3D Printed Enzymatically Biodegradable Soft Helical Microswimmers
Mobile micro‐ and nanorobots are proposed for future biomedical applications, such as diagnostics and targeted delivery. For their translation to clinical practice, biocompatibility and biodegradability of micro‐ and nanorobots are required aspects. The fabrication of small‐scale robots with non‐cyt...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 45 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
07.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mobile micro‐ and nanorobots are proposed for future biomedical applications, such as diagnostics and targeted delivery. For their translation to clinical practice, biocompatibility and biodegradability of micro‐ and nanorobots are required aspects. The fabrication of small‐scale robots with non‐cytotoxic biodegradable soft components will allow for enhanced device assimilation, optimal tissue interaction and minimized immune reactions. The 3D microfabrication of biodegradable soft helical microswimmers via two‐photon polymerization of the non‐toxic photocrosslinkable hydrogel gelatin methacryloyl (GelMA) is reported. GelMA microswimmers are fabricated with user‐defined geometry and rendered magnetically responsive by decorating their surface with magnetic nanoparticles. In contrast to previous rigid helical microrobots, the soft helical microswimmers can corkscrew above the step‐out frequency with relatively high values of forward velocity, suggesting an unprecedented self‐adaptive behavior. Cytotoxicity assays show the toxicity of GelMA is at least three orders of magnitude lower than that of poly(ethyleneglycol) diacrylates, which are widely used for fabricating hydrogel‐based microswimmers. GelMA microswimmers are fully degradable by collagenases. Furthermore, they support cell attachment and growth, and are gradually digested by cell‐released enzymes during culture. These non‐cytotoxic biodegradable hydrogel microswimmers will greatly expand their applications in medicine by eliminating the concerns of retrieving microrobots after fulfilling tasks in body.
Biodegradable soft helical microswimmers are successfully developed based on two‐photon photopolymerization of a gelatin derivative, GelMA. By decorating their surface with magnetic nanoparticles, these microswimmers can be manipulated by magnetic field. Because of the proteolytic cleavage of peptide domains in gelatin, microswimmers made of GelMA can be fully degraded by cell‐secreted proteases. |
---|---|
AbstractList | Mobile micro‐ and nanorobots are proposed for future biomedical applications, such as diagnostics and targeted delivery. For their translation to clinical practice, biocompatibility and biodegradability of micro‐ and nanorobots are required aspects. The fabrication of small‐scale robots with non‐cytotoxic biodegradable soft components will allow for enhanced device assimilation, optimal tissue interaction and minimized immune reactions. The 3D microfabrication of biodegradable soft helical microswimmers via two‐photon polymerization of the non‐toxic photocrosslinkable hydrogel gelatin methacryloyl (GelMA) is reported. GelMA microswimmers are fabricated with user‐defined geometry and rendered magnetically responsive by decorating their surface with magnetic nanoparticles. In contrast to previous rigid helical microrobots, the soft helical microswimmers can corkscrew above the step‐out frequency with relatively high values of forward velocity, suggesting an unprecedented self‐adaptive behavior. Cytotoxicity assays show the toxicity of GelMA is at least three orders of magnitude lower than that of poly(ethyleneglycol) diacrylates, which are widely used for fabricating hydrogel‐based microswimmers. GelMA microswimmers are fully degradable by collagenases. Furthermore, they support cell attachment and growth, and are gradually digested by cell‐released enzymes during culture. These non‐cytotoxic biodegradable hydrogel microswimmers will greatly expand their applications in medicine by eliminating the concerns of retrieving microrobots after fulfilling tasks in body.
Biodegradable soft helical microswimmers are successfully developed based on two‐photon photopolymerization of a gelatin derivative, GelMA. By decorating their surface with magnetic nanoparticles, these microswimmers can be manipulated by magnetic field. Because of the proteolytic cleavage of peptide domains in gelatin, microswimmers made of GelMA can be fully degraded by cell‐secreted proteases. Mobile micro‐ and nanorobots are proposed for future biomedical applications, such as diagnostics and targeted delivery. For their translation to clinical practice, biocompatibility and biodegradability of micro‐ and nanorobots are required aspects. The fabrication of small‐scale robots with non‐cytotoxic biodegradable soft components will allow for enhanced device assimilation, optimal tissue interaction and minimized immune reactions. The 3D microfabrication of biodegradable soft helical microswimmers via two‐photon polymerization of the non‐toxic photocrosslinkable hydrogel gelatin methacryloyl (GelMA) is reported. GelMA microswimmers are fabricated with user‐defined geometry and rendered magnetically responsive by decorating their surface with magnetic nanoparticles. In contrast to previous rigid helical microrobots, the soft helical microswimmers can corkscrew above the step‐out frequency with relatively high values of forward velocity, suggesting an unprecedented self‐adaptive behavior. Cytotoxicity assays show the toxicity of GelMA is at least three orders of magnitude lower than that of poly(ethyleneglycol) diacrylates, which are widely used for fabricating hydrogel‐based microswimmers. GelMA microswimmers are fully degradable by collagenases. Furthermore, they support cell attachment and growth, and are gradually digested by cell‐released enzymes during culture. These non‐cytotoxic biodegradable hydrogel microswimmers will greatly expand their applications in medicine by eliminating the concerns of retrieving microrobots after fulfilling tasks in body. |
Author | Wang, Xiaopu Chen, Xiang‐Zhong Terzopoulou, Anastasia Hu, Chengzhi Nelson, Bradley J. Maniura‐Weber, Katharina Qin, Xiao‐Hua Huang, Tian‐Yun Pané, Salvador |
Author_xml | – sequence: 1 givenname: Xiaopu surname: Wang fullname: Wang, Xiaopu organization: Institute of Robotics and Intelligent Systems, ETH Zurich – sequence: 2 givenname: Xiao‐Hua orcidid: 0000-0001-8355-3230 surname: Qin fullname: Qin, Xiao‐Hua email: xh.qin84@gmail.com organization: Empa‐Swiss Federal Laboratories for Materials Science and Technology – sequence: 3 givenname: Chengzhi surname: Hu fullname: Hu, Chengzhi organization: Institute of Robotics and Intelligent Systems, ETH Zurich – sequence: 4 givenname: Anastasia surname: Terzopoulou fullname: Terzopoulou, Anastasia organization: Institute of Robotics and Intelligent Systems, ETH Zurich – sequence: 5 givenname: Xiang‐Zhong surname: Chen fullname: Chen, Xiang‐Zhong organization: Institute of Robotics and Intelligent Systems, ETH Zurich – sequence: 6 givenname: Tian‐Yun surname: Huang fullname: Huang, Tian‐Yun organization: Institute of Robotics and Intelligent Systems, ETH Zurich – sequence: 7 givenname: Katharina surname: Maniura‐Weber fullname: Maniura‐Weber, Katharina organization: Empa‐Swiss Federal Laboratories for Materials Science and Technology – sequence: 8 givenname: Salvador orcidid: 0000-0003-0147-8287 surname: Pané fullname: Pané, Salvador email: vidalp@ethz.ch organization: Institute of Robotics and Intelligent Systems, ETH Zurich – sequence: 9 givenname: Bradley J. surname: Nelson fullname: Nelson, Bradley J. organization: Institute of Robotics and Intelligent Systems, ETH Zurich |
BookMark | eNqFkMtLw0AQxhepYFu9eg54Tt1HskmOtQ8rtCio4G3Z7EO2bLJ1N6XEv96ESgVBPM0M8_3mG74RGNSuVgBcIzhBEOJbLnU1wRDlMEEwOwNDRBGNCcT54NSjtwswCmELIcoykgzBlMyjJ2_qRsloUX-2FW-M4Na20Z1xUr17LnlpVfTsdBOtlO2X0cYI78LBVJXy4RKca26DuvquY_C6XLzMVvH68f5hNl3HIsEki6UuCNGCZDktU4xpibXQ3SSolJQTTHIqEE9IWlBBC57zQitVSoiSMs1UqcgY3Bzv7rz72KvQsK3b-7qzZBjhIkWQ0rxTTY6q_sPglWY7byruW4Yg62NifUzsFFMHJL8AYZouBFc3nhv7N1YcsYOxqv3HhE3ny80P-wVdYn6u |
CitedBy_id | crossref_primary_10_1002_ange_202008681 crossref_primary_10_1021_acsnano_0c07954 crossref_primary_10_1038_s41598_022_22312_y crossref_primary_10_1002_adma_202207791 crossref_primary_10_1002_adhm_202102253 crossref_primary_10_1021_acsami_0c01264 crossref_primary_10_1063_1_5137743 crossref_primary_10_1080_17425247_2019_1676228 crossref_primary_10_1039_D4NR01776E crossref_primary_10_61186_masm_3_3_398 crossref_primary_10_1002_adfm_202006998 crossref_primary_10_1002_adfm_202110625 crossref_primary_10_1080_17425247_2025_2466768 crossref_primary_10_1126_scirobotics_abc7620 crossref_primary_10_1021_acsami_3c13627 crossref_primary_10_1021_acsmaterialslett_4c00472 crossref_primary_10_3390_mi15040492 crossref_primary_10_1021_acsanm_4c02182 crossref_primary_10_1002_mame_202400431 crossref_primary_10_1021_acs_chemrev_4c00070 crossref_primary_10_3390_polym14214574 crossref_primary_10_1039_D4BM00674G crossref_primary_10_1088_1758_5090_abc95f crossref_primary_10_1115_1_4066193 crossref_primary_10_1140_epje_i2019_11854_3 crossref_primary_10_1063_5_0053647 crossref_primary_10_1016_j_engreg_2021_03_002 crossref_primary_10_1109_TASE_2022_3207289 crossref_primary_10_1016_j_mtchem_2021_100694 crossref_primary_10_3390_nano15010013 crossref_primary_10_1002_ange_201910634 crossref_primary_10_1002_aisy_202100269 crossref_primary_10_1002_adhm_202001788 crossref_primary_10_1080_17425247_2025_2466772 crossref_primary_10_1088_1361_6439_ac0c64 crossref_primary_10_1021_acsami_1c18808 crossref_primary_10_1063_5_0034901 crossref_primary_10_1002_anbr_202300018 crossref_primary_10_1016_j_actbio_2019_05_005 crossref_primary_10_1021_acsnano_8b06773 crossref_primary_10_1002_admt_201800575 crossref_primary_10_1016_j_ces_2024_120107 crossref_primary_10_1016_j_nantod_2023_101764 crossref_primary_10_1002_adfm_201910323 crossref_primary_10_1007_s42242_024_00295_1 crossref_primary_10_1002_adfm_202206303 crossref_primary_10_3390_mi13050798 crossref_primary_10_1002_aisy_202100116 crossref_primary_10_3390_mi14122253 crossref_primary_10_1002_adfm_202210345 crossref_primary_10_1002_adhm_202100720 crossref_primary_10_1002_admt_202001218 crossref_primary_10_1016_j_biomaterials_2021_121350 crossref_primary_10_1016_j_jconrel_2022_12_038 crossref_primary_10_1021_acsami_3c01087 crossref_primary_10_1021_acs_chemrev_0c01234 crossref_primary_10_3389_fbioe_2023_1086106 crossref_primary_10_1002_adma_202310100 crossref_primary_10_3390_molecules29143351 crossref_primary_10_1002_adfm_202214393 crossref_primary_10_1002_adfm_201907615 crossref_primary_10_1002_adhm_202001681 crossref_primary_10_3390_polym16010025 crossref_primary_10_1002_adma_202002047 crossref_primary_10_1007_s43154_021_00066_1 crossref_primary_10_1002_smll_202208259 crossref_primary_10_1016_j_nanoms_2024_05_013 crossref_primary_10_1002_adma_202003013 crossref_primary_10_1088_2631_7990_ad720f crossref_primary_10_3390_app122211542 crossref_primary_10_1021_acs_chemrev_0c00077 crossref_primary_10_1016_j_eml_2021_101268 crossref_primary_10_34133_cbsystems_0019 crossref_primary_10_1016_j_matdes_2023_111651 crossref_primary_10_1021_acsnano_2c04716 crossref_primary_10_1016_j_jconrel_2022_11_035 crossref_primary_10_1002_ange_202013689 crossref_primary_10_1109_LRA_2021_3137546 crossref_primary_10_1002_adfm_202107421 crossref_primary_10_1109_LRA_2023_3256928 crossref_primary_10_1002_aisy_202000216 crossref_primary_10_1002_adma_201901592 crossref_primary_10_1039_C9MH00279K crossref_primary_10_1088_1361_6439_ab8ebd crossref_primary_10_1039_D4TC01868K crossref_primary_10_1021_acs_chemrev_0c00999 crossref_primary_10_1063_5_0026728 crossref_primary_10_1002_aisy_202300052 crossref_primary_10_1016_j_snb_2023_134603 crossref_primary_10_1016_j_matt_2021_10_010 crossref_primary_10_1038_s42256_023_00779_2 crossref_primary_10_1002_pat_70021 crossref_primary_10_1016_j_eurpolymj_2023_112370 crossref_primary_10_1002_adma_202404825 crossref_primary_10_1126_scirobotics_aay6626 crossref_primary_10_1002_admt_202101633 crossref_primary_10_1002_advs_202401110 crossref_primary_10_1007_s10845_024_02529_6 crossref_primary_10_1007_s12274_023_6184_y crossref_primary_10_1038_s44172_024_00215_2 crossref_primary_10_1002_ange_202405895 crossref_primary_10_1039_C9RA07342F crossref_primary_10_1016_j_pmatsci_2023_101204 crossref_primary_10_3389_fbioe_2018_00170 crossref_primary_10_1002_anie_202008681 crossref_primary_10_3390_mi11040404 crossref_primary_10_1063_5_0223995 crossref_primary_10_1002_adma_202305925 crossref_primary_10_2174_0115734137268436231023071009 crossref_primary_10_1089_3dp_2023_0127 crossref_primary_10_3788_IRLA20240435 crossref_primary_10_1109_TMECH_2020_2988049 crossref_primary_10_1016_j_jconrel_2024_08_040 crossref_primary_10_1002_anie_202405895 crossref_primary_10_1002_adhm_201900213 crossref_primary_10_1002_adsu_202300289 crossref_primary_10_1007_s10338_021_00260_w crossref_primary_10_1002_advs_202204072 crossref_primary_10_1002_anie_202013689 crossref_primary_10_1002_adma_202306468 crossref_primary_10_1002_admt_202101256 crossref_primary_10_1016_j_matdes_2023_111735 crossref_primary_10_1002_adfm_202414571 crossref_primary_10_1002_smll_202408597 crossref_primary_10_1002_aisy_202200023 crossref_primary_10_3390_nano13101590 crossref_primary_10_1002_adhm_202001031 crossref_primary_10_1016_j_apmt_2020_100583 crossref_primary_10_1002_advs_202002203 crossref_primary_10_1002_smll_202107888 crossref_primary_10_1016_j_mtadv_2022_100281 crossref_primary_10_1002_adfm_202004975 crossref_primary_10_1002_admt_201900332 crossref_primary_10_1002_cptc_201900246 crossref_primary_10_1002_smll_202206391 crossref_primary_10_1038_s41598_022_17053_x crossref_primary_10_37188_lam_2023_029 crossref_primary_10_1016_j_sna_2023_114574 crossref_primary_10_1088_2399_7532_ac4836 crossref_primary_10_1039_D1TC06162C crossref_primary_10_16925_2357_6014_2022_03_11 crossref_primary_10_1109_TRO_2024_3463482 crossref_primary_10_1002_admt_202100158 crossref_primary_10_1002_aisy_202000256 crossref_primary_10_3389_frobt_2022_1086043 crossref_primary_10_1021_acs_nanolett_2c03001 crossref_primary_10_1002_aisy_201900147 crossref_primary_10_1002_cnma_202100055 crossref_primary_10_1089_3dp_2021_0235 crossref_primary_10_1002_adem_202300750 crossref_primary_10_1126_scirobotics_abd2813 crossref_primary_10_1109_TMECH_2021_3081114 crossref_primary_10_1002_adfm_202314265 crossref_primary_10_1002_smll_202002111 crossref_primary_10_1002_admt_202000535 crossref_primary_10_1146_annurev_control_042920_013322 crossref_primary_10_1021_acs_langmuir_9b01192 crossref_primary_10_3389_frobt_2021_673533 crossref_primary_10_1021_acsnano_3c01942 crossref_primary_10_1016_j_actbio_2022_06_020 crossref_primary_10_1039_D1MA00174D crossref_primary_10_3390_nano12010115 crossref_primary_10_1002_aisy_202000267 crossref_primary_10_1038_s41467_022_33409_3 crossref_primary_10_1039_D3LC00743J crossref_primary_10_34133_cbsystems_0235 crossref_primary_10_1038_s42254_023_00671_3 crossref_primary_10_1002_smll_201805006 crossref_primary_10_51934_jomit_1016838 crossref_primary_10_1002_adma_202002211 crossref_primary_10_1088_2631_7990_acfc03 crossref_primary_10_1109_TBME_2019_2960530 crossref_primary_10_1016_j_ccr_2023_215372 crossref_primary_10_1016_j_eurpolymj_2023_112718 crossref_primary_10_1021_jacs_9b05092 crossref_primary_10_1140_epje_s10189_021_00072_3 crossref_primary_10_1109_LRA_2023_3242164 crossref_primary_10_1021_acs_chemrev_0c00897 crossref_primary_10_1039_D3LC01084H crossref_primary_10_1021_acs_chemrev_0c00535 crossref_primary_10_1088_1361_665X_ace1ba crossref_primary_10_1002_adfm_202005137 crossref_primary_10_1002_adfm_202304445 crossref_primary_10_1002_aisy_202300311 crossref_primary_10_1016_j_compositesb_2025_112387 crossref_primary_10_1002_aisy_202000270 crossref_primary_10_1021_acsmacrolett_9b00196 crossref_primary_10_1016_j_pmatsci_2021_100808 crossref_primary_10_3390_machines10070497 crossref_primary_10_3390_polym13040563 crossref_primary_10_1109_LRA_2018_2887205 crossref_primary_10_1088_1361_648X_adac98 crossref_primary_10_1002_adma_202201888 crossref_primary_10_1007_s10544_021_00590_z crossref_primary_10_1002_biot_201900086 crossref_primary_10_1021_acsami_4c10301 crossref_primary_10_1002_adfm_202416823 crossref_primary_10_1002_aisy_202100052 crossref_primary_10_1038_s41598_021_90445_7 crossref_primary_10_1002_aisy_202100051 crossref_primary_10_1002_adma_202312956 crossref_primary_10_1016_j_matdes_2023_112101 crossref_primary_10_1007_s13346_022_01200_y crossref_primary_10_1039_D0CS01062F crossref_primary_10_1002_adfm_201909202 crossref_primary_10_3389_fbioe_2022_1030377 crossref_primary_10_3389_fchem_2024_1416314 crossref_primary_10_1002_adma_201903497 crossref_primary_10_1038_s41596_023_00916_6 crossref_primary_10_1007_s44174_023_00071_2 crossref_primary_10_1016_j_nantod_2024_102337 crossref_primary_10_3390_act12030124 crossref_primary_10_3390_mi15121443 crossref_primary_10_1039_D2SM00891B crossref_primary_10_3389_fbioe_2022_994355 crossref_primary_10_1007_s40883_022_00288_5 crossref_primary_10_3389_fbioe_2023_1327441 crossref_primary_10_1016_j_matdes_2021_110172 crossref_primary_10_1002_adma_202102049 crossref_primary_10_1002_adfm_202212952 crossref_primary_10_1002_smll_201900709 crossref_primary_10_3390_biom12010141 crossref_primary_10_1002_adfm_202112508 crossref_primary_10_1038_s41467_024_49280_3 crossref_primary_10_1002_smsc_202400400 crossref_primary_10_1021_acsnano_1c06651 crossref_primary_10_1063_5_0189185 crossref_primary_10_1016_j_giant_2023_100209 crossref_primary_10_3390_ma12193065 crossref_primary_10_1109_LRA_2020_3049112 crossref_primary_10_1002_aisy_202400699 crossref_primary_10_1002_anie_201910634 crossref_primary_10_1109_TASE_2021_3085481 crossref_primary_10_1016_j_bioactmat_2024_12_028 crossref_primary_10_1007_s40820_024_01464_8 crossref_primary_10_1016_j_actbio_2023_08_005 crossref_primary_10_1021_acs_chemmater_2c01960 crossref_primary_10_1007_s40820_023_01259_3 crossref_primary_10_1039_D3TB01163A crossref_primary_10_1021_acsami_1c01742 crossref_primary_10_1002_adhm_202202921 crossref_primary_10_1002_smll_201906908 crossref_primary_10_1016_j_cej_2024_153622 crossref_primary_10_1021_acsami_3c14902 crossref_primary_10_1039_D2LC00265E crossref_primary_10_1073_pnas_2310939120 crossref_primary_10_3389_fbioe_2024_1339450 crossref_primary_10_1002_rpm_20240008 crossref_primary_10_1515_ntrev_2020_0073 crossref_primary_10_1038_s41467_019_12679_4 crossref_primary_10_1002_adma_202003060 |
Cites_doi | 10.1038/nmat4569 10.1039/C4PY00792A 10.1146/annurev-bioeng-010510-103409 10.1021/am507680u 10.1109/LRA.2017.2651167 10.1016/j.snb.2018.03.033 10.1002/pola.26365 10.1021/bm990017d 10.1038/nature25443 10.1002/adfm.201705684 10.1016/B978-1-4557-7891-1.00007-4 10.1016/j.actbio.2017.03.036 10.1002/adma.201502583 10.1101/cshperspect.a005058 10.1002/pola.23734 10.1002/adma.201404444 10.1038/ncomms12263 10.1002/ange.201706570 10.1021/acs.biomac.7b00905 10.1038/nprot.2016.037 10.1007/s00542-007-0430-1 10.1038/s41578-018-0001-3 10.1016/j.addr.2015.09.004 10.1016/S0927-7757(00)00764-0 10.1021/acsnano.8b02907 10.1002/adma.201605072 10.1021/ma00045a039 10.1021/acsnano.6b08079 10.1039/c3ra42918k 10.1039/C6NR02228F 10.1038/s41578-018-0016-9 10.1016/j.ijpharm.2008.08.020 10.1172/JCI109596 10.1002/adma.201503112 10.1002/anie.201703276 10.1084/jem.145.5.1399 10.1126/science.163038 10.1590/1516-1439.310114 10.1515/bnm-2014-0008 10.1021/acsnano.6b06256 10.15302/J-ENG-2015005 10.1016/0092-8674(79)90104-1 10.1038/ncomms5829 10.1016/j.snb.2014.01.099 10.1016/S0927-7765(99)00012-0 10.1002/adma.201103818 10.1002/adma.201705564 10.1002/adfm.201403891 10.1126/scirobotics.aam6431 10.1002/adma.201605458 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201804107 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201804107 ADFM201804107 |
Genre | article |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 201504910817 – fundername: National Natural Science Foundation of China funderid: 11702003 – fundername: EU Marie‐Curie Postdoctoral Fellowship funderid: COFUND 267161 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4237-df933fc3786b5226b2fcf378c6dd6a32386c1a43596c69a8a9feebd014b57ebe3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 10:36:51 EDT 2025 Tue Jul 01 04:11:52 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Wed Jan 22 16:38:23 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4237-df933fc3786b5226b2fcf378c6dd6a32386c1a43596c69a8a9feebd014b57ebe3 |
Notes | Present address: Institute for Biomechanics, ETH Zurich, Leopold‐Ruzicka‐Weg 4, CH‐8093 Zurich, Switzerland + ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0147-8287 0000-0001-8355-3230 |
OpenAccessLink | http://hdl.handle.net/20.500.11850/303166 |
PQID | 2129510668 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2129510668 crossref_primary_10_1002_adfm_201804107 crossref_citationtrail_10_1002_adfm_201804107 wiley_primary_10_1002_adfm_201804107_ADFM201804107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 7, 2018 |
PublicationDateYYYYMMDD | 2018-11-07 |
PublicationDate_xml | – month: 11 year: 2018 text: November 7, 2018 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1992 1999 2001 2009; 25 13 180 365 2015; 1 1979; 16 2013; 3 2016 2017; 28 29 2015; 18 2012 2015; 95 1977 1979; 145 64 2008; 14 2016; 10 2010 2018 2018 2018; 12 3 3 554 2000; 1 2011; 3 2009 2014; 47 15 2016; 11 2014; 5 2015; 27 2017 2017; 18 55 2014 2012; 5 24 2013; 51 2017; 56 2014 2016 2017 2015 2016 2017; 196 8 29 25 28 129 2018; 30 2017 2014 2018 2017; 2 7 266 11 1975; 187 2018; 12 2016 2016 2017 2017 2018; 15 7 2 28 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_7_5 e_1_2_8_9_3 e_1_2_8_7_4 e_1_2_8_9_2 e_1_2_8_9_4 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_19_3 e_1_2_8_19_4 e_1_2_8_11_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_2_6 e_1_2_8_2_5 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_14_1 e_1_2_8_16_1 Huang H.‐W. (e_1_2_8_7_3) 2017 e_1_2_8_10_1 e_1_2_8_12_1 |
References_xml | – volume: 56 start-page: 7620 year: 2017 publication-title: Angew. Chem. – volume: 27 start-page: 2981 year: 2015 publication-title: Adv. Mater. – volume: 30 start-page: 1705564 year: 2018 publication-title: Adv. Mater. – volume: 18 55 start-page: 3260 373 year: 2017 2017 publication-title: Biomacromolecules Acta Biomater. – volume: 16 start-page: 895 year: 1979 publication-title: Cell – volume: 3 start-page: 15939 year: 2013 publication-title: RSC Adv. – volume: 1 start-page: 021 year: 2015 publication-title: Engineering – start-page: 165 year: 2012 – volume: 2 7 266 11 start-page: eaam6431 250 276 1957 year: 2017 2014 2018 2017 publication-title: Sci. Robot. ACS Appl. Mater. Interfaces Sens. Actuators, B ACS Nano – volume: 14 start-page: 307 year: 2008 publication-title: Microsyst. Technol. – volume: 15 7 2 28 start-page: 647 12263 25 727 1705684 year: 2016 2016 2017 2017 2018 publication-title: Nat. Mater. Nat. Commun. Homeland Defense Security Inform. Anal. Center J. IEEE Robot. Autom. Lett. Adv. Funct. Mater. – volume: 95 start-page: 104 year: 2015 publication-title: Adv. Drug Delivery Rev. – volume: 145 64 start-page: 1399 1386 year: 1977 1979 publication-title: J. Exp. Med. J. Clin. Investig. – volume: 11 start-page: 727 year: 2016 publication-title: Nat. Protoc. – volume: 28 29 start-page: 533 1605072 year: 2016 2017 publication-title: Adv. Mater. Adv. Mater. – volume: 18 start-page: 509 year: 2015 publication-title: Mater. Res. – volume: 1 start-page: 31 year: 2000 publication-title: Biomacromolecules – volume: 47 15 start-page: 6941 49 year: 2009 2014 publication-title: J. Polym. Sci., Part A: Polym. Chem. BioNanoMater. – volume: 12 start-page: 6210 year: 2018 publication-title: ACS Nano – volume: 25 13 180 365 start-page: 5081 187 87 180 year: 1992 1999 2001 2009 publication-title: Macromolecules Colloids Surf. B: Biointerfaces Colloids Surf. A: Physicochem. Eng. Aspects Int. J. Pharmaceutics – volume: 51 start-page: 203 year: 2013 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 10 start-page: 10389 year: 2016 publication-title: ACS Nano – volume: 187 start-page: 261 year: 1975 publication-title: Science – volume: 5 start-page: 6523 year: 2014 publication-title: Polym. Chem. – volume: 12 3 3 554 start-page: 55 113 74 81 year: 2010 2018 2018 2018 publication-title: Annu. Rev. Biomed. Eng. Nat. Rev. Mater. Nat. Rev. Mater. Nature – volume: 196 8 29 25 28 129 start-page: 676 12723 1605458 1666 1060 13115 year: 2014 2016 2017 2015 2016 2017 publication-title: Sens. Actuators, B Nanoscale Adv. Mater. Adv. Funct. Mater. Adv. Mater. Angew. Chem. – volume: 3 start-page: a005058 year: 2011 publication-title: Cold Spring Harbor Perspect. Biol. – volume: 5 24 start-page: 4829 811 year: 2014 2012 publication-title: Nat. Commun. Adv. Mater. – ident: e_1_2_8_7_1 doi: 10.1038/nmat4569 – ident: e_1_2_8_17_1 doi: 10.1039/C4PY00792A – ident: e_1_2_8_1_1 doi: 10.1146/annurev-bioeng-010510-103409 – ident: e_1_2_8_9_2 doi: 10.1021/am507680u – ident: e_1_2_8_7_4 doi: 10.1109/LRA.2017.2651167 – ident: e_1_2_8_9_3 doi: 10.1016/j.snb.2018.03.033 – ident: e_1_2_8_23_1 doi: 10.1002/pola.26365 – ident: e_1_2_8_27_1 doi: 10.1021/bm990017d – ident: e_1_2_8_1_4 doi: 10.1038/nature25443 – ident: e_1_2_8_7_5 doi: 10.1002/adfm.201705684 – ident: e_1_2_8_15_1 doi: 10.1016/B978-1-4557-7891-1.00007-4 – ident: e_1_2_8_18_2 doi: 10.1016/j.actbio.2017.03.036 – ident: e_1_2_8_2_5 doi: 10.1002/adma.201502583 – ident: e_1_2_8_13_1 doi: 10.1101/cshperspect.a005058 – ident: e_1_2_8_12_1 doi: 10.1002/pola.23734 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201404444 – ident: e_1_2_8_7_2 doi: 10.1038/ncomms12263 – ident: e_1_2_8_2_6 doi: 10.1002/ange.201706570 – ident: e_1_2_8_18_1 doi: 10.1021/acs.biomac.7b00905 – ident: e_1_2_8_14_1 doi: 10.1038/nprot.2016.037 – ident: e_1_2_8_3_1 doi: 10.1007/s00542-007-0430-1 – ident: e_1_2_8_1_3 doi: 10.1038/s41578-018-0001-3 – ident: e_1_2_8_4_1 doi: 10.1016/j.addr.2015.09.004 – ident: e_1_2_8_19_3 doi: 10.1016/S0927-7757(00)00764-0 – ident: e_1_2_8_6_1 doi: 10.1021/acsnano.8b02907 – ident: e_1_2_8_8_2 doi: 10.1002/adma.201605072 – ident: e_1_2_8_19_1 doi: 10.1021/ma00045a039 – ident: e_1_2_8_9_4 doi: 10.1021/acsnano.6b08079 – ident: e_1_2_8_16_1 doi: 10.1039/c3ra42918k – ident: e_1_2_8_2_2 doi: 10.1039/C6NR02228F – ident: e_1_2_8_1_2 doi: 10.1038/s41578-018-0016-9 – ident: e_1_2_8_19_4 doi: 10.1016/j.ijpharm.2008.08.020 – ident: e_1_2_8_24_2 doi: 10.1172/JCI109596 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201503112 – ident: e_1_2_8_11_1 doi: 10.1002/anie.201703276 – ident: e_1_2_8_24_1 doi: 10.1084/jem.145.5.1399 – start-page: 25 year: 2017 ident: e_1_2_8_7_3 publication-title: Homeland Defense Security Inform. Anal. Center J. – ident: e_1_2_8_25_1 doi: 10.1126/science.163038 – ident: e_1_2_8_20_1 doi: 10.1590/1516-1439.310114 – ident: e_1_2_8_12_2 doi: 10.1515/bnm-2014-0008 – ident: e_1_2_8_10_1 doi: 10.1021/acsnano.6b06256 – ident: e_1_2_8_21_1 doi: 10.15302/J-ENG-2015005 – ident: e_1_2_8_26_1 doi: 10.1016/0092-8674(79)90104-1 – ident: e_1_2_8_22_1 doi: 10.1038/ncomms5829 – ident: e_1_2_8_2_1 doi: 10.1016/j.snb.2014.01.099 – ident: e_1_2_8_19_2 doi: 10.1016/S0927-7765(99)00012-0 – ident: e_1_2_8_22_2 doi: 10.1002/adma.201103818 – ident: e_1_2_8_28_1 doi: 10.1002/adma.201705564 – ident: e_1_2_8_2_4 doi: 10.1002/adfm.201403891 – ident: e_1_2_8_9_1 doi: 10.1126/scirobotics.aam6431 – ident: e_1_2_8_2_3 doi: 10.1002/adma.201605458 |
SSID | ssj0017734 |
Score | 2.6585162 |
Snippet | Mobile micro‐ and nanorobots are proposed for future biomedical applications, such as diagnostics and targeted delivery. For their translation to clinical... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Biocompatibility Biodegradability biodegradable hydrogels Biomedical materials Cytotoxicity Gelatin Hydrogels magnetic manipulation Materials science Microrobots Nanoparticles soft helical microswimmers Three dimensional printing Toxicity two‐photon polymerization |
Title | 3D Printed Enzymatically Biodegradable Soft Helical Microswimmers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201804107 https://www.proquest.com/docview/2129510668 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDzBd98C5O5-iD4FM226xp-1jdxhAr4hzsreTSwHB0sguyfXpz0ss2QQR9a0hS2tzOv-k5vyB0o0UwESqRmAhP4ZanbMyl62JGaStR0uUtCoHC0TPtDVqPQ3e4EcWf8SHKDTeYGWa9hgnO-Ky5hoYyqSCS3AaAjgknB4ctUEWvJT_K9rzstzK1wcHLHhbUxjunuV192yqtpeamYDUWp3uIWPGsmaPJe2Mx5w2x-oZx_M_LHKGDXI5aYTZ-jtFOkp6g_Q1I4SkKSdt6mQJWQlqddLU0jFc2Hi-t-9FEAmtCQviV1dcLuqWtGGRaEfj5zT5HZlv8DA26nbeHHs4PXsACvGSwVAEhShDPpxz0GXeUUDolqJSUEW3lqbCZFloBFTRgPgtUknCpv7a46-lRQc5RJZ2kyQWy_ERnS-ZyobWK1GJGESdgNnNtQb3A4VWEi4aPRU4lh8MxxnHGU3ZiaJq4bJoqui3Lf2Q8jh9L1op-jPN5OYu1oQZJSalfRY7pkF_uEoftblSmLv9S6QrtwbUJYPRqqDKfLpJrrWTmvI52w3b01K-bUfsFgKTr9A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeD6IP64F2cTu2D4FM327RJ-zjdxtR1iG6wt5JLA8PRyS7I9unN6W2bIII-pk1Km9v5Jz3nF4RutAjGQkXSxIIq06HKMrl0XZMR4kRKutwhECgcdEir5zz13dybEGJhUj5EseEGIyOZr2GAw4Z0dUkNZVJBKLkFBB2IJ9-CY72TVdVrQZCyKE1_LBMLXLysfs5tvLOr6-XX7dJSbK5K1sTmNPcRz982dTV5r8ymvCIW30CO__qcA7SXKVKjlnahQ7QRxUdod4VTeIxquG68jIEsIY1GvJgnmFc2HM6N-8FIAm5CQgSW8abndEMbMrhpBODqN_kcJDvjJ6jXbHQfWmZ29oIpwFHGlMrHWAlMPcJBonFbCaVTgkhJGNaGngiLaa3lE0F85jFfRRGXesHFXao7Bj5Fm_Eojs6Q4UX6tmQuF1quSK1nFLZ9ZjHXEoT6Ni8hM6_5UGRgcjgfYximSGU7hKoJi6opodsi_0eK5PgxZzlvyDAbmpNQ22pQlYR4JWQnLfLLU8JavRkUqfO_FLpG261u0A7bj53nC7QD15N4RlpGm9PxLLrUwmbKr5Ku-wXbTu57 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQfTBuzid2gfBp25r06bt47Qr87Ix1MHeSi4NDEc3dkG2X29Ob9sEEfQxTVLak5Ocr-n5viB0q0Aw5jISOuaO1C1HGjoTtq1TQqxICptZBIjC7Q5p9aynvt1fY_Gn-hDFhhvMjGS9hgk-FrK2Eg2lQgKT3AABHaCTb1uk7oJf-6-FgJThOOl_ZWJAhpfRz2Ub62Zts_9mWFphzXXEmoSc4ADR_GHTTJOP6nzGqnz5TcfxP29ziPYzPKo1Ugc6QltRfIz21lQKT1AD-1p3AroSQmvGy0Ui8kqHw4V2PxgJEJsQwL_S3tSKrqkwBpVaGxL9pp-DZF_8FPWC5vtDS89OXtA5pMnoQnoYS44dlzAAaMyUXKoSJ0IQilWYJ9ygCml5hBOPutSTUcSE-txitqPcAp-hUjyKo3OkuZGqFtRmXIEVodCMxKZHDWobnDieycpIzw0f8kyWHE7HGIapoLIZgmnCwjRldFe0H6eCHD-2rOTjGGYTcxqqSA2YkhC3jMxkQH65S9jwg3ZRuvhLpxu00_WD8OWx83yJduFyQmZ0Kqg0m8yjK4VqZuw6cdwvMEztMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Printed+Enzymatically+Biodegradable+Soft+Helical+Microswimmers&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Xiaopu&rft.au=Qin%2C+Xiao%E2%80%90Hua&rft.au=Hu%2C+Chengzhi&rft.au=Terzopoulou%2C+Anastasia&rft.date=2018-11-07&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=45&rft_id=info:doi/10.1002%2Fadfm.201804107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201804107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |