Root traits of grasslands rapidly respond to climate change, while community biomass mainly depends on functional composition

Current challenges of functional responses in plant communities to climate change call for multi‐factorial experiments. Moreover, studies on climate change should focus on below‐ground responses since absorptive roots largely control soil C allocation and resource acquisition. Thus, we aimed to unde...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 37; no. 7; pp. 1841 - 1855
Main Authors Rojas‐Botero, Sandra, Teixeira, Leonardo H., Prucker, Paula, Kloska, Veronika, Kollmann, Johannes, Le Stradic, Soizig
Format Journal Article
LanguageEnglish
Published London Wiley Subscription Services, Inc 01.07.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Current challenges of functional responses in plant communities to climate change call for multi‐factorial experiments. Moreover, studies on climate change should focus on below‐ground responses since absorptive roots largely control soil C allocation and resource acquisition. Thus, we aimed to understand biomass allocation and traits of absorptive roots in young mesocosm grasslands subjected to simultaneous manipulation of three components of climate change. We tested grassland biomass and root traits under climate change while manipulating functional composition. Using 64 mesocosms with designed grasslands within four chambers of a controlled‐environment facility (‘ecotron’), we simulated two contrasting IPCC climate change scenarios for elevated [CO2] and temperature (‘eCO2’ and ‘eT’). We applied normal vs. reduced precipitation of early summer in Central Europe. We also tested the effect of functional composition by varying the proportion of grasses and forbs in the communities. Specifically, we quantified above‐ and below‐ground biomass, root diameter (RD), root tissue density (RTD), specific root length (SRL), and root length density (RLD). Functional composition played a significant role in biomass allocation of the grasslands, with grass‐dominated communities producing more below‐ground biomass than forb‐dominated ones, and the opposite pattern registered above‐ground. Below‐ground biomass did not respond to climate change factors, whereas root trait values responded significantly during early establishment of the grasslands. A higher RD indicated a more conservative strategy under reduced precipitation, while eT and eCO2 led to higher RTD. We detected interactive effects between climate change and functional composition on root traits. Moreover, root biomass primarily occupied the upper soil layer, while a warm and CO2‐rich environment promoted root allocation to the lower soil layer. Grass‐dominated communities quickly colonized all available soil volume, while forb‐dominated ones accumulated more root biomass in the upper soil layer. In the mesocosm grasslands, root trait variation rather than root biomass reflected below‐ground adjustments to climate change. Furthermore, functional composition and the associated trait diversity modulated biomass allocation. Thus, establishing plant communities that are more resilient to climate change must consider the functional and taxonomic composition of the seed mixtures designed to restore urban grasslands. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog.
AbstractList 1. Current challenges of functional responses in plant communities to climate change call for multi-factorial experiments. Moreover, studies on climate change should focus on below-ground responses since absorptive roots largely control soil C allocation and resource acquisition. Thus, we aimed to understand biomass allocation and traits of absorptive roots in young mesocosm grasslands subjected to simultaneous manipulation of three components of climate change. 2. We tested grassland biomass and root traits under climate change while manipulating functional composition. Using 64 mesocosms with designed grasslands within four chambers of a controlled-environment facility (`ecotron'), we simulated two contrasting IPCC climate change scenarios for elevated [CO2] and temperature (`eCO(2)' and `eT'). We applied normal vs. reduced precipitation of early summer in Central Europe. We also tested the effect of functional composition by varying the proportion of grasses and forbs in the communities. Specifically, we quantified above-and below-ground biomass, root diameter (RD), root tissue density (RTD), specific root length (SRL), and root length density (RLD). 3. Functional composition played a significant role in biomass allocation of the grasslands, with grass-dominated communities producing more below-ground biomass than forb-dominated ones, and the opposite pattern registered above-ground. Below-ground biomass did not respond to climate change factors, whereas root trait values responded significantly during early establishment of the grasslands. A higher RD indicated a more conservative strategy under reduced precipitation, while eT and eCO(2) led to higher RTD. We detected interactive effects between climate change and functional composition on root traits. Moreover, root biomass primarily occupied the upper soil layer, while a warm and CO2-rich environment promoted root allocation to the lower soil layer. Grass-dominated communities quickly colonized all available soil volume, while forb-dominated ones accumulated more root biomass in the upper soil layer. 4. In the mesocosm grasslands, root trait variation rather than root biomass reflected below-ground adjustments to climate change. Furthermore, functional composition and the associated trait diversity modulated biomass allocation. Thus, establishing plant communities that are more resilient to climate change must consider the functional and taxonomic composition of the seed mixtures designed to restore urban grasslands.
Current challenges of functional responses in plant communities to climate change call for multi‐factorial experiments. Moreover, studies on climate change should focus on below‐ground responses since absorptive roots largely control soil C allocation and resource acquisition. Thus, we aimed to understand biomass allocation and traits of absorptive roots in young mesocosm grasslands subjected to simultaneous manipulation of three components of climate change.We tested grassland biomass and root traits under climate change while manipulating functional composition. Using 64 mesocosms with designed grasslands within four chambers of a controlled‐environment facility (‘ecotron’), we simulated two contrasting IPCC climate change scenarios for elevated [CO2] and temperature (‘eCO2’ and ‘eT’). We applied normal vs. reduced precipitation of early summer in Central Europe. We also tested the effect of functional composition by varying the proportion of grasses and forbs in the communities. Specifically, we quantified above‐ and below‐ground biomass, root diameter (RD), root tissue density (RTD), specific root length (SRL), and root length density (RLD).Functional composition played a significant role in biomass allocation of the grasslands, with grass‐dominated communities producing more below‐ground biomass than forb‐dominated ones, and the opposite pattern registered above‐ground. Below‐ground biomass did not respond to climate change factors, whereas root trait values responded significantly during early establishment of the grasslands. A higher RD indicated a more conservative strategy under reduced precipitation, while eT and eCO2 led to higher RTD. We detected interactive effects between climate change and functional composition on root traits. Moreover, root biomass primarily occupied the upper soil layer, while a warm and CO2‐rich environment promoted root allocation to the lower soil layer. Grass‐dominated communities quickly colonized all available soil volume, while forb‐dominated ones accumulated more root biomass in the upper soil layer.In the mesocosm grasslands, root trait variation rather than root biomass reflected below‐ground adjustments to climate change. Furthermore, functional composition and the associated trait diversity modulated biomass allocation. Thus, establishing plant communities that are more resilient to climate change must consider the functional and taxonomic composition of the seed mixtures designed to restore urban grasslands.Read the free Plain Language Summary for this article on the Journal blog.
Current challenges of functional responses in plant communities to climate change call for multi‐factorial experiments. Moreover, studies on climate change should focus on below‐ground responses since absorptive roots largely control soil C allocation and resource acquisition. Thus, we aimed to understand biomass allocation and traits of absorptive roots in young mesocosm grasslands subjected to simultaneous manipulation of three components of climate change. We tested grassland biomass and root traits under climate change while manipulating functional composition. Using 64 mesocosms with designed grasslands within four chambers of a controlled‐environment facility (‘ecotron’), we simulated two contrasting IPCC climate change scenarios for elevated [CO 2 ] and temperature (‘eCO 2 ’ and ‘eT’). We applied normal vs. reduced precipitation of early summer in Central Europe. We also tested the effect of functional composition by varying the proportion of grasses and forbs in the communities. Specifically, we quantified above‐ and below‐ground biomass, root diameter (RD), root tissue density (RTD), specific root length (SRL), and root length density (RLD). Functional composition played a significant role in biomass allocation of the grasslands, with grass‐dominated communities producing more below‐ground biomass than forb‐dominated ones, and the opposite pattern registered above‐ground. Below‐ground biomass did not respond to climate change factors, whereas root trait values responded significantly during early establishment of the grasslands. A higher RD indicated a more conservative strategy under reduced precipitation, while eT and eCO 2 led to higher RTD. We detected interactive effects between climate change and functional composition on root traits. Moreover, root biomass primarily occupied the upper soil layer, while a warm and CO 2 ‐rich environment promoted root allocation to the lower soil layer. Grass‐dominated communities quickly colonized all available soil volume, while forb‐dominated ones accumulated more root biomass in the upper soil layer. In the mesocosm grasslands, root trait variation rather than root biomass reflected below‐ground adjustments to climate change. Furthermore, functional composition and the associated trait diversity modulated biomass allocation. Thus, establishing plant communities that are more resilient to climate change must consider the functional and taxonomic composition of the seed mixtures designed to restore urban grasslands. Read the free Plain Language Summary for this article on the Journal blog.
Current challenges of functional responses in plant communities to climate change call for multi‐factorial experiments. Moreover, studies on climate change should focus on below‐ground responses since absorptive roots largely control soil C allocation and resource acquisition. Thus, we aimed to understand biomass allocation and traits of absorptive roots in young mesocosm grasslands subjected to simultaneous manipulation of three components of climate change. We tested grassland biomass and root traits under climate change while manipulating functional composition. Using 64 mesocosms with designed grasslands within four chambers of a controlled‐environment facility (‘ecotron’), we simulated two contrasting IPCC climate change scenarios for elevated [CO₂] and temperature (‘eCO₂’ and ‘eT’). We applied normal vs. reduced precipitation of early summer in Central Europe. We also tested the effect of functional composition by varying the proportion of grasses and forbs in the communities. Specifically, we quantified above‐ and below‐ground biomass, root diameter (RD), root tissue density (RTD), specific root length (SRL), and root length density (RLD). Functional composition played a significant role in biomass allocation of the grasslands, with grass‐dominated communities producing more below‐ground biomass than forb‐dominated ones, and the opposite pattern registered above‐ground. Below‐ground biomass did not respond to climate change factors, whereas root trait values responded significantly during early establishment of the grasslands. A higher RD indicated a more conservative strategy under reduced precipitation, while eT and eCO₂ led to higher RTD. We detected interactive effects between climate change and functional composition on root traits. Moreover, root biomass primarily occupied the upper soil layer, while a warm and CO₂‐rich environment promoted root allocation to the lower soil layer. Grass‐dominated communities quickly colonized all available soil volume, while forb‐dominated ones accumulated more root biomass in the upper soil layer. In the mesocosm grasslands, root trait variation rather than root biomass reflected below‐ground adjustments to climate change. Furthermore, functional composition and the associated trait diversity modulated biomass allocation. Thus, establishing plant communities that are more resilient to climate change must consider the functional and taxonomic composition of the seed mixtures designed to restore urban grasslands. Read the free Plain Language Summary for this article on the Journal blog.
Current challenges of functional responses in plant communities to climate change call for multi‐factorial experiments. Moreover, studies on climate change should focus on below‐ground responses since absorptive roots largely control soil C allocation and resource acquisition. Thus, we aimed to understand biomass allocation and traits of absorptive roots in young mesocosm grasslands subjected to simultaneous manipulation of three components of climate change. We tested grassland biomass and root traits under climate change while manipulating functional composition. Using 64 mesocosms with designed grasslands within four chambers of a controlled‐environment facility (‘ecotron’), we simulated two contrasting IPCC climate change scenarios for elevated [CO2] and temperature (‘eCO2’ and ‘eT’). We applied normal vs. reduced precipitation of early summer in Central Europe. We also tested the effect of functional composition by varying the proportion of grasses and forbs in the communities. Specifically, we quantified above‐ and below‐ground biomass, root diameter (RD), root tissue density (RTD), specific root length (SRL), and root length density (RLD). Functional composition played a significant role in biomass allocation of the grasslands, with grass‐dominated communities producing more below‐ground biomass than forb‐dominated ones, and the opposite pattern registered above‐ground. Below‐ground biomass did not respond to climate change factors, whereas root trait values responded significantly during early establishment of the grasslands. A higher RD indicated a more conservative strategy under reduced precipitation, while eT and eCO2 led to higher RTD. We detected interactive effects between climate change and functional composition on root traits. Moreover, root biomass primarily occupied the upper soil layer, while a warm and CO2‐rich environment promoted root allocation to the lower soil layer. Grass‐dominated communities quickly colonized all available soil volume, while forb‐dominated ones accumulated more root biomass in the upper soil layer. In the mesocosm grasslands, root trait variation rather than root biomass reflected below‐ground adjustments to climate change. Furthermore, functional composition and the associated trait diversity modulated biomass allocation. Thus, establishing plant communities that are more resilient to climate change must consider the functional and taxonomic composition of the seed mixtures designed to restore urban grasslands. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog.
Author Prucker, Paula
Rojas‐Botero, Sandra
Kloska, Veronika
Le Stradic, Soizig
Teixeira, Leonardo H.
Kollmann, Johannes
Author_xml – sequence: 1
  givenname: Sandra
  orcidid: 0000-0002-0366-7383
  surname: Rojas‐Botero
  fullname: Rojas‐Botero, Sandra
  email: sandra.rojas‐botero@tum.de
  organization: Technical University of Munich
– sequence: 2
  givenname: Leonardo H.
  orcidid: 0000-0001-7443-087X
  surname: Teixeira
  fullname: Teixeira, Leonardo H.
  organization: Technical University of Munich
– sequence: 3
  givenname: Paula
  surname: Prucker
  fullname: Prucker, Paula
  organization: Technical University of Munich
– sequence: 4
  givenname: Veronika
  surname: Kloska
  fullname: Kloska, Veronika
  organization: Technical University of Munich
– sequence: 5
  givenname: Johannes
  orcidid: 0000-0002-4990-3636
  surname: Kollmann
  fullname: Kollmann, Johannes
  organization: Technical University of Munich
– sequence: 6
  givenname: Soizig
  orcidid: 0000-0003-2643-3544
  surname: Le Stradic
  fullname: Le Stradic, Soizig
  organization: University of Bordeaux
BackLink https://hal.inrae.fr/hal-04149893$$DView record in HAL
BookMark eNqFkc1rFDEYxoNUcLt69hrwouC0-ZrszLEsrRUWBNFzeDeT6aZkkjHJWPbg_27SLT300lzC-_J73q_nHJ354A1CHym5oOVdUi7bhgneXlDBRfsGrZ4zZ2hFmOybTkj-Dp2ndE8I6VvGVujfzxAyzhFsTjiM-C5CSg78kHCE2Q7uiKNJc_ADzgFrZyfIBusD-DvzFT8crCtRmKbF23zEexumoscTWF-Ug5lNrRQ8Hhevsw0eXMXnkGyN3qO3I7hkPjz9a_T75vrX9rbZ_fj2fXu1a7RgvG1GLWkPnILUgxT9XrRipJxLuWdEEEoY34-8G2nZz0DLtOwp4RzMsGHABjB8jb6c6h7AqTmWJeJRBbDq9mqnao4IKvqu539pYT-f2DmGP4tJWU02aePKUUxYkmJdITuy2ciCfnqB3ocllh0rxVlPWVvGXKPLE6VjSCma8XkCSlS1TlWjVDVKPVpXFO0LhbYZ6sGqUe513UOx5fhaG3VzvT3p_gN6Oq2x
CitedBy_id crossref_primary_10_3390_f15030476
crossref_primary_10_3389_fpls_2024_1441567
crossref_primary_10_3390_plants13050727
crossref_primary_10_1016_j_jenvman_2025_124329
crossref_primary_10_1111_1365_2435_14345
crossref_primary_10_3390_f16030381
crossref_primary_10_3389_fenvs_2024_1524239
Cites_doi 10.1007/s00442‐005‐0010‐y
10.1111/gcb.15471
10.1890/12‐1399.1
10.1007/BF00377135
10.1111/1365‐2435.12883
10.1016/j.tplants.2004.11.004
10.1111/oik.01502
10.1111/j.1365‐2435.2007.01362.x
10.1111/1365‐2745.12769
10.1890/08-0867.1
10.1111/j.1365‐2486.2008.01629.x
10.1111/nph.13146
10.1111/nph.17072
10.1111/nph.17572
10.1071/FP12049
10.1038/nature15374
10.1111/nph.16266
10.1111/nph.14003
10.1890/09-0069.1
10.1111/nph.17279
10.1111/nph.13363
10.1093/biosci/biv099
10.1016/j.ecolind.2023.109980
10.1146/annurev.ecolsys.39.110707.173349
10.1111/pce.13356
10.1007/s11104‐008‐9635‐z
10.1007/s11104‐014‐2373‐5
10.1111/1365‐2435.13656
10.3732/ajb.1200306
10.3117/plantroot.15.36
10.1007/s11104‐012‐1371‐8
10.1139/cjss‐2018‐0114
10.1111/ele.12652
10.1111/geb.12062
10.1111/1365-2435.14345
10.1111/j.1365‐2745.2010.01702.x
10.1007/s10021‐017‐0131‐2
10.1111/1365‐2745.13046
10.1111/oik.05612
10.1007/s11104‐016‐2964‐4
10.1038/s41467‐022‐30954‐9
10.1038/s41598‐018‐33262‐9
10.1002/ecy.2437
10.1111/j.1469‐8137.2009.03122.x
10.1007/BF00333714
10.1073/pnas.1920405117
10.1016/j.tree.2014.10.006
10.1016/j.tree.2008.10.008
10.1111/oik.08113
10.1111/1365‐2745.12993
10.1002/ece3.7963
10.3389/fpls.2013.00442
10.1002/ecy.2003
10.1016/j.agee.2016.06.035
10.1371/journal.pone.0275044
10.1890/03‐0650
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution - NonCommercial - NoDerivatives
DBID 24P
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
VOOES
DOI 10.1111/1365-2435.14345
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Entomology Abstracts
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 1855
ExternalDocumentID oai_HAL_hal_04149893v1
10_1111_1365_2435_14345
FEC14345
Genre researchArticle
GeographicLocations Central European region
GeographicLocations_xml – name: Central European region
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: INST 95/1184‐FUGG
– fundername: Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
  funderid: F.7‐F5121.14.2.3/14/9
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
ZCA
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABSQW
AGHNM
AGUYK
CITATION
7QG
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c4235-fc619a31a6cd649b454f13366b20401023bf38f1846ea52c691033aed72a2dae3
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri May 09 12:18:52 EDT 2025
Fri Jul 11 18:33:25 EDT 2025
Fri Jul 25 07:54:50 EDT 2025
Tue Jul 01 01:15:55 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Wed Jan 22 16:20:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords urban grasslands
plant functional types
climate scenario
fine roots
absorptive root traits
biomass allocation
Language English
License Attribution-NonCommercial-NoDerivs
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4235-fc619a31a6cd649b454f13366b20401023bf38f1846ea52c691033aed72a2dae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7443-087X
0000-0002-4990-3636
0000-0002-0366-7383
0000-0003-2643-3544
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14345
PQID 2832912513
PQPubID 1066355
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_04149893v1
proquest_miscellaneous_2849880776
proquest_journals_2832912513
crossref_primary_10_1111_1365_2435_14345
crossref_citationtrail_10_1111_1365_2435_14345
wiley_primary_10_1111_1365_2435_14345_FEC14345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2010; 98
2021; 27
2013; 4
2009; 40
2013; 22
2019; 99
1982; 53
2013; 364
2023; 147
2010; 186
2018; 41
2019; 128
2014; 29
1996; 108
2017; 31
2018; 8
2005; 143
2013; 94
2009; 90
2016; 231
2021; 230
2021; 232
2008; 312
2007; 22
2014; 123
2004; 85
2009; 24
2016; 19
2018; 106
2023; 18
2016; 409
2008; 14
2013; 100
2020; 225
2005
2015; 526
2020; 34
2015; 207
2012; 39
2019; 107
2015; 205
2018; 21
2021; 15
2021; 11
2023
2022
2021
2015; 397
2017; 98
2015; 65
2022; 13
2016; 211
2020; 117
2005; 10
2021; 130
2018; 99
2017; 105
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
IPCC (e_1_2_11_32_1) 2021
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
MAE (e_1_2_11_40_1) 2005
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
R Core Team (e_1_2_11_50_1) 2021
References_xml – volume: 29
  start-page: 692
  issue: 12
  year: 2014
  end-page: 699
  article-title: Going underground: Root traits as drivers of ecosystem processes
  publication-title: Trends in Ecology & Evolution
– volume: 40
  start-page: 393
  issue: 1
  year: 2009
  end-page: 414
  article-title: The causes and consequences of compensatory dynamics in ecological communities
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 99
  start-page: 2260
  issue: 10
  year: 2018
  end-page: 2271
  article-title: Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland
  publication-title: Ecology
– volume: 128
  start-page: 208
  issue: 2
  year: 2019
  end-page: 220
  article-title: Using root traits to understand temporal changes in biodiversity effects in grassland mixtures
  publication-title: Oikos
– volume: 8
  issue: 1
  year: 2018
  article-title: Higher species richness enhances yield stability in intensively managed grasslands with experimental disturbance
  publication-title: Scientific Reports
– year: 2005
– volume: 65
  start-page: 922
  issue: 9
  year: 2015
  end-page: 931
  article-title: Global change experiments: Challenges and opportunities
  publication-title: Bioscience
– volume: 99
  start-page: 1
  issue: 1
  year: 2019
  end-page: 11
  article-title: Effects of precipitation change on fine root morphology and dynamics at a global scale: A meta‐analysis
  publication-title: Canadian Journal of Soil Science
– volume: 24
  start-page: 127
  issue: 3
  year: 2009
  end-page: 135
  article-title: Generalized linear mixed models: A practical guide for ecology and evolution
  publication-title: Trends in Ecology & Evolution
– year: 2021
– volume: 207
  start-page: 505
  issue: 3
  year: 2015
  end-page: 518
  article-title: Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes
  publication-title: The New Phytologist
– volume: 230
  start-page: 1856
  issue: 5
  year: 2021
  end-page: 1867
  article-title: Fine‐root functional trait responses to experimental warming: A global meta‐analysis
  publication-title: The New Phytologist
– volume: 211
  start-page: 1159
  issue: 4
  year: 2016
  end-page: 1169
  article-title: Towards a multidimensional root trait framework: A tree root review
  publication-title: The New Phytologist
– volume: 11
  start-page: 11960
  issue: 17
  year: 2021
  end-page: 11973
  article-title: Do soil depth and plant community composition interact to modify the resistance and resilience of grassland ecosystem functioning to drought?
  publication-title: Ecology and Evolution
– volume: 231
  start-page: 122
  year: 2016
  end-page: 132
  article-title: Mean root trait more than root trait diversity determines drought resilience in native and cultivated Mediterranean grass mixtures
  publication-title: Agriculture, Ecosystems & Environment
– volume: 22
  start-page: 1095
  issue: 10
  year: 2013
  end-page: 1105
  article-title: Altered root traits due to elevated CO : A meta‐analysis
  publication-title: Global Ecology and Biogeography
– volume: 41
  start-page: 2589
  issue: 11
  year: 2018
  end-page: 2599
  article-title: Drought‐induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials
  publication-title: Plant, Cell & Environment
– volume: 10
  start-page: 44
  issue: 1
  year: 2005
  end-page: 50
  article-title: Hydrotropism: Root growth responses to water
  publication-title: Trends in Plant Science
– volume: 22
  start-page: 185
  year: 2007
  end-page: 195
  article-title: Experimental design of multifactor climate change experiments with elevated CO warming and drought: The CLIMAITE project
  publication-title: Functional Ecology
– volume: 27
  start-page: 1387
  issue: 7
  year: 2021
  end-page: 1407
  article-title: Ecotrons: Powerful and versatile ecosystem analysers for ecology, agronomy and environmental science
  publication-title: Global Change Biology
– volume: 117
  start-page: 24345
  issue: 39
  year: 2020
  end-page: 24351
  article-title: Synchrony matters more than species richness in plant community stability at a global scale
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 90
  start-page: 1520
  issue: 6
  year: 2009
  end-page: 1530
  article-title: Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs
  publication-title: Ecology
– volume: 4
  year: 2013
  article-title: Root traits contributing to plant productivity under drought
  publication-title: Frontiers in Plant Science
– volume: 105
  start-page: 1182
  issue: 5
  year: 2017
  end-page: 1196
  article-title: Climate, soil and plant functional types as drivers of global fine‐root trait variation
  publication-title: Journal of Ecology
– volume: 53
  start-page: 50
  year: 1982
  end-page: 55
  article-title: Competition between plant populations with different rooting depths
  publication-title: Oecologia
– volume: 409
  start-page: 297
  issue: 1–2
  year: 2016
  end-page: 312
  article-title: Grassland species root response to drought: Consequences for soil carbon and nitrogen availability
  publication-title: Plant and Soil
– volume: 94
  start-page: 787
  issue: 4
  year: 2013
  end-page: 793
  article-title: Root depth distribution and the diversity–productivity relationship in a long‐term grassland experiment
  publication-title: Ecology
– year: 2022
– volume: 14
  start-page: 1986
  issue: 9
  year: 2008
  end-page: 1999
  article-title: Modeled interactive effects of precipitation, temperature, and [CO ] on ecosystem carbon and water dynamics in different climatic zones
  publication-title: Global Change Biology
– volume: 397
  start-page: 1
  issue: 1–2
  year: 2015
  end-page: 16
  article-title: Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties
  publication-title: Plant and Soil
– volume: 21
  start-page: 15
  issue: 1
  year: 2018
  end-page: 30
  article-title: Fine root growth and vertical distribution in response to elevated CO , warming and drought in a mixed heathland–grassland
  publication-title: Ecosystems
– volume: 364
  start-page: 395
  issue: 1–2
  year: 2013
  end-page: 408
  article-title: Grassland root demography responses to multiple climate change drivers depend on root morphology
  publication-title: Plant and Soil
– volume: 98
  start-page: 1117
  issue: 5
  year: 2010
  end-page: 1127
  article-title: Unveiling below‐ground species abundance in a biodiversity experiment: A test of vertical niche differentiation among grassland species
  publication-title: Journal of Ecology
– volume: 312
  start-page: 69
  issue: 1–2
  year: 2008
  end-page: 83
  article-title: Root traits and taxonomic affiliation of nine herbaceous species grown in glasshouse conditions
  publication-title: Plant and Soil
– volume: 225
  start-page: 1491
  issue: 4
  year: 2020
  end-page: 1499
  article-title: Distinct fine‐root responses to precipitation changes in herbaceous and woody plants: A meta‐analysis
  publication-title: The New Phytologist
– volume: 18
  issue: 2
  year: 2023
  article-title: Low precipitation due to climate change consistently reduces multifunctionality of urban grasslands in mesocosms
  publication-title: PLoS ONE
– volume: 143
  start-page: 598
  issue: 4
  year: 2005
  end-page: 606
  article-title: Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass
  publication-title: Oecologia
– volume: 106
  start-page: 2176
  issue: 6
  year: 2018
  end-page: 2189
  article-title: Root responses to elevated CO , warming and irrigation in a semi‐arid grassland: Integrating biomass, length and life span in a 5‐year field experiment
  publication-title: Journal of Ecology
– volume: 19
  start-page: 1140
  issue: 9
  year: 2016
  end-page: 1149
  article-title: Plant diversity and root traits benefit physical properties key to soil function in grasslands
  publication-title: Ecology Letters
– volume: 232
  start-page: 973
  issue: 3
  year: 2021
  end-page: 1122
  article-title: A starting guide to root ecology: Strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements
  publication-title: The New Phytologist
– volume: 123
  start-page: 1528
  issue: 12
  year: 2014
  end-page: 1536
  article-title: Long‐term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time
  publication-title: Oikos
– volume: 31
  start-page: 1506
  issue: 8
  year: 2017
  end-page: 1518
  article-title: Sampling roots to capture plant and soil functions
  publication-title: Functional Ecology
– volume: 39
  start-page: 839
  issue: 11
  year: 2012
  end-page: 850
  article-title: Pot size matters: A meta‐analysis of the effects of rooting volume on plant growth
  publication-title: Functional Plant Biology: FPB
– volume: 85
  start-page: 2682
  issue: 10
  year: 2004
  end-page: 2686
  article-title: Measuring plant interactions: A new comparative index
  publication-title: Ecology
– volume: 205
  start-page: 1117
  issue: 3
  year: 2015
  end-page: 1127
  article-title: Summer drought alters carbon allocation to roots and root respiration in mountain grassland
  publication-title: The New Phytologist
– volume: 98
  start-page: 2952
  issue: 11
  year: 2017
  end-page: 2961
  article-title: Plant diversity maintains long‐term ecosystem productivity under frequent drought by increasing short‐term variation
  publication-title: Ecology
– volume: 526
  start-page: 574
  issue: 7574
  year: 2015
  end-page: 577
  article-title: Biodiversity increases the resistance of ecosystem productivity to climate extremes
  publication-title: Nature
– volume: 90
  start-page: 3290
  issue: 12
  year: 2009
  end-page: 3302
  article-title: Plant species richness and functional composition drive overyielding in a six‐year grassland experiment
  publication-title: Ecology
– volume: 186
  start-page: 346
  issue: 2
  year: 2010
  end-page: 357
  article-title: Digging deeper: Fine‐root responses to rising atmospheric CO concentration in forested ecosystems
  publication-title: The New Phytologist
– volume: 147
  year: 2023
  article-title: Enhanced urban roadside vegetation increases pollinator abundance whereas landscape characteristics drive pollination
  publication-title: Ecological Indicators
– volume: 108
  start-page: 389
  issue: 3
  year: 1996
  end-page: 411
  article-title: A global analysis of root distributions for terrestrial biomes
  publication-title: Oecologia
– year: 2023
– volume: 107
  start-page: 127
  issue: 1
  year: 2019
  end-page: 141
  article-title: Plant species richness and functional groups have different effects on soil water content in a decade‐long grassland experiment
  publication-title: Journal of Ecology
– volume: 13
  start-page: 3217
  issue: 1
  year: 2022
  article-title: Drought‐exposure history increases complementarity between plant species in response to a subsequent drought
  publication-title: Nature Communications
– volume: 15
  start-page: 36
  year: 2021
  end-page: 49
  article-title: Effects of elevated CO on plant root form and function: A review
  publication-title: Plant Root
– volume: 232
  start-page: 1123
  issue: 3
  year: 2021
  end-page: 1158
  article-title: Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs
  publication-title: The New Phytologist
– volume: 34
  start-page: 2224
  issue: 11
  year: 2020
  end-page: 2235
  article-title: Root trait responses to drought are more heterogeneous than leaf trait responses
  publication-title: Functional Ecology
– volume: 100
  start-page: 14
  issue: 1
  year: 2013
  end-page: 24
  article-title: Root hydrotropism: An update
  publication-title: American Journal of Botany
– volume: 130
  start-page: 1954
  issue: 11
  year: 2021
  end-page: 1966
  article-title: Focusing on individual plants to understand community scale biodiversity effects: The case of root distribution in grasslands
  publication-title: Oikos
– ident: e_1_2_11_18_1
  doi: 10.1007/s00442‐005‐0010‐y
– ident: e_1_2_11_55_1
  doi: 10.1111/gcb.15471
– volume-title: Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change: Summary for Policymakers
  year: 2021
  ident: e_1_2_11_32_1
– ident: e_1_2_11_46_1
  doi: 10.1890/12‐1399.1
– ident: e_1_2_11_8_1
  doi: 10.1007/BF00377135
– ident: e_1_2_11_22_1
  doi: 10.1111/1365‐2435.12883
– ident: e_1_2_11_17_1
  doi: 10.1016/j.tplants.2004.11.004
– ident: e_1_2_11_51_1
  doi: 10.1111/oik.01502
– ident: e_1_2_11_43_1
  doi: 10.1111/j.1365‐2435.2007.01362.x
– ident: e_1_2_11_24_1
  doi: 10.1111/1365‐2745.12769
– ident: e_1_2_11_9_1
  doi: 10.1890/08-0867.1
– ident: e_1_2_11_38_1
  doi: 10.1111/j.1365‐2486.2008.01629.x
– ident: e_1_2_11_30_1
  doi: 10.1111/nph.13146
– ident: e_1_2_11_23_1
  doi: 10.1111/nph.17072
– ident: e_1_2_11_21_1
  doi: 10.1111/nph.17572
– ident: e_1_2_11_49_1
  doi: 10.1071/FP12049
– ident: e_1_2_11_33_1
  doi: 10.1038/nature15374
– volume-title: Ecosystems and human well‐being: Synthesis
  year: 2005
  ident: e_1_2_11_40_1
– ident: e_1_2_11_59_1
  doi: 10.1111/nph.16266
– ident: e_1_2_11_60_1
  doi: 10.1111/nph.14003
– ident: e_1_2_11_41_1
  doi: 10.1890/09-0069.1
– ident: e_1_2_11_58_1
  doi: 10.1111/nph.17279
– ident: e_1_2_11_42_1
  doi: 10.1111/nph.13363
– ident: e_1_2_11_14_1
  doi: 10.1093/biosci/biv099
– ident: e_1_2_11_16_1
  doi: 10.1016/j.ecolind.2023.109980
– ident: e_1_2_11_27_1
  doi: 10.1146/annurev.ecolsys.39.110707.173349
– ident: e_1_2_11_62_1
  doi: 10.1111/pce.13356
– ident: e_1_2_11_54_1
  doi: 10.1007/s11104‐008‐9635‐z
– ident: e_1_2_11_36_1
– ident: e_1_2_11_20_1
  doi: 10.1007/s11104‐014‐2373‐5
– ident: e_1_2_11_37_1
  doi: 10.1111/1365‐2435.13656
– ident: e_1_2_11_11_1
  doi: 10.3732/ajb.1200306
– ident: e_1_2_11_39_1
  doi: 10.3117/plantroot.15.36
– ident: e_1_2_11_48_1
  doi: 10.1007/s11104‐012‐1371‐8
– ident: e_1_2_11_61_1
  doi: 10.1139/cjss‐2018‐0114
– ident: e_1_2_11_28_1
  doi: 10.1111/ele.12652
– ident: e_1_2_11_47_1
  doi: 10.1111/geb.12062
– ident: e_1_2_11_53_1
  doi: 10.1111/1365-2435.14345
– ident: e_1_2_11_44_1
  doi: 10.1111/j.1365‐2745.2010.01702.x
– volume-title: R: A language and environment for statistical computing
  year: 2021
  ident: e_1_2_11_50_1
– ident: e_1_2_11_3_1
  doi: 10.1007/s10021‐017‐0131‐2
– ident: e_1_2_11_19_1
  doi: 10.1111/1365‐2745.13046
– ident: e_1_2_11_5_1
  doi: 10.1111/oik.05612
– ident: e_1_2_11_15_1
  doi: 10.1007/s11104‐016‐2964‐4
– ident: e_1_2_11_12_1
  doi: 10.1038/s41467‐022‐30954‐9
– ident: e_1_2_11_31_1
  doi: 10.1038/s41598‐018‐33262‐9
– ident: e_1_2_11_25_1
  doi: 10.1002/ecy.2437
– ident: e_1_2_11_34_1
  doi: 10.1111/j.1469‐8137.2009.03122.x
– ident: e_1_2_11_35_1
  doi: 10.1007/BF00333714
– ident: e_1_2_11_56_1
  doi: 10.1073/pnas.1920405117
– ident: e_1_2_11_6_1
  doi: 10.1016/j.tree.2014.10.006
– ident: e_1_2_11_10_1
  doi: 10.1016/j.tree.2008.10.008
– ident: e_1_2_11_4_1
  doi: 10.1111/oik.08113
– ident: e_1_2_11_45_1
  doi: 10.1111/1365‐2745.12993
– ident: e_1_2_11_29_1
– ident: e_1_2_11_26_1
  doi: 10.1002/ece3.7963
– ident: e_1_2_11_13_1
  doi: 10.3389/fpls.2013.00442
– ident: e_1_2_11_57_1
  doi: 10.1002/ecy.2003
– ident: e_1_2_11_7_1
  doi: 10.1016/j.agee.2016.06.035
– ident: e_1_2_11_52_1
  doi: 10.1371/journal.pone.0275044
– ident: e_1_2_11_2_1
  doi: 10.1890/03‐0650
SSID ssj0009522
Score 2.4513755
Snippet Current challenges of functional responses in plant communities to climate change call for multi‐factorial experiments. Moreover, studies on climate change...
1. Current challenges of functional responses in plant communities to climate change call for multi-factorial experiments. Moreover, studies on climate change...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1841
SubjectTerms absorptive root traits
Absorptivity
belowground biomass
Biomass
biomass allocation
Carbon dioxide
Central European region
Climate change
climate scenario
Climate studies
Composition
Density
dry matter partitioning
ecology
Environmental Sciences
Factorial experiments
fine roots
Forbs
Grasses
Grasslands
Intergovernmental Panel on Climate Change
Mesocosms
Plant communities
plant functional types
Plant populations
Plant tissues
Precipitation
Roots
soil
Soil layers
Soils
summer
taxonomy
temperature
urban grasslands
Title Root traits of grasslands rapidly respond to climate change, while community biomass mainly depends on functional composition
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14345
https://www.proquest.com/docview/2832912513
https://www.proquest.com/docview/2849880776
https://hal.inrae.fr/hal-04149893
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEF-qUPBF-6GYamUrfeiDF8ze3pp7FEkIpS1FFPp27NdpML2T5KKk0P-9v7m9S1OhiPi2bHaOvcnOzG9u54Oxj074VLs0iWAck0iaxEUavlCUGhifvEc3eZQo_PWbGl3Kzz-SNpqQcmFCfYjlBzeSjFpfk4BrM1sR8hCfBWsPYY8lpZnTDMGic7FSdjfcIwiVRrC0cVPch2J5HtD_Y5fWrikqcgVyrgLX2vIMt5hp9xwCTm6688p07a8H5Ryf9VKv2GaDS_lpOEiv2QtfvGEvQ6fKBUYD24x2Bn9T40DQ6IbZW_b7vCwrTi0nqhkvc341BS6vM4n5VN-O3WTBp3VAruNVye1kDKzseUg8PuL319gvtyFdpVpwKgsAev5TjwtQhl69eG7ByRKHD5i0vA0622aXw8HF2ShqmjtEFgguiXIL103HPa2sUzI1MpE5_GWljIBeoYISJo_7ORxQ5XUirAKuiWPt3YnQwmkf77D1oiz8LuPK2TSV8Lv8CfAnHFbhPPRUX_d0H_Nxh3XbvzazTeVz4sYkaz0gYntGbM9qtnfYpyXBbSj68f-lhzgry1VUrHt0-iWjuWMJ7xNw8K7XYfvtUcoaFTHLqEdUSvAS-_uw_BnCTTc2uvDlnNbgCX2quIR3qM_NY_vJhoOzevDuqQR7bEOA6yEUeZ-tV9O5fw_AVZkDtibk94Nasv4AMyMdjA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61RQgu5VmRUsAgkDiwEfE-mj1wqNpEKU17qFqpt8Vre2lE2K2SDVWQ-FP8Ff4Q36x3Q6iEEIceuFkbj-XYM5757HkQvTTSxsrEoQflGHpBGhpPAQt5cQrlk3X4JY8DhQ-PosFp8P4sPFuh700sjMsPsbhwY8mozmsWcL6QXpJy56AFdQ9p94PGsfLAzi8B26bv9vewx6-k7PdOdgdeXVnA0zAfQi_TwA3K76hImyiI0yAMMoC1KEolmJqzGaSZ382AfiKrQqkjKFXfV9ZsSyWNsj7GXaUbXEec8_XvHculRL_u5UJGsQdyv04nxN5DVyb8myZcPWc_zCUjd9lUrnRd_w79aFbJubh8as_KtK2_Xkkg-X8t411ar01vseNk5R6t2Pw-3XTFOOdo9XTd2uj9iv4DQX38TR_Qt-OiKAVX1SinosjExwmgRxUsLSbqYmTGczGpfI6NKAuhxyPAAStcbPUbcXmOBRLaReSUc8GZD0AvPqtRDkpXjhjj5oKNDXdHy90bv7qHdHoty7NBa3mR20ckIqPjOAC0tNswsYHJpbE4iruqo7r47reo3fBSouvk7rwa46QBebzNCW9zUm1zi14vCC5cXpM_d30B5lz04nzkg51hwt_eBgDYsHi_dFq01fBuUp-C04TLYMVsQWN-zxc_4_ziRymV22LGfTBCl5NK4T9UjPq3-ST93m7V2PxXgmd0a3ByOEyG-0cHj-m2xA44z-stWisnM_sE9mWZPq0EWtCH62b9n1mxeHI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe2IRCXia9p3QYYBBIHgqjjeM2Bw7S16tiYJsSk3YxjO1ulklRttqkH_ij-Q34vTkpBQojDblbiZzl5fn6_Z78Pxl454VPj0iSCckwimSUuMrCFojSD8sm7dJNHgcKfTtTwTH48T85X2I82Fibkh1gcuJFk1Ps1CfjE5UtCHvyzoO0h7LFs_SqP_PwGVtvsw-EBWPxaiEH_y_4wagoLRBboIYlyC7PBxF2jrFMyzWQic9hqSmUCa5qSGWR53Mth_ChvEmEVdGocG-92hRHO-BjjrrI7dMVIXmRCni7l-Q0XF0KlEcjjJpsQOQ_9MeHfFOHqJblhLmHcZaRcq7rBA7beYFS-FxbVQ7bii0fsbqhaOUerb5vWRv9XmBwImn1i9ph9_1yWFafyE9WMlzm_mAKj11HFfGomIzee82ntnOt4VXI7HgE3ex6CkN_ym0vMitsQulLNOaUIAD3_ZkYFKEPdXoxbcNLK4TCTurcOaE_Y2a3wY4OtFWXhNxlXzqaphA3md4FFYbwK57Fn9UzX9PA87rB37V_XtsmCTn9jrFtriNikiU26ZlOHvVkQTEICkL93fQk2LnpR4u7h3rGmZ-8lLFFAw-tuh-20XNbNdjHTVC8qJaiJ-b1YvIag0-2NKXx5RX0wQo-yL-Eb6tXxr_noQX-_bmz9L8Fzdu_0YKCPD0-Ottl9AQYED-UdtlZNr_xT4LAqe1avfM6-3rao_QRFYjcV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+traits+of+grasslands+rapidly+respond+to+climate+change%2C+while+community+biomass+mainly+depends+on+functional+composition&rft.jtitle=Functional+ecology&rft.au=Rojas%E2%80%90botero%2C+Sandra&rft.au=Teixeira%2C+Leonardo+H&rft.au=Prucker%2C+Paula&rft.au=Kloska%2C+Veronika&rft.date=2023-07-01&rft.pub=Wiley&rft.issn=0269-8463&rft.eissn=1365-2435&rft_id=info:doi/10.1111%2F1365-2435.14345&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04149893v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon