Indigo: A Natural Molecular Passivator for Efficient Perovskite Solar Cells
Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while still facing critical stability challenges. Herein, the natural organic dye Indigo is explored for the first time to be an efficient molecul...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 22 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while still facing critical stability challenges. Herein, the natural organic dye Indigo is explored for the first time to be an efficient molecular passivator that assists in the preparation of high‐quality hybrid perovskite film with reduced defects and enhanced stability. The Indigo molecule with both carbonyl and amino groups can provide bifunctional chemical passivation for defects. In‐depth theoretical and experimental studies show that the Indigo molecules firmly binds to the perovskite surfaces, enhancing the crystallization of perovskite films with improved morphology. Consequently, the Indigo‐passivated perovskite film exhibits increased grain size with better uniformity, reduced grain boundaries, lowered defect density, and retarded ion migration, boosting the device efficiency up to 23.22%, and ≈21% for large‐area device (1 cm2). Furthermore, the Indigo passivation can enhance device stability in terms of both humidity and thermal stress. These results provide not only new insights into the multipassivation role of natural organic dyes but also a simple and low‐cost strategy to prepare high‐quality hybrid perovskite films for optoelectronic applications based on Indigo derivatives.
Natural organic dye Indigo is for the first time demonstrated as a low‐cost and highly efficient molecular passivator for high performance perovskite solar cells and the Indigo passivation boosts power conversion efficiency of device up to 23.22% as well as enhances device stability both in terms of humidity and thermal stress. |
---|---|
AbstractList | Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while still facing critical stability challenges. Herein, the natural organic dye Indigo is explored for the first time to be an efficient molecular passivator that assists in the preparation of high‐quality hybrid perovskite film with reduced defects and enhanced stability. The Indigo molecule with both carbonyl and amino groups can provide bifunctional chemical passivation for defects. In‐depth theoretical and experimental studies show that the Indigo molecules firmly binds to the perovskite surfaces, enhancing the crystallization of perovskite films with improved morphology. Consequently, the Indigo‐passivated perovskite film exhibits increased grain size with better uniformity, reduced grain boundaries, lowered defect density, and retarded ion migration, boosting the device efficiency up to 23.22%, and ≈21% for large‐area device (1 cm2). Furthermore, the Indigo passivation can enhance device stability in terms of both humidity and thermal stress. These results provide not only new insights into the multipassivation role of natural organic dyes but also a simple and low‐cost strategy to prepare high‐quality hybrid perovskite films for optoelectronic applications based on Indigo derivatives.
Natural organic dye Indigo is for the first time demonstrated as a low‐cost and highly efficient molecular passivator for high performance perovskite solar cells and the Indigo passivation boosts power conversion efficiency of device up to 23.22% as well as enhances device stability both in terms of humidity and thermal stress. Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while still facing critical stability challenges. Herein, the natural organic dye Indigo is explored for the first time to be an efficient molecular passivator that assists in the preparation of high‐quality hybrid perovskite film with reduced defects and enhanced stability. The Indigo molecule with both carbonyl and amino groups can provide bifunctional chemical passivation for defects. In‐depth theoretical and experimental studies show that the Indigo molecules firmly binds to the perovskite surfaces, enhancing the crystallization of perovskite films with improved morphology. Consequently, the Indigo‐passivated perovskite film exhibits increased grain size with better uniformity, reduced grain boundaries, lowered defect density, and retarded ion migration, boosting the device efficiency up to 23.22%, and ≈21% for large‐area device (1 cm 2 ). Furthermore, the Indigo passivation can enhance device stability in terms of both humidity and thermal stress. These results provide not only new insights into the multipassivation role of natural organic dyes but also a simple and low‐cost strategy to prepare high‐quality hybrid perovskite films for optoelectronic applications based on Indigo derivatives. Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while still facing critical stability challenges. Herein, the natural organic dye Indigo is explored for the first time to be an efficient molecular passivator that assists in the preparation of high‐quality hybrid perovskite film with reduced defects and enhanced stability. The Indigo molecule with both carbonyl and amino groups can provide bifunctional chemical passivation for defects. In‐depth theoretical and experimental studies show that the Indigo molecules firmly binds to the perovskite surfaces, enhancing the crystallization of perovskite films with improved morphology. Consequently, the Indigo‐passivated perovskite film exhibits increased grain size with better uniformity, reduced grain boundaries, lowered defect density, and retarded ion migration, boosting the device efficiency up to 23.22%, and ≈21% for large‐area device (1 cm2). Furthermore, the Indigo passivation can enhance device stability in terms of both humidity and thermal stress. These results provide not only new insights into the multipassivation role of natural organic dyes but also a simple and low‐cost strategy to prepare high‐quality hybrid perovskite films for optoelectronic applications based on Indigo derivatives. |
Author | Wu, Tom Guo, Junjun Cazorla, Claudio Zhang, Xuliang Fang, Shiwen Sun, Jianguo Yang, Yingguo Wang, Yao Han, Chenxu Huang, Hehe Ma, Wanli Hu, Long Ling, Xufeng Chu, Dewei Yuan, Jianyu |
Author_xml | – sequence: 1 givenname: Junjun surname: Guo fullname: Guo, Junjun organization: Soochow University – sequence: 2 givenname: Jianguo surname: Sun fullname: Sun, Jianguo organization: Soochow University – sequence: 3 givenname: Long surname: Hu fullname: Hu, Long organization: Macquarie University – sequence: 4 givenname: Shiwen surname: Fang fullname: Fang, Shiwen organization: Soochow University – sequence: 5 givenname: Xufeng surname: Ling fullname: Ling, Xufeng organization: Soochow University – sequence: 6 givenname: Xuliang surname: Zhang fullname: Zhang, Xuliang organization: Soochow University – sequence: 7 givenname: Yao surname: Wang fullname: Wang, Yao organization: Soochow University – sequence: 8 givenname: Hehe surname: Huang fullname: Huang, Hehe organization: Soochow University – sequence: 9 givenname: Chenxu surname: Han fullname: Han, Chenxu organization: Soochow University – sequence: 10 givenname: Claudio surname: Cazorla fullname: Cazorla, Claudio organization: Universitat Politècnica de Catalunya – sequence: 11 givenname: Yingguo surname: Yang fullname: Yang, Yingguo organization: Chinese Academy of Sciences – sequence: 12 givenname: Dewei surname: Chu fullname: Chu, Dewei organization: University of New South Wales (UNSW) – sequence: 13 givenname: Tom surname: Wu fullname: Wu, Tom organization: University of New South Wales (UNSW) – sequence: 14 givenname: Jianyu surname: Yuan fullname: Yuan, Jianyu email: jyyuan@suda.edu.cn organization: Soochow University – sequence: 15 givenname: Wanli orcidid: 0000-0002-2001-3234 surname: Ma fullname: Ma, Wanli email: wlma@suda.edu.cn organization: Soochow University |
BookMark | eNqFkE1LAzEQhoNUsNZePS943jr5aLbrrZSqxVYL6jkku4mkbjc1yVb6791SqSCIA8MMw_vMMO856tSu1ghdYhhgAHItdb0eECAEYEizE9TFHLOUjxh0jj0lZ6gfwgraYDkGSrvoYVaX9s3dJOPkUcbGyypZuEoXTSV9spQh2K2MziemzakxtrC6jslSe7cN7zbq5NntlRNdVeECnRpZBd3_rj30ejt9mdyn86e72WQ8TwtGaJZKzktOATAxQ1CEj0qQ7QyrgiooTUkwlqr9iRuV54opqimVTOWaZ4YWoGgPXR32brz7aHSIYuUaX7cnBeEZwzmnI9KqBgdV4V0IXhux8XYt_U5gEHvPxN4zcfSsBdgvoLBRRuvq6KWt_sbyA_ZpK73754gYTx8XP-wXZZaCMQ |
CitedBy_id | crossref_primary_10_1002_smll_202207769 crossref_primary_10_1039_D3QI01178J crossref_primary_10_1002_aenm_202203505 crossref_primary_10_1002_ange_202407383 crossref_primary_10_1016_j_cej_2024_159035 crossref_primary_10_1002_adfm_202215096 crossref_primary_10_1016_j_cap_2023_11_014 crossref_primary_10_1021_acsenergylett_2c01537 crossref_primary_10_1007_s40843_022_2277_9 crossref_primary_10_1016_j_nanoen_2023_109003 crossref_primary_10_1021_acsami_4c04901 crossref_primary_10_1002_smll_202205336 crossref_primary_10_1021_acsnano_4c07093 crossref_primary_10_1016_j_cej_2023_141573 crossref_primary_10_1002_adma_202313154 crossref_primary_10_1021_acsami_4c03383 crossref_primary_10_1039_D2EE03742D crossref_primary_10_1021_acsami_3c13591 crossref_primary_10_1021_jacs_4c12634 crossref_primary_10_1039_D4YA00025K crossref_primary_10_1002_aenm_202302169 crossref_primary_10_1002_ange_202411121 crossref_primary_10_1002_cssc_202400510 crossref_primary_10_1021_acssuschemeng_2c05527 crossref_primary_10_1002_aenm_202201787 crossref_primary_10_1016_j_cej_2023_141602 crossref_primary_10_1002_anie_202409945 crossref_primary_10_3390_polym15092010 crossref_primary_10_1039_D2NJ05998C crossref_primary_10_1002_aenm_202301927 crossref_primary_10_1021_acsami_4c16831 crossref_primary_10_1002_admi_202201809 crossref_primary_10_1016_j_nantod_2024_102479 crossref_primary_10_1002_adma_202410327 crossref_primary_10_1002_adma_202310065 crossref_primary_10_1002_adfm_202314529 crossref_primary_10_1002_ange_202409945 crossref_primary_10_1021_jacs_4c09094 crossref_primary_10_1002_solr_202400016 crossref_primary_10_1039_D4TC00202D crossref_primary_10_1002_anie_202420369 crossref_primary_10_1021_acs_jpcc_4c06141 crossref_primary_10_1002_adfm_202304161 crossref_primary_10_1021_acsmaterialslett_3c00225 crossref_primary_10_1016_j_materresbull_2024_113151 crossref_primary_10_1002_aenm_202204362 crossref_primary_10_1002_ange_202314270 crossref_primary_10_1016_j_jallcom_2024_174853 crossref_primary_10_1002_aenm_202202189 crossref_primary_10_1002_smll_202304189 crossref_primary_10_1039_D2EE03082A crossref_primary_10_1039_D2DT03957E crossref_primary_10_1002_adom_202400883 crossref_primary_10_1021_acs_jpclett_2c03750 crossref_primary_10_1039_D4EE05968A crossref_primary_10_1007_s40820_023_01097_3 crossref_primary_10_1002_solr_202300137 crossref_primary_10_1002_ifm2_20 crossref_primary_10_1002_anie_202407383 crossref_primary_10_1016_j_mtener_2022_101191 crossref_primary_10_1039_D2TC04225H crossref_primary_10_1002_smtd_202300192 crossref_primary_10_1021_acsenergylett_4c02610 crossref_primary_10_1002_adom_202303051 crossref_primary_10_1002_adfm_202315157 crossref_primary_10_1002_adfm_202408480 crossref_primary_10_1016_j_cej_2023_148320 crossref_primary_10_1002_advs_202302917 crossref_primary_10_1039_D3TA03314G crossref_primary_10_1002_adfm_202422014 crossref_primary_10_26599_EMD_2024_9370036 crossref_primary_10_1016_j_xinn_2022_100363 crossref_primary_10_1039_D2RA06761G crossref_primary_10_1039_D2CS00217E crossref_primary_10_1002_adfm_202403020 crossref_primary_10_1038_s41570_023_00510_0 crossref_primary_10_1002_adma_202210186 crossref_primary_10_1002_cptc_202200311 crossref_primary_10_1002_ange_202420369 crossref_primary_10_1002_anie_202411121 crossref_primary_10_1039_D3CP03200K crossref_primary_10_1039_D3TC00275F crossref_primary_10_1016_j_orgel_2023_106879 crossref_primary_10_1002_solr_202300511 crossref_primary_10_1016_j_cej_2024_151575 crossref_primary_10_1016_j_mssp_2024_108185 crossref_primary_10_1002_adma_202313099 crossref_primary_10_1016_j_cej_2024_152370 crossref_primary_10_1002_adfm_202214102 crossref_primary_10_1002_aenm_202402243 crossref_primary_10_1038_s41467_025_55815_z crossref_primary_10_3390_ma16062163 crossref_primary_10_1016_j_mtadv_2024_100470 crossref_primary_10_1016_j_solmat_2024_113005 crossref_primary_10_1016_j_xcrp_2024_102030 crossref_primary_10_1039_D4TC03748K crossref_primary_10_1002_anie_202314270 crossref_primary_10_1002_advs_202305582 crossref_primary_10_1016_j_cej_2025_160571 |
Cites_doi | 10.1016/j.jechem.2021.03.024 10.1021/jacs.1c03419 10.1039/c3ta15291j 10.1016/j.joule.2019.06.014 10.1002/anie.202017148 10.1038/s41467-020-20749-1 10.1126/science.aay7044 10.1126/science.abc4417 10.1002/smtd.202001248 10.1039/D1TA06514A 10.1016/j.joule.2018.04.011 10.1002/adfm.201870119 10.1126/science.1254050 10.1002/anie.202102096 10.1103/RevModPhys.89.035003 10.1126/science.abb8985 10.1002/anie.202012095 10.1016/j.joule.2020.07.006 10.1021/jacs.1c00852 10.1002/adma.202001906 10.1039/D1EE02287C 10.1021/accountsmr.1c00099 10.1002/aenm.202102538 10.1039/D0EE03312J 10.1002/smtd.202100046 10.1126/science.aax3294 10.1126/sciadv.abb2412 10.1038/s41467-021-22049-8 10.1038/s41586-021-03285-w 10.1039/D0TA10717D 10.1002/adma.202008405 10.1038/nenergy.2017.102 10.1002/anie.202112555 10.1038/s41560-020-00749-7 10.1126/science.abb7167 10.1002/crat.202100056 10.1002/adma.201707583 10.1039/D1EE02248B 10.1038/nmat4014 10.1002/adfm.202006802 10.1103/PhysRevB.50.17953 10.1002/adma.202005000 10.1002/advs.201903368 10.1039/D1EE01440D 10.1038/s41560-021-00901-x 10.1021/acs.nanolett.0c03914 10.1021/acsenergylett.1c01039 10.1016/j.joule.2020.06.007 10.1038/s41586-021-03964-8 10.1103/PhysRevLett.77.3865 10.1016/j.jechem.2021.07.011 10.1002/anie.202010987 10.1002/adfm.202005776 10.1021/acsenergylett.1c00354 10.1126/science.aay9698 10.1016/j.nanoen.2020.105712 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202200537 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202200537 AENM202200537 |
Genre | article |
GrantInformation_xml | – fundername: Science and Technology Program of Jiangsu Province funderid: BZ2020011 – fundername: Spanish Ministry of Science, Innovation, and Universities under the “Ramon y Cajal” funderid: RYC2018‐024947‐I – fundername: National Key Research and Development Program of China funderid: 2019YFE0108600 – fundername: National Natural Science Foundation of China funderid: 52073198; 22161142003,; 61911530158 – fundername: China Postdoctoral Science Foundation funderid: 2021T140495 – fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20211598 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGYGG AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4237-a66d630012f50b268d0aa661bc3b0dfd211ab0026fb99b4b3e33a4b9e67f3c0b3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:12:59 EDT 2025 Tue Jul 01 01:43:44 EDT 2025 Thu Apr 24 22:50:22 EDT 2025 Wed Jun 11 08:30:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4237-a66d630012f50b268d0aa661bc3b0dfd211ab0026fb99b4b3e33a4b9e67f3c0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2001-3234 |
OpenAccessLink | https://upcommons.upc.edu/bitstream/2117/386062/1/Indigo.pdf |
PQID | 2674196382 |
PQPubID | 886389 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2674196382 crossref_primary_10_1002_aenm_202200537 crossref_citationtrail_10_1002_aenm_202200537 wiley_primary_10_1002_aenm_202200537_AENM202200537 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2021; 7 2021; 6 2018; 28 2021; 5 2019; 3 2017; 2 2021; 2 2020; 20 2017; 89 2020; 369 2019; 366 2021; 143 2020; 32 2019; 365 1996; 77 2021; 14 2020; 7 2020; 4 2018; 2 2021; 31 2021; 12 2021; 56 2021; 33 2014; 2 2021; 11 2020; 31 2021; 598 2020; 370 2014; 13 2021; 590 2018; 30 2021; 60 2021; 82 1994; 50 2021; 63 2021; 62 2014; 345 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 6 start-page: 63 year: 2021 publication-title: Nat. Energy – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 345 start-page: 542 year: 2014 publication-title: Science – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 56 year: 2021 publication-title: Cryst. Res. Technol. – volume: 366 start-page: 1509 year: 2019 publication-title: Science – volume: 14 start-page: 6536 year: 2021 publication-title: Energy Environ. Sci. – volume: 60 start-page: 4238 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 6 start-page: 2404 year: 2021 publication-title: ACS Energy Lett. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 370 start-page: 8985 year: 2020 publication-title: Science – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 466 year: 2021 publication-title: Nat. Commun. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 365 start-page: 473 year: 2019 publication-title: Science – volume: 6 start-page: 858 year: 2021 publication-title: Nat. Energy – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 14 start-page: 4903 year: 2021 publication-title: Energy Environ. Sci. – volume: 82 year: 2021 publication-title: Nano Energy – volume: 12 start-page: 1878 year: 2021 publication-title: Nat. Commun. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 63 start-page: 452 year: 2021 publication-title: J. Energy Chem. – volume: 370 start-page: 108 year: 2020 publication-title: Science – volume: 50 year: 1994 publication-title: Phys. Rev. B: Condens. Matter – volume: 366 start-page: 749 year: 2019 publication-title: Science – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 3 start-page: 2179 year: 2019 publication-title: Joule – volume: 62 start-page: 243 year: 2021 publication-title: J. Energy Chem. – volume: 6 start-page: 1942 year: 2021 publication-title: ACS Energy Lett. – volume: 14 start-page: 2419 year: 2021 publication-title: Energy Environ. Sci. – volume: 60 start-page: 2485 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 1141 year: 2021 publication-title: Acc. Mater. Res. – volume: 598 start-page: 444 year: 2021 publication-title: Nature – volume: 2 start-page: 1313 year: 2018 publication-title: Joule – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1961 year: 2020 publication-title: Joule – volume: 20 start-page: 8880 year: 2020 publication-title: Nano Lett. – volume: 143 start-page: 5855 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1575 year: 2020 publication-title: Joule – volume: 2 start-page: 5427 year: 2014 publication-title: J. Mater. Chem. A – volume: 89 year: 2017 publication-title: Rev. Mod. Phys. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 369 start-page: 1615 year: 2020 publication-title: Science – volume: 5 year: 2021 publication-title: Small Methods – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 6526 year: 2021 publication-title: Energy Environ. Sci. – volume: 60 start-page: 8303 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 1574 year: 2021 publication-title: J. Mater. Chem. A – volume: 7 start-page: 2412 year: 2021 publication-title: Sci. Adv. – volume: 590 start-page: 587 year: 2021 publication-title: Nature – ident: e_1_2_8_14_1 doi: 10.1016/j.jechem.2021.03.024 – ident: e_1_2_8_37_1 doi: 10.1021/jacs.1c03419 – ident: e_1_2_8_40_1 doi: 10.1039/c3ta15291j – ident: e_1_2_8_11_1 doi: 10.1016/j.joule.2019.06.014 – ident: e_1_2_8_47_1 doi: 10.1002/anie.202017148 – ident: e_1_2_8_52_1 doi: 10.1038/s41467-020-20749-1 – ident: e_1_2_8_5_1 doi: 10.1126/science.aay7044 – ident: e_1_2_8_3_1 doi: 10.1126/science.abc4417 – ident: e_1_2_8_15_1 doi: 10.1002/smtd.202001248 – ident: e_1_2_8_31_1 doi: 10.1039/D1TA06514A – ident: e_1_2_8_13_1 doi: 10.1016/j.joule.2018.04.011 – ident: e_1_2_8_35_1 doi: 10.1002/adfm.201870119 – ident: e_1_2_8_2_1 doi: 10.1126/science.1254050 – ident: e_1_2_8_24_1 doi: 10.1002/anie.202102096 – ident: e_1_2_8_42_1 doi: 10.1103/RevModPhys.89.035003 – ident: e_1_2_8_4_1 doi: 10.1126/science.abb8985 – ident: e_1_2_8_25_1 doi: 10.1002/anie.202012095 – ident: e_1_2_8_28_1 doi: 10.1016/j.joule.2020.07.006 – ident: e_1_2_8_36_1 doi: 10.1021/jacs.1c00852 – ident: e_1_2_8_48_1 doi: 10.1002/adma.202001906 – ident: e_1_2_8_17_1 doi: 10.1039/D1EE02287C – ident: e_1_2_8_49_1 doi: 10.1021/accountsmr.1c00099 – ident: e_1_2_8_51_1 doi: 10.1002/aenm.202102538 – ident: e_1_2_8_22_1 doi: 10.1039/D0EE03312J – ident: e_1_2_8_10_1 doi: 10.1002/smtd.202100046 – ident: e_1_2_8_20_1 doi: 10.1126/science.aax3294 – ident: e_1_2_8_27_1 doi: 10.1126/sciadv.abb2412 – ident: e_1_2_8_34_1 doi: 10.1038/s41467-021-22049-8 – ident: e_1_2_8_7_1 doi: 10.1038/s41586-021-03285-w – ident: e_1_2_8_39_1 doi: 10.1039/D0TA10717D – ident: e_1_2_8_38_1 doi: 10.1002/adma.202008405 – ident: e_1_2_8_19_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_8_50_1 doi: 10.1002/anie.202112555 – ident: e_1_2_8_46_1 doi: 10.1038/s41560-020-00749-7 – ident: e_1_2_8_8_1 doi: 10.1126/science.abb7167 – ident: e_1_2_8_45_1 doi: 10.1002/crat.202100056 – ident: e_1_2_8_56_1 doi: 10.1002/adma.201707583 – ident: e_1_2_8_16_1 doi: 10.1039/D1EE02248B – ident: e_1_2_8_1_1 doi: 10.1038/nmat4014 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.202006802 – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_6_1 doi: 10.1002/adma.202005000 – ident: e_1_2_8_26_1 doi: 10.1002/advs.201903368 – ident: e_1_2_8_30_1 doi: 10.1039/D1EE01440D – ident: e_1_2_8_53_1 doi: 10.1038/s41560-021-00901-x – ident: e_1_2_8_32_1 doi: 10.1021/acs.nanolett.0c03914 – ident: e_1_2_8_21_1 doi: 10.1021/acsenergylett.1c01039 – ident: e_1_2_8_33_1 doi: 10.1016/j.joule.2020.06.007 – ident: e_1_2_8_9_1 doi: 10.1038/s41586-021-03964-8 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_54_1 doi: 10.1016/j.jechem.2021.07.011 – ident: e_1_2_8_29_1 doi: 10.1002/anie.202010987 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.202005776 – ident: e_1_2_8_12_1 doi: 10.1021/acsenergylett.1c00354 – ident: e_1_2_8_18_1 doi: 10.1126/science.aay9698 – ident: e_1_2_8_41_1 doi: 10.1016/j.nanoen.2020.105712 |
SSID | ssj0000491033 |
Score | 2.6293406 |
Snippet | Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Carbonyls Crystal defects Crystallization Dyes Grain boundaries Grain size indigo Ion migration Lead compounds long‐term stability Metal halides natural dyes Optoelectronics passivation Passivity perovskite solar cells Perovskites Photovoltaic cells Solar cells Stability Thermal stress |
Title | Indigo: A Natural Molecular Passivator for Efficient Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200537 https://www.proquest.com/docview/2674196382 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4HDiqcouyAfkDisDKmdJg23aOlqgbYgtZV6s2zHEYuqBG2bReLXM37EyYrXwiVKrchtPV_s-cYznxF6kRV2WZoQRhkjcaxiIqSckAIWn1SNRVYqE--YL5Lzdfx-M950ebq2umQvX6nvv6wr-R-rQhvY1VTJ_oNlQ6fQAPdgX7iCheF6Ixu_MyKrtSsuXwinoDFvz7sF5xDwfmVItc0lnFqxCLP1_0lf1lc7E7Y9WRpme3Kqt9td303N28wA7UoDwa11_yek6zRux6apvjQBXsvGFXpcmBho3QHGcv_aL5FW-NHHqD9ffPOVaD7uAJQ15EfdcHbrzargA5Bk4gOZut_mtJrCVEx7kHP1yj9N8U4yVujK6AhQagVpusWs3cBffORn69mMr6ab1W10QIFE0AE6yN_OZ8sQgwN2NIqYrcFof2Gr6xnR19e_4rrf0pGRPqWxPsnqHjr0ZALnDhn30S1dPUB3exKTD9EHh5E3OMceITggBHcIwYAQHBCCO4RgixBsEfIIrc-mq9Nz4g_QIMpkOxGRJIWRVBvRchxJmkyKSEDbSComo6IsgPwLy8JLmWUylkwzJmKZ6SQtmYoke4wGVV3pJwiXMk3HQpskoww4tZbQWZGqVMdKKsGiISLt8HDl1eXNISdb7nSxKTfDycNwDtHL8PxXp6vy2yeP29Hm_t3bcZqAJ2zWDjpE1FrgL73wfLqYh09P_9znEbrTIf4YDfaXjX4GvudePvcQ-gEaUILe |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indigo%3A+A+Natural+Molecular+Passivator+for+Efficient+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Guo%2C+Junjun&rft.au=Sun%2C+Jianguo&rft.au=Hu%2C+Long&rft.au=Fang%2C+Shiwen&rft.date=2022-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=22&rft_id=info:doi/10.1002%2Faenm.202200537&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |