3D Printed Enzymatically Biodegradable Soft Helical Microswimmers

Mobile micro‐ and nanorobots are proposed for future biomedical applications, such as diagnostics and targeted delivery. For their translation to clinical practice, biocompatibility and biodegradability of micro‐ and nanorobots are required aspects. The fabrication of small‐scale robots with non‐cyt...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 45
Main Authors Wang, Xiaopu, Qin, Xiao‐Hua, Hu, Chengzhi, Terzopoulou, Anastasia, Chen, Xiang‐Zhong, Huang, Tian‐Yun, Maniura‐Weber, Katharina, Pané, Salvador, Nelson, Bradley J.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 07.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mobile micro‐ and nanorobots are proposed for future biomedical applications, such as diagnostics and targeted delivery. For their translation to clinical practice, biocompatibility and biodegradability of micro‐ and nanorobots are required aspects. The fabrication of small‐scale robots with non‐cytotoxic biodegradable soft components will allow for enhanced device assimilation, optimal tissue interaction and minimized immune reactions. The 3D microfabrication of biodegradable soft helical microswimmers via two‐photon polymerization of the non‐toxic photocrosslinkable hydrogel gelatin methacryloyl (GelMA) is reported. GelMA microswimmers are fabricated with user‐defined geometry and rendered magnetically responsive by decorating their surface with magnetic nanoparticles. In contrast to previous rigid helical microrobots, the soft helical microswimmers can corkscrew above the step‐out frequency with relatively high values of forward velocity, suggesting an unprecedented self‐adaptive behavior. Cytotoxicity assays show the toxicity of GelMA is at least three orders of magnitude lower than that of poly(ethyleneglycol) diacrylates, which are widely used for fabricating hydrogel‐based microswimmers. GelMA microswimmers are fully degradable by collagenases. Furthermore, they support cell attachment and growth, and are gradually digested by cell‐released enzymes during culture. These non‐cytotoxic biodegradable hydrogel microswimmers will greatly expand their applications in medicine by eliminating the concerns of retrieving microrobots after fulfilling tasks in body. Biodegradable soft helical microswimmers are successfully developed based on two‐photon photopolymerization of a gelatin derivative, GelMA. By decorating their surface with magnetic nanoparticles, these microswimmers can be manipulated by magnetic field. Because of the proteolytic cleavage of peptide domains in gelatin, microswimmers made of GelMA can be fully degraded by cell‐secreted proteases.
AbstractList Mobile micro‐ and nanorobots are proposed for future biomedical applications, such as diagnostics and targeted delivery. For their translation to clinical practice, biocompatibility and biodegradability of micro‐ and nanorobots are required aspects. The fabrication of small‐scale robots with non‐cytotoxic biodegradable soft components will allow for enhanced device assimilation, optimal tissue interaction and minimized immune reactions. The 3D microfabrication of biodegradable soft helical microswimmers via two‐photon polymerization of the non‐toxic photocrosslinkable hydrogel gelatin methacryloyl (GelMA) is reported. GelMA microswimmers are fabricated with user‐defined geometry and rendered magnetically responsive by decorating their surface with magnetic nanoparticles. In contrast to previous rigid helical microrobots, the soft helical microswimmers can corkscrew above the step‐out frequency with relatively high values of forward velocity, suggesting an unprecedented self‐adaptive behavior. Cytotoxicity assays show the toxicity of GelMA is at least three orders of magnitude lower than that of poly(ethyleneglycol) diacrylates, which are widely used for fabricating hydrogel‐based microswimmers. GelMA microswimmers are fully degradable by collagenases. Furthermore, they support cell attachment and growth, and are gradually digested by cell‐released enzymes during culture. These non‐cytotoxic biodegradable hydrogel microswimmers will greatly expand their applications in medicine by eliminating the concerns of retrieving microrobots after fulfilling tasks in body. Biodegradable soft helical microswimmers are successfully developed based on two‐photon photopolymerization of a gelatin derivative, GelMA. By decorating their surface with magnetic nanoparticles, these microswimmers can be manipulated by magnetic field. Because of the proteolytic cleavage of peptide domains in gelatin, microswimmers made of GelMA can be fully degraded by cell‐secreted proteases.
Mobile micro‐ and nanorobots are proposed for future biomedical applications, such as diagnostics and targeted delivery. For their translation to clinical practice, biocompatibility and biodegradability of micro‐ and nanorobots are required aspects. The fabrication of small‐scale robots with non‐cytotoxic biodegradable soft components will allow for enhanced device assimilation, optimal tissue interaction and minimized immune reactions. The 3D microfabrication of biodegradable soft helical microswimmers via two‐photon polymerization of the non‐toxic photocrosslinkable hydrogel gelatin methacryloyl (GelMA) is reported. GelMA microswimmers are fabricated with user‐defined geometry and rendered magnetically responsive by decorating their surface with magnetic nanoparticles. In contrast to previous rigid helical microrobots, the soft helical microswimmers can corkscrew above the step‐out frequency with relatively high values of forward velocity, suggesting an unprecedented self‐adaptive behavior. Cytotoxicity assays show the toxicity of GelMA is at least three orders of magnitude lower than that of poly(ethyleneglycol) diacrylates, which are widely used for fabricating hydrogel‐based microswimmers. GelMA microswimmers are fully degradable by collagenases. Furthermore, they support cell attachment and growth, and are gradually digested by cell‐released enzymes during culture. These non‐cytotoxic biodegradable hydrogel microswimmers will greatly expand their applications in medicine by eliminating the concerns of retrieving microrobots after fulfilling tasks in body.
Author Wang, Xiaopu
Chen, Xiang‐Zhong
Terzopoulou, Anastasia
Hu, Chengzhi
Nelson, Bradley J.
Maniura‐Weber, Katharina
Qin, Xiao‐Hua
Huang, Tian‐Yun
Pané, Salvador
Author_xml – sequence: 1
  givenname: Xiaopu
  surname: Wang
  fullname: Wang, Xiaopu
  organization: Institute of Robotics and Intelligent Systems, ETH Zurich
– sequence: 2
  givenname: Xiao‐Hua
  orcidid: 0000-0001-8355-3230
  surname: Qin
  fullname: Qin, Xiao‐Hua
  email: xh.qin84@gmail.com
  organization: Empa‐Swiss Federal Laboratories for Materials Science and Technology
– sequence: 3
  givenname: Chengzhi
  surname: Hu
  fullname: Hu, Chengzhi
  organization: Institute of Robotics and Intelligent Systems, ETH Zurich
– sequence: 4
  givenname: Anastasia
  surname: Terzopoulou
  fullname: Terzopoulou, Anastasia
  organization: Institute of Robotics and Intelligent Systems, ETH Zurich
– sequence: 5
  givenname: Xiang‐Zhong
  surname: Chen
  fullname: Chen, Xiang‐Zhong
  organization: Institute of Robotics and Intelligent Systems, ETH Zurich
– sequence: 6
  givenname: Tian‐Yun
  surname: Huang
  fullname: Huang, Tian‐Yun
  organization: Institute of Robotics and Intelligent Systems, ETH Zurich
– sequence: 7
  givenname: Katharina
  surname: Maniura‐Weber
  fullname: Maniura‐Weber, Katharina
  organization: Empa‐Swiss Federal Laboratories for Materials Science and Technology
– sequence: 8
  givenname: Salvador
  orcidid: 0000-0003-0147-8287
  surname: Pané
  fullname: Pané, Salvador
  email: vidalp@ethz.ch
  organization: Institute of Robotics and Intelligent Systems, ETH Zurich
– sequence: 9
  givenname: Bradley J.
  surname: Nelson
  fullname: Nelson, Bradley J.
  organization: Institute of Robotics and Intelligent Systems, ETH Zurich
BookMark eNqFkMtLw0AQxhepYFu9eg54Tt1HskmOtQ8rtCio4G3Z7EO2bLJ1N6XEv96ESgVBPM0M8_3mG74RGNSuVgBcIzhBEOJbLnU1wRDlMEEwOwNDRBGNCcT54NSjtwswCmELIcoykgzBlMyjJ2_qRsloUX-2FW-M4Na20Z1xUr17LnlpVfTsdBOtlO2X0cYI78LBVJXy4RKca26DuvquY_C6XLzMVvH68f5hNl3HIsEki6UuCNGCZDktU4xpibXQ3SSolJQTTHIqEE9IWlBBC57zQitVSoiSMs1UqcgY3Bzv7rz72KvQsK3b-7qzZBjhIkWQ0rxTTY6q_sPglWY7byruW4Yg62NifUzsFFMHJL8AYZouBFc3nhv7N1YcsYOxqv3HhE3ny80P-wVdYn6u
CitedBy_id crossref_primary_10_1002_ange_202008681
crossref_primary_10_1021_acsnano_0c07954
crossref_primary_10_1038_s41598_022_22312_y
crossref_primary_10_1002_adma_202207791
crossref_primary_10_1002_adhm_202102253
crossref_primary_10_1021_acsami_0c01264
crossref_primary_10_1063_1_5137743
crossref_primary_10_1080_17425247_2019_1676228
crossref_primary_10_1039_D4NR01776E
crossref_primary_10_61186_masm_3_3_398
crossref_primary_10_1002_adfm_202006998
crossref_primary_10_1002_adfm_202110625
crossref_primary_10_1080_17425247_2025_2466768
crossref_primary_10_1126_scirobotics_abc7620
crossref_primary_10_1021_acsami_3c13627
crossref_primary_10_1021_acsmaterialslett_4c00472
crossref_primary_10_3390_mi15040492
crossref_primary_10_1021_acsanm_4c02182
crossref_primary_10_1002_mame_202400431
crossref_primary_10_1021_acs_chemrev_4c00070
crossref_primary_10_3390_polym14214574
crossref_primary_10_1039_D4BM00674G
crossref_primary_10_1088_1758_5090_abc95f
crossref_primary_10_1115_1_4066193
crossref_primary_10_1140_epje_i2019_11854_3
crossref_primary_10_1063_5_0053647
crossref_primary_10_1016_j_engreg_2021_03_002
crossref_primary_10_1109_TASE_2022_3207289
crossref_primary_10_1016_j_mtchem_2021_100694
crossref_primary_10_3390_nano15010013
crossref_primary_10_1002_ange_201910634
crossref_primary_10_1002_aisy_202100269
crossref_primary_10_1002_adhm_202001788
crossref_primary_10_1080_17425247_2025_2466772
crossref_primary_10_1088_1361_6439_ac0c64
crossref_primary_10_1021_acsami_1c18808
crossref_primary_10_1063_5_0034901
crossref_primary_10_1002_anbr_202300018
crossref_primary_10_1016_j_actbio_2019_05_005
crossref_primary_10_1021_acsnano_8b06773
crossref_primary_10_1002_admt_201800575
crossref_primary_10_1016_j_ces_2024_120107
crossref_primary_10_1016_j_nantod_2023_101764
crossref_primary_10_1002_adfm_201910323
crossref_primary_10_1007_s42242_024_00295_1
crossref_primary_10_1002_adfm_202206303
crossref_primary_10_3390_mi13050798
crossref_primary_10_1002_aisy_202100116
crossref_primary_10_3390_mi14122253
crossref_primary_10_1002_adfm_202210345
crossref_primary_10_1002_adhm_202100720
crossref_primary_10_1002_admt_202001218
crossref_primary_10_1016_j_biomaterials_2021_121350
crossref_primary_10_1016_j_jconrel_2022_12_038
crossref_primary_10_1021_acsami_3c01087
crossref_primary_10_1021_acs_chemrev_0c01234
crossref_primary_10_3389_fbioe_2023_1086106
crossref_primary_10_1002_adma_202310100
crossref_primary_10_3390_molecules29143351
crossref_primary_10_1002_adfm_202214393
crossref_primary_10_1002_adfm_201907615
crossref_primary_10_1002_adhm_202001681
crossref_primary_10_3390_polym16010025
crossref_primary_10_1002_adma_202002047
crossref_primary_10_1007_s43154_021_00066_1
crossref_primary_10_1002_smll_202208259
crossref_primary_10_1016_j_nanoms_2024_05_013
crossref_primary_10_1002_adma_202003013
crossref_primary_10_1088_2631_7990_ad720f
crossref_primary_10_3390_app122211542
crossref_primary_10_1021_acs_chemrev_0c00077
crossref_primary_10_1016_j_eml_2021_101268
crossref_primary_10_34133_cbsystems_0019
crossref_primary_10_1016_j_matdes_2023_111651
crossref_primary_10_1021_acsnano_2c04716
crossref_primary_10_1016_j_jconrel_2022_11_035
crossref_primary_10_1002_ange_202013689
crossref_primary_10_1109_LRA_2021_3137546
crossref_primary_10_1002_adfm_202107421
crossref_primary_10_1109_LRA_2023_3256928
crossref_primary_10_1002_aisy_202000216
crossref_primary_10_1002_adma_201901592
crossref_primary_10_1039_C9MH00279K
crossref_primary_10_1088_1361_6439_ab8ebd
crossref_primary_10_1039_D4TC01868K
crossref_primary_10_1021_acs_chemrev_0c00999
crossref_primary_10_1063_5_0026728
crossref_primary_10_1002_aisy_202300052
crossref_primary_10_1016_j_snb_2023_134603
crossref_primary_10_1016_j_matt_2021_10_010
crossref_primary_10_1038_s42256_023_00779_2
crossref_primary_10_1002_pat_70021
crossref_primary_10_1016_j_eurpolymj_2023_112370
crossref_primary_10_1002_adma_202404825
crossref_primary_10_1126_scirobotics_aay6626
crossref_primary_10_1002_admt_202101633
crossref_primary_10_1002_advs_202401110
crossref_primary_10_1007_s10845_024_02529_6
crossref_primary_10_1007_s12274_023_6184_y
crossref_primary_10_1038_s44172_024_00215_2
crossref_primary_10_1002_ange_202405895
crossref_primary_10_1039_C9RA07342F
crossref_primary_10_1016_j_pmatsci_2023_101204
crossref_primary_10_3389_fbioe_2018_00170
crossref_primary_10_1002_anie_202008681
crossref_primary_10_3390_mi11040404
crossref_primary_10_1063_5_0223995
crossref_primary_10_1002_adma_202305925
crossref_primary_10_2174_0115734137268436231023071009
crossref_primary_10_1089_3dp_2023_0127
crossref_primary_10_3788_IRLA20240435
crossref_primary_10_1109_TMECH_2020_2988049
crossref_primary_10_1016_j_jconrel_2024_08_040
crossref_primary_10_1002_anie_202405895
crossref_primary_10_1002_adhm_201900213
crossref_primary_10_1002_adsu_202300289
crossref_primary_10_1007_s10338_021_00260_w
crossref_primary_10_1002_advs_202204072
crossref_primary_10_1002_anie_202013689
crossref_primary_10_1002_adma_202306468
crossref_primary_10_1002_admt_202101256
crossref_primary_10_1016_j_matdes_2023_111735
crossref_primary_10_1002_adfm_202414571
crossref_primary_10_1002_smll_202408597
crossref_primary_10_1002_aisy_202200023
crossref_primary_10_3390_nano13101590
crossref_primary_10_1002_adhm_202001031
crossref_primary_10_1016_j_apmt_2020_100583
crossref_primary_10_1002_advs_202002203
crossref_primary_10_1002_smll_202107888
crossref_primary_10_1016_j_mtadv_2022_100281
crossref_primary_10_1002_adfm_202004975
crossref_primary_10_1002_admt_201900332
crossref_primary_10_1002_cptc_201900246
crossref_primary_10_1002_smll_202206391
crossref_primary_10_1038_s41598_022_17053_x
crossref_primary_10_37188_lam_2023_029
crossref_primary_10_1016_j_sna_2023_114574
crossref_primary_10_1088_2399_7532_ac4836
crossref_primary_10_1039_D1TC06162C
crossref_primary_10_16925_2357_6014_2022_03_11
crossref_primary_10_1109_TRO_2024_3463482
crossref_primary_10_1002_admt_202100158
crossref_primary_10_1002_aisy_202000256
crossref_primary_10_3389_frobt_2022_1086043
crossref_primary_10_1021_acs_nanolett_2c03001
crossref_primary_10_1002_aisy_201900147
crossref_primary_10_1002_cnma_202100055
crossref_primary_10_1089_3dp_2021_0235
crossref_primary_10_1002_adem_202300750
crossref_primary_10_1126_scirobotics_abd2813
crossref_primary_10_1109_TMECH_2021_3081114
crossref_primary_10_1002_adfm_202314265
crossref_primary_10_1002_smll_202002111
crossref_primary_10_1002_admt_202000535
crossref_primary_10_1146_annurev_control_042920_013322
crossref_primary_10_1021_acs_langmuir_9b01192
crossref_primary_10_3389_frobt_2021_673533
crossref_primary_10_1021_acsnano_3c01942
crossref_primary_10_1016_j_actbio_2022_06_020
crossref_primary_10_1039_D1MA00174D
crossref_primary_10_3390_nano12010115
crossref_primary_10_1002_aisy_202000267
crossref_primary_10_1038_s41467_022_33409_3
crossref_primary_10_1039_D3LC00743J
crossref_primary_10_34133_cbsystems_0235
crossref_primary_10_1038_s42254_023_00671_3
crossref_primary_10_1002_smll_201805006
crossref_primary_10_51934_jomit_1016838
crossref_primary_10_1002_adma_202002211
crossref_primary_10_1088_2631_7990_acfc03
crossref_primary_10_1109_TBME_2019_2960530
crossref_primary_10_1016_j_ccr_2023_215372
crossref_primary_10_1016_j_eurpolymj_2023_112718
crossref_primary_10_1021_jacs_9b05092
crossref_primary_10_1140_epje_s10189_021_00072_3
crossref_primary_10_1109_LRA_2023_3242164
crossref_primary_10_1021_acs_chemrev_0c00897
crossref_primary_10_1039_D3LC01084H
crossref_primary_10_1021_acs_chemrev_0c00535
crossref_primary_10_1088_1361_665X_ace1ba
crossref_primary_10_1002_adfm_202005137
crossref_primary_10_1002_adfm_202304445
crossref_primary_10_1002_aisy_202300311
crossref_primary_10_1016_j_compositesb_2025_112387
crossref_primary_10_1002_aisy_202000270
crossref_primary_10_1021_acsmacrolett_9b00196
crossref_primary_10_1016_j_pmatsci_2021_100808
crossref_primary_10_3390_machines10070497
crossref_primary_10_3390_polym13040563
crossref_primary_10_1109_LRA_2018_2887205
crossref_primary_10_1088_1361_648X_adac98
crossref_primary_10_1002_adma_202201888
crossref_primary_10_1007_s10544_021_00590_z
crossref_primary_10_1002_biot_201900086
crossref_primary_10_1021_acsami_4c10301
crossref_primary_10_1002_adfm_202416823
crossref_primary_10_1002_aisy_202100052
crossref_primary_10_1038_s41598_021_90445_7
crossref_primary_10_1002_aisy_202100051
crossref_primary_10_1002_adma_202312956
crossref_primary_10_1016_j_matdes_2023_112101
crossref_primary_10_1007_s13346_022_01200_y
crossref_primary_10_1039_D0CS01062F
crossref_primary_10_1002_adfm_201909202
crossref_primary_10_3389_fbioe_2022_1030377
crossref_primary_10_3389_fchem_2024_1416314
crossref_primary_10_1002_adma_201903497
crossref_primary_10_1038_s41596_023_00916_6
crossref_primary_10_1007_s44174_023_00071_2
crossref_primary_10_1016_j_nantod_2024_102337
crossref_primary_10_3390_act12030124
crossref_primary_10_3390_mi15121443
crossref_primary_10_1039_D2SM00891B
crossref_primary_10_3389_fbioe_2022_994355
crossref_primary_10_1007_s40883_022_00288_5
crossref_primary_10_3389_fbioe_2023_1327441
crossref_primary_10_1016_j_matdes_2021_110172
crossref_primary_10_1002_adma_202102049
crossref_primary_10_1002_adfm_202212952
crossref_primary_10_1002_smll_201900709
crossref_primary_10_3390_biom12010141
crossref_primary_10_1002_adfm_202112508
crossref_primary_10_1038_s41467_024_49280_3
crossref_primary_10_1002_smsc_202400400
crossref_primary_10_1021_acsnano_1c06651
crossref_primary_10_1063_5_0189185
crossref_primary_10_1016_j_giant_2023_100209
crossref_primary_10_3390_ma12193065
crossref_primary_10_1109_LRA_2020_3049112
crossref_primary_10_1002_aisy_202400699
crossref_primary_10_1002_anie_201910634
crossref_primary_10_1109_TASE_2021_3085481
crossref_primary_10_1016_j_bioactmat_2024_12_028
crossref_primary_10_1007_s40820_024_01464_8
crossref_primary_10_1016_j_actbio_2023_08_005
crossref_primary_10_1021_acs_chemmater_2c01960
crossref_primary_10_1007_s40820_023_01259_3
crossref_primary_10_1039_D3TB01163A
crossref_primary_10_1021_acsami_1c01742
crossref_primary_10_1002_adhm_202202921
crossref_primary_10_1002_smll_201906908
crossref_primary_10_1016_j_cej_2024_153622
crossref_primary_10_1021_acsami_3c14902
crossref_primary_10_1039_D2LC00265E
crossref_primary_10_1073_pnas_2310939120
crossref_primary_10_3389_fbioe_2024_1339450
crossref_primary_10_1002_rpm_20240008
crossref_primary_10_1515_ntrev_2020_0073
crossref_primary_10_1038_s41467_019_12679_4
crossref_primary_10_1002_adma_202003060
Cites_doi 10.1038/nmat4569
10.1039/C4PY00792A
10.1146/annurev-bioeng-010510-103409
10.1021/am507680u
10.1109/LRA.2017.2651167
10.1016/j.snb.2018.03.033
10.1002/pola.26365
10.1021/bm990017d
10.1038/nature25443
10.1002/adfm.201705684
10.1016/B978-1-4557-7891-1.00007-4
10.1016/j.actbio.2017.03.036
10.1002/adma.201502583
10.1101/cshperspect.a005058
10.1002/pola.23734
10.1002/adma.201404444
10.1038/ncomms12263
10.1002/ange.201706570
10.1021/acs.biomac.7b00905
10.1038/nprot.2016.037
10.1007/s00542-007-0430-1
10.1038/s41578-018-0001-3
10.1016/j.addr.2015.09.004
10.1016/S0927-7757(00)00764-0
10.1021/acsnano.8b02907
10.1002/adma.201605072
10.1021/ma00045a039
10.1021/acsnano.6b08079
10.1039/c3ra42918k
10.1039/C6NR02228F
10.1038/s41578-018-0016-9
10.1016/j.ijpharm.2008.08.020
10.1172/JCI109596
10.1002/adma.201503112
10.1002/anie.201703276
10.1084/jem.145.5.1399
10.1126/science.163038
10.1590/1516-1439.310114
10.1515/bnm-2014-0008
10.1021/acsnano.6b06256
10.15302/J-ENG-2015005
10.1016/0092-8674(79)90104-1
10.1038/ncomms5829
10.1016/j.snb.2014.01.099
10.1016/S0927-7765(99)00012-0
10.1002/adma.201103818
10.1002/adma.201705564
10.1002/adfm.201403891
10.1126/scirobotics.aam6431
10.1002/adma.201605458
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201804107
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201804107
ADFM201804107
Genre article
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 201504910817
– fundername: National Natural Science Foundation of China
  funderid: 11702003
– fundername: EU Marie‐Curie Postdoctoral Fellowship
  funderid: COFUND 267161
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4237-df933fc3786b5226b2fcf378c6dd6a32386c1a43596c69a8a9feebd014b57ebe3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 10:36:51 EDT 2025
Tue Jul 01 04:11:52 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Wed Jan 22 16:38:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4237-df933fc3786b5226b2fcf378c6dd6a32386c1a43596c69a8a9feebd014b57ebe3
Notes Present address: Institute for Biomechanics, ETH Zurich, Leopold‐Ruzicka‐Weg 4, CH‐8093 Zurich, Switzerland
+
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0147-8287
0000-0001-8355-3230
OpenAccessLink http://hdl.handle.net/20.500.11850/303166
PQID 2129510668
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2129510668
crossref_primary_10_1002_adfm_201804107
crossref_citationtrail_10_1002_adfm_201804107
wiley_primary_10_1002_adfm_201804107_ADFM201804107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 7, 2018
PublicationDateYYYYMMDD 2018-11-07
PublicationDate_xml – month: 11
  year: 2018
  text: November 7, 2018
  day: 07
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1992 1999 2001 2009; 25 13 180 365
2015; 1
1979; 16
2013; 3
2016 2017; 28 29
2015; 18
2012
2015; 95
1977 1979; 145 64
2008; 14
2016; 10
2010 2018 2018 2018; 12 3 3 554
2000; 1
2011; 3
2009 2014; 47 15
2016; 11
2014; 5
2015; 27
2017 2017; 18 55
2014 2012; 5 24
2013; 51
2017; 56
2014 2016 2017 2015 2016 2017; 196 8 29 25 28 129
2018; 30
2017 2014 2018 2017; 2 7 266 11
1975; 187
2018; 12
2016 2016 2017 2017 2018; 15 7 2 28
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_7_5
e_1_2_8_9_3
e_1_2_8_7_4
e_1_2_8_9_2
e_1_2_8_9_4
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_19_3
e_1_2_8_19_4
e_1_2_8_11_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_2_6
e_1_2_8_2_5
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_14_1
e_1_2_8_16_1
Huang H.‐W. (e_1_2_8_7_3) 2017
e_1_2_8_10_1
e_1_2_8_12_1
References_xml – volume: 56
  start-page: 7620
  year: 2017
  publication-title: Angew. Chem.
– volume: 27
  start-page: 2981
  year: 2015
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1705564
  year: 2018
  publication-title: Adv. Mater.
– volume: 18 55
  start-page: 3260 373
  year: 2017 2017
  publication-title: Biomacromolecules Acta Biomater.
– volume: 16
  start-page: 895
  year: 1979
  publication-title: Cell
– volume: 3
  start-page: 15939
  year: 2013
  publication-title: RSC Adv.
– volume: 1
  start-page: 021
  year: 2015
  publication-title: Engineering
– start-page: 165
  year: 2012
– volume: 2 7 266 11
  start-page: eaam6431 250 276 1957
  year: 2017 2014 2018 2017
  publication-title: Sci. Robot. ACS Appl. Mater. Interfaces Sens. Actuators, B ACS Nano
– volume: 14
  start-page: 307
  year: 2008
  publication-title: Microsyst. Technol.
– volume: 15 7 2 28
  start-page: 647 12263 25 727 1705684
  year: 2016 2016 2017 2017 2018
  publication-title: Nat. Mater. Nat. Commun. Homeland Defense Security Inform. Anal. Center J. IEEE Robot. Autom. Lett. Adv. Funct. Mater.
– volume: 95
  start-page: 104
  year: 2015
  publication-title: Adv. Drug Delivery Rev.
– volume: 145 64
  start-page: 1399 1386
  year: 1977 1979
  publication-title: J. Exp. Med. J. Clin. Investig.
– volume: 11
  start-page: 727
  year: 2016
  publication-title: Nat. Protoc.
– volume: 28 29
  start-page: 533 1605072
  year: 2016 2017
  publication-title: Adv. Mater. Adv. Mater.
– volume: 18
  start-page: 509
  year: 2015
  publication-title: Mater. Res.
– volume: 1
  start-page: 31
  year: 2000
  publication-title: Biomacromolecules
– volume: 47 15
  start-page: 6941 49
  year: 2009 2014
  publication-title: J. Polym. Sci., Part A: Polym. Chem. BioNanoMater.
– volume: 12
  start-page: 6210
  year: 2018
  publication-title: ACS Nano
– volume: 25 13 180 365
  start-page: 5081 187 87 180
  year: 1992 1999 2001 2009
  publication-title: Macromolecules Colloids Surf. B: Biointerfaces Colloids Surf. A: Physicochem. Eng. Aspects Int. J. Pharmaceutics
– volume: 51
  start-page: 203
  year: 2013
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 10
  start-page: 10389
  year: 2016
  publication-title: ACS Nano
– volume: 187
  start-page: 261
  year: 1975
  publication-title: Science
– volume: 5
  start-page: 6523
  year: 2014
  publication-title: Polym. Chem.
– volume: 12 3 3 554
  start-page: 55 113 74 81
  year: 2010 2018 2018 2018
  publication-title: Annu. Rev. Biomed. Eng. Nat. Rev. Mater. Nat. Rev. Mater. Nature
– volume: 196 8 29 25 28 129
  start-page: 676 12723 1605458 1666 1060 13115
  year: 2014 2016 2017 2015 2016 2017
  publication-title: Sens. Actuators, B Nanoscale Adv. Mater. Adv. Funct. Mater. Adv. Mater. Angew. Chem.
– volume: 3
  start-page: a005058
  year: 2011
  publication-title: Cold Spring Harbor Perspect. Biol.
– volume: 5 24
  start-page: 4829 811
  year: 2014 2012
  publication-title: Nat. Commun. Adv. Mater.
– ident: e_1_2_8_7_1
  doi: 10.1038/nmat4569
– ident: e_1_2_8_17_1
  doi: 10.1039/C4PY00792A
– ident: e_1_2_8_1_1
  doi: 10.1146/annurev-bioeng-010510-103409
– ident: e_1_2_8_9_2
  doi: 10.1021/am507680u
– ident: e_1_2_8_7_4
  doi: 10.1109/LRA.2017.2651167
– ident: e_1_2_8_9_3
  doi: 10.1016/j.snb.2018.03.033
– ident: e_1_2_8_23_1
  doi: 10.1002/pola.26365
– ident: e_1_2_8_27_1
  doi: 10.1021/bm990017d
– ident: e_1_2_8_1_4
  doi: 10.1038/nature25443
– ident: e_1_2_8_7_5
  doi: 10.1002/adfm.201705684
– ident: e_1_2_8_15_1
  doi: 10.1016/B978-1-4557-7891-1.00007-4
– ident: e_1_2_8_18_2
  doi: 10.1016/j.actbio.2017.03.036
– ident: e_1_2_8_2_5
  doi: 10.1002/adma.201502583
– ident: e_1_2_8_13_1
  doi: 10.1101/cshperspect.a005058
– ident: e_1_2_8_12_1
  doi: 10.1002/pola.23734
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201404444
– ident: e_1_2_8_7_2
  doi: 10.1038/ncomms12263
– ident: e_1_2_8_2_6
  doi: 10.1002/ange.201706570
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.biomac.7b00905
– ident: e_1_2_8_14_1
  doi: 10.1038/nprot.2016.037
– ident: e_1_2_8_3_1
  doi: 10.1007/s00542-007-0430-1
– ident: e_1_2_8_1_3
  doi: 10.1038/s41578-018-0001-3
– ident: e_1_2_8_4_1
  doi: 10.1016/j.addr.2015.09.004
– ident: e_1_2_8_19_3
  doi: 10.1016/S0927-7757(00)00764-0
– ident: e_1_2_8_6_1
  doi: 10.1021/acsnano.8b02907
– ident: e_1_2_8_8_2
  doi: 10.1002/adma.201605072
– ident: e_1_2_8_19_1
  doi: 10.1021/ma00045a039
– ident: e_1_2_8_9_4
  doi: 10.1021/acsnano.6b08079
– ident: e_1_2_8_16_1
  doi: 10.1039/c3ra42918k
– ident: e_1_2_8_2_2
  doi: 10.1039/C6NR02228F
– ident: e_1_2_8_1_2
  doi: 10.1038/s41578-018-0016-9
– ident: e_1_2_8_19_4
  doi: 10.1016/j.ijpharm.2008.08.020
– ident: e_1_2_8_24_2
  doi: 10.1172/JCI109596
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201503112
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.201703276
– ident: e_1_2_8_24_1
  doi: 10.1084/jem.145.5.1399
– start-page: 25
  year: 2017
  ident: e_1_2_8_7_3
  publication-title: Homeland Defense Security Inform. Anal. Center J.
– ident: e_1_2_8_25_1
  doi: 10.1126/science.163038
– ident: e_1_2_8_20_1
  doi: 10.1590/1516-1439.310114
– ident: e_1_2_8_12_2
  doi: 10.1515/bnm-2014-0008
– ident: e_1_2_8_10_1
  doi: 10.1021/acsnano.6b06256
– ident: e_1_2_8_21_1
  doi: 10.15302/J-ENG-2015005
– ident: e_1_2_8_26_1
  doi: 10.1016/0092-8674(79)90104-1
– ident: e_1_2_8_22_1
  doi: 10.1038/ncomms5829
– ident: e_1_2_8_2_1
  doi: 10.1016/j.snb.2014.01.099
– ident: e_1_2_8_19_2
  doi: 10.1016/S0927-7765(99)00012-0
– ident: e_1_2_8_22_2
  doi: 10.1002/adma.201103818
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.201705564
– ident: e_1_2_8_2_4
  doi: 10.1002/adfm.201403891
– ident: e_1_2_8_9_1
  doi: 10.1126/scirobotics.aam6431
– ident: e_1_2_8_2_3
  doi: 10.1002/adma.201605458
SSID ssj0017734
Score 2.6585162
Snippet Mobile micro‐ and nanorobots are proposed for future biomedical applications, such as diagnostics and targeted delivery. For their translation to clinical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Biocompatibility
Biodegradability
biodegradable hydrogels
Biomedical materials
Cytotoxicity
Gelatin
Hydrogels
magnetic manipulation
Materials science
Microrobots
Nanoparticles
soft helical microswimmers
Three dimensional printing
Toxicity
two‐photon polymerization
Title 3D Printed Enzymatically Biodegradable Soft Helical Microswimmers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201804107
https://www.proquest.com/docview/2129510668
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDzBd98C5O5-iD4FM226xp-1jdxhAr4hzsreTSwHB0sguyfXpz0ss2QQR9a0hS2tzOv-k5vyB0o0UwESqRmAhP4ZanbMyl62JGaStR0uUtCoHC0TPtDVqPQ3e4EcWf8SHKDTeYGWa9hgnO-Ky5hoYyqSCS3AaAjgknB4ctUEWvJT_K9rzstzK1wcHLHhbUxjunuV192yqtpeamYDUWp3uIWPGsmaPJe2Mx5w2x-oZx_M_LHKGDXI5aYTZ-jtFOkp6g_Q1I4SkKSdt6mQJWQlqddLU0jFc2Hi-t-9FEAmtCQviV1dcLuqWtGGRaEfj5zT5HZlv8DA26nbeHHs4PXsACvGSwVAEhShDPpxz0GXeUUDolqJSUEW3lqbCZFloBFTRgPgtUknCpv7a46-lRQc5RJZ2kyQWy_ERnS-ZyobWK1GJGESdgNnNtQb3A4VWEi4aPRU4lh8MxxnHGU3ZiaJq4bJoqui3Lf2Q8jh9L1op-jPN5OYu1oQZJSalfRY7pkF_uEoftblSmLv9S6QrtwbUJYPRqqDKfLpJrrWTmvI52w3b01K-bUfsFgKTr9A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeD6IP64F2cTu2D4FM327RJ-zjdxtR1iG6wt5JLA8PRyS7I9unN6W2bIII-pk1Km9v5Jz3nF4RutAjGQkXSxIIq06HKMrl0XZMR4kRKutwhECgcdEir5zz13dybEGJhUj5EseEGIyOZr2GAw4Z0dUkNZVJBKLkFBB2IJ9-CY72TVdVrQZCyKE1_LBMLXLysfs5tvLOr6-XX7dJSbK5K1sTmNPcRz982dTV5r8ymvCIW30CO__qcA7SXKVKjlnahQ7QRxUdod4VTeIxquG68jIEsIY1GvJgnmFc2HM6N-8FIAm5CQgSW8abndEMbMrhpBODqN_kcJDvjJ6jXbHQfWmZ29oIpwFHGlMrHWAlMPcJBonFbCaVTgkhJGNaGngiLaa3lE0F85jFfRRGXesHFXao7Bj5Fm_Eojs6Q4UX6tmQuF1quSK1nFLZ9ZjHXEoT6Ni8hM6_5UGRgcjgfYximSGU7hKoJi6opodsi_0eK5PgxZzlvyDAbmpNQ22pQlYR4JWQnLfLLU8JavRkUqfO_FLpG261u0A7bj53nC7QD15N4RlpGm9PxLLrUwmbKr5Ku-wXbTu57
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQfTBuzid2gfBp25r06bt47Qr87Ix1MHeSi4NDEc3dkG2X29Ob9sEEfQxTVLak5Ocr-n5viB0q0Aw5jISOuaO1C1HGjoTtq1TQqxICptZBIjC7Q5p9aynvt1fY_Gn-hDFhhvMjGS9hgk-FrK2Eg2lQgKT3AABHaCTb1uk7oJf-6-FgJThOOl_ZWJAhpfRz2Ub62Zts_9mWFphzXXEmoSc4ADR_GHTTJOP6nzGqnz5TcfxP29ziPYzPKo1Ugc6QltRfIz21lQKT1AD-1p3AroSQmvGy0Ui8kqHw4V2PxgJEJsQwL_S3tSKrqkwBpVaGxL9pp-DZF_8FPWC5vtDS89OXtA5pMnoQnoYS44dlzAAaMyUXKoSJ0IQilWYJ9ygCml5hBOPutSTUcSE-txitqPcAp-hUjyKo3OkuZGqFtRmXIEVodCMxKZHDWobnDieycpIzw0f8kyWHE7HGIapoLIZgmnCwjRldFe0H6eCHD-2rOTjGGYTcxqqSA2YkhC3jMxkQH65S9jwg3ZRuvhLpxu00_WD8OWx83yJduFyQmZ0Kqg0m8yjK4VqZuw6cdwvMEztMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Printed+Enzymatically+Biodegradable+Soft+Helical+Microswimmers&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Xiaopu&rft.au=Qin%2C+Xiao%E2%80%90Hua&rft.au=Hu%2C+Chengzhi&rft.au=Terzopoulou%2C+Anastasia&rft.date=2018-11-07&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=45&rft_id=info:doi/10.1002%2Fadfm.201804107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201804107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon