Indigo: A Natural Molecular Passivator for Efficient Perovskite Solar Cells

Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while still facing critical stability challenges. Herein, the natural organic dye Indigo is explored for the first time to be an efficient molecul...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 22
Main Authors Guo, Junjun, Sun, Jianguo, Hu, Long, Fang, Shiwen, Ling, Xufeng, Zhang, Xuliang, Wang, Yao, Huang, Hehe, Han, Chenxu, Cazorla, Claudio, Yang, Yingguo, Chu, Dewei, Wu, Tom, Yuan, Jianyu, Ma, Wanli
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while still facing critical stability challenges. Herein, the natural organic dye Indigo is explored for the first time to be an efficient molecular passivator that assists in the preparation of high‐quality hybrid perovskite film with reduced defects and enhanced stability. The Indigo molecule with both carbonyl and amino groups can provide bifunctional chemical passivation for defects. In‐depth theoretical and experimental studies show that the Indigo molecules firmly binds to the perovskite surfaces, enhancing the crystallization of perovskite films with improved morphology. Consequently, the Indigo‐passivated perovskite film exhibits increased grain size with better uniformity, reduced grain boundaries, lowered defect density, and retarded ion migration, boosting the device efficiency up to 23.22%, and ≈21% for large‐area device (1 cm2). Furthermore, the Indigo passivation can enhance device stability in terms of both humidity and thermal stress. These results provide not only new insights into the multipassivation role of natural organic dyes but also a simple and low‐cost strategy to prepare high‐quality hybrid perovskite films for optoelectronic applications based on Indigo derivatives. Natural organic dye Indigo is for the first time demonstrated as a low‐cost and highly efficient molecular passivator for high performance perovskite solar cells and the Indigo passivation boosts power conversion efficiency of device up to 23.22% as well as enhances device stability both in terms of humidity and thermal stress.
AbstractList Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while still facing critical stability challenges. Herein, the natural organic dye Indigo is explored for the first time to be an efficient molecular passivator that assists in the preparation of high‐quality hybrid perovskite film with reduced defects and enhanced stability. The Indigo molecule with both carbonyl and amino groups can provide bifunctional chemical passivation for defects. In‐depth theoretical and experimental studies show that the Indigo molecules firmly binds to the perovskite surfaces, enhancing the crystallization of perovskite films with improved morphology. Consequently, the Indigo‐passivated perovskite film exhibits increased grain size with better uniformity, reduced grain boundaries, lowered defect density, and retarded ion migration, boosting the device efficiency up to 23.22%, and ≈21% for large‐area device (1 cm2). Furthermore, the Indigo passivation can enhance device stability in terms of both humidity and thermal stress. These results provide not only new insights into the multipassivation role of natural organic dyes but also a simple and low‐cost strategy to prepare high‐quality hybrid perovskite films for optoelectronic applications based on Indigo derivatives. Natural organic dye Indigo is for the first time demonstrated as a low‐cost and highly efficient molecular passivator for high performance perovskite solar cells and the Indigo passivation boosts power conversion efficiency of device up to 23.22% as well as enhances device stability both in terms of humidity and thermal stress.
Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while still facing critical stability challenges. Herein, the natural organic dye Indigo is explored for the first time to be an efficient molecular passivator that assists in the preparation of high‐quality hybrid perovskite film with reduced defects and enhanced stability. The Indigo molecule with both carbonyl and amino groups can provide bifunctional chemical passivation for defects. In‐depth theoretical and experimental studies show that the Indigo molecules firmly binds to the perovskite surfaces, enhancing the crystallization of perovskite films with improved morphology. Consequently, the Indigo‐passivated perovskite film exhibits increased grain size with better uniformity, reduced grain boundaries, lowered defect density, and retarded ion migration, boosting the device efficiency up to 23.22%, and ≈21% for large‐area device (1 cm 2 ). Furthermore, the Indigo passivation can enhance device stability in terms of both humidity and thermal stress. These results provide not only new insights into the multipassivation role of natural organic dyes but also a simple and low‐cost strategy to prepare high‐quality hybrid perovskite films for optoelectronic applications based on Indigo derivatives.
Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while still facing critical stability challenges. Herein, the natural organic dye Indigo is explored for the first time to be an efficient molecular passivator that assists in the preparation of high‐quality hybrid perovskite film with reduced defects and enhanced stability. The Indigo molecule with both carbonyl and amino groups can provide bifunctional chemical passivation for defects. In‐depth theoretical and experimental studies show that the Indigo molecules firmly binds to the perovskite surfaces, enhancing the crystallization of perovskite films with improved morphology. Consequently, the Indigo‐passivated perovskite film exhibits increased grain size with better uniformity, reduced grain boundaries, lowered defect density, and retarded ion migration, boosting the device efficiency up to 23.22%, and ≈21% for large‐area device (1 cm2). Furthermore, the Indigo passivation can enhance device stability in terms of both humidity and thermal stress. These results provide not only new insights into the multipassivation role of natural organic dyes but also a simple and low‐cost strategy to prepare high‐quality hybrid perovskite films for optoelectronic applications based on Indigo derivatives.
Author Wu, Tom
Guo, Junjun
Cazorla, Claudio
Zhang, Xuliang
Fang, Shiwen
Sun, Jianguo
Yang, Yingguo
Wang, Yao
Han, Chenxu
Huang, Hehe
Ma, Wanli
Hu, Long
Ling, Xufeng
Chu, Dewei
Yuan, Jianyu
Author_xml – sequence: 1
  givenname: Junjun
  surname: Guo
  fullname: Guo, Junjun
  organization: Soochow University
– sequence: 2
  givenname: Jianguo
  surname: Sun
  fullname: Sun, Jianguo
  organization: Soochow University
– sequence: 3
  givenname: Long
  surname: Hu
  fullname: Hu, Long
  organization: Macquarie University
– sequence: 4
  givenname: Shiwen
  surname: Fang
  fullname: Fang, Shiwen
  organization: Soochow University
– sequence: 5
  givenname: Xufeng
  surname: Ling
  fullname: Ling, Xufeng
  organization: Soochow University
– sequence: 6
  givenname: Xuliang
  surname: Zhang
  fullname: Zhang, Xuliang
  organization: Soochow University
– sequence: 7
  givenname: Yao
  surname: Wang
  fullname: Wang, Yao
  organization: Soochow University
– sequence: 8
  givenname: Hehe
  surname: Huang
  fullname: Huang, Hehe
  organization: Soochow University
– sequence: 9
  givenname: Chenxu
  surname: Han
  fullname: Han, Chenxu
  organization: Soochow University
– sequence: 10
  givenname: Claudio
  surname: Cazorla
  fullname: Cazorla, Claudio
  organization: Universitat Politècnica de Catalunya
– sequence: 11
  givenname: Yingguo
  surname: Yang
  fullname: Yang, Yingguo
  organization: Chinese Academy of Sciences
– sequence: 12
  givenname: Dewei
  surname: Chu
  fullname: Chu, Dewei
  organization: University of New South Wales (UNSW)
– sequence: 13
  givenname: Tom
  surname: Wu
  fullname: Wu, Tom
  organization: University of New South Wales (UNSW)
– sequence: 14
  givenname: Jianyu
  surname: Yuan
  fullname: Yuan, Jianyu
  email: jyyuan@suda.edu.cn
  organization: Soochow University
– sequence: 15
  givenname: Wanli
  orcidid: 0000-0002-2001-3234
  surname: Ma
  fullname: Ma, Wanli
  email: wlma@suda.edu.cn
  organization: Soochow University
BookMark eNqFkE1LAzEQhoNUsNZePS943jr5aLbrrZSqxVYL6jkku4mkbjc1yVb6791SqSCIA8MMw_vMMO856tSu1ghdYhhgAHItdb0eECAEYEizE9TFHLOUjxh0jj0lZ6gfwgraYDkGSrvoYVaX9s3dJOPkUcbGyypZuEoXTSV9spQh2K2MziemzakxtrC6jslSe7cN7zbq5NntlRNdVeECnRpZBd3_rj30ejt9mdyn86e72WQ8TwtGaJZKzktOATAxQ1CEj0qQ7QyrgiooTUkwlqr9iRuV54opqimVTOWaZ4YWoGgPXR32brz7aHSIYuUaX7cnBeEZwzmnI9KqBgdV4V0IXhux8XYt_U5gEHvPxN4zcfSsBdgvoLBRRuvq6KWt_sbyA_ZpK73754gYTx8XP-wXZZaCMQ
CitedBy_id crossref_primary_10_1002_smll_202207769
crossref_primary_10_1039_D3QI01178J
crossref_primary_10_1002_aenm_202203505
crossref_primary_10_1002_ange_202407383
crossref_primary_10_1016_j_cej_2024_159035
crossref_primary_10_1002_adfm_202215096
crossref_primary_10_1016_j_cap_2023_11_014
crossref_primary_10_1021_acsenergylett_2c01537
crossref_primary_10_1007_s40843_022_2277_9
crossref_primary_10_1016_j_nanoen_2023_109003
crossref_primary_10_1021_acsami_4c04901
crossref_primary_10_1002_smll_202205336
crossref_primary_10_1021_acsnano_4c07093
crossref_primary_10_1016_j_cej_2023_141573
crossref_primary_10_1002_adma_202313154
crossref_primary_10_1021_acsami_4c03383
crossref_primary_10_1039_D2EE03742D
crossref_primary_10_1021_acsami_3c13591
crossref_primary_10_1021_jacs_4c12634
crossref_primary_10_1039_D4YA00025K
crossref_primary_10_1002_aenm_202302169
crossref_primary_10_1002_ange_202411121
crossref_primary_10_1002_cssc_202400510
crossref_primary_10_1021_acssuschemeng_2c05527
crossref_primary_10_1002_aenm_202201787
crossref_primary_10_1016_j_cej_2023_141602
crossref_primary_10_1002_anie_202409945
crossref_primary_10_3390_polym15092010
crossref_primary_10_1039_D2NJ05998C
crossref_primary_10_1002_aenm_202301927
crossref_primary_10_1021_acsami_4c16831
crossref_primary_10_1002_admi_202201809
crossref_primary_10_1016_j_nantod_2024_102479
crossref_primary_10_1002_adma_202410327
crossref_primary_10_1002_adma_202310065
crossref_primary_10_1002_adfm_202314529
crossref_primary_10_1002_ange_202409945
crossref_primary_10_1021_jacs_4c09094
crossref_primary_10_1002_solr_202400016
crossref_primary_10_1039_D4TC00202D
crossref_primary_10_1002_anie_202420369
crossref_primary_10_1021_acs_jpcc_4c06141
crossref_primary_10_1002_adfm_202304161
crossref_primary_10_1021_acsmaterialslett_3c00225
crossref_primary_10_1016_j_materresbull_2024_113151
crossref_primary_10_1002_aenm_202204362
crossref_primary_10_1002_ange_202314270
crossref_primary_10_1016_j_jallcom_2024_174853
crossref_primary_10_1002_aenm_202202189
crossref_primary_10_1002_smll_202304189
crossref_primary_10_1039_D2EE03082A
crossref_primary_10_1039_D2DT03957E
crossref_primary_10_1002_adom_202400883
crossref_primary_10_1021_acs_jpclett_2c03750
crossref_primary_10_1039_D4EE05968A
crossref_primary_10_1007_s40820_023_01097_3
crossref_primary_10_1002_solr_202300137
crossref_primary_10_1002_ifm2_20
crossref_primary_10_1002_anie_202407383
crossref_primary_10_1016_j_mtener_2022_101191
crossref_primary_10_1039_D2TC04225H
crossref_primary_10_1002_smtd_202300192
crossref_primary_10_1021_acsenergylett_4c02610
crossref_primary_10_1002_adom_202303051
crossref_primary_10_1002_adfm_202315157
crossref_primary_10_1002_adfm_202408480
crossref_primary_10_1016_j_cej_2023_148320
crossref_primary_10_1002_advs_202302917
crossref_primary_10_1039_D3TA03314G
crossref_primary_10_1002_adfm_202422014
crossref_primary_10_26599_EMD_2024_9370036
crossref_primary_10_1016_j_xinn_2022_100363
crossref_primary_10_1039_D2RA06761G
crossref_primary_10_1039_D2CS00217E
crossref_primary_10_1002_adfm_202403020
crossref_primary_10_1038_s41570_023_00510_0
crossref_primary_10_1002_adma_202210186
crossref_primary_10_1002_cptc_202200311
crossref_primary_10_1002_ange_202420369
crossref_primary_10_1002_anie_202411121
crossref_primary_10_1039_D3CP03200K
crossref_primary_10_1039_D3TC00275F
crossref_primary_10_1016_j_orgel_2023_106879
crossref_primary_10_1002_solr_202300511
crossref_primary_10_1016_j_cej_2024_151575
crossref_primary_10_1016_j_mssp_2024_108185
crossref_primary_10_1002_adma_202313099
crossref_primary_10_1016_j_cej_2024_152370
crossref_primary_10_1002_adfm_202214102
crossref_primary_10_1002_aenm_202402243
crossref_primary_10_1038_s41467_025_55815_z
crossref_primary_10_3390_ma16062163
crossref_primary_10_1016_j_mtadv_2024_100470
crossref_primary_10_1016_j_solmat_2024_113005
crossref_primary_10_1016_j_xcrp_2024_102030
crossref_primary_10_1039_D4TC03748K
crossref_primary_10_1002_anie_202314270
crossref_primary_10_1002_advs_202305582
crossref_primary_10_1016_j_cej_2025_160571
Cites_doi 10.1016/j.jechem.2021.03.024
10.1021/jacs.1c03419
10.1039/c3ta15291j
10.1016/j.joule.2019.06.014
10.1002/anie.202017148
10.1038/s41467-020-20749-1
10.1126/science.aay7044
10.1126/science.abc4417
10.1002/smtd.202001248
10.1039/D1TA06514A
10.1016/j.joule.2018.04.011
10.1002/adfm.201870119
10.1126/science.1254050
10.1002/anie.202102096
10.1103/RevModPhys.89.035003
10.1126/science.abb8985
10.1002/anie.202012095
10.1016/j.joule.2020.07.006
10.1021/jacs.1c00852
10.1002/adma.202001906
10.1039/D1EE02287C
10.1021/accountsmr.1c00099
10.1002/aenm.202102538
10.1039/D0EE03312J
10.1002/smtd.202100046
10.1126/science.aax3294
10.1126/sciadv.abb2412
10.1038/s41467-021-22049-8
10.1038/s41586-021-03285-w
10.1039/D0TA10717D
10.1002/adma.202008405
10.1038/nenergy.2017.102
10.1002/anie.202112555
10.1038/s41560-020-00749-7
10.1126/science.abb7167
10.1002/crat.202100056
10.1002/adma.201707583
10.1039/D1EE02248B
10.1038/nmat4014
10.1002/adfm.202006802
10.1103/PhysRevB.50.17953
10.1002/adma.202005000
10.1002/advs.201903368
10.1039/D1EE01440D
10.1038/s41560-021-00901-x
10.1021/acs.nanolett.0c03914
10.1021/acsenergylett.1c01039
10.1016/j.joule.2020.06.007
10.1038/s41586-021-03964-8
10.1103/PhysRevLett.77.3865
10.1016/j.jechem.2021.07.011
10.1002/anie.202010987
10.1002/adfm.202005776
10.1021/acsenergylett.1c00354
10.1126/science.aay9698
10.1016/j.nanoen.2020.105712
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202200537
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202200537
AENM202200537
Genre article
GrantInformation_xml – fundername: Science and Technology Program of Jiangsu Province
  funderid: BZ2020011
– fundername: Spanish Ministry of Science, Innovation, and Universities under the “Ramon y Cajal”
  funderid: RYC2018‐024947‐I
– fundername: National Key Research and Development Program of China
  funderid: 2019YFE0108600
– fundername: National Natural Science Foundation of China
  funderid: 52073198; 22161142003,; 61911530158
– fundername: China Postdoctoral Science Foundation
  funderid: 2021T140495
– fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20211598
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4237-a66d630012f50b268d0aa661bc3b0dfd211ab0026fb99b4b3e33a4b9e67f3c0b3
ISSN 1614-6832
IngestDate Fri Jul 25 12:12:59 EDT 2025
Tue Jul 01 01:43:44 EDT 2025
Thu Apr 24 22:50:22 EDT 2025
Wed Jun 11 08:30:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4237-a66d630012f50b268d0aa661bc3b0dfd211ab0026fb99b4b3e33a4b9e67f3c0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2001-3234
OpenAccessLink https://upcommons.upc.edu/bitstream/2117/386062/1/Indigo.pdf
PQID 2674196382
PQPubID 886389
PageCount 11
ParticipantIDs proquest_journals_2674196382
crossref_primary_10_1002_aenm_202200537
crossref_citationtrail_10_1002_aenm_202200537
wiley_primary_10_1002_aenm_202200537_AENM202200537
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2021; 7
2021; 6
2018; 28
2021; 5
2019; 3
2017; 2
2021; 2
2020; 20
2017; 89
2020; 369
2019; 366
2021; 143
2020; 32
2019; 365
1996; 77
2021; 14
2020; 7
2020; 4
2018; 2
2021; 31
2021; 12
2021; 56
2021; 33
2014; 2
2021; 11
2020; 31
2021; 598
2020; 370
2014; 13
2021; 590
2018; 30
2021; 60
2021; 82
1994; 50
2021; 63
2021; 62
2014; 345
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 6
  start-page: 63
  year: 2021
  publication-title: Nat. Energy
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 345
  start-page: 542
  year: 2014
  publication-title: Science
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 56
  year: 2021
  publication-title: Cryst. Res. Technol.
– volume: 366
  start-page: 1509
  year: 2019
  publication-title: Science
– volume: 14
  start-page: 6536
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 60
  start-page: 4238
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 6
  start-page: 2404
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 370
  start-page: 8985
  year: 2020
  publication-title: Science
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 466
  year: 2021
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 365
  start-page: 473
  year: 2019
  publication-title: Science
– volume: 6
  start-page: 858
  year: 2021
  publication-title: Nat. Energy
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 4903
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 82
  year: 2021
  publication-title: Nano Energy
– volume: 12
  start-page: 1878
  year: 2021
  publication-title: Nat. Commun.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 63
  start-page: 452
  year: 2021
  publication-title: J. Energy Chem.
– volume: 370
  start-page: 108
  year: 2020
  publication-title: Science
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B: Condens. Matter
– volume: 366
  start-page: 749
  year: 2019
  publication-title: Science
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 2179
  year: 2019
  publication-title: Joule
– volume: 62
  start-page: 243
  year: 2021
  publication-title: J. Energy Chem.
– volume: 6
  start-page: 1942
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 2419
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 60
  start-page: 2485
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 1141
  year: 2021
  publication-title: Acc. Mater. Res.
– volume: 598
  start-page: 444
  year: 2021
  publication-title: Nature
– volume: 2
  start-page: 1313
  year: 2018
  publication-title: Joule
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1961
  year: 2020
  publication-title: Joule
– volume: 20
  start-page: 8880
  year: 2020
  publication-title: Nano Lett.
– volume: 143
  start-page: 5855
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1575
  year: 2020
  publication-title: Joule
– volume: 2
  start-page: 5427
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 89
  year: 2017
  publication-title: Rev. Mod. Phys.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 369
  start-page: 1615
  year: 2020
  publication-title: Science
– volume: 5
  year: 2021
  publication-title: Small Methods
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 6526
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 60
  start-page: 8303
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 1574
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 2412
  year: 2021
  publication-title: Sci. Adv.
– volume: 590
  start-page: 587
  year: 2021
  publication-title: Nature
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jechem.2021.03.024
– ident: e_1_2_8_37_1
  doi: 10.1021/jacs.1c03419
– ident: e_1_2_8_40_1
  doi: 10.1039/c3ta15291j
– ident: e_1_2_8_11_1
  doi: 10.1016/j.joule.2019.06.014
– ident: e_1_2_8_47_1
  doi: 10.1002/anie.202017148
– ident: e_1_2_8_52_1
  doi: 10.1038/s41467-020-20749-1
– ident: e_1_2_8_5_1
  doi: 10.1126/science.aay7044
– ident: e_1_2_8_3_1
  doi: 10.1126/science.abc4417
– ident: e_1_2_8_15_1
  doi: 10.1002/smtd.202001248
– ident: e_1_2_8_31_1
  doi: 10.1039/D1TA06514A
– ident: e_1_2_8_13_1
  doi: 10.1016/j.joule.2018.04.011
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.201870119
– ident: e_1_2_8_2_1
  doi: 10.1126/science.1254050
– ident: e_1_2_8_24_1
  doi: 10.1002/anie.202102096
– ident: e_1_2_8_42_1
  doi: 10.1103/RevModPhys.89.035003
– ident: e_1_2_8_4_1
  doi: 10.1126/science.abb8985
– ident: e_1_2_8_25_1
  doi: 10.1002/anie.202012095
– ident: e_1_2_8_28_1
  doi: 10.1016/j.joule.2020.07.006
– ident: e_1_2_8_36_1
  doi: 10.1021/jacs.1c00852
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.202001906
– ident: e_1_2_8_17_1
  doi: 10.1039/D1EE02287C
– ident: e_1_2_8_49_1
  doi: 10.1021/accountsmr.1c00099
– ident: e_1_2_8_51_1
  doi: 10.1002/aenm.202102538
– ident: e_1_2_8_22_1
  doi: 10.1039/D0EE03312J
– ident: e_1_2_8_10_1
  doi: 10.1002/smtd.202100046
– ident: e_1_2_8_20_1
  doi: 10.1126/science.aax3294
– ident: e_1_2_8_27_1
  doi: 10.1126/sciadv.abb2412
– ident: e_1_2_8_34_1
  doi: 10.1038/s41467-021-22049-8
– ident: e_1_2_8_7_1
  doi: 10.1038/s41586-021-03285-w
– ident: e_1_2_8_39_1
  doi: 10.1039/D0TA10717D
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.202008405
– ident: e_1_2_8_19_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_8_50_1
  doi: 10.1002/anie.202112555
– ident: e_1_2_8_46_1
  doi: 10.1038/s41560-020-00749-7
– ident: e_1_2_8_8_1
  doi: 10.1126/science.abb7167
– ident: e_1_2_8_45_1
  doi: 10.1002/crat.202100056
– ident: e_1_2_8_56_1
  doi: 10.1002/adma.201707583
– ident: e_1_2_8_16_1
  doi: 10.1039/D1EE02248B
– ident: e_1_2_8_1_1
  doi: 10.1038/nmat4014
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.202006802
– ident: e_1_2_8_44_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.202005000
– ident: e_1_2_8_26_1
  doi: 10.1002/advs.201903368
– ident: e_1_2_8_30_1
  doi: 10.1039/D1EE01440D
– ident: e_1_2_8_53_1
  doi: 10.1038/s41560-021-00901-x
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.nanolett.0c03914
– ident: e_1_2_8_21_1
  doi: 10.1021/acsenergylett.1c01039
– ident: e_1_2_8_33_1
  doi: 10.1016/j.joule.2020.06.007
– ident: e_1_2_8_9_1
  doi: 10.1038/s41586-021-03964-8
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_54_1
  doi: 10.1016/j.jechem.2021.07.011
– ident: e_1_2_8_29_1
  doi: 10.1002/anie.202010987
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.202005776
– ident: e_1_2_8_12_1
  doi: 10.1021/acsenergylett.1c00354
– ident: e_1_2_8_18_1
  doi: 10.1126/science.aay9698
– ident: e_1_2_8_41_1
  doi: 10.1016/j.nanoen.2020.105712
SSID ssj0000491033
Score 2.6293406
Snippet Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carbonyls
Crystal defects
Crystallization
Dyes
Grain boundaries
Grain size
indigo
Ion migration
Lead compounds
long‐term stability
Metal halides
natural dyes
Optoelectronics
passivation
Passivity
perovskite solar cells
Perovskites
Photovoltaic cells
Solar cells
Stability
Thermal stress
Title Indigo: A Natural Molecular Passivator for Efficient Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200537
https://www.proquest.com/docview/2674196382
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4HDiqcouyAfkDisDKmdJg23aOlqgbYgtZV6s2zHEYuqBG2bReLXM37EyYrXwiVKrchtPV_s-cYznxF6kRV2WZoQRhkjcaxiIqSckAIWn1SNRVYqE--YL5Lzdfx-M950ebq2umQvX6nvv6wr-R-rQhvY1VTJ_oNlQ6fQAPdgX7iCheF6Ixu_MyKrtSsuXwinoDFvz7sF5xDwfmVItc0lnFqxCLP1_0lf1lc7E7Y9WRpme3Kqt9td303N28wA7UoDwa11_yek6zRux6apvjQBXsvGFXpcmBho3QHGcv_aL5FW-NHHqD9ffPOVaD7uAJQ15EfdcHbrzargA5Bk4gOZut_mtJrCVEx7kHP1yj9N8U4yVujK6AhQagVpusWs3cBffORn69mMr6ab1W10QIFE0AE6yN_OZ8sQgwN2NIqYrcFof2Gr6xnR19e_4rrf0pGRPqWxPsnqHjr0ZALnDhn30S1dPUB3exKTD9EHh5E3OMceITggBHcIwYAQHBCCO4RgixBsEfIIrc-mq9Nz4g_QIMpkOxGRJIWRVBvRchxJmkyKSEDbSComo6IsgPwLy8JLmWUylkwzJmKZ6SQtmYoke4wGVV3pJwiXMk3HQpskoww4tZbQWZGqVMdKKsGiISLt8HDl1eXNISdb7nSxKTfDycNwDtHL8PxXp6vy2yeP29Hm_t3bcZqAJ2zWDjpE1FrgL73wfLqYh09P_9znEbrTIf4YDfaXjX4GvudePvcQ-gEaUILe
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indigo%3A+A+Natural+Molecular+Passivator+for+Efficient+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Guo%2C+Junjun&rft.au=Sun%2C+Jianguo&rft.au=Hu%2C+Long&rft.au=Fang%2C+Shiwen&rft.date=2022-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=22&rft_id=info:doi/10.1002%2Faenm.202200537&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon