Manipulation of the In Situ Nitrogen‐Vacancy Doping Efficiency in CVD‐Grown Diamond

Herein, the in situ generation of nitrogen‐vacancy (NV) centers in diamond during chemical vapor deposition (CVD) is investigated depending on the electric‐field strength at the sample position. The alteration of the electric‐field strength is induced by changing the resonance conditions within the...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. A, Applications and materials science Vol. 219; no. 10
Main Authors Langer, Julia, Cimalla, Volker, Lebedev, Vadim, Kirste, Lutz, Prescher, Mario, Luo, Tingpeng, Jeske, Jan, Ambacher, Oliver
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein, the in situ generation of nitrogen‐vacancy (NV) centers in diamond during chemical vapor deposition (CVD) is investigated depending on the electric‐field strength at the sample position. The alteration of the electric‐field strength is induced by changing the resonance conditions within the resonator cavity while keeping the growth input variables constant. The electric‐field strength distribution is obtained by simulation results. During the growth experiments, optical‐emission spectroscopy data is collected, which shows the impact of the electric‐field strength on the radical concentrations within the plasma and the gas temperature. Through the reduction of the electric‐field strength, the synthesis of thick, high‐quality, nitrogen‐doped diamond without the formation of a polycrystalline rim around the sample edges and the twinning‐induced growth of polycrystalline grains was accomplished. Therefore, a reduced internal and more homogeneous stress distribution is achieved. Furthermore, significant influences on the in situ NV doping are discovered. In addition to a considerable gain of the in situ NV generation, also a major enhancement of the in situ incorporation efficiency of NV centers in comparison to Ns0 centers up to almost 3% is observed. Depending on the application, this makes posttreatment processes for additional NV generation dispensable. Diamonds exhibiting a high nitrogen‐vacancy (NV) density are of interest for quantum technological applications. Especially, in situ–generated NV centers are known to exhibit outstanding quantum properties. Hence, it is imperative to increase the in situ NV‐doping efficiency in CVD‐grown diamonds. Herein, a major enhancement of around 3% NV to Ns0 is presented.
AbstractList Herein, the in situ generation of nitrogen‐vacancy (NV) centers in diamond during chemical vapor deposition (CVD) is investigated depending on the electric‐field strength at the sample position. The alteration of the electric‐field strength is induced by changing the resonance conditions within the resonator cavity while keeping the growth input variables constant. The electric‐field strength distribution is obtained by simulation results. During the growth experiments, optical‐emission spectroscopy data is collected, which shows the impact of the electric‐field strength on the radical concentrations within the plasma and the gas temperature. Through the reduction of the electric‐field strength, the synthesis of thick, high‐quality, nitrogen‐doped diamond without the formation of a polycrystalline rim around the sample edges and the twinning‐induced growth of polycrystalline grains was accomplished. Therefore, a reduced internal and more homogeneous stress distribution is achieved. Furthermore, significant influences on the in situ NV doping are discovered. In addition to a considerable gain of the in situ NV generation, also a major enhancement of the in situ incorporation efficiency of NV centers in comparison to centers up to almost 3% is observed. Depending on the application, this makes posttreatment processes for additional NV generation dispensable.
Herein, the in situ generation of nitrogen‐vacancy (NV) centers in diamond during chemical vapor deposition (CVD) is investigated depending on the electric‐field strength at the sample position. The alteration of the electric‐field strength is induced by changing the resonance conditions within the resonator cavity while keeping the growth input variables constant. The electric‐field strength distribution is obtained by simulation results. During the growth experiments, optical‐emission spectroscopy data is collected, which shows the impact of the electric‐field strength on the radical concentrations within the plasma and the gas temperature. Through the reduction of the electric‐field strength, the synthesis of thick, high‐quality, nitrogen‐doped diamond without the formation of a polycrystalline rim around the sample edges and the twinning‐induced growth of polycrystalline grains was accomplished. Therefore, a reduced internal and more homogeneous stress distribution is achieved. Furthermore, significant influences on the in situ NV doping are discovered. In addition to a considerable gain of the in situ NV generation, also a major enhancement of the in situ incorporation efficiency of NV centers in comparison to Ns0 centers up to almost 3% is observed. Depending on the application, this makes posttreatment processes for additional NV generation dispensable. Diamonds exhibiting a high nitrogen‐vacancy (NV) density are of interest for quantum technological applications. Especially, in situ–generated NV centers are known to exhibit outstanding quantum properties. Hence, it is imperative to increase the in situ NV‐doping efficiency in CVD‐grown diamonds. Herein, a major enhancement of around 3% NV to Ns0 is presented.
Herein, the in situ generation of nitrogen‐vacancy (NV) centers in diamond during chemical vapor deposition (CVD) is investigated depending on the electric‐field strength at the sample position. The alteration of the electric‐field strength is induced by changing the resonance conditions within the resonator cavity while keeping the growth input variables constant. The electric‐field strength distribution is obtained by simulation results. During the growth experiments, optical‐emission spectroscopy data is collected, which shows the impact of the electric‐field strength on the radical concentrations within the plasma and the gas temperature. Through the reduction of the electric‐field strength, the synthesis of thick, high‐quality, nitrogen‐doped diamond without the formation of a polycrystalline rim around the sample edges and the twinning‐induced growth of polycrystalline grains was accomplished. Therefore, a reduced internal and more homogeneous stress distribution is achieved. Furthermore, significant influences on the in situ NV doping are discovered. In addition to a considerable gain of the in situ NV generation, also a major enhancement of the in situ incorporation efficiency of NV centers in comparison to Ns0 centers up to almost 3% is observed. Depending on the application, this makes posttreatment processes for additional NV generation dispensable.
Author Jeske, Jan
Luo, Tingpeng
Lebedev, Vadim
Kirste, Lutz
Prescher, Mario
Ambacher, Oliver
Langer, Julia
Cimalla, Volker
Author_xml – sequence: 1
  givenname: Julia
  orcidid: 0000-0001-9982-1500
  surname: Langer
  fullname: Langer, Julia
  email: julia.langer@iaf.fraunhofer.de
  organization: Fraunhofer Institute for Applied Solid State Physics IAF
– sequence: 2
  givenname: Volker
  orcidid: 0000-0001-8531-1892
  surname: Cimalla
  fullname: Cimalla, Volker
  organization: Fraunhofer Institute for Applied Solid State Physics IAF
– sequence: 3
  givenname: Vadim
  surname: Lebedev
  fullname: Lebedev, Vadim
  organization: Fraunhofer Institute for Applied Solid State Physics IAF
– sequence: 4
  givenname: Lutz
  orcidid: 0000-0002-5274-2650
  surname: Kirste
  fullname: Kirste, Lutz
  organization: Fraunhofer Institute for Applied Solid State Physics IAF
– sequence: 5
  givenname: Mario
  surname: Prescher
  fullname: Prescher, Mario
  organization: Fraunhofer Institute for Applied Solid State Physics IAF
– sequence: 6
  givenname: Tingpeng
  orcidid: 0000-0001-5486-4064
  surname: Luo
  fullname: Luo, Tingpeng
  organization: Fraunhofer Institute for Applied Solid State Physics IAF
– sequence: 7
  givenname: Jan
  orcidid: 0000-0003-3532-506X
  surname: Jeske
  fullname: Jeske, Jan
  organization: Fraunhofer Institute for Applied Solid State Physics IAF
– sequence: 8
  givenname: Oliver
  surname: Ambacher
  fullname: Ambacher, Oliver
  organization: Fraunhofer Institute for Applied Solid State Physics IAF
BookMark eNqFkMtOAjEUhhuDiYBuXTdxPdieznVJAJEELwmKy6bTabEE2nE6E8LOR_AZfRKHYHDp6lzy_ef8-XuoY51VCF1TMqCEwG3pvRgAgXZIovgMdWkaQxAzmnVOPSEXqOf9mpAwChPaRW8Pwpqy2YjaOIudxvW7wjOLF6Zu8KOpK7dS9vvzaymksHKPx640doUnWhtp1GFjLB4txy0yrdzO4rERW2eLS3Suxcarq9_aR693k5fRfTB_ms5Gw3kgQ2BxAGka562ZAjQDoWQuUq1AZkBYxkCqnGWRbF0DKFbIguokpSIXogCW6VQL1kc3x7tl5T4a5Wu-dk1l25cc4jgBmmZh1FKDIyUr532lNC8rsxXVnlPCD-HxQ3j8FF4ryI6Cndmo_T80f14shn_aH3cJdww
CitedBy_id crossref_primary_10_1088_1367_2630_ac58b6
crossref_primary_10_1063_5_0101215
crossref_primary_10_1098_rsta_2022_0314
Cites_doi 10.1002/2017GC006946
10.1016/j.diamond.2015.09.018
10.1038/ncomms9251
10.1016/j.mtcomm.2019.100816
10.1016/j.diamond.2017.04.010
10.1016/j.diamond.2014.11.010
10.1103/PhysRevB.102.134210
10.1002/anie.201506556
10.1007/978-1-4757-0961-2
10.1088/0953-8984/15/17/201
10.1016/j.diamond.2008.10.038
10.1016/j.diamond.2020.107794
10.1088/1361-6463/ab81d1
10.1063/1.1622105
10.1088/0953-8984/21/36/364214
10.1088/2633-4356/abd88a
10.1088/1367-2630/18/1/013015
10.1016/j.diamond.2006.09.012
10.1063/1.4862749
10.1007/978-94-009-5758-9
10.1016/j.diamond.2017.04.009
10.1016/j.diamond.2015.12.016
10.1016/j.diamond.2005.09.020
10.1016/S0925-9635(99)00148-X
10.1103/PhysRevLett.90.185507
10.1016/j.diamond.2016.12.011
10.1016/j.diamond.2019.107652
10.1016/j.diamond.2009.11.012
10.1002/pssa.202100035
10.1063/1.373604
10.1016/j.diamond.2004.07.007
10.1016/j.diamond.2017.09.013
10.1016/j.jcrysgro.2006.03.046
10.1038/nature25970
10.1016/j.diamond.2010.07.005
10.1063/1.120997
ContentType Journal Article
Copyright 2022 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/pssa.202100756
DatabaseName Wiley-Blackwell Titles (Open access)
Wiley Online Library Journals
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley_OA刊
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6319
EndPage n/a
ExternalDocumentID 10_1002_pssa_202100756
PSSA202100756
Genre article
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  funderid: 13XP5063
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W8V
W99
WBKPD
WGJPS
WIH
WIK
WIN
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4236-2886b004d2f32aecba8fe2c9203932ceb395c30022e3dcd1f781abaad239f8fa3
IEDL.DBID 24P
ISSN 1862-6300
IngestDate Thu Oct 10 20:13:12 EDT 2024
Fri Aug 23 00:43:30 EDT 2024
Sat Aug 24 00:59:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4236-2886b004d2f32aecba8fe2c9203932ceb395c30022e3dcd1f781abaad239f8fa3
ORCID 0000-0001-9982-1500
0000-0002-5274-2650
0000-0001-5486-4064
0000-0001-8531-1892
0000-0003-3532-506X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.202100756
PQID 2667218945
PQPubID 1036347
PageCount 8
ParticipantIDs proquest_journals_2667218945
crossref_primary_10_1002_pssa_202100756
wiley_primary_10_1002_pssa_202100756_PSSA202100756
PublicationCentury 2000
PublicationDate May 2022
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Physica status solidi. A, Applications and materials science
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 6
2009; 21
2010; 19
2015; 51
2000; 87
2006; 16
1976
2020; 105
2003; 15
2006; 291
2020; 101
2020; 102
2016; 18
2021; 1
1999; 8
2014; 89
1979
2016; 55
2007; 16
1999
2017; 72
2003; 90
2014; 3
2020; 53
2015; 60
2021
2017; 76
2018; 555
2017; 79
2021; 218
2004; 13
2016; 64
2017; 18
2020; 22
1998; 72
2003; 83
2009; 18
2005; 14
e_1_2_8_28_1
e_1_2_8_29_1
Yamada H. (e_1_2_8_16_1) 2016; 55
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_37_1
Deák P. (e_1_2_8_40_1) 2014; 89
Horino Y. (e_1_2_8_22_1) 2006; 16
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Bauer T. (e_1_2_8_8_1) 2005; 14
Holý V. (e_1_2_8_36_1) 1999
e_1_2_8_30_1
References_xml – volume: 3
  start-page: 033102
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 11
  year: 2004
  publication-title: Diamond Relat. Mater.
– volume: 18
  start-page: 3254
  year: 2017
  publication-title: Geochem. Geophys. Geosyst.
– volume: 16
  start-page: 63
  year: 2006
  publication-title: N. Fujimori
– volume: 19
  start-page: 12
  year: 2010
  publication-title: Diamond Relat. Mater.
– volume: 90
  start-page: 185507
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 79
  start-page: 150
  year: 2017
  publication-title: Diamond Relat. Mater.
– volume: 76
  start-page: 58
  year: 2017
  publication-title: Diamond Relat. Mater.
– volume: 555
  start-page: 7697
  year: 2018
  publication-title: Nature
– year: 2021
– volume: 19
  start-page: 5
  year: 2010
  publication-title: Diamond Relat. Mater.
– volume: 15
  start-page: R551
  year: 2003
  publication-title: J. Phys. Condens. Matter
– volume: 6
  start-page: 8251
  year: 2015
  publication-title: Nat. Commun.
– volume: 1
  start-page: 025001
  year: 2021
  publication-title: Mater. Quantum Technol.
– volume: 8
  start-page: 2022
  year: 1999
  publication-title: Diamond Relat. Mater.
– volume: 87
  start-page: 8741
  year: 2000
  publication-title: J. Appl. Phys.
– volume: 55
  start-page: 6586
  year: 2016
  publication-title: Angew. Chem.
– volume: 105
  start-page: 107794
  year: 2020
  publication-title: Diamond Relat. Mater.
– volume: 51
  start-page: 55
  year: 2015
  publication-title: Diamond Relat. Mater.
– volume: 18
  start-page: 2
  year: 2009
  publication-title: Diamond Relat. Mater.
– year: 1979
– volume: 22
  start-page: 100816
  year: 2020
  publication-title: Mater. Today Commun.
– volume: 72
  start-page: 1149
  year: 1998
  publication-title: Appl. Phys. Lett.
– volume: 53
  start-page: 313001
  year: 2020
  publication-title: J. Phys. D: Appl. Phys.
– volume: 76
  start-page: 68
  year: 2017
  publication-title: Diamond Relat. Mater.
– volume: 291
  start-page: 533
  year: 2006
  publication-title: J. Cryst. Growth
– volume: 16
  start-page: 4
  year: 2007
  publication-title: Diamond Relat. Mater.
– volume: 102
  start-page: 134210
  year: 2020
  publication-title: Phys. Rev. B
– volume: 218
  start-page: 2100035
  year: 2021
  publication-title: Phys. Status Solidi A
– volume: 18
  start-page: 013015
  year: 2016
  publication-title: New J. Phys.
– volume: 83
  start-page: 3465
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 72
  start-page: 1
  year: 2017
  publication-title: Diamond Relat. Mater.
– volume: 64
  start-page: 1
  year: 2016
  publication-title: Diamond Relat. Mater.
– volume: 101
  start-page: 107652
  year: 2020
  publication-title: Diamond Relat. Mater.
– volume: 55
  start-page: 1S01AC07.
  year: 2016
  publication-title: Jpn. J. Appl. Phys.
– volume: 21
  start-page: 364214
  year: 2009
  publication-title: J. Phys. Condens. Matter
– volume: 14
  start-page: 11
  year: 2005
  publication-title: Diamond Relat. Mater.
– volume: 14
  start-page: 3
  year: 2005
  publication-title: Diamond Relat. Mater.
– volume: 89
  start-page: 7
  year: 2014
  publication-title: Phys. Rev. B
– year: 1976
– volume: 60
  start-page: 26
  year: 2015
  publication-title: Diamond Relat. Mater.
– year: 1999
– ident: e_1_2_8_7_1
  doi: 10.1002/2017GC006946
– ident: e_1_2_8_28_1
  doi: 10.1016/j.diamond.2015.09.018
– ident: e_1_2_8_2_1
  doi: 10.1038/ncomms9251
– ident: e_1_2_8_27_1
  doi: 10.1016/j.mtcomm.2019.100816
– ident: e_1_2_8_29_1
  doi: 10.1016/j.diamond.2017.04.010
– ident: e_1_2_8_15_1
  doi: 10.1016/j.diamond.2014.11.010
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevB.102.134210
– volume: 14
  start-page: 3
  year: 2005
  ident: e_1_2_8_8_1
  publication-title: Diamond Relat. Mater.
  contributor:
    fullname: Bauer T.
– ident: e_1_2_8_39_1
– ident: e_1_2_8_4_1
  doi: 10.1002/anie.201506556
– ident: e_1_2_8_33_1
  doi: 10.1007/978-1-4757-0961-2
– ident: e_1_2_8_37_1
  doi: 10.1088/0953-8984/15/17/201
– ident: e_1_2_8_23_1
  doi: 10.1016/j.diamond.2008.10.038
– ident: e_1_2_8_14_1
  doi: 10.1016/j.diamond.2020.107794
– ident: e_1_2_8_18_1
  doi: 10.1088/1361-6463/ab81d1
– ident: e_1_2_8_35_1
  doi: 10.1063/1.1622105
– volume-title: High-Resolution X-Ray Scattering from Thin Films and Multilayers
  year: 1999
  ident: e_1_2_8_36_1
  contributor:
    fullname: Holý V.
– ident: e_1_2_8_43_1
  doi: 10.1088/0953-8984/21/36/364214
– ident: e_1_2_8_19_1
  doi: 10.1088/2633-4356/abd88a
– ident: e_1_2_8_6_1
  doi: 10.1088/1367-2630/18/1/013015
– ident: e_1_2_8_11_1
  doi: 10.1016/j.diamond.2006.09.012
– volume: 55
  start-page: 1S01AC07.
  year: 2016
  ident: e_1_2_8_16_1
  publication-title: Jpn. J. Appl. Phys.
  contributor:
    fullname: Yamada H.
– ident: e_1_2_8_5_1
  doi: 10.1063/1.4862749
– ident: e_1_2_8_32_1
  doi: 10.1007/978-94-009-5758-9
– ident: e_1_2_8_21_1
  doi: 10.1016/j.diamond.2017.04.009
– ident: e_1_2_8_26_1
  doi: 10.1016/j.diamond.2015.12.016
– ident: e_1_2_8_9_1
  doi: 10.1016/j.diamond.2005.09.020
– ident: e_1_2_8_34_1
  doi: 10.1016/S0925-9635(99)00148-X
– ident: e_1_2_8_38_1
  doi: 10.1103/PhysRevLett.90.185507
– ident: e_1_2_8_13_1
  doi: 10.1016/j.diamond.2016.12.011
– ident: e_1_2_8_31_1
  doi: 10.1016/j.diamond.2019.107652
– ident: e_1_2_8_24_1
  doi: 10.1016/j.diamond.2009.11.012
– ident: e_1_2_8_42_1
  doi: 10.1002/pssa.202100035
– ident: e_1_2_8_20_1
  doi: 10.1063/1.373604
– volume: 16
  start-page: 63
  year: 2006
  ident: e_1_2_8_22_1
  publication-title: N. Fujimori
  contributor:
    fullname: Horino Y.
– volume: 89
  start-page: 7
  year: 2014
  ident: e_1_2_8_40_1
  publication-title: Phys. Rev. B
  contributor:
    fullname: Deák P.
– ident: e_1_2_8_12_1
  doi: 10.1016/j.diamond.2004.07.007
– ident: e_1_2_8_30_1
  doi: 10.1016/j.diamond.2017.09.013
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jcrysgro.2006.03.046
– ident: e_1_2_8_3_1
  doi: 10.1038/nature25970
– ident: e_1_2_8_25_1
  doi: 10.1016/j.diamond.2010.07.005
– ident: e_1_2_8_41_1
  doi: 10.1063/1.120997
SSID ssj0045471
Score 2.4136622
Snippet Herein, the in situ generation of nitrogen‐vacancy (NV) centers in diamond during chemical vapor deposition (CVD) is investigated depending on the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Cavity resonators
Chemical vapor deposition
Diamonds
Doping
electric-field strength simulation
Field strength
Gas temperature
in situ NV doping efficiency
Nitrogen
nitrogen doping
optical-emission spectroscopy
Polycrystals
Stress distribution
structural analysis
substrate holder
synthetic diamond
Vacancies
Title Manipulation of the In Situ Nitrogen‐Vacancy Doping Efficiency in CVD‐Grown Diamond
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.202100756
https://www.proquest.com/docview/2667218945
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60IngRn1itsgfBU6iZJE1yLE1rFVqKtbW3sNkH5JKWJr37E_yN_hJ3Nk0fJ8FLQiC7h8nOzDfZ_b4h5NF3QLFQORYI37FcyaWV-CyxbMECDXeZ8F3kOw-Grf7EfZt5sx0Wf6kPsfnhhp5h4jU6OEvy5lY0dJHnqBsEuM3vtQ7JEcrGoHo-uKMqFqNalSm5NG63UFyqkm18hub--P20tMWau4jVpJzeGTldY0XaLj_uOTmQ2QU5Nmc2eX5JPgcsS6v2W3SuqMZy9DWj47RY0WFaLOd6cfx8fU8ZxxBKI8ONol0jGoGMS5pmtDON9CsvWIzTKMXWQ-KKTHrdj07fWvdJsLgGQy0LgqCF3idAOcAkT1igJPAQkHcLXJfLoccdzNbSEVzYyg9sljAmwAlVoJhzTWrZPJM3hNpCanzi6ZsPej43Ua4OAtz2FGd6NlEnT5WZ4kUphxGXwscQo0HjjUHrpFFZMV67RR5rNKArziB0vToBY9k_ZolH43F783T7n0F35ASQsmAOKTZIrViu5L0GEkXyYNaKvkbv8AuIw8LI
link.rule.ids 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCMGFHVEo4AMSpxRiJ01yRC3QAq0QZbtFjhcpQkoRTS-c-AS-kS_B4zRhuSDBKYoUj5LxjP3GmXkDsB8wqnmkmUNlwBxPCeUkAU8cV_LQwF0uAw_rnXv9ZufWO3_wy2xCrIUp-CGqAzf0DLteo4PjgfThJ2vo02iExEEU__P7zWmYNT7PsHtD-7pikEK6KhtzGeDuILtUydt4RA-_j_--L32Cza-Q1e45p0uQlG9bpJo8NsZ50hAvP4gc__U5y7A4QaTkuDChFZhS2SrM2cxQMVqD-x7P0rLJFxlqYhAj6WZkkOZj0k_z56ExwffXtzsucKEmbVuBRU4sNQXWdZI0I627tnnkDEN-0k6xwZFch9vTk5tWx5l0Y3CEgVxNh4ZhE31cUs0oVyLhoVZURBSre6kwQXnkC4aYQDEppKuD0OUJ55KySIeasw2YyYaZ2gTiSmVQkG8uATXyvER7ZqkRrq8FN9JkDQ7KuYifCtKNuKBXpjGqKa7UVIN6OVXxxPlGscEcJq4NI8-vAbU6_0VKfDUYHFd3W38ZtAfznZveZXzZ7V9swwLFIgmbFlmHmfx5rHYMdMmTXWucH-ea50E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oRuPF-Iwo6h5MPDXY3T6PhIKgQkgQ5NZs95H0UgiFuz_B3-gvcWdLeZxMPDVNunOY7sx80-73DUKPPiWKhYpaRPjUciSXVuKzxLIFCzTcZcJ3gO_c63udkfM6cSdbLP5CH2L9wQ0iw-RrCPCZUPWNaOgsz0E3iMBvftfbRweOxuKgnk-cQZmLQa3KtFwat1sgLlXKNj6T-u763bK0wZrbiNWUnPYpOllhRdwoXu4Z2pPZOTo0ZzZ5foE-eyxLy_FbeKqwxnK4m-FhuljifrqYT_Xm-Pn6HjMOKRRHhhuFW0Y0AhiXOM1wcxzpR16gGcdRCqOHxCUatVsfzY61mpNgcQ2GPIsEgQfRJ4iihEmesEBJwkMCvFvCdbscupxCtZZUcGErP7BZwpggNFSBYvQKVbJpJq8RtoXU-MTVF59oe06iHJ0EuO0qzrQ1UUVPpZviWSGHERfCxyQGh8Zrh1ZRrfRivAqLPNZoQHecQei4VUSMZ_-wEg-Gw8b67uY_ix7Q0SBqx-_d_tstOibAXjDnFWuospgv5Z3GFIvk3mybX3hbxHM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulation+of+the+In+Situ+Nitrogen%E2%80%90Vacancy+Doping+Efficiency+in+CVD%E2%80%90Grown+Diamond&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Langer%2C+Julia&rft.au=Cimalla%2C+Volker&rft.au=Lebedev%2C+Vadim&rft.au=Kirste%2C+Lutz&rft.date=2022-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=219&rft.issue=10&rft_id=info:doi/10.1002%2Fpssa.202100756&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon