Changing perspectives on how the permeation pathway through potassium channels is regulated

The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non‐conducting and conducting states. Conventionally, this has been explained by a st...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 599; no. 7; pp. 1961 - 1976
Main Authors Black, Katrina A., Jin, Ruitao, He, Sitong, Gulbis, Jacqueline M.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non‐conducting and conducting states. Conventionally, this has been explained by a steric mechanism in which the pore alternates between two conformations: a ‘closed’ state in which the conduction pathway is occluded and an ‘open’ state in which the pathway is sufficiently wide to accommodate fully hydrated ions. Recently, however, ‘non‐canonical’ mechanisms have been proposed for some classes of K+ channels. The purpose of this review is to illuminate structural and dynamic relationships underpinning permeation control in K+ channels, indicating where additional data might resolve some of the remaining issues. figure legend Hypothetical mechanisms of control over ion permeation through potassium channels. The upper panel portrays the canonical steric pore‐gating mechanism, while the lower panels depict emerging models. Of these, the left‐hand panel describes the situation in which steric changes have been ruled out and gating has been ascribed to the selectivity filter, whereas the right‐hand panel shows a ‘dewetting’ model, which is neither contingent upon nor excludes steric changes within the pore.
AbstractList The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non‐conducting and conducting states. Conventionally, this has been explained by a steric mechanism in which the pore alternates between two conformations: a ‘closed’ state in which the conduction pathway is occluded and an ‘open’ state in which the pathway is sufficiently wide to accommodate fully hydrated ions. Recently, however, ‘non‐canonical’ mechanisms have been proposed for some classes of K+ channels. The purpose of this review is to illuminate structural and dynamic relationships underpinning permeation control in K+ channels, indicating where additional data might resolve some of the remaining issues. figure legend Hypothetical mechanisms of control over ion permeation through potassium channels. The upper panel portrays the canonical steric pore‐gating mechanism, while the lower panels depict emerging models. Of these, the left‐hand panel describes the situation in which steric changes have been ruled out and gating has been ascribed to the selectivity filter, whereas the right‐hand panel shows a ‘dewetting’ model, which is neither contingent upon nor excludes steric changes within the pore.
The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non‐conducting and conducting states. Conventionally, this has been explained by a steric mechanism in which the pore alternates between two conformations: a ‘closed’ state in which the conduction pathway is occluded and an ‘open’ state in which the pathway is sufficiently wide to accommodate fully hydrated ions. Recently, however, ‘non‐canonical’ mechanisms have been proposed for some classes of K + channels. The purpose of this review is to illuminate structural and dynamic relationships underpinning permeation control in K + channels, indicating where additional data might resolve some of the remaining issues. image
The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non‐conducting and conducting states. Conventionally, this has been explained by a steric mechanism in which the pore alternates between two conformations: a ‘closed’ state in which the conduction pathway is occluded and an ‘open’ state in which the pathway is sufficiently wide to accommodate fully hydrated ions. Recently, however, ‘non‐canonical’ mechanisms have been proposed for some classes of K+ channels. The purpose of this review is to illuminate structural and dynamic relationships underpinning permeation control in K+ channels, indicating where additional data might resolve some of the remaining issues.
The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non-conducting and conducting states. Conventionally, this has been explained by a steric mechanism in which the pore alternates between two conformations: a 'closed' state in which the conduction pathway is occluded and an 'open' state in which the pathway is sufficiently wide to accommodate fully hydrated ions. Recently, however, 'non-canonical' mechanisms have been proposed for some classes of K channels. The purpose of this review is to illuminate structural and dynamic relationships underpinning permeation control in K channels, indicating where additional data might resolve some of the remaining issues.
Author Black, Katrina A.
He, Sitong
Jin, Ruitao
Gulbis, Jacqueline M.
Author_xml – sequence: 1
  givenname: Katrina A.
  orcidid: 0000-0002-4094-6170
  surname: Black
  fullname: Black, Katrina A.
  organization: University of Melbourne
– sequence: 2
  givenname: Ruitao
  surname: Jin
  fullname: Jin, Ruitao
  organization: La Trobe University
– sequence: 3
  givenname: Sitong
  surname: He
  fullname: He, Sitong
  organization: La Trobe University
– sequence: 4
  givenname: Jacqueline M.
  orcidid: 0000-0003-2091-2237
  surname: Gulbis
  fullname: Gulbis, Jacqueline M.
  email: jgulbis@wehi.edu.au
  organization: University of Melbourne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31612997$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtLxDAUhYMoOqOCv0AKbtxUk9w-kqUMPhF0oSsXJW1upx3apiatw_x7M8yMiODqwuG7H4czJfud6ZCQM0avGGNw_fTKU5EIvkcmLEpkmKYS9smEUs5DSGN2RKbOLShlQKU8JEfAEsalTCfkY1apbl5386BH63oshvoLXWC6oDLLYKhwnbeohtpHvRqqpVr52JpxXgW9GZRz9dgGhbd02LigdoHF-dioAfUJOShV4_B0e4_J-93t2-whfH65f5zdPIdFxCEJIyggpgCKIwWtckl5qZUuc51DKihFiIXQXJfr1nlEJZax5v5BiITHOoJjcrnx9tZ8juiGrK1dgU2jOjSjyzjQWNCIS-bRiz_owoy28-0yHlPJuYd-CQtrnLNYZr2tW2VXGaPZevBsN7hHz7fCMW9R_4C7hT1wtQGWdYOrf0XZ29MrAxEl8A14I4oN
CitedBy_id crossref_primary_10_1016_j_pbiomolbio_2021_11_003
crossref_primary_10_1038_s41467_023_37260_y
crossref_primary_10_1085_jgp_202213196
crossref_primary_10_1063_5_0167530
crossref_primary_10_1038_s41467_022_28148_4
Cites_doi 10.1085/jgp.200609638
10.1016/0896-6273(91)90367-9
10.1038/ncomms9342
10.1038/nature12241
10.1038/nsmb.2473
10.1085/jgp.201010507
10.1085/jgp.201812082
10.1038/sj.embor.embor708
10.1126/science.285.5424.73
10.1038/emboj.2011.268
10.1016/j.cell.2010.05.003
10.7554/eLife.28032
10.1085/jgp.200609726
10.1152/ajpcell.00047.2011
10.1038/nsmb1069
10.1038/nsb1001-883
10.1074/jbc.273.27.16946
10.1016/j.ccell.2017.03.003
10.1073/pnas.2635314100
10.1016/j.cell.2016.02.002
10.3389/fphys.2013.00227
10.1038/368255a0
10.1085/jgp.200509385
10.1038/417523a
10.1016/S0006-3495(97)78168-2
10.1529/biophysj.105.077073
10.1126/science.aav0569
10.1038/nature20608
10.1038/nsmb.1865
10.1016/S0896-6273(00)80571-1
10.1113/jphysiol.1952.sp004717
10.1085/jgp.201611602
10.1007/s00249-007-0206-7
10.1073/pnas.0911691107
10.1038/nature09136
10.1038/nature09153
10.1126/science.aan5275
10.1085/jgp.109.5.527
10.1038/nn1090
10.1038/nsmb1311
10.1126/science.1948047
10.7554/eLife.25844
10.1038/417515a
10.1038/ncomms5377
10.1038/nature02468
10.1016/j.bpj.2018.01.030
10.1038/s41467-018-05970-3
10.1016/S0896-6273(01)00487-1
10.1126/science.1159262
10.1085/jgp.59.4.388
10.1016/S0896-6273(01)00236-7
10.7554/eLife.32481
10.1126/science.2441471
10.1016/j.cell.2017.03.048
10.1113/jphysiol.1952.sp004764
10.1016/j.ceca.2014.09.006
10.1038/349305a0
10.1007/s11060-015-1896-9
10.1038/35882
10.1021/jp810102u
10.1074/jbc.M113.501833
10.1038/nature22988
10.1016/j.cell.2016.12.030
10.1073/pnas.0911270107
10.1073/pnas.1104150108
10.1038/nature20775
10.1126/science.1216533
10.1126/science.2122520
10.1016/S0006-3495(04)74340-4
10.4161/chan.22153
10.1007/s00249-016-1143-0
10.1126/science.280.5360.69
10.1126/science.aas9466
10.1085/jgp.200709828
10.1529/biophysj.104.046045
10.1038/nature10370
10.1038/nature08291
10.1085/jgp.200609579
10.1038/nsmb.2208
10.1085/jgp.20028569
10.1016/j.cell.2016.08.075
10.1038/nsmb.1531
10.1085/jgp.58.4.413
10.1110/ps.051954706
10.1038/nature14013
10.1016/S0896-6273(00)80357-8
10.1126/science.1261512
10.1126/science.1085028
10.1074/jbc.M608264200
ContentType Journal Article
Copyright 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society
2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.
Journal compilation © 2021 The Physiological Society
Copyright_xml – notice: 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society
– notice: 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.
– notice: Journal compilation © 2021 The Physiological Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
DOI 10.1113/JP278682
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 1976
ExternalDocumentID 10_1113_JP278682
31612997
TJP13846
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
123
18M
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
0YM
1OB
31~
3EH
3O-
AASGY
AAYJJ
AFFNX
C1A
CAG
CGR
CHEAL
COF
CUY
CVF
ECM
EIF
EJD
FA8
H13
HF~
H~9
IPNFZ
LW6
MVM
NEJ
NPM
OHT
SAMSI
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
AAMNL
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4236-43c35033a2e03dab902fdadfbdb37800e3588d2df3161b409ef5d203388625d43
IEDL.DBID DR2
ISSN 0022-3751
IngestDate Wed Dec 04 09:57:06 EST 2024
Thu Oct 10 16:12:40 EDT 2024
Fri Dec 06 05:28:10 EST 2024
Sat Sep 28 08:28:00 EDT 2024
Sat Aug 24 01:04:20 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords permeation gating
selectivity filter
crystal structure
non-canonical gating
potassium channel
molecular dynamics
cryo-EM
Language English
License 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4236-43c35033a2e03dab902fdadfbdb37800e3588d2df3161b409ef5d203388625d43
Notes This is an Editor's Choice article from the 1 April 2021 issue.
Edited by: Ole Petersen & Ruth Murrell‐Lagnado
This review was presented at the Australian Physiological Society ion channel symposium 2018: The structural basis of electrical signalling: latest developments in the structural analysis of ion channels and transporters, which took place in Sydney, Australia, 27 November 2018.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-2091-2237
0000-0002-4094-6170
OpenAccessLink https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP278682
PMID 31612997
PQID 2509222914
PQPubID 1086388
PageCount 16
ParticipantIDs proquest_miscellaneous_2305804291
proquest_journals_2509222914
crossref_primary_10_1113_JP278682
pubmed_primary_31612997
wiley_primary_10_1113_JP278682_TJP13846
PublicationCentury 2000
PublicationDate 1 April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 1 April 2021
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2011; 477
1998; 280
2013; 4
2018; 360
2015; 347
2010; 107
2010; 17
2013; 20
1999; 285
2008; 37
2010; 141
2012; 19
2009; 113
2002; 119
2016; 148
1993; 1
2017; 358
1998; 273
2019; 363
2018; 9
2017; 31
2014; 5
1997; 109
1987; 237
2003; 6
2010a; 466
2007; 130
1971; 58
1997; 19
2003; 4
1991; 349
2017; 168
2012; 336
2006; 128
2017; 169
2009; 16
2016; 45
1972; 59
1990; 250
2014; 289
2004; 101
2004; 87
2006; 90
2004; 86
1952a; 116
2015; 58
2007; 129
2015; 6
2002a; 417
2014; 516
1991; 254
2007; 282
2006; 13
2015; 125
2006; 15
2016; 167
2011; 30
2001; 29
2008; 321
2004; 428
1998; 21
2016; 164
2007; 14
1991; 7
2011; 301
1998; 391
1997; 73
2011; 108
2018; 150
1994; 368
2010; 136
2005; 126
2018; 114
2001; 8
2010b; 466
2013; 498
2002b; 417
2009; 461
2012; 6
2017; 541
2003; 300
2001; 32
1952b; 117
2017; 547
e_1_2_2_4_1
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_62_1
e_1_2_2_87_1
e_1_2_2_43_1
e_1_2_2_64_1
e_1_2_2_85_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_66_1
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_68_1
e_1_2_2_89_1
López‐Barneo J (e_1_2_2_60_1) 1993; 1
e_1_2_2_83_1
e_1_2_2_81_1
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_59_1
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_76_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_53_1
e_1_2_2_74_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_55_1
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_57_1
e_1_2_2_78_1
e_1_2_2_70_1
e_1_2_2_72_1
e_1_2_2_91_1
e_1_2_2_25_1
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_63_1
e_1_2_2_86_1
e_1_2_2_42_1
e_1_2_2_65_1
e_1_2_2_84_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_67_1
e_1_2_2_27_1
e_1_2_2_46_1
e_1_2_2_69_1
e_1_2_2_88_1
e_1_2_2_82_1
e_1_2_2_61_1
e_1_2_2_80_1
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_1
e_1_2_2_52_1
e_1_2_2_75_1
e_1_2_2_31_1
e_1_2_2_54_1
e_1_2_2_73_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_56_1
e_1_2_2_79_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_77_1
e_1_2_2_90_1
e_1_2_2_50_1
e_1_2_2_71_1
References_xml – volume: 347
  start-page: 1256
  year: 2015
  end-page: 1259
  article-title: K2P channel gating mechanisms revealed by structures of TREK‐2 and a complex with Prozac
  publication-title: Science
– volume: 273
  start-page: 16946
  year: 1998
  end-page: 16952
  article-title: Gβγ binding to GIRK4 subunit is critical for G protein‐gated K channel activation
  publication-title: J Biol Chem
– volume: 148
  start-page: 119
  year: 2016
  end-page: 132
  article-title: Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles
  publication-title: J Gen Physiol
– volume: 30
  start-page: 3607
  year: 2011
  end-page: 3619
  article-title: The pore structure and gating mechanism of K2P channels
  publication-title: EMBO J
– volume: 119
  start-page: 521
  year: 2002
  end-page: 532
  article-title: Scanning the intracellular S6 activation gate in the Shaker K channel
  publication-title: J Gen Physiol
– volume: 466
  start-page: 272
  year: 2010a
  end-page: 275
  article-title: Structural basis for the coupling between activation and inactivation gates in K channels
  publication-title: Nature
– volume: 87
  start-page: 3050
  year: 2004
  end-page: 3065
  article-title: Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS
  publication-title: Biophys J
– volume: 59
  start-page: 388
  year: 1972
  end-page: 400
  article-title: The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier
  publication-title: J Gen Physiol
– volume: 129
  start-page: 299
  year: 2007
  end-page: 315
  article-title: Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis
  publication-title: J Gen Physiol
– volume: 461
  start-page: 292
  year: 2009
  end-page: 295
  article-title: Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy
  publication-title: Nature
– volume: 282
  start-page: 15179
  year: 2007
  end-page: 15186
  article-title: Identification and characterization of the slowly exchanging pH‐dependent conformational rearrangement in KcsA
  publication-title: J Biol Chem
– volume: 13
  start-page: 311
  year: 2006
  end-page: 318
  article-title: Molecular determinants of gating at the potassium‐channel selectivity filter
  publication-title: Nat Struct Mol Biol
– volume: 336
  start-page: 229
  year: 2012
  end-page: 233
  article-title: Mechanism of voltage gating in potassium channels
  publication-title: Science
– volume: 37
  start-page: 165
  year: 2008
  end-page: 171
  article-title: Non‐equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels
  publication-title: Eur Biophys J
– volume: 90
  start-page: 3447
  year: 2006
  end-page: 3468
  article-title: Ion permeation through a narrow channel: using gramicidin to ascertain all‐atom molecular dynamics potential of mean force methodology and biomolecular force fields
  publication-title: Biophys J
– volume: 6
  start-page: 811
  year: 2003
  end-page: 818
  article-title: Localization of PIP activation gate in inward rectifier K channels
  publication-title: Nat Neurosci
– volume: 15
  start-page: 684
  year: 2006
  end-page: 698
  article-title: NMR study of the tetrameric KcsA potassium channel in detergent micelles
  publication-title: Protein Sci
– volume: 417
  start-page: 523
  year: 2002b
  end-page: 526
  article-title: The open pore conformation of potassium channels
  publication-title: Nature
– volume: 6
  year: 2017
  article-title: Molecular structure of human KATP in complex with ATP and ADP
  publication-title: Elife
– volume: 73
  start-page: 1355
  year: 1997
  end-page: 1363
  article-title: A novel calcium‐sensing domain in the BK channel
  publication-title: Biophys J
– volume: 516
  start-page: 126
  year: 2014
  end-page: 130
  article-title: Physical mechanism for gating and mechanosensitivity of the human TRAAK K channel
  publication-title: Nature
– volume: 21
  start-page: 617
  year: 1998
  end-page: 621
  article-title: The activation gate of a voltage‐gated K channel can be trapped in the open state by an intersubunit metal bridge
  publication-title: Neuron
– volume: 14
  start-page: 1089
  year: 2007
  end-page: 1095
  article-title: Conformational dynamics of the KcsA potassium channel governs gating properties
  publication-title: Nat Struct Mol Biol
– volume: 128
  start-page: 569
  year: 2006
  end-page: 581
  article-title: Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction
  publication-title: J Gen Physiol
– volume: 4
  start-page: 70
  year: 2003
  end-page: 75
  article-title: The ligand‐sensitive gate of a potassium channel lies close to the selectivity filter
  publication-title: EMBO Rep
– volume: 19
  start-page: 175
  year: 1997
  end-page: 184
  article-title: Gated access to the pore of a voltage‐dependent K channel
  publication-title: Neuron
– volume: 280
  start-page: 69
  year: 1998
  end-page: 77
  article-title: The structure of the potassium channel: molecular basis of K conduction and selectivity
  publication-title: Science
– volume: 150
  start-page: 1408
  year: 2018
  end-page: 1420
  article-title: Rapid constriction of the selectivity filter underlies C‐type inactivation in the KcsA potassium channel
  publication-title: J Gen Physiol
– volume: 254
  start-page: 679
  year: 1991
  end-page: 683
  article-title: Molecular basis of gating charge immobilization in Shaker potassium channels
  publication-title: Science
– volume: 541
  start-page: 52
  year: 2017
  end-page: 57
  article-title: Structural basis for gating the high‐conductance Ca ‐activated K channel
  publication-title: Nature
– volume: 113
  start-page: 7642
  year: 2009
  end-page: 7649
  article-title: Intrinsic ion selectivity of narrow hydrophobic pores
  publication-title: J Phys Chem B
– volume: 130
  start-page: 601
  year: 2007
  end-page: 610
  article-title: Evidence for a deep pore activation gate in small conductance Ca ‐activated K channels
  publication-title: J Gen Physiol
– volume: 109
  start-page: 527
  year: 1997
  end-page: 535
  article-title: Trapping of organic blockers by closing of voltage‐dependent K channels: evidence for a trap door mechanism of activation gating
  publication-title: J Gen Physiol
– volume: 5
  start-page: 4377
  year: 2014
  article-title: A hydrophobic barrier deep within the inner pore of the TWIK‐1 K2P potassium channel
  publication-title: Nat Commun
– volume: 29
  start-page: 593
  year: 2001
  end-page: 601
  article-title: Structure of the RCK domain from the K channel and demonstration of its presence in the human BK channel
  publication-title: Neuron
– volume: 285
  start-page: 73
  year: 1999
  end-page: 78
  article-title: Structural rearrangements underlying K ‐channel activation gating
  publication-title: Science
– volume: 349
  start-page: 305
  year: 1991
  end-page: 310
  article-title: Alteration of voltage‐dependence of Shaker potassium channel by mutations in the S4 sequence
  publication-title: Nature
– volume: 417
  start-page: 515
  year: 2002a
  end-page: 522
  article-title: Crystal structure and mechanism of a calcium‐gated potassium channel
  publication-title: Nature
– volume: 321
  start-page: 1179
  year: 2008
  end-page: 1183
  article-title: The structure of an open form of an mechanosensitive channel at 3.45 Å resolution
  publication-title: Science
– volume: 20
  start-page: 159
  year: 2013
  end-page: 166
  article-title: The voltage‐dependent gate in MthK potassium channels is located at the selectivity filter
  publication-title: Nat Struct Mol Biol
– volume: 58
  start-page: 413
  year: 1971
  end-page: 437
  article-title: Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons
  publication-title: J Gen Physiol
– volume: 31
  start-page: 516
  year: 2017
  end-page: 531
  article-title: Direct pharmacological targeting of a mitochondrial ion channel selectively kills tumor cells in vivo
  publication-title: Cancer Cell
– volume: 300
  start-page: 1922
  year: 2003
  end-page: 1926
  article-title: Crystal structure of the potassium channel KirBac1.1 in the closed state
  publication-title: Science
– volume: 107
  start-page: 5833
  year: 2010
  end-page: 5838
  article-title: Principles of conduction and hydrophobic gating in K channels
  publication-title: Proc Natl Acad Sci U S A
– volume: 466
  start-page: 203
  year: 2010b
  end-page: 208
  article-title: Structural mechanism of C‐type inactivation in K channels
  publication-title: Nature
– volume: 125
  start-page: 125
  year: 2015
  end-page: 225
  article-title: The role of ion channels in malignant brain tumors
  publication-title: J Neuro‐Oncol
– volume: 358
  start-page: 511
  year: 2017
  end-page: 513
  article-title: Size effect in ion transport through angstrom‐scale slits
  publication-title: Science
– volume: 17
  start-page: 1019
  year: 2010
  end-page: 1023
  article-title: Novel insights into K selectivity from high‐resolution structures of an open K channel pore
  publication-title: Nat Struct Mol Biol
– volume: 250
  start-page: 568
  year: 1990
  end-page: 571
  article-title: Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from Shb
  publication-title: Science
– volume: 477
  start-page: 495
  year: 2011
  end-page: 498
  article-title: Structural basis of PIP2 activation of the classical inward rectifier K channel Kir2.2
  publication-title: Nature
– volume: 16
  start-page: 30
  year: 2009
  end-page: 34
  article-title: High‐resolution structure of the open NaK channel
  publication-title: Nat Struct Mol Biol
– volume: 368
  start-page: 255
  year: 1994
  end-page: 257
  article-title: Recombinant G‐protein βγ‐subunits activate the muscarinic‐gated atrial potassium channel
  publication-title: Nature
– volume: 360
  start-page: 508
  year: 2018
  end-page: 513
  article-title: Activation mechanism of a human SK‐calmodulin channel complex elucidated by cryo‐EM structures
  publication-title: Science
– volume: 108
  start-page: 12161
  year: 2011
  end-page: 12166
  article-title: Cysteine scanning and modification reveal major differences between BK channels and Kv channels in the inner pore region
  publication-title: Proc Natl Acad Sci U S A
– volume: 541
  start-page: 46
  year: 2017
  end-page: 51
  article-title: Cryo‐EM structure of the open high‐conductance Ca ‐activated K channel
  publication-title: Nature
– volume: 136
  start-page: 569
  year: 2010
  end-page: 579
  article-title: Voltage‐dependent inactivation gating at the selectivity filter of the MthK K channel
  publication-title: J Gen Physiol
– volume: 428
  start-page: 864
  year: 2004
  end-page: 868
  article-title: Intracellular gate opening in Shaker K channels defined by high‐affinity metal bridges
  publication-title: Nature
– volume: 6
  year: 2017
  article-title: Mechanism of activation at the selectivity filter of the KcsA K channel
  publication-title: Elife
– volume: 363
  start-page: 875
  year: 2019
  end-page: 880
  article-title: A pharmacological master key mechanism that unlocks the selectivity filter gate in K channels
  publication-title: Science
– volume: 58
  start-page: 131
  year: 2015
  end-page: 138
  article-title: Targeting a mitochondrial potassium channel to fight cancer
  publication-title: Cell Calcium
– volume: 6
  start-page: 213
  year: 2017
  article-title: The gating cycle of a K channel at atomic resolution
  publication-title: Elife
– volume: 164
  start-page: 937
  year: 2016
  end-page: 949
  article-title: A non‐canonical voltage‐sensing mechanism controls gating in K2P K channels
  publication-title: Cell
– volume: 167
  start-page: 145
  year: 2016
  end-page: 157.e17
  article-title: Structural basis for gating and activation of RyR1
  publication-title: Cell
– volume: 301
  start-page: C255
  year: 2011
  end-page: C265
  article-title: Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer
  publication-title: Am J Physiol, Cell Physiol
– volume: 391
  start-page: 803
  year: 1998
  end-page: 806
  article-title: Direct activation of inward rectifier potassium channels by PIP and its stabilization by Gβγ
  publication-title: Nature
– volume: 86
  start-page: 2883
  year: 2004
  end-page: 2895
  article-title: Water dynamics and dewetting transitions in the small mechanosensitive channel MscS
  publication-title: Biophys J
– volume: 117
  start-page: 500
  year: 1952b
  end-page: 544
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: J Physiol
– volume: 169
  start-page: 422
  year: 2017
  end-page: 424.e10
  article-title: Cryo‐EM structure of the open human ‐related K channel hERG
  publication-title: Cell
– volume: 9
  start-page: 3408
  year: 2018
  article-title: Hydrophobic gating in BK channels
  publication-title: Nat Commun
– volume: 45
  start-page: 685
  year: 2016
  end-page: 707
  article-title: Impact of intracellular ion channels on cancer development and progression
  publication-title: Eur Biophys J
– volume: 32
  start-page: 649
  year: 2001
  end-page: 656
  article-title: Tight steric closure at the intracellular activation gate of a voltage‐gated K channel
  publication-title: Neuron
– volume: 498
  start-page: 190
  year: 2013
  end-page: 197
  article-title: X‐ray structure of the mammalian GIRK2‐βγ G‐protein complex
  publication-title: Nature
– volume: 128
  start-page: 347
  year: 2006
  end-page: 364
  article-title: State‐independent block of BK channels by an intracellular quaternary ammonium
  publication-title: J Gen Physiol
– volume: 6
  start-page: 473
  year: 2012
  end-page: 478
  article-title: State‐independent intracellular access of quaternary ammonium blockers to the pore of TREK‐1
  publication-title: Channels (Austin)
– volume: 101
  start-page: 117
  year: 2004
  end-page: 122
  article-title: Energetics of ion conduction through the gramicidin channel
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 883
  year: 2001
  end-page: 887
  article-title: Structure of the KcsA channel intracellular gate in the open state
  publication-title: Nat Struct Biol
– volume: 141
  start-page: 1018
  year: 2010
  end-page: 1029
  article-title: Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels
  publication-title: Cell
– volume: 4
  start-page: 227
  year: 2013
  article-title: Intracellular ion channels and cancer
  publication-title: Front Physiol
– volume: 237
  start-page: 770
  year: 1987
  end-page: 775
  article-title: Sequence of a probable potassium channel component encoded at shaker locus of
  publication-title: Science
– volume: 289
  start-page: 143
  year: 2014
  end-page: 151
  article-title: Control of KirBac3.1 potassium channel gating at the interface between cytoplasmic domains
  publication-title: J Biol Chem
– volume: 116
  start-page: 449
  year: 1952a
  end-page: 472
  article-title: Currents carried by sodium and potassium ions through the membrane of the giant axon of
  publication-title: J Physiol
– volume: 107
  start-page: 6216
  year: 2010
  end-page: 6221
  article-title: Structural basis underlying the dual gate properties of KcsA
  publication-title: Proc Natl Acad Sci U S A
– volume: 547
  start-page: 364
  year: 2017
  end-page: 368
  article-title: K2P2.1 (TREK‐1)‐activator complexes reveal a cryptic selectivity filter binding site
  publication-title: Nature
– volume: 19
  start-page: 158
  year: 2012
  end-page: 163
  article-title: Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating
  publication-title: Nat Struct Mol Biol
– volume: 7
  start-page: 547
  year: 1991
  end-page: 556
  article-title: Two types of inactivation in Shaker K channels: effects of alterations in the carboxy‐terminal region
  publication-title: Neuron
– volume: 114
  start-page: 1336
  year: 2018
  end-page: 1343
  article-title: Mechanism of mechanosensitive gating of the TREK‐2 potassium channel
  publication-title: Biophys J
– volume: 1
  start-page: 61
  year: 1993
  end-page: 71
  article-title: Effects of external cations and mutations in the pore region on C‐type inactivation of Shaker potassium channels
  publication-title: Recept Channels
– volume: 6
  start-page: 8342
  year: 2015
  article-title: Calcium ions open a selectivity filter gate during activation of the MthK potassium channel
  publication-title: Nat Commun
– volume: 168
  start-page: 390
  year: 2017
  end-page: 399.e11
  article-title: Structural titration of Slo2.2, a Na ‐dependent K channel
  publication-title: Cell
– volume: 126
  start-page: 419
  year: 2005
  end-page: 428
  article-title: Status of the intracellular gate in the activated‐not‐open state of shaker K channels
  publication-title: J Gen Physiol
– ident: e_1_2_2_13_1
  doi: 10.1085/jgp.200609638
– ident: e_1_2_2_38_1
  doi: 10.1016/0896-6273(91)90367-9
– ident: e_1_2_2_66_1
  doi: 10.1038/ncomms9342
– ident: e_1_2_2_84_1
  doi: 10.1038/nature12241
– ident: e_1_2_2_65_1
  doi: 10.1038/nsmb.2473
– ident: e_1_2_2_79_1
  doi: 10.1085/jgp.201010507
– ident: e_1_2_2_56_1
  doi: 10.1085/jgp.201812082
– ident: e_1_2_2_67_1
  doi: 10.1038/sj.embor.embor708
– ident: e_1_2_2_63_1
  doi: 10.1126/science.285.5424.73
– ident: e_1_2_2_64_1
  doi: 10.1038/emboj.2011.268
– ident: e_1_2_2_18_1
  doi: 10.1016/j.cell.2010.05.003
– ident: e_1_2_2_20_1
  doi: 10.7554/eLife.28032
– ident: e_1_2_2_48_1
  doi: 10.1085/jgp.200609726
– ident: e_1_2_2_11_1
  doi: 10.1152/ajpcell.00047.2011
– ident: e_1_2_2_19_1
  doi: 10.1038/nsmb1069
– ident: e_1_2_2_58_1
  doi: 10.1038/nsb1001-883
– ident: e_1_2_2_49_1
  doi: 10.1074/jbc.273.27.16946
– ident: e_1_2_2_53_1
  doi: 10.1016/j.ccell.2017.03.003
– ident: e_1_2_2_3_1
  doi: 10.1073/pnas.2635314100
– ident: e_1_2_2_69_1
  doi: 10.1016/j.cell.2016.02.002
– ident: e_1_2_2_51_1
  doi: 10.3389/fphys.2013.00227
– ident: e_1_2_2_85_1
  doi: 10.1038/368255a0
– ident: e_1_2_2_23_1
  doi: 10.1085/jgp.200509385
– ident: e_1_2_2_45_1
  doi: 10.1038/417523a
– ident: e_1_2_2_71_1
  doi: 10.1016/S0006-3495(97)78168-2
– ident: e_1_2_2_4_1
  doi: 10.1529/biophysj.105.077073
– ident: e_1_2_2_70_1
  doi: 10.1126/science.aav0569
– ident: e_1_2_2_77_1
  doi: 10.1038/nature20608
– ident: e_1_2_2_88_1
  doi: 10.1038/nsmb.1865
– ident: e_1_2_2_36_1
  doi: 10.1016/S0896-6273(00)80571-1
– ident: e_1_2_2_34_1
  doi: 10.1113/jphysiol.1952.sp004717
– ident: e_1_2_2_47_1
  doi: 10.1085/jgp.201611602
– ident: e_1_2_2_72_1
  doi: 10.1007/s00249-007-0206-7
– ident: e_1_2_2_41_1
  doi: 10.1073/pnas.0911691107
– ident: e_1_2_2_21_1
  doi: 10.1038/nature09136
– ident: e_1_2_2_22_1
  doi: 10.1038/nature09153
– ident: e_1_2_2_28_1
  doi: 10.1126/science.aan5275
– ident: e_1_2_2_37_1
  doi: 10.1085/jgp.109.5.527
– ident: e_1_2_2_87_1
  doi: 10.1038/nn1090
– ident: e_1_2_2_9_1
  doi: 10.1038/nsmb1311
– ident: e_1_2_2_12_1
  doi: 10.1126/science.1948047
– ident: e_1_2_2_31_1
  doi: 10.7554/eLife.25844
– ident: e_1_2_2_44_1
  doi: 10.1038/417515a
– ident: e_1_2_2_8_1
  doi: 10.1038/ncomms5377
– ident: e_1_2_2_83_1
  doi: 10.1038/nature02468
– ident: e_1_2_2_14_1
  doi: 10.1016/j.bpj.2018.01.030
– ident: e_1_2_2_43_1
  doi: 10.1038/s41467-018-05970-3
– ident: e_1_2_2_24_1
  doi: 10.1016/S0896-6273(01)00487-1
– ident: e_1_2_2_82_1
  doi: 10.1126/science.1159262
– ident: e_1_2_2_7_1
  doi: 10.1085/jgp.59.4.388
– ident: e_1_2_2_46_1
  doi: 10.1016/S0896-6273(01)00236-7
– ident: e_1_2_2_55_1
  doi: 10.7554/eLife.32481
– ident: e_1_2_2_78_1
  doi: 10.1126/science.2441471
– ident: e_1_2_2_81_1
  doi: 10.1016/j.cell.2017.03.048
– ident: e_1_2_2_35_1
  doi: 10.1113/jphysiol.1952.sp004764
– ident: e_1_2_2_52_1
  doi: 10.1016/j.ceca.2014.09.006
– ident: e_1_2_2_61_1
  doi: 10.1038/349305a0
– ident: e_1_2_2_73_1
  doi: 10.1007/s11060-015-1896-9
– ident: e_1_2_2_39_1
  doi: 10.1038/35882
– volume: 1
  start-page: 61
  year: 1993
  ident: e_1_2_2_60_1
  article-title: Effects of external cations and mutations in the pore region on C‐type inactivation of Shaker potassium channels
  publication-title: Recept Channels
  contributor:
    fullname: López‐Barneo J
– ident: e_1_2_2_74_1
  doi: 10.1021/jp810102u
– ident: e_1_2_2_91_1
  doi: 10.1074/jbc.M113.501833
– ident: e_1_2_2_59_1
  doi: 10.1038/nature22988
– ident: e_1_2_2_32_1
  doi: 10.1016/j.cell.2016.12.030
– ident: e_1_2_2_40_1
  doi: 10.1073/pnas.0911270107
– ident: e_1_2_2_90_1
  doi: 10.1073/pnas.1104150108
– ident: e_1_2_2_33_1
  doi: 10.1038/nature20775
– ident: e_1_2_2_42_1
  doi: 10.1126/science.1216533
– ident: e_1_2_2_89_1
  doi: 10.1126/science.2122520
– ident: e_1_2_2_5_1
  doi: 10.1016/S0006-3495(04)74340-4
– ident: e_1_2_2_68_1
  doi: 10.4161/chan.22153
– ident: e_1_2_2_62_1
  doi: 10.1007/s00249-016-1143-0
– ident: e_1_2_2_27_1
  doi: 10.1126/science.280.5360.69
– ident: e_1_2_2_54_1
  doi: 10.1126/science.aas9466
– ident: e_1_2_2_16_1
  doi: 10.1085/jgp.200709828
– ident: e_1_2_2_75_1
  doi: 10.1529/biophysj.104.046045
– ident: e_1_2_2_30_1
  doi: 10.1038/nature10370
– ident: e_1_2_2_80_1
  doi: 10.1038/nature08291
– ident: e_1_2_2_86_1
  doi: 10.1085/jgp.200609579
– ident: e_1_2_2_10_1
  doi: 10.1038/nsmb.2208
– ident: e_1_2_2_29_1
  doi: 10.1085/jgp.20028569
– ident: e_1_2_2_25_1
  doi: 10.1016/j.cell.2016.08.075
– ident: e_1_2_2_2_1
  doi: 10.1038/nsmb.1531
– ident: e_1_2_2_6_1
  doi: 10.1085/jgp.58.4.413
– ident: e_1_2_2_17_1
  doi: 10.1110/ps.051954706
– ident: e_1_2_2_15_1
  doi: 10.1038/nature14013
– ident: e_1_2_2_57_1
  doi: 10.1016/S0896-6273(00)80357-8
– ident: e_1_2_2_26_1
  doi: 10.1126/science.1261512
– ident: e_1_2_2_50_1
  doi: 10.1126/science.1085028
– ident: e_1_2_2_76_1
  doi: 10.1074/jbc.M608264200
SSID ssj0013099
Score 2.452158
SecondaryResourceType review_article
Snippet The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1961
SubjectTerms cryo‐EM
crystal structure
molecular dynamics
non‐canonical gating
permeation gating
Potassium
Potassium - metabolism
potassium channel
Potassium channels
Potassium Channels - metabolism
Protein Conformation
selectivity filter
Title Changing perspectives on how the permeation pathway through potassium channels is regulated
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP278682
https://www.ncbi.nlm.nih.gov/pubmed/31612997
https://www.proquest.com/docview/2509222914
https://search.proquest.com/docview/2305804291
Volume 599
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yJ1-8zct0jgiiT51tk7bZ41DHGChDNhjsoSRLokPWjl0Y89d7krYbKoL42jZN2pOT7zvJuSB0TYU_UoBkDnAh5lApNKiUZo6gRIaR0ELZtItPz2G7TzuDYJB7VZpYmCw_xGbDzWiGXa-NgnORVyHxTLKBTtePWMjM8uuRyHjzPbz42wMEt9HYJAqPAi_POwtN74qGX5HoB738ylYt3LT20bAYaOZl8l5fLkR99PEth-P_vuQA7eUsFDezaXOIdlRyhMrNBCzwyRrfYOsXajfcy2hoAxAA4fB0G5g5x2mC39IVBv5ork8y6olNgeMVX-O8_A-epgtg5-PlBJsIYxjoHI_neKZeTdUwJY9Rv_XYu287eUkGZwS8K3QoGRFz8Ml95RLJRcP1teRSCylIBNxTkYAx6UtNgEkKsB2VDqQPDRhYToGk5ASVkjRRZwhzygINBpTQgJCauFxrynQQcq4IEYFbQVeFeOJplnkjziwWEhd_rIKqhdziXPfmMZC6hqlS7lF4xeY2aI05CuGJSpfwDCxzzGCxV0Gnmbw3nZihA0hHFXRrpfZr73Gv0_UIELjzPz95gXZ94xRjXX-qqLSYLdUlsJqFqNn5W7PbTZ8HnvJ2
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5EH_TF-1jPCKJP1bZJ2yw-iQfreiCygqBQkk2iItsu7i6iv95J2q6oCOJr2zRpJ5Pvm2QOgC0mw7ZGJPOQC3GPKWlQpQz3JKMqTqSR2qVdvLiMGzeseRvdjsB-FQtT5IcYbrhZzXDrtVVwuyFdarnNNtC8ChMec1x_x1DbA-vPdXQdfh4h-PX6MFV4EgVl5llsu1e1_IpFPwjmV77qAOdkCu6roRZ-Js-7g77cbb9_y-L4z2-ZhsmSiJKDYubMwIjOZmHuIEMjvPNGtolzDXV77nNw52IQEORI9zM2s0fyjDzmrwQppL3eKdgnsTWOX8UbKSsAkW7eR4L-NOgQG2SMI-2Rpx550Q-2cJhW83Bzctw6bHhlVQavjdQr9hhtU3v2KULtUyVk3Q-NEspIJWmC9FPTiHMVKkORTEo0H7WJVIgNOBpPkWJ0AUazPNNLQATjkUEbShoESUN9YQzjJoqF0JTKyK_BZiWftFsk30gLo4Wm1R-rwWoluLRUv16KvK5uC5UHDF8xvI2KY09DRKbzAT6DKx23cBzUYLEQ-LATO3TE6aQGO05sv_aetppXAUUOt_znJzdgvNG6OE_PTy_PVmAitD4yzhNoFUb7LwO9hiSnL9fdZP4AhSv1hw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5NIE28wDZ-lTHmSQieUlLbSZxHRKlYYVWFioTUh8iubYamJhVtheCv5-wkrWBCmvaaxLGT8_m-s---Azjkio4MWrIAsZAIuFYWVcqKQHGm40RZZTzt4q9efHHDu7fRbRVV6XJhSn6IxYab0wy_XjsFn2hbKbkjG-j2aSJigcvvKo9p6njz29d0eYIQpumCKTyJWhXxLLY9qVu-NkV_4cvXcNXbm84GDOuRlmEmf5rzmWqOnt-QOP7fp3yC9QqGktNy3nyGDyb_ApunObrg4ydyRHxgqN9x34Shz0BAE0cmy8zMKSly8rt4JAgg3fVxiT2Jq3D8KJ9IVf-HTIoZwvP7-Zi4FGMc6JTcT8mDuXNlw4zegpvO-eDsIqhqMgQjBF5xwNmIuZNPSU3ItFRpSK2W2iqtWILg07BICE21ZQglFTqPxkaaYgOBrlOkOduGlbzIzS4QyUVk0YNSFk2kZaG0lgsbxVIaxlQUNuBHLZ5sUlJvZKXLwrL6jzVgv5ZbVinfNENUl7oy5S2Or1jcRrVxZyEyN8Ucn8F1Tjhj3GrATinvRSdu6GilkwYce6m923s26PZbDBHc3j8_-R0-9tud7Opn7_IrrFEXIOPDgPZhZfYwN98Q4czUgZ_KL67A9DY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changing+perspectives+on+how+the+permeation+pathway+through+potassium+channels+is+regulated&rft.jtitle=The+Journal+of+physiology&rft.au=Black%2C+Katrina+A.&rft.au=Jin%2C+Ruitao&rft.au=He%2C+Sitong&rft.au=Gulbis%2C+Jacqueline+M.&rft.date=2021-04-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=599&rft.issue=7&rft.spage=1961&rft.epage=1976&rft_id=info:doi/10.1113%2FJP278682&rft.externalDBID=n%2Fa&rft.externalDocID=10_1113_JP278682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon