM-th4XdfHNIgreSpJO10WtZXdF9OTNq7_RX-JM-vABIuilpZCENpnJfJ3MfMPYupCBJrPqJEkMjqfqDQeNYN0BL0h8cEMlrevi5DTYv_AOL_3LT1n8OT9E5XAjzbD7NSl4FidbH6ShWaaIb1LQwRKlk494AWoMwaKzikAKhdnWTkNYg3of-vWStrEut772_2qWPrDmZ8RqTU5rkqnyZfNIk-vN-4HeNE_feBz_8zVTbKLAo7yZC9A0G4J0ho3tlGXgZtlL01x1gdwOHPGl3R05pWfiH3Z-JwqKwSMnh2435Rmi8Vv19vxqmyKQjfkDXnu8KAjE-7bwDo3SsYzXJBicou87XHV7OKTqXXOVxrxzc_fAKWmYuJygP8cuWnvnO_tOUb3BMRRqg6vtokZroQRR4otGiMYyVolIiO7FKBHSmSmQH8xI5YMPYaxDjXhNi9hNXOPOs-H0LoUFxgGIhj5oAMG7bRcUgGcaBqTe1oFvRI055eJFpqA2pwobN1FOyiwjmt6omt4a26jaZzmpx48tl0tZiArl7keIeVHEEUnLGpN2UX8ZJWq3m-3qafEvndbYaHu3FR0fnB4tsXFJ2MJGIS6z4UHvHlYQGQ30qhX-d6t3B2o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+reactive+species+specificity+within+plasma%E2%80%90activated+water+through+selective+generation+using+air+spark+and+glow+discharges&rft.jtitle=Plasma+processes+and+polymers&rft.au=Lu%2C+Peng&rft.au=Boehm%2C+Daniela&rft.au=Bourke%2C+Paula&rft.au=Cullen%2C+Patrick+J.&rft.date=2017-08-01&rft.issn=1612-8850&rft.eissn=1612-8869&rft.volume=14&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fppap.201600207&rft.externalDBID=10.1002%252Fppap.201600207&rft.externalDocID=PPAP201600207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1612-8850&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1612-8850&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1612-8850&client=summon