Manipulation of the In Situ Nitrogen‐Vacancy Doping Efficiency in CVD‐Grown Diamond
Herein, the in situ generation of nitrogen‐vacancy (NV) centers in diamond during chemical vapor deposition (CVD) is investigated depending on the electric‐field strength at the sample position. The alteration of the electric‐field strength is induced by changing the resonance conditions within the...
Saved in:
Published in | Physica status solidi. A, Applications and materials science Vol. 219; no. 10 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, the in situ generation of nitrogen‐vacancy (NV) centers in diamond during chemical vapor deposition (CVD) is investigated depending on the electric‐field strength at the sample position. The alteration of the electric‐field strength is induced by changing the resonance conditions within the resonator cavity while keeping the growth input variables constant. The electric‐field strength distribution is obtained by simulation results. During the growth experiments, optical‐emission spectroscopy data is collected, which shows the impact of the electric‐field strength on the radical concentrations within the plasma and the gas temperature. Through the reduction of the electric‐field strength, the synthesis of thick, high‐quality, nitrogen‐doped diamond without the formation of a polycrystalline rim around the sample edges and the twinning‐induced growth of polycrystalline grains was accomplished. Therefore, a reduced internal and more homogeneous stress distribution is achieved. Furthermore, significant influences on the in situ NV doping are discovered. In addition to a considerable gain of the in situ NV generation, also a major enhancement of the in situ incorporation efficiency of NV centers in comparison to Ns0 centers up to almost 3% is observed. Depending on the application, this makes posttreatment processes for additional NV generation dispensable.
Diamonds exhibiting a high nitrogen‐vacancy (NV) density are of interest for quantum technological applications. Especially, in situ–generated NV centers are known to exhibit outstanding quantum properties. Hence, it is imperative to increase the in situ NV‐doping efficiency in CVD‐grown diamonds. Herein, a major enhancement of around 3% NV to Ns0 is presented. |
---|---|
AbstractList | Herein, the in situ generation of nitrogen‐vacancy (NV) centers in diamond during chemical vapor deposition (CVD) is investigated depending on the electric‐field strength at the sample position. The alteration of the electric‐field strength is induced by changing the resonance conditions within the resonator cavity while keeping the growth input variables constant. The electric‐field strength distribution is obtained by simulation results. During the growth experiments, optical‐emission spectroscopy data is collected, which shows the impact of the electric‐field strength on the radical concentrations within the plasma and the gas temperature. Through the reduction of the electric‐field strength, the synthesis of thick, high‐quality, nitrogen‐doped diamond without the formation of a polycrystalline rim around the sample edges and the twinning‐induced growth of polycrystalline grains was accomplished. Therefore, a reduced internal and more homogeneous stress distribution is achieved. Furthermore, significant influences on the in situ NV doping are discovered. In addition to a considerable gain of the in situ NV generation, also a major enhancement of the in situ incorporation efficiency of NV centers in comparison to centers up to almost 3% is observed. Depending on the application, this makes posttreatment processes for additional NV generation dispensable. Herein, the in situ generation of nitrogen‐vacancy (NV) centers in diamond during chemical vapor deposition (CVD) is investigated depending on the electric‐field strength at the sample position. The alteration of the electric‐field strength is induced by changing the resonance conditions within the resonator cavity while keeping the growth input variables constant. The electric‐field strength distribution is obtained by simulation results. During the growth experiments, optical‐emission spectroscopy data is collected, which shows the impact of the electric‐field strength on the radical concentrations within the plasma and the gas temperature. Through the reduction of the electric‐field strength, the synthesis of thick, high‐quality, nitrogen‐doped diamond without the formation of a polycrystalline rim around the sample edges and the twinning‐induced growth of polycrystalline grains was accomplished. Therefore, a reduced internal and more homogeneous stress distribution is achieved. Furthermore, significant influences on the in situ NV doping are discovered. In addition to a considerable gain of the in situ NV generation, also a major enhancement of the in situ incorporation efficiency of NV centers in comparison to Ns0 centers up to almost 3% is observed. Depending on the application, this makes posttreatment processes for additional NV generation dispensable. Diamonds exhibiting a high nitrogen‐vacancy (NV) density are of interest for quantum technological applications. Especially, in situ–generated NV centers are known to exhibit outstanding quantum properties. Hence, it is imperative to increase the in situ NV‐doping efficiency in CVD‐grown diamonds. Herein, a major enhancement of around 3% NV to Ns0 is presented. Herein, the in situ generation of nitrogen‐vacancy (NV) centers in diamond during chemical vapor deposition (CVD) is investigated depending on the electric‐field strength at the sample position. The alteration of the electric‐field strength is induced by changing the resonance conditions within the resonator cavity while keeping the growth input variables constant. The electric‐field strength distribution is obtained by simulation results. During the growth experiments, optical‐emission spectroscopy data is collected, which shows the impact of the electric‐field strength on the radical concentrations within the plasma and the gas temperature. Through the reduction of the electric‐field strength, the synthesis of thick, high‐quality, nitrogen‐doped diamond without the formation of a polycrystalline rim around the sample edges and the twinning‐induced growth of polycrystalline grains was accomplished. Therefore, a reduced internal and more homogeneous stress distribution is achieved. Furthermore, significant influences on the in situ NV doping are discovered. In addition to a considerable gain of the in situ NV generation, also a major enhancement of the in situ incorporation efficiency of NV centers in comparison to Ns0 centers up to almost 3% is observed. Depending on the application, this makes posttreatment processes for additional NV generation dispensable. |
Author | Jeske, Jan Luo, Tingpeng Lebedev, Vadim Kirste, Lutz Prescher, Mario Ambacher, Oliver Langer, Julia Cimalla, Volker |
Author_xml | – sequence: 1 givenname: Julia orcidid: 0000-0001-9982-1500 surname: Langer fullname: Langer, Julia email: julia.langer@iaf.fraunhofer.de organization: Fraunhofer Institute for Applied Solid State Physics IAF – sequence: 2 givenname: Volker orcidid: 0000-0001-8531-1892 surname: Cimalla fullname: Cimalla, Volker organization: Fraunhofer Institute for Applied Solid State Physics IAF – sequence: 3 givenname: Vadim surname: Lebedev fullname: Lebedev, Vadim organization: Fraunhofer Institute for Applied Solid State Physics IAF – sequence: 4 givenname: Lutz orcidid: 0000-0002-5274-2650 surname: Kirste fullname: Kirste, Lutz organization: Fraunhofer Institute for Applied Solid State Physics IAF – sequence: 5 givenname: Mario surname: Prescher fullname: Prescher, Mario organization: Fraunhofer Institute for Applied Solid State Physics IAF – sequence: 6 givenname: Tingpeng orcidid: 0000-0001-5486-4064 surname: Luo fullname: Luo, Tingpeng organization: Fraunhofer Institute for Applied Solid State Physics IAF – sequence: 7 givenname: Jan orcidid: 0000-0003-3532-506X surname: Jeske fullname: Jeske, Jan organization: Fraunhofer Institute for Applied Solid State Physics IAF – sequence: 8 givenname: Oliver surname: Ambacher fullname: Ambacher, Oliver organization: Fraunhofer Institute for Applied Solid State Physics IAF |
BookMark | eNqFkMtOAjEUhhuDiYBuXTdxPdieznVJAJEELwmKy6bTabEE2nE6E8LOR_AZfRKHYHDp6lzy_ef8-XuoY51VCF1TMqCEwG3pvRgAgXZIovgMdWkaQxAzmnVOPSEXqOf9mpAwChPaRW8Pwpqy2YjaOIudxvW7wjOLF6Zu8KOpK7dS9vvzaymksHKPx640doUnWhtp1GFjLB4txy0yrdzO4rERW2eLS3Suxcarq9_aR693k5fRfTB_ms5Gw3kgQ2BxAGka562ZAjQDoWQuUq1AZkBYxkCqnGWRbF0DKFbIguokpSIXogCW6VQL1kc3x7tl5T4a5Wu-dk1l25cc4jgBmmZh1FKDIyUr532lNC8rsxXVnlPCD-HxQ3j8FF4ryI6Cndmo_T80f14shn_aH3cJdww |
CitedBy_id | crossref_primary_10_1088_1367_2630_ac58b6 crossref_primary_10_1063_5_0101215 crossref_primary_10_1098_rsta_2022_0314 |
Cites_doi | 10.1002/2017GC006946 10.1016/j.diamond.2015.09.018 10.1038/ncomms9251 10.1016/j.mtcomm.2019.100816 10.1016/j.diamond.2017.04.010 10.1016/j.diamond.2014.11.010 10.1103/PhysRevB.102.134210 10.1002/anie.201506556 10.1007/978-1-4757-0961-2 10.1088/0953-8984/15/17/201 10.1016/j.diamond.2008.10.038 10.1016/j.diamond.2020.107794 10.1088/1361-6463/ab81d1 10.1063/1.1622105 10.1088/0953-8984/21/36/364214 10.1088/2633-4356/abd88a 10.1088/1367-2630/18/1/013015 10.1016/j.diamond.2006.09.012 10.1063/1.4862749 10.1007/978-94-009-5758-9 10.1016/j.diamond.2017.04.009 10.1016/j.diamond.2015.12.016 10.1016/j.diamond.2005.09.020 10.1016/S0925-9635(99)00148-X 10.1103/PhysRevLett.90.185507 10.1016/j.diamond.2016.12.011 10.1016/j.diamond.2019.107652 10.1016/j.diamond.2009.11.012 10.1002/pssa.202100035 10.1063/1.373604 10.1016/j.diamond.2004.07.007 10.1016/j.diamond.2017.09.013 10.1016/j.jcrysgro.2006.03.046 10.1038/nature25970 10.1016/j.diamond.2010.07.005 10.1063/1.120997 |
ContentType | Journal Article |
Copyright | 2022 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/pssa.202100756 |
DatabaseName | Wiley-Blackwell Titles (Open access) Wiley Online Library Journals CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley_OA刊 url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1862-6319 |
EndPage | n/a |
ExternalDocumentID | 10_1002_pssa_202100756 PSSA202100756 |
Genre | article |
GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung funderid: 13XP5063 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ V2E W8V W99 WBKPD WGJPS WIH WIK WIN WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~IA ~WT AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4236-2886b004d2f32aecba8fe2c9203932ceb395c30022e3dcd1f781abaad239f8fa3 |
IEDL.DBID | 24P |
ISSN | 1862-6300 |
IngestDate | Thu Oct 10 20:13:12 EDT 2024 Fri Aug 23 00:43:30 EDT 2024 Sat Aug 24 00:59:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4236-2886b004d2f32aecba8fe2c9203932ceb395c30022e3dcd1f781abaad239f8fa3 |
ORCID | 0000-0001-9982-1500 0000-0002-5274-2650 0000-0001-5486-4064 0000-0001-8531-1892 0000-0003-3532-506X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.202100756 |
PQID | 2667218945 |
PQPubID | 1036347 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2667218945 crossref_primary_10_1002_pssa_202100756 wiley_primary_10_1002_pssa_202100756_PSSA202100756 |
PublicationCentury | 2000 |
PublicationDate | May 2022 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Physica status solidi. A, Applications and materials science |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 6 2009; 21 2010; 19 2015; 51 2000; 87 2006; 16 1976 2020; 105 2003; 15 2006; 291 2020; 101 2020; 102 2016; 18 2021; 1 1999; 8 2014; 89 1979 2016; 55 2007; 16 1999 2017; 72 2003; 90 2014; 3 2020; 53 2015; 60 2021 2017; 76 2018; 555 2017; 79 2021; 218 2004; 13 2016; 64 2017; 18 2020; 22 1998; 72 2003; 83 2009; 18 2005; 14 e_1_2_8_28_1 e_1_2_8_29_1 Yamada H. (e_1_2_8_16_1) 2016; 55 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_37_1 Deák P. (e_1_2_8_40_1) 2014; 89 Horino Y. (e_1_2_8_22_1) 2006; 16 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Bauer T. (e_1_2_8_8_1) 2005; 14 Holý V. (e_1_2_8_36_1) 1999 e_1_2_8_30_1 |
References_xml | – volume: 3 start-page: 033102 year: 2014 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 11 year: 2004 publication-title: Diamond Relat. Mater. – volume: 18 start-page: 3254 year: 2017 publication-title: Geochem. Geophys. Geosyst. – volume: 16 start-page: 63 year: 2006 publication-title: N. Fujimori – volume: 19 start-page: 12 year: 2010 publication-title: Diamond Relat. Mater. – volume: 90 start-page: 185507 year: 2003 publication-title: Phys. Rev. Lett. – volume: 79 start-page: 150 year: 2017 publication-title: Diamond Relat. Mater. – volume: 76 start-page: 58 year: 2017 publication-title: Diamond Relat. Mater. – volume: 555 start-page: 7697 year: 2018 publication-title: Nature – year: 2021 – volume: 19 start-page: 5 year: 2010 publication-title: Diamond Relat. Mater. – volume: 15 start-page: R551 year: 2003 publication-title: J. Phys. Condens. Matter – volume: 6 start-page: 8251 year: 2015 publication-title: Nat. Commun. – volume: 1 start-page: 025001 year: 2021 publication-title: Mater. Quantum Technol. – volume: 8 start-page: 2022 year: 1999 publication-title: Diamond Relat. Mater. – volume: 87 start-page: 8741 year: 2000 publication-title: J. Appl. Phys. – volume: 55 start-page: 6586 year: 2016 publication-title: Angew. Chem. – volume: 105 start-page: 107794 year: 2020 publication-title: Diamond Relat. Mater. – volume: 51 start-page: 55 year: 2015 publication-title: Diamond Relat. Mater. – volume: 18 start-page: 2 year: 2009 publication-title: Diamond Relat. Mater. – year: 1979 – volume: 22 start-page: 100816 year: 2020 publication-title: Mater. Today Commun. – volume: 72 start-page: 1149 year: 1998 publication-title: Appl. Phys. Lett. – volume: 53 start-page: 313001 year: 2020 publication-title: J. Phys. D: Appl. Phys. – volume: 76 start-page: 68 year: 2017 publication-title: Diamond Relat. Mater. – volume: 291 start-page: 533 year: 2006 publication-title: J. Cryst. Growth – volume: 16 start-page: 4 year: 2007 publication-title: Diamond Relat. Mater. – volume: 102 start-page: 134210 year: 2020 publication-title: Phys. Rev. B – volume: 218 start-page: 2100035 year: 2021 publication-title: Phys. Status Solidi A – volume: 18 start-page: 013015 year: 2016 publication-title: New J. Phys. – volume: 83 start-page: 3465 year: 2003 publication-title: Appl. Phys. Lett. – volume: 72 start-page: 1 year: 2017 publication-title: Diamond Relat. Mater. – volume: 64 start-page: 1 year: 2016 publication-title: Diamond Relat. Mater. – volume: 101 start-page: 107652 year: 2020 publication-title: Diamond Relat. Mater. – volume: 55 start-page: 1S01AC07. year: 2016 publication-title: Jpn. J. Appl. Phys. – volume: 21 start-page: 364214 year: 2009 publication-title: J. Phys. Condens. Matter – volume: 14 start-page: 11 year: 2005 publication-title: Diamond Relat. Mater. – volume: 14 start-page: 3 year: 2005 publication-title: Diamond Relat. Mater. – volume: 89 start-page: 7 year: 2014 publication-title: Phys. Rev. B – year: 1976 – volume: 60 start-page: 26 year: 2015 publication-title: Diamond Relat. Mater. – year: 1999 – ident: e_1_2_8_7_1 doi: 10.1002/2017GC006946 – ident: e_1_2_8_28_1 doi: 10.1016/j.diamond.2015.09.018 – ident: e_1_2_8_2_1 doi: 10.1038/ncomms9251 – ident: e_1_2_8_27_1 doi: 10.1016/j.mtcomm.2019.100816 – ident: e_1_2_8_29_1 doi: 10.1016/j.diamond.2017.04.010 – ident: e_1_2_8_15_1 doi: 10.1016/j.diamond.2014.11.010 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevB.102.134210 – volume: 14 start-page: 3 year: 2005 ident: e_1_2_8_8_1 publication-title: Diamond Relat. Mater. contributor: fullname: Bauer T. – ident: e_1_2_8_39_1 – ident: e_1_2_8_4_1 doi: 10.1002/anie.201506556 – ident: e_1_2_8_33_1 doi: 10.1007/978-1-4757-0961-2 – ident: e_1_2_8_37_1 doi: 10.1088/0953-8984/15/17/201 – ident: e_1_2_8_23_1 doi: 10.1016/j.diamond.2008.10.038 – ident: e_1_2_8_14_1 doi: 10.1016/j.diamond.2020.107794 – ident: e_1_2_8_18_1 doi: 10.1088/1361-6463/ab81d1 – ident: e_1_2_8_35_1 doi: 10.1063/1.1622105 – volume-title: High-Resolution X-Ray Scattering from Thin Films and Multilayers year: 1999 ident: e_1_2_8_36_1 contributor: fullname: Holý V. – ident: e_1_2_8_43_1 doi: 10.1088/0953-8984/21/36/364214 – ident: e_1_2_8_19_1 doi: 10.1088/2633-4356/abd88a – ident: e_1_2_8_6_1 doi: 10.1088/1367-2630/18/1/013015 – ident: e_1_2_8_11_1 doi: 10.1016/j.diamond.2006.09.012 – volume: 55 start-page: 1S01AC07. year: 2016 ident: e_1_2_8_16_1 publication-title: Jpn. J. Appl. Phys. contributor: fullname: Yamada H. – ident: e_1_2_8_5_1 doi: 10.1063/1.4862749 – ident: e_1_2_8_32_1 doi: 10.1007/978-94-009-5758-9 – ident: e_1_2_8_21_1 doi: 10.1016/j.diamond.2017.04.009 – ident: e_1_2_8_26_1 doi: 10.1016/j.diamond.2015.12.016 – ident: e_1_2_8_9_1 doi: 10.1016/j.diamond.2005.09.020 – ident: e_1_2_8_34_1 doi: 10.1016/S0925-9635(99)00148-X – ident: e_1_2_8_38_1 doi: 10.1103/PhysRevLett.90.185507 – ident: e_1_2_8_13_1 doi: 10.1016/j.diamond.2016.12.011 – ident: e_1_2_8_31_1 doi: 10.1016/j.diamond.2019.107652 – ident: e_1_2_8_24_1 doi: 10.1016/j.diamond.2009.11.012 – ident: e_1_2_8_42_1 doi: 10.1002/pssa.202100035 – ident: e_1_2_8_20_1 doi: 10.1063/1.373604 – volume: 16 start-page: 63 year: 2006 ident: e_1_2_8_22_1 publication-title: N. Fujimori contributor: fullname: Horino Y. – volume: 89 start-page: 7 year: 2014 ident: e_1_2_8_40_1 publication-title: Phys. Rev. B contributor: fullname: Deák P. – ident: e_1_2_8_12_1 doi: 10.1016/j.diamond.2004.07.007 – ident: e_1_2_8_30_1 doi: 10.1016/j.diamond.2017.09.013 – ident: e_1_2_8_10_1 doi: 10.1016/j.jcrysgro.2006.03.046 – ident: e_1_2_8_3_1 doi: 10.1038/nature25970 – ident: e_1_2_8_25_1 doi: 10.1016/j.diamond.2010.07.005 – ident: e_1_2_8_41_1 doi: 10.1063/1.120997 |
SSID | ssj0045471 |
Score | 2.4136622 |
Snippet | Herein, the in situ generation of nitrogen‐vacancy (NV) centers in diamond during chemical vapor deposition (CVD) is investigated depending on the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Cavity resonators Chemical vapor deposition Diamonds Doping electric-field strength simulation Field strength Gas temperature in situ NV doping efficiency Nitrogen nitrogen doping optical-emission spectroscopy Polycrystals Stress distribution structural analysis substrate holder synthetic diamond Vacancies |
Title | Manipulation of the In Situ Nitrogen‐Vacancy Doping Efficiency in CVD‐Grown Diamond |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.202100756 https://www.proquest.com/docview/2667218945 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60IngRn1itsgfBU6iZJE1yLE1rFVqKtbW3sNkH5JKWJr37E_yN_hJ3Nk0fJ8FLQiC7h8nOzDfZ_b4h5NF3QLFQORYI37FcyaWV-CyxbMECDXeZ8F3kOw-Grf7EfZt5sx0Wf6kPsfnhhp5h4jU6OEvy5lY0dJHnqBsEuM3vtQ7JEcrGoHo-uKMqFqNalSm5NG63UFyqkm18hub--P20tMWau4jVpJzeGTldY0XaLj_uOTmQ2QU5Nmc2eX5JPgcsS6v2W3SuqMZy9DWj47RY0WFaLOd6cfx8fU8ZxxBKI8ONol0jGoGMS5pmtDON9CsvWIzTKMXWQ-KKTHrdj07fWvdJsLgGQy0LgqCF3idAOcAkT1igJPAQkHcLXJfLoccdzNbSEVzYyg9sljAmwAlVoJhzTWrZPJM3hNpCanzi6ZsPej43Ua4OAtz2FGd6NlEnT5WZ4kUphxGXwscQo0HjjUHrpFFZMV67RR5rNKArziB0vToBY9k_ZolH43F783T7n0F35ASQsmAOKTZIrViu5L0GEkXyYNaKvkbv8AuIw8LI |
link.rule.ids | 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCMGFHVEo4AMSpxRiJ01yRC3QAq0QZbtFjhcpQkoRTS-c-AS-kS_B4zRhuSDBKYoUj5LxjP3GmXkDsB8wqnmkmUNlwBxPCeUkAU8cV_LQwF0uAw_rnXv9ZufWO3_wy2xCrIUp-CGqAzf0DLteo4PjgfThJ2vo02iExEEU__P7zWmYNT7PsHtD-7pikEK6KhtzGeDuILtUydt4RA-_j_--L32Cza-Q1e45p0uQlG9bpJo8NsZ50hAvP4gc__U5y7A4QaTkuDChFZhS2SrM2cxQMVqD-x7P0rLJFxlqYhAj6WZkkOZj0k_z56ExwffXtzsucKEmbVuBRU4sNQXWdZI0I627tnnkDEN-0k6xwZFch9vTk5tWx5l0Y3CEgVxNh4ZhE31cUs0oVyLhoVZURBSre6kwQXnkC4aYQDEppKuD0OUJ55KySIeasw2YyYaZ2gTiSmVQkG8uATXyvER7ZqkRrq8FN9JkDQ7KuYifCtKNuKBXpjGqKa7UVIN6OVXxxPlGscEcJq4NI8-vAbU6_0VKfDUYHFd3W38ZtAfznZveZXzZ7V9swwLFIgmbFlmHmfx5rHYMdMmTXWucH-ea50E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oRuPF-Iwo6h5MPDXY3T6PhIKgQkgQ5NZs95H0UgiFuz_B3-gvcWdLeZxMPDVNunOY7sx80-73DUKPPiWKhYpaRPjUciSXVuKzxLIFCzTcZcJ3gO_c63udkfM6cSdbLP5CH2L9wQ0iw-RrCPCZUPWNaOgsz0E3iMBvftfbRweOxuKgnk-cQZmLQa3KtFwat1sgLlXKNj6T-u763bK0wZrbiNWUnPYpOllhRdwoXu4Z2pPZOTo0ZzZ5foE-eyxLy_FbeKqwxnK4m-FhuljifrqYT_Xm-Pn6HjMOKRRHhhuFW0Y0AhiXOM1wcxzpR16gGcdRCqOHxCUatVsfzY61mpNgcQ2GPIsEgQfRJ4iihEmesEBJwkMCvFvCdbscupxCtZZUcGErP7BZwpggNFSBYvQKVbJpJq8RtoXU-MTVF59oe06iHJ0EuO0qzrQ1UUVPpZviWSGHERfCxyQGh8Zrh1ZRrfRivAqLPNZoQHecQei4VUSMZ_-wEg-Gw8b67uY_ix7Q0SBqx-_d_tstOibAXjDnFWuospgv5Z3GFIvk3mybX3hbxHM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulation+of+the+In+Situ+Nitrogen%E2%80%90Vacancy+Doping+Efficiency+in+CVD%E2%80%90Grown+Diamond&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Langer%2C+Julia&rft.au=Cimalla%2C+Volker&rft.au=Lebedev%2C+Vadim&rft.au=Kirste%2C+Lutz&rft.date=2022-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=219&rft.issue=10&rft_id=info:doi/10.1002%2Fpssa.202100756&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon |