Achieving reactive species specificity within plasma‐activated water through selective generation using air spark and glow discharges
Plasma‐activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive species which can serve as chemical diagnostics of PAL systems. Here, we tailor aqueous reactive species inside plasma‐activated water (PAW) throug...
Saved in:
Published in | Plasma processes and polymers Vol. 14; no. 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1612-8850 1612-8869 |
DOI | 10.1002/ppap.201600207 |
Cover
Loading…
Abstract | Plasma‐activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive species which can serve as chemical diagnostics of PAL systems. Here, we tailor aqueous reactive species inside plasma‐activated water (PAW) through treating water with AC air spark and glow discharges in contact with water. Chemical probing demonstrated species specificity between two types of PAW. Spark discharge PAW contains H2O2 and NO3−, while NO2−and NO3− are generated in glow discharge PAW. Species formation in different PAWs have been discussed in terms of discharge mechanisms and liquid phase chemistry process. Species specificity can provide richer parametric spaces for producing PALs with controlled impact and dosage achievable by combining discharge modes or mixing different PALs.
We present a study on tailoring aqueous reactive species for plasma‐activated water (PAW) by treating deionized water with air spark and glow discharges in contact with water. Spark discharge PAW contains H2O2 and NO3−, while NO2− and NO3− are generated in glow discharge PAW. Species specificity can provide richer parametric spaces for producing PALs with controlled impact and dosage achievable. |
---|---|
AbstractList | Plasma‐activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive species which can serve as chemical diagnostics of PAL systems. Here, we tailor aqueous reactive species inside plasma‐activated water (PAW) through treating water with AC air spark and glow discharges in contact with water. Chemical probing demonstrated species specificity between two types of PAW. Spark discharge PAW contains H2O2 and NO3−, while NO2−and NO3− are generated in glow discharge PAW. Species formation in different PAWs have been discussed in terms of discharge mechanisms and liquid phase chemistry process. Species specificity can provide richer parametric spaces for producing PALs with controlled impact and dosage achievable by combining discharge modes or mixing different PALs.
We present a study on tailoring aqueous reactive species for plasma‐activated water (PAW) by treating deionized water with air spark and glow discharges in contact with water. Spark discharge PAW contains H2O2 and NO3−, while NO2− and NO3− are generated in glow discharge PAW. Species specificity can provide richer parametric spaces for producing PALs with controlled impact and dosage achievable. Plasma-activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive species which can serve as chemical diagnostics of PAL systems. Here, we tailor aqueous reactive species inside plasma-activated water (PAW) through treating water with AC air spark and glow discharges in contact with water. Chemical probing demonstrated species specificity between two types of PAW. Spark discharge PAW contains H 2 O 2 and N O 3 -, while N O 2 -and N O 3 - are generated in glow discharge PAW. Species formation in different PAWs have been discussed in terms of discharge mechanisms and liquid phase chemistry process. Species specificity can provide richer parametric spaces for producing PALs with controlled impact and dosage achievable by combining discharge modes or mixing different PALs. |
Author | Cullen, Patrick J. Lu, Peng Bourke, Paula Boehm, Daniela |
Author_xml | – sequence: 1 givenname: Peng surname: Lu fullname: Lu, Peng organization: Civil Aviation University of China – sequence: 2 givenname: Daniela surname: Boehm fullname: Boehm, Daniela organization: Dublin Institute of Technology – sequence: 3 givenname: Paula surname: Bourke fullname: Bourke, Paula email: paula.bourke@dit.ie organization: Dublin Institute of Technology – sequence: 4 givenname: Patrick J. surname: Cullen fullname: Cullen, Patrick J. organization: University of New South Wales |
BookMark | eNqFkE1Lw0AQhhdR8PPqecFz68xukybHIn5BwR70HKabSbI1JnE3tfTmzau_0V9iaqSCIF7mA97nHeY9FLtVXbEQpwhDBFDnTUPNUAGG3QLjHXGAIapBFIXx7nYOYF8cer8A0BBEcCDeJqaw_GKrXDom09oXlr5hY9n3PbPGtmu5sm1hK9mU5J_o4_X9S0otp3LVVSfbwtXLvJCeS-5dcq7YUWvrSi79xp-s6yzJPUqqUpmX9Uqm1puCXM7-WOxlVHo--e5H4uHq8v7iZjC9u769mEwHZqT0eMAjDRDOkXDcDTiONOiUMsyUDtEQRoAaGFDFRlHAAUfpPJpHOp5jqjNt9JE4630bVz8v2bfJol66qjuZYKxRhRiA6lSjXmVc7b3jLOlC-PqldWTLBCHZRJ5sIk-2kXfY8BfWOPtEbv03EPfAypa8_kedzGaT2Q_7CWZLmjA |
CitedBy_id | crossref_primary_10_1088_1361_6463_aae807 crossref_primary_10_1094_PDIS_05_24_0957_SC crossref_primary_10_1007_s11947_019_02323_w crossref_primary_10_1109_TPS_2024_3522911 crossref_primary_10_3390_eng5030097 crossref_primary_10_1002_ppap_201700212 crossref_primary_10_3389_fmicb_2019_02674 crossref_primary_10_1016_j_foodcont_2021_108683 crossref_primary_10_1016_j_foodchem_2025_142960 crossref_primary_10_1038_s41598_017_15184_0 crossref_primary_10_1007_s11090_018_9920_4 crossref_primary_10_1016_j_cej_2024_149915 crossref_primary_10_3390_cancers12020476 crossref_primary_10_1007_s11090_020_10082_2 crossref_primary_10_1093_jambio_lxae182 crossref_primary_10_1002_ppap_202000058 crossref_primary_10_1080_10408398_2021_1895058 crossref_primary_10_1371_journal_pone_0274524 crossref_primary_10_1016_j_scitotenv_2018_02_269 crossref_primary_10_1088_2058_6272_ab9ddd crossref_primary_10_3390_app11031178 crossref_primary_10_1007_s11947_020_02515_9 crossref_primary_10_1063_1_5030099 crossref_primary_10_1063_1_5080184 crossref_primary_10_1116_6_0002460 crossref_primary_10_1007_s11090_023_10372_5 crossref_primary_10_1111_1541_4337_12644 crossref_primary_10_3164_jcbn_22_17 crossref_primary_10_1016_j_tifs_2023_104282 crossref_primary_10_1088_1361_6463_abb624 crossref_primary_10_1007_s11090_021_10161_y crossref_primary_10_1088_2516_1067_ac777e crossref_primary_10_3390_foods9070898 crossref_primary_10_1002_ppap_202400190 crossref_primary_10_1016_j_chemosphere_2024_143105 crossref_primary_10_1016_j_lwt_2024_116677 crossref_primary_10_1080_10408398_2021_2002257 crossref_primary_10_1016_j_lwt_2018_05_059 crossref_primary_10_3390_app11157053 crossref_primary_10_1016_j_ijfoodmicro_2023_110419 crossref_primary_10_3390_life13020257 crossref_primary_10_1002_ppap_202200133 crossref_primary_10_1016_j_crfs_2022_02_007 crossref_primary_10_3390_app10030801 crossref_primary_10_1002_ppap_201900001 crossref_primary_10_1088_1361_6463_ad5f99 crossref_primary_10_1088_1361_6587_ad9950 crossref_primary_10_1016_j_elstat_2022_103671 crossref_primary_10_1002_ppap_201900260 crossref_primary_10_1007_s11090_019_10014_9 crossref_primary_10_3390_foods12132461 crossref_primary_10_1063_1_5037660 crossref_primary_10_1088_2058_6272_acde34 crossref_primary_10_3390_nano14010040 crossref_primary_10_1016_j_ifset_2021_102664 crossref_primary_10_1016_j_jwpe_2024_105477 crossref_primary_10_1063_5_0039253 crossref_primary_10_3390_foods11131833 crossref_primary_10_1149_2162_8777_ab9c78 crossref_primary_10_1007_s11270_022_05965_3 crossref_primary_10_1002_ppap_201900259 crossref_primary_10_1002_cben_202300044 crossref_primary_10_1016_j_cej_2024_153946 crossref_primary_10_1063_5_0078823 crossref_primary_10_1515_hsz_2018_0235 crossref_primary_10_1109_TPS_2022_3179734 crossref_primary_10_1111_ijfs_14708 crossref_primary_10_3390_cancers15194858 crossref_primary_10_1016_j_jwpe_2024_105043 crossref_primary_10_1038_s41598_023_28736_4 crossref_primary_10_3390_app10093198 crossref_primary_10_1088_1361_6463_ac2969 crossref_primary_10_1111_jam_14677 crossref_primary_10_3389_fmicb_2019_01539 crossref_primary_10_1002_ppap_201800148 crossref_primary_10_1063_5_0063255 crossref_primary_10_1111_1541_4337_13126 crossref_primary_10_1111_jfpe_14156 crossref_primary_10_1002_ppap_201800030 crossref_primary_10_1063_1_4990525 crossref_primary_10_1016_j_tibtech_2018_03_007 crossref_primary_10_1016_j_foodres_2022_111368 crossref_primary_10_1140_epjd_s10053_022_00397_4 crossref_primary_10_1038_s41598_020_63732_y crossref_primary_10_1109_TPS_2022_3176455 crossref_primary_10_1002_ppap_202000250 crossref_primary_10_1088_1402_4896_ac6d1b crossref_primary_10_3390_foods10010166 crossref_primary_10_3390_w13111480 crossref_primary_10_1002_ppap_202000135 crossref_primary_10_1016_j_fm_2019_05_010 crossref_primary_10_1016_j_cej_2019_01_018 crossref_primary_10_3389_fphy_2020_614684 crossref_primary_10_1088_1361_6463_ac026d crossref_primary_10_1063_1_5037249 crossref_primary_10_1088_1361_6595_abff72 crossref_primary_10_1016_j_foodcont_2020_107168 crossref_primary_10_1038_s41598_019_40352_9 crossref_primary_10_1016_j_cap_2020_02_003 crossref_primary_10_1016_j_ejmech_2021_113736 crossref_primary_10_1016_j_bioflm_2024_100230 crossref_primary_10_1002_ppap_201900157 crossref_primary_10_1111_1541_4337_13250 crossref_primary_10_1016_j_ifset_2018_07_013 crossref_primary_10_1016_j_foodchem_2020_128283 crossref_primary_10_1088_1361_6595_ac61a9 crossref_primary_10_1007_s00253_023_12849_x crossref_primary_10_1016_j_aquaculture_2024_741049 crossref_primary_10_1016_j_chemosphere_2023_140820 crossref_primary_10_1088_2058_6272_ad0c1f crossref_primary_10_1002_ppap_202000205 crossref_primary_10_3390_pathogens13070535 crossref_primary_10_1007_s11090_023_10439_3 crossref_primary_10_1016_j_cej_2017_05_178 crossref_primary_10_1016_j_jwpe_2024_106127 crossref_primary_10_1080_09593330_2024_2440659 crossref_primary_10_1088_1361_6463_abecb1 crossref_primary_10_1007_s11090_018_9944_9 crossref_primary_10_1038_s41598_021_81977_z crossref_primary_10_1007_s11051_024_06054_8 crossref_primary_10_1155_2020_4205640 crossref_primary_10_1016_j_ifset_2021_102867 crossref_primary_10_1039_D0GC02619K crossref_primary_10_1038_s41522_020_00180_6 crossref_primary_10_1063_5_0039171 crossref_primary_10_1088_1361_6463_aad427 crossref_primary_10_1016_j_lwt_2023_114969 crossref_primary_10_1016_j_foodchem_2022_133421 crossref_primary_10_1063_5_0114274 crossref_primary_10_1088_1361_6463_ac07e0 crossref_primary_10_1134_S1063780X18090040 crossref_primary_10_1016_j_jece_2020_104761 crossref_primary_10_1002_cctc_202401838 crossref_primary_10_1088_1361_6463_ace634 crossref_primary_10_1016_j_vacuum_2020_109644 crossref_primary_10_1007_s11090_024_10464_w |
Cites_doi | 10.1002/ppap.201500156 10.1007/s11090-006-9014-6 10.1088/0022-3727/31/10/013 10.1088/0963-0252/19/4/045025 10.1088/0022-3727/44/47/472001 10.1038/srep26016 10.1088/0022-3727/44/1/013002 10.1088/0022-3727/47/50/505202 10.1038/srep21421 10.1088/1367-2630/13/5/053025 10.1016/j.cpme.2015.11.003 10.1002/ppap.201200113 10.1002/ppap.201200104 10.1063/1.4807133 10.1088/0022-3727/45/26/263001 10.1088/0022-3727/38/16/010 10.1615/PlasmaMed.2012006275 10.1088/0963-0252/23/1/015019 10.4236/aim.2014.416128 10.1088/0963-0252/23/6/065036 10.1002/9781118437704 10.1088/0022-3727/36/6/308 10.1038/srep21464 10.1039/b905535e 10.1088/0022-3727/44/37/372001 10.1109/TPS.2008.917294 10.1002/ppap.201500170 10.1128/AEM.01615-10 10.1088/0022-3727/49/30/304005 |
ContentType | Journal Article |
Copyright | 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/ppap.201600207 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1612-8869 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ppap_201600207 PPAP201600207 |
Genre | article |
GrantInformation_xml | – fundername: China Tianjin Research Program of Fundamental and Applied Technology funderid: 14JCYBJC43000 – fundername: Science Foundation Ireland funderid: 14/IA/2626 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ UB1 W8V W99 WBKPD WFSAM WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c4237-e43006b1a17300178303daf1f2361ca180130e0129c2a5e5e8db8b839b1d3f3c3 |
IEDL.DBID | DR2 |
ISSN | 1612-8850 |
IngestDate | Fri Jul 25 12:15:20 EDT 2025 Thu Apr 24 22:52:19 EDT 2025 Tue Jul 01 01:25:46 EDT 2025 Wed Jan 22 16:51:59 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4237-e43006b1a17300178303daf1f2361ca180130e0129c2a5e5e8db8b839b1d3f3c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://arrow.dit.ie/schfsehart/297 |
PQID | 1931261502 |
PQPubID | 1036335 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1931261502 crossref_citationtrail_10_1002_ppap_201600207 crossref_primary_10_1002_ppap_201600207 wiley_primary_10_1002_ppap_201600207_PPAP201600207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2017 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Plasma processes and polymers |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 12 2015; 1 2010; 76 2011; 1 2015; 3 2010; 19 2008; 36 2003; 36 2014; 47 2013; 102 2011; 13 2014; 23 2016; 13 2009; 29 2016; 6 2014; 4 2013; 10 2006; 26 2011; 44 2008; 41 2013 2005; 38 2012; 45 2016; 49 1998; 31 2005; 33 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Lu X. (e_1_2_7_24_1) 2005; 33 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_26_1 Bruggeman P. (e_1_2_7_27_1) 2008; 41 e_1_2_7_28_1 e_1_2_7_29_1 Schnabel U. (e_1_2_7_10_1) 2015; 1 Fridman A (e_1_2_7_3_1) 2013 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 13 start-page: 306 year: 2016 publication-title: Plasma Process. Polym – volume: 76 start-page: 7662 year: 2010 publication-title: Appl. Environ. Microbiol – volume: 13 start-page: 053025 year: 2011 publication-title: New J. Phys – volume: 1 start-page: 29 year: 2015 publication-title: Mod. Agric. Sci. Technol – volume: 29 start-page: 5730 year: 2009 publication-title: Dalton Trans – volume: 44 start-page: 013002 year: 2011 publication-title: J. Phys. D – volume: 47 start-page: 505202 year: 2014 publication-title: J. Phys. D – volume: 23 start-page: 015019 year: 2014 publication-title: Plasma Sources Sci. Technol – volume: 19 start-page: 045025 year: 2010 publication-title: Plasma Sources Sci. Technol – volume: 45 start-page: 263001 year: 2012 publication-title: J. Phys. D – volume: 23 start-page: 065036 year: 2014 publication-title: Plasma Sources Sci. Technol – volume: 1 start-page: 265 year: 2011 publication-title: Plasma Med – volume: 26 start-page: 543 year: 2006 publication-title: Plasma Chem. Plasma Process – volume: 38 start-page: 2804 year: 2005 publication-title: J. Phys. D – volume: 4 start-page: 1188 year: 2014 publication-title: Adv. Microbiol – volume: 6 start-page: 21464 year: 2016 publication-title: Sci. Rep – volume: 44 start-page: 472001 year: 2011 publication-title: J. Phys. D – volume: 49 start-page: 304005 year: 2016 publication-title: J. Phys. D – volume: 44 start-page: 372001 year: 2011 publication-title: J. Phys. D – volume: 102 start-page: 203701 year: 2013 publication-title: Appl. Phys. Lett – volume: 10 start-page: 649 year: 2013 publication-title: Plasma Process. Polym – volume: 33 start-page: 27 year: 2005 publication-title: IEEE Trans. Plasma Sci – volume: 36 start-page: 1138 year: 2008 publication-title: IEEE Trans. Plasma Sci – volume: 6 start-page: 26016 year: 2016 publication-title: Sci. Rep – volume: 31 start-page: 1212 year: 1998 publication-title: J. Phys. D – volume: 41 start-page: 212501 year: 2008 publication-title: J. Phys. D – volume: 12 start-page: 1410 year: 2015 publication-title: Plasma Process. Polym – volume: 10 start-page: 544 year: 2013 publication-title: Plasma Process. Polym – volume: 6 start-page: 21421 year: 2016 publication-title: Sci. Rep – volume: 3 start-page: 42 year: 2015 publication-title: Clin. Plasma Med – volume: 36 start-page: 661 year: 2003 publication-title: J. Phys. D – year: 2013 – volume: 33 start-page: 27 year: 2005 ident: e_1_2_7_24_1 publication-title: IEEE Trans. Plasma Sci – ident: e_1_2_7_23_1 doi: 10.1002/ppap.201500156 – ident: e_1_2_7_29_1 doi: 10.1007/s11090-006-9014-6 – ident: e_1_2_7_31_1 doi: 10.1088/0022-3727/31/10/013 – ident: e_1_2_7_33_1 doi: 10.1088/0963-0252/19/4/045025 – ident: e_1_2_7_22_1 doi: 10.1088/0022-3727/44/47/472001 – ident: e_1_2_7_13_1 doi: 10.1038/srep26016 – ident: e_1_2_7_2_1 doi: 10.1088/0022-3727/44/1/013002 – ident: e_1_2_7_21_1 doi: 10.1088/0022-3727/47/50/505202 – ident: e_1_2_7_11_1 doi: 10.1038/srep21421 – ident: e_1_2_7_16_1 doi: 10.1088/1367-2630/13/5/053025 – ident: e_1_2_7_15_1 doi: 10.1016/j.cpme.2015.11.003 – ident: e_1_2_7_18_1 doi: 10.1002/ppap.201200113 – ident: e_1_2_7_5_1 doi: 10.1002/ppap.201200104 – ident: e_1_2_7_8_1 doi: 10.1063/1.4807133 – volume: 1 start-page: 29 year: 2015 ident: e_1_2_7_10_1 publication-title: Mod. Agric. Sci. Technol – ident: e_1_2_7_14_1 doi: 10.1088/0022-3727/45/26/263001 – ident: e_1_2_7_30_1 doi: 10.1088/0022-3727/38/16/010 – ident: e_1_2_7_9_1 doi: 10.1615/PlasmaMed.2012006275 – ident: e_1_2_7_19_1 doi: 10.1088/0963-0252/23/1/015019 – ident: e_1_2_7_6_1 doi: 10.4236/aim.2014.416128 – ident: e_1_2_7_20_1 doi: 10.1088/0963-0252/23/6/065036 – volume-title: Plasma Medicine year: 2013 ident: e_1_2_7_3_1 doi: 10.1002/9781118437704 – ident: e_1_2_7_25_1 doi: 10.1088/0022-3727/36/6/308 – ident: e_1_2_7_12_1 doi: 10.1038/srep21464 – ident: e_1_2_7_32_1 doi: 10.1039/b905535e – ident: e_1_2_7_17_1 doi: 10.1088/0022-3727/44/37/372001 – ident: e_1_2_7_26_1 doi: 10.1109/TPS.2008.917294 – volume: 41 start-page: 212501 year: 2008 ident: e_1_2_7_27_1 publication-title: J. Phys. D – ident: e_1_2_7_4_1 doi: 10.1002/ppap.201500170 – ident: e_1_2_7_7_1 doi: 10.1128/AEM.01615-10 – ident: e_1_2_7_28_1 doi: 10.1088/0022-3727/49/30/304005 |
SSID | ssj0030580 |
Score | 2.5225656 |
Snippet | Plasma‐activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive... Plasma-activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atmospheric pressure Biological effects Discharge Dosage Electric sparks electrolysis glow discharge Glow discharges Plasma Plasmas (physics) plasma‐activated water reactive species spark discharge |
Title | Achieving reactive species specificity within plasma‐activated water through selective generation using air spark and glow discharges |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fppap.201600207 https://www.proquest.com/docview/1931261502 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqexA8pe1umjQeS1FEUIpY6C3sbia1VNPQB6Inb179jf4SZzYPqyCCXhICu0uyO7PzZXbmG8aOhfQ1mVUnjiNwmqrRctAINhxo-rEHbqCkdV1cXfsXveZl3-svZPFn_BClw400w-7XpOBKT-ufpKFpqohvUtDBkk0np4AtQkU3JX8UyrItnYaoBtU-8BoFa2ND1r92_2qVPqHmImC1Fud8naniXbNAk1FtPtM18_yNxvE_H7PB1nI4ytuZ_GyyJUi22EqnqAK3zV7b5m4I5HXgCC_t5sgpOxN_sLM7MVDMnjj5c4cJTxGMP6j3lzfbFHFsxB_xOuF5PSA-tXV3aJSBJbwmueAUfD_gajjBIdVkxFUS8cH9-JFTzjBROcF0h_XOz247F05evMExFGmDi-2iQmuhBDHii1aAtjJSsYiJ7cUoEdCRKZAbzEjlgQdBpAONcE2LyI1d4-6y5WScwB7jAMRC77eA0N2pCwqgaVoGpD7VvmdEhTnF4oUmZzanAhv3YcbJLEOa3rCc3go7KdunGafHjy2rhSyEuW5PQ4S8KOEIpGWFSbuov4wSdrvtbvm0_5dOB2xVEp6wkYdVtjybzOEQ0dBMH1mJ_wBytgSY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ED_XiW6zPPQieot1Nk8Zj8UF9UkTBW9jdTGppTUtbET158-pv9Jc4s3lUBRH0khDYXZLdmZ0vszPfMLYtpK_JrDpxHIFTVZWag0aw4kDVjz1wAyWt6-Li0m_cVE9vvTyakHJhUn6IwuFGmmH3a1JwckjvjVlD-31FhJOCTpYon3yKynpTEYPDq4JBCqXZFk9DXIOKH3iVnLexIve-9v9ql8Zg8zNktTbneJbp_G3TUJPO7sNI75rnb0SO__qcOTaTIVJeT0Vonk1AssBKB3khuEX2Wjd3bSDHA0eEafdHTgma-I-d3omEYvTEyaXbTngf8fi9en95s00Rykb8Ea8DnpUE4kNbeodGaVnOaxINTvH3La7aAxxSDTpcJRFvdXuPnNKGic0Jhkvs5vjo-qDhZPUbHEPBNrjeLuq0FkoQKb6oBWguIxWLmAhfjBIBnZoCecKMVB54EEQ60IjYtIjc2DXuMptMegmsMA5ARPR-DQjg7bugAKqmZkDqfe17RpSZk69eaDJyc6qx0Q1TWmYZ0vSGxfSW2U7Rvp_SevzYcj0XhjBT72GIqBeFHLG0LDNpV_WXUcJms94snlb_0mmLlRrXF-fh-cnl2RqblgQvbCDiOpscDR5gA8HRSG9a8f8ArXsIsg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6ioF58i-szB8FTdZM-th4XdfHNIgreSpJO10WtZXdF9OTNq7_RX-JM-vABIuilpZCENpnJfJ3MfMPYupCBJrPqJEkMjqfqDQeNYN0BL0h8cEMlrevi5DTYv_AOL_3LT1n8OT9E5XAjzbD7NSl4FidbH6ShWaaIb1LQwRKlk494AWoMwaKzikAKhdnWTkNYg3of-vWStrEut772_2qWPrDmZ8RqTU5rkqnyZfNIk-vN-4HeNE_feBz_8zVTbKLAo7yZC9A0G4J0ho3tlGXgZtlL01x1gdwOHPGl3R05pWfiH3Z-JwqKwSMnh2435Rmi8Vv19vxqmyKQjfkDXnu8KAjE-7bwDo3SsYzXJBicou87XHV7OKTqXXOVxrxzc_fAKWmYuJygP8cuWnvnO_tOUb3BMRRqg6vtokZroQRR4otGiMYyVolIiO7FKBHSmSmQH8xI5YMPYaxDjXhNi9hNXOPOs-H0LoUFxgGIhj5oAMG7bRcUgGcaBqTe1oFvRI055eJFpqA2pwobN1FOyiwjmt6omt4a26jaZzmpx48tl0tZiArl7keIeVHEEUnLGpN2UX8ZJWq3m-3qafEvndbYaHu3FR0fnB4tsXFJ2MJGIS6z4UHvHlYQGQ30qhX-d6t3B2o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+reactive+species+specificity+within+plasma%E2%80%90activated+water+through+selective+generation+using+air+spark+and+glow+discharges&rft.jtitle=Plasma+processes+and+polymers&rft.au=Lu%2C+Peng&rft.au=Boehm%2C+Daniela&rft.au=Bourke%2C+Paula&rft.au=Cullen%2C+Patrick+J.&rft.date=2017-08-01&rft.issn=1612-8850&rft.eissn=1612-8869&rft.volume=14&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fppap.201600207&rft.externalDBID=10.1002%252Fppap.201600207&rft.externalDocID=PPAP201600207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1612-8850&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1612-8850&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1612-8850&client=summon |