Changing perspectives on how the permeation pathway through potassium channels is regulated
The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non‐conducting and conducting states. Conventionally, this has been explained by a st...
Saved in:
Published in | The Journal of physiology Vol. 599; no. 7; pp. 1961 - 1976 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non‐conducting and conducting states. Conventionally, this has been explained by a steric mechanism in which the pore alternates between two conformations: a ‘closed’ state in which the conduction pathway is occluded and an ‘open’ state in which the pathway is sufficiently wide to accommodate fully hydrated ions. Recently, however, ‘non‐canonical’ mechanisms have been proposed for some classes of K+ channels. The purpose of this review is to illuminate structural and dynamic relationships underpinning permeation control in K+ channels, indicating where additional data might resolve some of the remaining issues.
figure legend Hypothetical mechanisms of control over ion permeation through potassium channels. The upper panel portrays the canonical steric pore‐gating mechanism, while the lower panels depict emerging models. Of these, the left‐hand panel describes the situation in which steric changes have been ruled out and gating has been ascribed to the selectivity filter, whereas the right‐hand panel shows a ‘dewetting’ model, which is neither contingent upon nor excludes steric changes within the pore. |
---|---|
AbstractList | The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non‐conducting and conducting states. Conventionally, this has been explained by a steric mechanism in which the pore alternates between two conformations: a ‘closed’ state in which the conduction pathway is occluded and an ‘open’ state in which the pathway is sufficiently wide to accommodate fully hydrated ions. Recently, however, ‘non‐canonical’ mechanisms have been proposed for some classes of K+ channels. The purpose of this review is to illuminate structural and dynamic relationships underpinning permeation control in K+ channels, indicating where additional data might resolve some of the remaining issues.
figure legend Hypothetical mechanisms of control over ion permeation through potassium channels. The upper panel portrays the canonical steric pore‐gating mechanism, while the lower panels depict emerging models. Of these, the left‐hand panel describes the situation in which steric changes have been ruled out and gating has been ascribed to the selectivity filter, whereas the right‐hand panel shows a ‘dewetting’ model, which is neither contingent upon nor excludes steric changes within the pore. The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non‐conducting and conducting states. Conventionally, this has been explained by a steric mechanism in which the pore alternates between two conformations: a ‘closed’ state in which the conduction pathway is occluded and an ‘open’ state in which the pathway is sufficiently wide to accommodate fully hydrated ions. Recently, however, ‘non‐canonical’ mechanisms have been proposed for some classes of K + channels. The purpose of this review is to illuminate structural and dynamic relationships underpinning permeation control in K + channels, indicating where additional data might resolve some of the remaining issues. image The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non‐conducting and conducting states. Conventionally, this has been explained by a steric mechanism in which the pore alternates between two conformations: a ‘closed’ state in which the conduction pathway is occluded and an ‘open’ state in which the pathway is sufficiently wide to accommodate fully hydrated ions. Recently, however, ‘non‐canonical’ mechanisms have been proposed for some classes of K+ channels. The purpose of this review is to illuminate structural and dynamic relationships underpinning permeation control in K+ channels, indicating where additional data might resolve some of the remaining issues. The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non-conducting and conducting states. Conventionally, this has been explained by a steric mechanism in which the pore alternates between two conformations: a 'closed' state in which the conduction pathway is occluded and an 'open' state in which the pathway is sufficiently wide to accommodate fully hydrated ions. Recently, however, 'non-canonical' mechanisms have been proposed for some classes of K channels. The purpose of this review is to illuminate structural and dynamic relationships underpinning permeation control in K channels, indicating where additional data might resolve some of the remaining issues. |
Author | Black, Katrina A. He, Sitong Jin, Ruitao Gulbis, Jacqueline M. |
Author_xml | – sequence: 1 givenname: Katrina A. orcidid: 0000-0002-4094-6170 surname: Black fullname: Black, Katrina A. organization: University of Melbourne – sequence: 2 givenname: Ruitao surname: Jin fullname: Jin, Ruitao organization: La Trobe University – sequence: 3 givenname: Sitong surname: He fullname: He, Sitong organization: La Trobe University – sequence: 4 givenname: Jacqueline M. orcidid: 0000-0003-2091-2237 surname: Gulbis fullname: Gulbis, Jacqueline M. email: jgulbis@wehi.edu.au organization: University of Melbourne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31612997$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtLxDAUhYMoOqOCv0AKbtxUk9w-kqUMPhF0oSsXJW1upx3apiatw_x7M8yMiODqwuG7H4czJfud6ZCQM0avGGNw_fTKU5EIvkcmLEpkmKYS9smEUs5DSGN2RKbOLShlQKU8JEfAEsalTCfkY1apbl5386BH63oshvoLXWC6oDLLYKhwnbeohtpHvRqqpVr52JpxXgW9GZRz9dgGhbd02LigdoHF-dioAfUJOShV4_B0e4_J-93t2-whfH65f5zdPIdFxCEJIyggpgCKIwWtckl5qZUuc51DKihFiIXQXJfr1nlEJZax5v5BiITHOoJjcrnx9tZ8juiGrK1dgU2jOjSjyzjQWNCIS-bRiz_owoy28-0yHlPJuYd-CQtrnLNYZr2tW2VXGaPZevBsN7hHz7fCMW9R_4C7hT1wtQGWdYOrf0XZ29MrAxEl8A14I4oN |
CitedBy_id | crossref_primary_10_1016_j_pbiomolbio_2021_11_003 crossref_primary_10_1038_s41467_023_37260_y crossref_primary_10_1085_jgp_202213196 crossref_primary_10_1063_5_0167530 crossref_primary_10_1038_s41467_022_28148_4 |
Cites_doi | 10.1085/jgp.200609638 10.1016/0896-6273(91)90367-9 10.1038/ncomms9342 10.1038/nature12241 10.1038/nsmb.2473 10.1085/jgp.201010507 10.1085/jgp.201812082 10.1038/sj.embor.embor708 10.1126/science.285.5424.73 10.1038/emboj.2011.268 10.1016/j.cell.2010.05.003 10.7554/eLife.28032 10.1085/jgp.200609726 10.1152/ajpcell.00047.2011 10.1038/nsmb1069 10.1038/nsb1001-883 10.1074/jbc.273.27.16946 10.1016/j.ccell.2017.03.003 10.1073/pnas.2635314100 10.1016/j.cell.2016.02.002 10.3389/fphys.2013.00227 10.1038/368255a0 10.1085/jgp.200509385 10.1038/417523a 10.1016/S0006-3495(97)78168-2 10.1529/biophysj.105.077073 10.1126/science.aav0569 10.1038/nature20608 10.1038/nsmb.1865 10.1016/S0896-6273(00)80571-1 10.1113/jphysiol.1952.sp004717 10.1085/jgp.201611602 10.1007/s00249-007-0206-7 10.1073/pnas.0911691107 10.1038/nature09136 10.1038/nature09153 10.1126/science.aan5275 10.1085/jgp.109.5.527 10.1038/nn1090 10.1038/nsmb1311 10.1126/science.1948047 10.7554/eLife.25844 10.1038/417515a 10.1038/ncomms5377 10.1038/nature02468 10.1016/j.bpj.2018.01.030 10.1038/s41467-018-05970-3 10.1016/S0896-6273(01)00487-1 10.1126/science.1159262 10.1085/jgp.59.4.388 10.1016/S0896-6273(01)00236-7 10.7554/eLife.32481 10.1126/science.2441471 10.1016/j.cell.2017.03.048 10.1113/jphysiol.1952.sp004764 10.1016/j.ceca.2014.09.006 10.1038/349305a0 10.1007/s11060-015-1896-9 10.1038/35882 10.1021/jp810102u 10.1074/jbc.M113.501833 10.1038/nature22988 10.1016/j.cell.2016.12.030 10.1073/pnas.0911270107 10.1073/pnas.1104150108 10.1038/nature20775 10.1126/science.1216533 10.1126/science.2122520 10.1016/S0006-3495(04)74340-4 10.4161/chan.22153 10.1007/s00249-016-1143-0 10.1126/science.280.5360.69 10.1126/science.aas9466 10.1085/jgp.200709828 10.1529/biophysj.104.046045 10.1038/nature10370 10.1038/nature08291 10.1085/jgp.200609579 10.1038/nsmb.2208 10.1085/jgp.20028569 10.1016/j.cell.2016.08.075 10.1038/nsmb.1531 10.1085/jgp.58.4.413 10.1110/ps.051954706 10.1038/nature14013 10.1016/S0896-6273(00)80357-8 10.1126/science.1261512 10.1126/science.1085028 10.1074/jbc.M608264200 |
ContentType | Journal Article |
Copyright | 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society. Journal compilation © 2021 The Physiological Society |
Copyright_xml | – notice: 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society – notice: 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society. – notice: Journal compilation © 2021 The Physiological Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 |
DOI | 10.1113/JP278682 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 1976 |
ExternalDocumentID | 10_1113_JP278682 31612997 TJP13846 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 123 18M 1OC 24P 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT .55 .GJ .Y3 0YM 1OB 31~ 3EH 3O- AASGY AAYJJ AFFNX C1A CAG CGR CHEAL COF CUY CVF ECM EIF EJD FA8 H13 HF~ H~9 IPNFZ LW6 MVM NEJ NPM OHT SAMSI UKR WHG X7M XOL YXB YYP ZGI ZXP AAMNL AAYXX CITATION 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4236-43c35033a2e03dab902fdadfbdb37800e3588d2df3161b409ef5d203388625d43 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 |
IngestDate | Wed Dec 04 09:57:06 EST 2024 Thu Oct 10 16:12:40 EDT 2024 Fri Dec 06 05:28:10 EST 2024 Sat Sep 28 08:28:00 EDT 2024 Sat Aug 24 01:04:20 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | permeation gating selectivity filter crystal structure non-canonical gating potassium channel molecular dynamics cryo-EM |
Language | English |
License | 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4236-43c35033a2e03dab902fdadfbdb37800e3588d2df3161b409ef5d203388625d43 |
Notes | This is an Editor's Choice article from the 1 April 2021 issue. Edited by: Ole Petersen & Ruth Murrell‐Lagnado This review was presented at the Australian Physiological Society ion channel symposium 2018: The structural basis of electrical signalling: latest developments in the structural analysis of ion channels and transporters, which took place in Sydney, Australia, 27 November 2018. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0003-2091-2237 0000-0002-4094-6170 |
OpenAccessLink | https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP278682 |
PMID | 31612997 |
PQID | 2509222914 |
PQPubID | 1086388 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2305804291 proquest_journals_2509222914 crossref_primary_10_1113_JP278682 pubmed_primary_31612997 wiley_primary_10_1113_JP278682_TJP13846 |
PublicationCentury | 2000 |
PublicationDate | 1 April 2021 2021-04-00 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 1 April 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2011; 477 1998; 280 2013; 4 2018; 360 2015; 347 2010; 107 2010; 17 2013; 20 1999; 285 2008; 37 2010; 141 2012; 19 2009; 113 2002; 119 2016; 148 1993; 1 2017; 358 1998; 273 2019; 363 2018; 9 2017; 31 2014; 5 1997; 109 1987; 237 2003; 6 2010a; 466 2007; 130 1971; 58 1997; 19 2003; 4 1991; 349 2017; 168 2012; 336 2006; 128 2017; 169 2009; 16 2016; 45 1972; 59 1990; 250 2014; 289 2004; 101 2004; 87 2006; 90 2004; 86 1952a; 116 2015; 58 2007; 129 2015; 6 2002a; 417 2014; 516 1991; 254 2007; 282 2006; 13 2015; 125 2006; 15 2016; 167 2011; 30 2001; 29 2008; 321 2004; 428 1998; 21 2016; 164 2007; 14 1991; 7 2011; 301 1998; 391 1997; 73 2011; 108 2018; 150 1994; 368 2010; 136 2005; 126 2018; 114 2001; 8 2010b; 466 2013; 498 2002b; 417 2009; 461 2012; 6 2017; 541 2003; 300 2001; 32 1952b; 117 2017; 547 e_1_2_2_4_1 e_1_2_2_24_1 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_62_1 e_1_2_2_87_1 e_1_2_2_43_1 e_1_2_2_64_1 e_1_2_2_85_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_66_1 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_68_1 e_1_2_2_89_1 López‐Barneo J (e_1_2_2_60_1) 1993; 1 e_1_2_2_83_1 e_1_2_2_81_1 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_59_1 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_51_1 e_1_2_2_76_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_53_1 e_1_2_2_74_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_55_1 e_1_2_2_15_1 e_1_2_2_36_1 e_1_2_2_57_1 e_1_2_2_78_1 e_1_2_2_70_1 e_1_2_2_72_1 e_1_2_2_91_1 e_1_2_2_25_1 e_1_2_2_48_1 e_1_2_2_5_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_63_1 e_1_2_2_86_1 e_1_2_2_42_1 e_1_2_2_65_1 e_1_2_2_84_1 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_67_1 e_1_2_2_27_1 e_1_2_2_46_1 e_1_2_2_69_1 e_1_2_2_88_1 e_1_2_2_82_1 e_1_2_2_61_1 e_1_2_2_80_1 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_1 e_1_2_2_52_1 e_1_2_2_75_1 e_1_2_2_31_1 e_1_2_2_54_1 e_1_2_2_73_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_56_1 e_1_2_2_79_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_58_1 e_1_2_2_77_1 e_1_2_2_90_1 e_1_2_2_50_1 e_1_2_2_71_1 |
References_xml | – volume: 347 start-page: 1256 year: 2015 end-page: 1259 article-title: K2P channel gating mechanisms revealed by structures of TREK‐2 and a complex with Prozac publication-title: Science – volume: 273 start-page: 16946 year: 1998 end-page: 16952 article-title: Gβγ binding to GIRK4 subunit is critical for G protein‐gated K channel activation publication-title: J Biol Chem – volume: 148 start-page: 119 year: 2016 end-page: 132 article-title: Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles publication-title: J Gen Physiol – volume: 30 start-page: 3607 year: 2011 end-page: 3619 article-title: The pore structure and gating mechanism of K2P channels publication-title: EMBO J – volume: 119 start-page: 521 year: 2002 end-page: 532 article-title: Scanning the intracellular S6 activation gate in the Shaker K channel publication-title: J Gen Physiol – volume: 466 start-page: 272 year: 2010a end-page: 275 article-title: Structural basis for the coupling between activation and inactivation gates in K channels publication-title: Nature – volume: 87 start-page: 3050 year: 2004 end-page: 3065 article-title: Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS publication-title: Biophys J – volume: 59 start-page: 388 year: 1972 end-page: 400 article-title: The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier publication-title: J Gen Physiol – volume: 129 start-page: 299 year: 2007 end-page: 315 article-title: Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis publication-title: J Gen Physiol – volume: 461 start-page: 292 year: 2009 end-page: 295 article-title: Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy publication-title: Nature – volume: 282 start-page: 15179 year: 2007 end-page: 15186 article-title: Identification and characterization of the slowly exchanging pH‐dependent conformational rearrangement in KcsA publication-title: J Biol Chem – volume: 13 start-page: 311 year: 2006 end-page: 318 article-title: Molecular determinants of gating at the potassium‐channel selectivity filter publication-title: Nat Struct Mol Biol – volume: 336 start-page: 229 year: 2012 end-page: 233 article-title: Mechanism of voltage gating in potassium channels publication-title: Science – volume: 37 start-page: 165 year: 2008 end-page: 171 article-title: Non‐equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels publication-title: Eur Biophys J – volume: 90 start-page: 3447 year: 2006 end-page: 3468 article-title: Ion permeation through a narrow channel: using gramicidin to ascertain all‐atom molecular dynamics potential of mean force methodology and biomolecular force fields publication-title: Biophys J – volume: 6 start-page: 811 year: 2003 end-page: 818 article-title: Localization of PIP activation gate in inward rectifier K channels publication-title: Nat Neurosci – volume: 15 start-page: 684 year: 2006 end-page: 698 article-title: NMR study of the tetrameric KcsA potassium channel in detergent micelles publication-title: Protein Sci – volume: 417 start-page: 523 year: 2002b end-page: 526 article-title: The open pore conformation of potassium channels publication-title: Nature – volume: 6 year: 2017 article-title: Molecular structure of human KATP in complex with ATP and ADP publication-title: Elife – volume: 73 start-page: 1355 year: 1997 end-page: 1363 article-title: A novel calcium‐sensing domain in the BK channel publication-title: Biophys J – volume: 516 start-page: 126 year: 2014 end-page: 130 article-title: Physical mechanism for gating and mechanosensitivity of the human TRAAK K channel publication-title: Nature – volume: 21 start-page: 617 year: 1998 end-page: 621 article-title: The activation gate of a voltage‐gated K channel can be trapped in the open state by an intersubunit metal bridge publication-title: Neuron – volume: 14 start-page: 1089 year: 2007 end-page: 1095 article-title: Conformational dynamics of the KcsA potassium channel governs gating properties publication-title: Nat Struct Mol Biol – volume: 128 start-page: 569 year: 2006 end-page: 581 article-title: Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction publication-title: J Gen Physiol – volume: 4 start-page: 70 year: 2003 end-page: 75 article-title: The ligand‐sensitive gate of a potassium channel lies close to the selectivity filter publication-title: EMBO Rep – volume: 19 start-page: 175 year: 1997 end-page: 184 article-title: Gated access to the pore of a voltage‐dependent K channel publication-title: Neuron – volume: 280 start-page: 69 year: 1998 end-page: 77 article-title: The structure of the potassium channel: molecular basis of K conduction and selectivity publication-title: Science – volume: 150 start-page: 1408 year: 2018 end-page: 1420 article-title: Rapid constriction of the selectivity filter underlies C‐type inactivation in the KcsA potassium channel publication-title: J Gen Physiol – volume: 254 start-page: 679 year: 1991 end-page: 683 article-title: Molecular basis of gating charge immobilization in Shaker potassium channels publication-title: Science – volume: 541 start-page: 52 year: 2017 end-page: 57 article-title: Structural basis for gating the high‐conductance Ca ‐activated K channel publication-title: Nature – volume: 113 start-page: 7642 year: 2009 end-page: 7649 article-title: Intrinsic ion selectivity of narrow hydrophobic pores publication-title: J Phys Chem B – volume: 130 start-page: 601 year: 2007 end-page: 610 article-title: Evidence for a deep pore activation gate in small conductance Ca ‐activated K channels publication-title: J Gen Physiol – volume: 109 start-page: 527 year: 1997 end-page: 535 article-title: Trapping of organic blockers by closing of voltage‐dependent K channels: evidence for a trap door mechanism of activation gating publication-title: J Gen Physiol – volume: 5 start-page: 4377 year: 2014 article-title: A hydrophobic barrier deep within the inner pore of the TWIK‐1 K2P potassium channel publication-title: Nat Commun – volume: 29 start-page: 593 year: 2001 end-page: 601 article-title: Structure of the RCK domain from the K channel and demonstration of its presence in the human BK channel publication-title: Neuron – volume: 285 start-page: 73 year: 1999 end-page: 78 article-title: Structural rearrangements underlying K ‐channel activation gating publication-title: Science – volume: 349 start-page: 305 year: 1991 end-page: 310 article-title: Alteration of voltage‐dependence of Shaker potassium channel by mutations in the S4 sequence publication-title: Nature – volume: 417 start-page: 515 year: 2002a end-page: 522 article-title: Crystal structure and mechanism of a calcium‐gated potassium channel publication-title: Nature – volume: 321 start-page: 1179 year: 2008 end-page: 1183 article-title: The structure of an open form of an mechanosensitive channel at 3.45 Å resolution publication-title: Science – volume: 20 start-page: 159 year: 2013 end-page: 166 article-title: The voltage‐dependent gate in MthK potassium channels is located at the selectivity filter publication-title: Nat Struct Mol Biol – volume: 58 start-page: 413 year: 1971 end-page: 437 article-title: Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons publication-title: J Gen Physiol – volume: 31 start-page: 516 year: 2017 end-page: 531 article-title: Direct pharmacological targeting of a mitochondrial ion channel selectively kills tumor cells in vivo publication-title: Cancer Cell – volume: 300 start-page: 1922 year: 2003 end-page: 1926 article-title: Crystal structure of the potassium channel KirBac1.1 in the closed state publication-title: Science – volume: 107 start-page: 5833 year: 2010 end-page: 5838 article-title: Principles of conduction and hydrophobic gating in K channels publication-title: Proc Natl Acad Sci U S A – volume: 466 start-page: 203 year: 2010b end-page: 208 article-title: Structural mechanism of C‐type inactivation in K channels publication-title: Nature – volume: 125 start-page: 125 year: 2015 end-page: 225 article-title: The role of ion channels in malignant brain tumors publication-title: J Neuro‐Oncol – volume: 358 start-page: 511 year: 2017 end-page: 513 article-title: Size effect in ion transport through angstrom‐scale slits publication-title: Science – volume: 17 start-page: 1019 year: 2010 end-page: 1023 article-title: Novel insights into K selectivity from high‐resolution structures of an open K channel pore publication-title: Nat Struct Mol Biol – volume: 250 start-page: 568 year: 1990 end-page: 571 article-title: Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from Shb publication-title: Science – volume: 477 start-page: 495 year: 2011 end-page: 498 article-title: Structural basis of PIP2 activation of the classical inward rectifier K channel Kir2.2 publication-title: Nature – volume: 16 start-page: 30 year: 2009 end-page: 34 article-title: High‐resolution structure of the open NaK channel publication-title: Nat Struct Mol Biol – volume: 368 start-page: 255 year: 1994 end-page: 257 article-title: Recombinant G‐protein βγ‐subunits activate the muscarinic‐gated atrial potassium channel publication-title: Nature – volume: 360 start-page: 508 year: 2018 end-page: 513 article-title: Activation mechanism of a human SK‐calmodulin channel complex elucidated by cryo‐EM structures publication-title: Science – volume: 108 start-page: 12161 year: 2011 end-page: 12166 article-title: Cysteine scanning and modification reveal major differences between BK channels and Kv channels in the inner pore region publication-title: Proc Natl Acad Sci U S A – volume: 541 start-page: 46 year: 2017 end-page: 51 article-title: Cryo‐EM structure of the open high‐conductance Ca ‐activated K channel publication-title: Nature – volume: 136 start-page: 569 year: 2010 end-page: 579 article-title: Voltage‐dependent inactivation gating at the selectivity filter of the MthK K channel publication-title: J Gen Physiol – volume: 428 start-page: 864 year: 2004 end-page: 868 article-title: Intracellular gate opening in Shaker K channels defined by high‐affinity metal bridges publication-title: Nature – volume: 6 year: 2017 article-title: Mechanism of activation at the selectivity filter of the KcsA K channel publication-title: Elife – volume: 363 start-page: 875 year: 2019 end-page: 880 article-title: A pharmacological master key mechanism that unlocks the selectivity filter gate in K channels publication-title: Science – volume: 58 start-page: 131 year: 2015 end-page: 138 article-title: Targeting a mitochondrial potassium channel to fight cancer publication-title: Cell Calcium – volume: 6 start-page: 213 year: 2017 article-title: The gating cycle of a K channel at atomic resolution publication-title: Elife – volume: 164 start-page: 937 year: 2016 end-page: 949 article-title: A non‐canonical voltage‐sensing mechanism controls gating in K2P K channels publication-title: Cell – volume: 167 start-page: 145 year: 2016 end-page: 157.e17 article-title: Structural basis for gating and activation of RyR1 publication-title: Cell – volume: 301 start-page: C255 year: 2011 end-page: C265 article-title: Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer publication-title: Am J Physiol, Cell Physiol – volume: 391 start-page: 803 year: 1998 end-page: 806 article-title: Direct activation of inward rectifier potassium channels by PIP and its stabilization by Gβγ publication-title: Nature – volume: 86 start-page: 2883 year: 2004 end-page: 2895 article-title: Water dynamics and dewetting transitions in the small mechanosensitive channel MscS publication-title: Biophys J – volume: 117 start-page: 500 year: 1952b end-page: 544 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: J Physiol – volume: 169 start-page: 422 year: 2017 end-page: 424.e10 article-title: Cryo‐EM structure of the open human ‐related K channel hERG publication-title: Cell – volume: 9 start-page: 3408 year: 2018 article-title: Hydrophobic gating in BK channels publication-title: Nat Commun – volume: 45 start-page: 685 year: 2016 end-page: 707 article-title: Impact of intracellular ion channels on cancer development and progression publication-title: Eur Biophys J – volume: 32 start-page: 649 year: 2001 end-page: 656 article-title: Tight steric closure at the intracellular activation gate of a voltage‐gated K channel publication-title: Neuron – volume: 498 start-page: 190 year: 2013 end-page: 197 article-title: X‐ray structure of the mammalian GIRK2‐βγ G‐protein complex publication-title: Nature – volume: 128 start-page: 347 year: 2006 end-page: 364 article-title: State‐independent block of BK channels by an intracellular quaternary ammonium publication-title: J Gen Physiol – volume: 6 start-page: 473 year: 2012 end-page: 478 article-title: State‐independent intracellular access of quaternary ammonium blockers to the pore of TREK‐1 publication-title: Channels (Austin) – volume: 101 start-page: 117 year: 2004 end-page: 122 article-title: Energetics of ion conduction through the gramicidin channel publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: 883 year: 2001 end-page: 887 article-title: Structure of the KcsA channel intracellular gate in the open state publication-title: Nat Struct Biol – volume: 141 start-page: 1018 year: 2010 end-page: 1029 article-title: Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels publication-title: Cell – volume: 4 start-page: 227 year: 2013 article-title: Intracellular ion channels and cancer publication-title: Front Physiol – volume: 237 start-page: 770 year: 1987 end-page: 775 article-title: Sequence of a probable potassium channel component encoded at shaker locus of publication-title: Science – volume: 289 start-page: 143 year: 2014 end-page: 151 article-title: Control of KirBac3.1 potassium channel gating at the interface between cytoplasmic domains publication-title: J Biol Chem – volume: 116 start-page: 449 year: 1952a end-page: 472 article-title: Currents carried by sodium and potassium ions through the membrane of the giant axon of publication-title: J Physiol – volume: 107 start-page: 6216 year: 2010 end-page: 6221 article-title: Structural basis underlying the dual gate properties of KcsA publication-title: Proc Natl Acad Sci U S A – volume: 547 start-page: 364 year: 2017 end-page: 368 article-title: K2P2.1 (TREK‐1)‐activator complexes reveal a cryptic selectivity filter binding site publication-title: Nature – volume: 19 start-page: 158 year: 2012 end-page: 163 article-title: Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating publication-title: Nat Struct Mol Biol – volume: 7 start-page: 547 year: 1991 end-page: 556 article-title: Two types of inactivation in Shaker K channels: effects of alterations in the carboxy‐terminal region publication-title: Neuron – volume: 114 start-page: 1336 year: 2018 end-page: 1343 article-title: Mechanism of mechanosensitive gating of the TREK‐2 potassium channel publication-title: Biophys J – volume: 1 start-page: 61 year: 1993 end-page: 71 article-title: Effects of external cations and mutations in the pore region on C‐type inactivation of Shaker potassium channels publication-title: Recept Channels – volume: 6 start-page: 8342 year: 2015 article-title: Calcium ions open a selectivity filter gate during activation of the MthK potassium channel publication-title: Nat Commun – volume: 168 start-page: 390 year: 2017 end-page: 399.e11 article-title: Structural titration of Slo2.2, a Na ‐dependent K channel publication-title: Cell – volume: 126 start-page: 419 year: 2005 end-page: 428 article-title: Status of the intracellular gate in the activated‐not‐open state of shaker K channels publication-title: J Gen Physiol – ident: e_1_2_2_13_1 doi: 10.1085/jgp.200609638 – ident: e_1_2_2_38_1 doi: 10.1016/0896-6273(91)90367-9 – ident: e_1_2_2_66_1 doi: 10.1038/ncomms9342 – ident: e_1_2_2_84_1 doi: 10.1038/nature12241 – ident: e_1_2_2_65_1 doi: 10.1038/nsmb.2473 – ident: e_1_2_2_79_1 doi: 10.1085/jgp.201010507 – ident: e_1_2_2_56_1 doi: 10.1085/jgp.201812082 – ident: e_1_2_2_67_1 doi: 10.1038/sj.embor.embor708 – ident: e_1_2_2_63_1 doi: 10.1126/science.285.5424.73 – ident: e_1_2_2_64_1 doi: 10.1038/emboj.2011.268 – ident: e_1_2_2_18_1 doi: 10.1016/j.cell.2010.05.003 – ident: e_1_2_2_20_1 doi: 10.7554/eLife.28032 – ident: e_1_2_2_48_1 doi: 10.1085/jgp.200609726 – ident: e_1_2_2_11_1 doi: 10.1152/ajpcell.00047.2011 – ident: e_1_2_2_19_1 doi: 10.1038/nsmb1069 – ident: e_1_2_2_58_1 doi: 10.1038/nsb1001-883 – ident: e_1_2_2_49_1 doi: 10.1074/jbc.273.27.16946 – ident: e_1_2_2_53_1 doi: 10.1016/j.ccell.2017.03.003 – ident: e_1_2_2_3_1 doi: 10.1073/pnas.2635314100 – ident: e_1_2_2_69_1 doi: 10.1016/j.cell.2016.02.002 – ident: e_1_2_2_51_1 doi: 10.3389/fphys.2013.00227 – ident: e_1_2_2_85_1 doi: 10.1038/368255a0 – ident: e_1_2_2_23_1 doi: 10.1085/jgp.200509385 – ident: e_1_2_2_45_1 doi: 10.1038/417523a – ident: e_1_2_2_71_1 doi: 10.1016/S0006-3495(97)78168-2 – ident: e_1_2_2_4_1 doi: 10.1529/biophysj.105.077073 – ident: e_1_2_2_70_1 doi: 10.1126/science.aav0569 – ident: e_1_2_2_77_1 doi: 10.1038/nature20608 – ident: e_1_2_2_88_1 doi: 10.1038/nsmb.1865 – ident: e_1_2_2_36_1 doi: 10.1016/S0896-6273(00)80571-1 – ident: e_1_2_2_34_1 doi: 10.1113/jphysiol.1952.sp004717 – ident: e_1_2_2_47_1 doi: 10.1085/jgp.201611602 – ident: e_1_2_2_72_1 doi: 10.1007/s00249-007-0206-7 – ident: e_1_2_2_41_1 doi: 10.1073/pnas.0911691107 – ident: e_1_2_2_21_1 doi: 10.1038/nature09136 – ident: e_1_2_2_22_1 doi: 10.1038/nature09153 – ident: e_1_2_2_28_1 doi: 10.1126/science.aan5275 – ident: e_1_2_2_37_1 doi: 10.1085/jgp.109.5.527 – ident: e_1_2_2_87_1 doi: 10.1038/nn1090 – ident: e_1_2_2_9_1 doi: 10.1038/nsmb1311 – ident: e_1_2_2_12_1 doi: 10.1126/science.1948047 – ident: e_1_2_2_31_1 doi: 10.7554/eLife.25844 – ident: e_1_2_2_44_1 doi: 10.1038/417515a – ident: e_1_2_2_8_1 doi: 10.1038/ncomms5377 – ident: e_1_2_2_83_1 doi: 10.1038/nature02468 – ident: e_1_2_2_14_1 doi: 10.1016/j.bpj.2018.01.030 – ident: e_1_2_2_43_1 doi: 10.1038/s41467-018-05970-3 – ident: e_1_2_2_24_1 doi: 10.1016/S0896-6273(01)00487-1 – ident: e_1_2_2_82_1 doi: 10.1126/science.1159262 – ident: e_1_2_2_7_1 doi: 10.1085/jgp.59.4.388 – ident: e_1_2_2_46_1 doi: 10.1016/S0896-6273(01)00236-7 – ident: e_1_2_2_55_1 doi: 10.7554/eLife.32481 – ident: e_1_2_2_78_1 doi: 10.1126/science.2441471 – ident: e_1_2_2_81_1 doi: 10.1016/j.cell.2017.03.048 – ident: e_1_2_2_35_1 doi: 10.1113/jphysiol.1952.sp004764 – ident: e_1_2_2_52_1 doi: 10.1016/j.ceca.2014.09.006 – ident: e_1_2_2_61_1 doi: 10.1038/349305a0 – ident: e_1_2_2_73_1 doi: 10.1007/s11060-015-1896-9 – ident: e_1_2_2_39_1 doi: 10.1038/35882 – volume: 1 start-page: 61 year: 1993 ident: e_1_2_2_60_1 article-title: Effects of external cations and mutations in the pore region on C‐type inactivation of Shaker potassium channels publication-title: Recept Channels contributor: fullname: López‐Barneo J – ident: e_1_2_2_74_1 doi: 10.1021/jp810102u – ident: e_1_2_2_91_1 doi: 10.1074/jbc.M113.501833 – ident: e_1_2_2_59_1 doi: 10.1038/nature22988 – ident: e_1_2_2_32_1 doi: 10.1016/j.cell.2016.12.030 – ident: e_1_2_2_40_1 doi: 10.1073/pnas.0911270107 – ident: e_1_2_2_90_1 doi: 10.1073/pnas.1104150108 – ident: e_1_2_2_33_1 doi: 10.1038/nature20775 – ident: e_1_2_2_42_1 doi: 10.1126/science.1216533 – ident: e_1_2_2_89_1 doi: 10.1126/science.2122520 – ident: e_1_2_2_5_1 doi: 10.1016/S0006-3495(04)74340-4 – ident: e_1_2_2_68_1 doi: 10.4161/chan.22153 – ident: e_1_2_2_62_1 doi: 10.1007/s00249-016-1143-0 – ident: e_1_2_2_27_1 doi: 10.1126/science.280.5360.69 – ident: e_1_2_2_54_1 doi: 10.1126/science.aas9466 – ident: e_1_2_2_16_1 doi: 10.1085/jgp.200709828 – ident: e_1_2_2_75_1 doi: 10.1529/biophysj.104.046045 – ident: e_1_2_2_30_1 doi: 10.1038/nature10370 – ident: e_1_2_2_80_1 doi: 10.1038/nature08291 – ident: e_1_2_2_86_1 doi: 10.1085/jgp.200609579 – ident: e_1_2_2_10_1 doi: 10.1038/nsmb.2208 – ident: e_1_2_2_29_1 doi: 10.1085/jgp.20028569 – ident: e_1_2_2_25_1 doi: 10.1016/j.cell.2016.08.075 – ident: e_1_2_2_2_1 doi: 10.1038/nsmb.1531 – ident: e_1_2_2_6_1 doi: 10.1085/jgp.58.4.413 – ident: e_1_2_2_17_1 doi: 10.1110/ps.051954706 – ident: e_1_2_2_15_1 doi: 10.1038/nature14013 – ident: e_1_2_2_57_1 doi: 10.1016/S0896-6273(00)80357-8 – ident: e_1_2_2_26_1 doi: 10.1126/science.1261512 – ident: e_1_2_2_50_1 doi: 10.1126/science.1085028 – ident: e_1_2_2_76_1 doi: 10.1074/jbc.M608264200 |
SSID | ssj0013099 |
Score | 2.452158 |
SecondaryResourceType | review_article |
Snippet | The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1961 |
SubjectTerms | cryo‐EM crystal structure molecular dynamics non‐canonical gating permeation gating Potassium Potassium - metabolism potassium channel Potassium channels Potassium Channels - metabolism Protein Conformation selectivity filter |
Title | Changing perspectives on how the permeation pathway through potassium channels is regulated |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP278682 https://www.ncbi.nlm.nih.gov/pubmed/31612997 https://www.proquest.com/docview/2509222914 https://search.proquest.com/docview/2305804291 |
Volume | 599 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yJ1-8zct0jgiiT51tk7bZ41DHGChDNhjsoSRLokPWjl0Y89d7krYbKoL42jZN2pOT7zvJuSB0TYU_UoBkDnAh5lApNKiUZo6gRIaR0ELZtItPz2G7TzuDYJB7VZpYmCw_xGbDzWiGXa-NgnORVyHxTLKBTtePWMjM8uuRyHjzPbz42wMEt9HYJAqPAi_POwtN74qGX5HoB738ylYt3LT20bAYaOZl8l5fLkR99PEth-P_vuQA7eUsFDezaXOIdlRyhMrNBCzwyRrfYOsXajfcy2hoAxAA4fB0G5g5x2mC39IVBv5ork8y6olNgeMVX-O8_A-epgtg5-PlBJsIYxjoHI_neKZeTdUwJY9Rv_XYu287eUkGZwS8K3QoGRFz8Ml95RLJRcP1teRSCylIBNxTkYAx6UtNgEkKsB2VDqQPDRhYToGk5ASVkjRRZwhzygINBpTQgJCauFxrynQQcq4IEYFbQVeFeOJplnkjziwWEhd_rIKqhdziXPfmMZC6hqlS7lF4xeY2aI05CuGJSpfwDCxzzGCxV0Gnmbw3nZihA0hHFXRrpfZr73Gv0_UIELjzPz95gXZ94xRjXX-qqLSYLdUlsJqFqNn5W7PbTZ8HnvJ2 |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5EH_TF-1jPCKJP1bZJ2yw-iQfreiCygqBQkk2iItsu7i6iv95J2q6oCOJr2zRpJ5Pvm2QOgC0mw7ZGJPOQC3GPKWlQpQz3JKMqTqSR2qVdvLiMGzeseRvdjsB-FQtT5IcYbrhZzXDrtVVwuyFdarnNNtC8ChMec1x_x1DbA-vPdXQdfh4h-PX6MFV4EgVl5llsu1e1_IpFPwjmV77qAOdkCu6roRZ-Js-7g77cbb9_y-L4z2-ZhsmSiJKDYubMwIjOZmHuIEMjvPNGtolzDXV77nNw52IQEORI9zM2s0fyjDzmrwQppL3eKdgnsTWOX8UbKSsAkW7eR4L-NOgQG2SMI-2Rpx550Q-2cJhW83Bzctw6bHhlVQavjdQr9hhtU3v2KULtUyVk3Q-NEspIJWmC9FPTiHMVKkORTEo0H7WJVIgNOBpPkWJ0AUazPNNLQATjkUEbShoESUN9YQzjJoqF0JTKyK_BZiWftFsk30gLo4Wm1R-rwWoluLRUv16KvK5uC5UHDF8xvI2KY09DRKbzAT6DKx23cBzUYLEQ-LATO3TE6aQGO05sv_aetppXAUUOt_znJzdgvNG6OE_PTy_PVmAitD4yzhNoFUb7LwO9hiSnL9fdZP4AhSv1hw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5NIE28wDZ-lTHmSQieUlLbSZxHRKlYYVWFioTUh8iubYamJhVtheCv5-wkrWBCmvaaxLGT8_m-s---Azjkio4MWrIAsZAIuFYWVcqKQHGm40RZZTzt4q9efHHDu7fRbRVV6XJhSn6IxYab0wy_XjsFn2hbKbkjG-j2aSJigcvvKo9p6njz29d0eYIQpumCKTyJWhXxLLY9qVu-NkV_4cvXcNXbm84GDOuRlmEmf5rzmWqOnt-QOP7fp3yC9QqGktNy3nyGDyb_ApunObrg4ydyRHxgqN9x34Shz0BAE0cmy8zMKSly8rt4JAgg3fVxiT2Jq3D8KJ9IVf-HTIoZwvP7-Zi4FGMc6JTcT8mDuXNlw4zegpvO-eDsIqhqMgQjBF5xwNmIuZNPSU3ItFRpSK2W2iqtWILg07BICE21ZQglFTqPxkaaYgOBrlOkOduGlbzIzS4QyUVk0YNSFk2kZaG0lgsbxVIaxlQUNuBHLZ5sUlJvZKXLwrL6jzVgv5ZbVinfNENUl7oy5S2Or1jcRrVxZyEyN8Ucn8F1Tjhj3GrATinvRSdu6GilkwYce6m923s26PZbDBHc3j8_-R0-9tud7Opn7_IrrFEXIOPDgPZhZfYwN98Q4czUgZ_KL67A9DY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changing+perspectives+on+how+the+permeation+pathway+through+potassium+channels+is+regulated&rft.jtitle=The+Journal+of+physiology&rft.au=Black%2C+Katrina+A.&rft.au=Jin%2C+Ruitao&rft.au=He%2C+Sitong&rft.au=Gulbis%2C+Jacqueline+M.&rft.date=2021-04-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=599&rft.issue=7&rft.spage=1961&rft.epage=1976&rft_id=info:doi/10.1113%2FJP278682&rft.externalDBID=n%2Fa&rft.externalDocID=10_1113_JP278682 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |