High‐Power Lithium Metal Batteries Enabled by High‐Concentration Acetonitrile‐Based Electrolytes with Vinylene Carbonate Additive
To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stabilit...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 24 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2020
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li+ depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm‐2. Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm‐2, and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm‐2 is also demonstrated.
A highly concentrated acetonitrile‐based electrolyte with a vinylene carbonate additive is developed to significantly suppress Li+ depletion and side reactions on Li metal anode (LMA) at high current densities. High‐power Li metal batteries can be obtained using this electrolyte with a much stabilized LMA and accelerated ion transfer. |
---|---|
AbstractList | To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li
+
depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm
‐2
. Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm
‐2
, and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm
‐2
is also demonstrated. To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li+ depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm‐2. Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm‐2, and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm‐2 is also demonstrated. To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li+ depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm‐2. Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm‐2, and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm‐2 is also demonstrated. A highly concentrated acetonitrile‐based electrolyte with a vinylene carbonate additive is developed to significantly suppress Li+ depletion and side reactions on Li metal anode (LMA) at high current densities. High‐power Li metal batteries can be obtained using this electrolyte with a much stabilized LMA and accelerated ion transfer. Abstract To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li + depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm ‐2 . Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm ‐2 , and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm ‐2 is also demonstrated. |
Author | Xu, Wu Zhu, Yun Liu, Dianying Jia, Haiping Li, Qiuyan Wang, Deyu Li, Zhendong Gao, Peiyuan Ren, Xiaodi Roy, Swadipta Peng, Zhe Xie, Weiping Zhang, Ji‐Guang Cao, Xia |
Author_xml | – sequence: 1 givenname: Zhe surname: Peng fullname: Peng, Zhe organization: Pacific Northwest National Laboratory – sequence: 2 givenname: Xia surname: Cao fullname: Cao, Xia organization: Pacific Northwest National Laboratory – sequence: 3 givenname: Peiyuan surname: Gao fullname: Gao, Peiyuan organization: Pacific Northwest National Laboratory – sequence: 4 givenname: Haiping surname: Jia fullname: Jia, Haiping organization: Pacific Northwest National Laboratory – sequence: 5 givenname: Xiaodi surname: Ren fullname: Ren, Xiaodi organization: Pacific Northwest National Laboratory – sequence: 6 givenname: Swadipta surname: Roy fullname: Roy, Swadipta organization: Pacific Northwest National Laboratory – sequence: 7 givenname: Zhendong surname: Li fullname: Li, Zhendong organization: Chinese Academy of Sciences – sequence: 8 givenname: Yun surname: Zhu fullname: Zhu, Yun organization: Chinese Academy of Sciences – sequence: 9 givenname: Weiping surname: Xie fullname: Xie, Weiping organization: Chinese Academy of Sciences – sequence: 10 givenname: Dianying surname: Liu fullname: Liu, Dianying organization: Pacific Northwest National Laboratory – sequence: 11 givenname: Qiuyan surname: Li fullname: Li, Qiuyan organization: Pacific Northwest National Laboratory – sequence: 12 givenname: Deyu surname: Wang fullname: Wang, Deyu email: wangdy@nimte.ac.cn organization: Chinese Academy of Sciences – sequence: 13 givenname: Wu surname: Xu fullname: Xu, Wu email: wu.xu@pnnl.gov organization: Pacific Northwest National Laboratory – sequence: 14 givenname: Ji‐Guang orcidid: 0000-0001-7343-4609 surname: Zhang fullname: Zhang, Ji‐Guang email: jiguang.zhang@pnnl.gov organization: Pacific Northwest National Laboratory |
BackLink | https://www.osti.gov/biblio/1616200$$D View this record in Osti.gov |
BookMark | eNqFkc1KAzEUhYMoaNWt66Dr1mR-OjPLtrYqVHSh4i4kmTs2ZZrUJLXMzp1bn9EnMbWlgiCuciHfOfdyTgvtaqMBoRNKOpSQ6JyX1awTkYgQGuXpDjqgXdptxyTKd7czfdpHLeemgcmyODlA71fqefL59nFnlmDxWPmJWszwDXhe4z73HqwCh4eaixpKLBq84QdGS9Decq-Mxj0J3mjlraohfPa5C_CwBumtqRsfHJbBGT8q3dSgAQ-4FUZzD7hXlsqrVzhCexWvHRxv3kP0MBreD67a49vL60Fv3JZJFKdt4LksZEZyKXkOnBIqaTdP4zStCE2kKHlK41jIipSFFJCkREAWiSITVUGhK-JDdLr2Nc4r5qTyICfSaB1uZauQQnwBOltDc2teFuA8m5qF1eEuFiWUJgkhWR6ozpqS1jhnoWJzq2bcNowStmqErRph20aCIPklCOu_Aww5qvpvWbGWLUO6zT9LWO9idPOj_QJcdqei |
CitedBy_id | crossref_primary_10_1016_j_cej_2021_129739 crossref_primary_10_1016_j_ensm_2021_02_033 crossref_primary_10_1016_j_ensm_2024_103698 crossref_primary_10_1021_acsaem_2c01261 crossref_primary_10_1021_acsami_1c21638 crossref_primary_10_1021_acs_chemrev_0c00275 crossref_primary_10_1021_acs_chemrev_3c00826 crossref_primary_10_1002_cssc_202300995 crossref_primary_10_1002_aenm_202300918 crossref_primary_10_1002_smll_202004369 crossref_primary_10_1002_anie_202206770 crossref_primary_10_1016_j_jechem_2022_11_042 crossref_primary_10_1021_acsami_0c12829 crossref_primary_10_1021_acsnano_4c11217 crossref_primary_10_20935_AcadEnergy7555 crossref_primary_10_1016_j_saa_2020_119065 crossref_primary_10_1038_s41467_022_32794_z crossref_primary_10_1002_aenm_202002891 crossref_primary_10_1021_acsaem_3c00250 crossref_primary_10_1021_acsenergylett_2c02903 crossref_primary_10_1002_ange_202419995 crossref_primary_10_1149_1945_7111_ac797a crossref_primary_10_2139_ssrn_4150540 crossref_primary_10_1016_j_ensm_2021_03_008 crossref_primary_10_1002_smll_202107492 crossref_primary_10_1002_ange_202401051 crossref_primary_10_1002_ange_202218005 crossref_primary_10_1002_ente_202201397 crossref_primary_10_1016_j_mattod_2023_09_004 crossref_primary_10_1016_j_powera_2022_100088 crossref_primary_10_1002_anie_202419995 crossref_primary_10_1002_adma_202103178 crossref_primary_10_1002_batt_202000236 crossref_primary_10_1002_celc_202100927 crossref_primary_10_1002_adma_202006702 crossref_primary_10_1021_acsami_0c14995 crossref_primary_10_1039_D3TA01684F crossref_primary_10_1016_j_jallcom_2022_168108 crossref_primary_10_1002_smll_202401857 crossref_primary_10_1002_smll_202400365 crossref_primary_10_1016_j_est_2024_112615 crossref_primary_10_1021_acsami_1c24808 crossref_primary_10_1016_j_ceramint_2025_01_467 crossref_primary_10_1002_adfm_202009694 crossref_primary_10_1002_smll_202408771 crossref_primary_10_1002_adfm_202421802 crossref_primary_10_1002_adfm_202102228 crossref_primary_10_1038_s41893_024_01414_7 crossref_primary_10_1002_adma_202404271 crossref_primary_10_1021_acs_jpclett_0c02995 crossref_primary_10_1038_s41560_021_00910_w crossref_primary_10_1002_celc_202300702 crossref_primary_10_1016_j_ensm_2022_11_051 crossref_primary_10_1002_adma_202416377 crossref_primary_10_1002_bte2_20230018 crossref_primary_10_1142_S1793604723500054 crossref_primary_10_1016_j_ensm_2023_102777 crossref_primary_10_1016_j_apsusc_2022_154468 crossref_primary_10_1002_metm_6 crossref_primary_10_1016_j_cej_2025_160482 crossref_primary_10_1038_s41586_022_05281_0 crossref_primary_10_1002_ange_202314876 crossref_primary_10_1016_j_ensm_2024_103783 crossref_primary_10_12677_JAPC_2023_124040 crossref_primary_10_1039_D4CC03431G crossref_primary_10_1002_eem2_12355 crossref_primary_10_1021_acsenergylett_1c02425 crossref_primary_10_1002_aenm_202202529 crossref_primary_10_1021_acsenergylett_1c01213 crossref_primary_10_1002_adfm_202008644 crossref_primary_10_1021_acsaem_1c03336 crossref_primary_10_1039_D4EB00042K crossref_primary_10_1039_D2CS00873D crossref_primary_10_1016_j_jechem_2022_11_013 crossref_primary_10_1002_smll_202308959 crossref_primary_10_1039_D0CS01017K crossref_primary_10_1038_s41467_023_35934_1 crossref_primary_10_1039_D4FD00026A crossref_primary_10_1039_D2TA07696A crossref_primary_10_1002_ange_202206770 crossref_primary_10_1088_2752_5724_acac68 crossref_primary_10_1002_aenm_202100935 crossref_primary_10_1002_smll_202312087 crossref_primary_10_1007_s12209_023_00355_0 crossref_primary_10_1002_batt_202300053 crossref_primary_10_1021_acsaem_0c01679 crossref_primary_10_1002_anie_202314876 crossref_primary_10_1016_j_ensm_2022_03_034 crossref_primary_10_1002_anie_202401051 crossref_primary_10_1021_acsami_1c18783 crossref_primary_10_1002_bte2_20240106 crossref_primary_10_1039_D4CS00826J crossref_primary_10_1016_j_jpowsour_2022_232557 crossref_primary_10_3390_molecules29194698 crossref_primary_10_1016_j_chempr_2021_02_025 crossref_primary_10_1039_D0TA10861H crossref_primary_10_1002_adfm_202212866 crossref_primary_10_1002_adma_202202869 crossref_primary_10_1002_smtd_202300228 crossref_primary_10_1007_s41918_022_00158_2 crossref_primary_10_1021_acsenergylett_2c02399 crossref_primary_10_1002_smll_202205653 crossref_primary_10_1002_aenm_202401377 crossref_primary_10_1002_anie_202412239 crossref_primary_10_3390_batteries9030149 crossref_primary_10_3390_en13236363 crossref_primary_10_1039_D1CS00450F crossref_primary_10_1021_acs_iecr_2c00958 crossref_primary_10_34133_2022_9837586 crossref_primary_10_1007_s12274_022_5147_z crossref_primary_10_1039_D2TA04309B crossref_primary_10_1038_s41557_024_01585_y crossref_primary_10_1002_adma_202312302 crossref_primary_10_1039_D2TA07985B crossref_primary_10_1002_sus2_37 crossref_primary_10_1002_adfm_202205622 crossref_primary_10_1021_acsenergylett_3c00324 crossref_primary_10_1007_s41918_022_00147_5 crossref_primary_10_1002_smsc_202100107 crossref_primary_10_1016_j_cej_2023_144993 crossref_primary_10_1021_acs_chemrev_3c00646 crossref_primary_10_1021_acs_jpcb_1c04486 crossref_primary_10_1016_j_nanoen_2023_108370 crossref_primary_10_1016_j_ensm_2022_11_012 crossref_primary_10_1007_s11581_022_04867_y crossref_primary_10_1016_j_ensm_2022_07_038 crossref_primary_10_1021_acsami_1c01849 crossref_primary_10_1002_adsu_202400247 crossref_primary_10_1016_j_electacta_2023_143189 crossref_primary_10_1002_batt_202100416 crossref_primary_10_1021_acsami_1c15690 crossref_primary_10_1021_acsnano_3c12877 crossref_primary_10_1007_s11705_022_2286_4 crossref_primary_10_1002_anie_202218005 crossref_primary_10_1007_s40820_025_01663_x crossref_primary_10_1016_j_jelechem_2022_116126 crossref_primary_10_1002_eem2_12317 crossref_primary_10_1002_smll_202302388 crossref_primary_10_1002_batt_202200231 crossref_primary_10_1021_acsenergylett_4c00481 crossref_primary_10_1021_acsenergylett_3c01004 crossref_primary_10_1002_eem2_12393 crossref_primary_10_1016_j_esci_2022_06_005 crossref_primary_10_1002_advs_202102215 crossref_primary_10_1016_j_ensm_2024_103741 crossref_primary_10_1002_adfm_202210669 crossref_primary_10_1002_batt_202400550 crossref_primary_10_1002_eom2_12325 crossref_primary_10_1002_smll_202102233 crossref_primary_10_1002_aenm_202104021 crossref_primary_10_1016_j_jallcom_2023_169662 crossref_primary_10_1016_j_carbon_2020_09_061 crossref_primary_10_1063_5_0130338 crossref_primary_10_1002_inf2_12166 crossref_primary_10_1002_adfm_202408422 crossref_primary_10_1002_ange_202412239 crossref_primary_10_1016_j_susmat_2024_e00964 crossref_primary_10_1016_j_nanoen_2022_107677 |
Cites_doi | 10.1149/2.0511503jes 10.1103/PhysRevB.59.1758 10.1038/natrevmats.2016.13 10.1149/1.3429886 10.1021/acsnano.7b05664 10.1016/j.electacta.2019.01.113 10.1038/ncomms12032 10.1021/acs.jpcc.5b00826 10.1002/anie.201908874 10.1007/s12274-017-1761-6 10.1021/acs.jpcc.8b02314 10.1021/cr030203g 10.1039/C8EE01040D 10.1038/s41560-019-0338-x 10.1149/2.0331409jes 10.1038/s41598-018-36836-9 10.1002/aenm.201400993 10.1039/C5RA25048J 10.1002/adfm.201605989 10.1021/acs.jpca.9b02170 10.1016/j.ensm.2015.07.001 10.1038/nmat3793 10.1149/1.3514705 10.1021/acs.nanolett.6b04755 10.1021/ja3091438 10.1149/1.3158548 10.1038/s41560-018-0196-y 10.1016/j.jpowsour.2017.08.082 10.1021/acsenergylett.7b00300 10.1021/acs.chemrev.7b00115 10.1016/j.joule.2017.10.007 10.1038/nenergy.2017.12 10.1002/aenm.201703022 10.1149/1.2048658 10.1038/s41467-018-05289-z 10.1149/1.1785795 10.1149/2.100310jes 10.1149/1.1392649 10.1039/C3EE40795K 10.1021/acsenergylett.9b00381 10.1021/jp052474w 10.1021/ja412807w 10.1021/acsenergylett.7b00982 10.1038/ncomms7362 10.1002/aenm.201702097 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
DOI | 10.1002/adfm.202001285 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 1616200 10_1002_adfm_202001285 ADFM202001285 |
Genre | article |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation funderid: LQ17E020004; 2018B10060 – fundername: National Key R&D Program of China funderid: 2018YFB0905400 – fundername: DOE's Office of Biological and Environmental Research funderid: DE‐AC05‐76RL01830 – fundername: U.S. Department of Energy funderid: DE‐AC05‐76RL01830 – fundername: Natural Science Foundation of Ningbo funderid: 2018A610014 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c4235-ea8c9c708cca8ea101c1685355f014cbda5133bcf0d9cbe450be72b97bf91e6b3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Sep 11 05:25:47 EDT 2023 Fri Jul 25 07:18:55 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Tue Jul 01 04:12:12 EDT 2025 Wed Jan 22 16:34:28 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4235-ea8c9c708cca8ea101c1685355f014cbda5133bcf0d9cbe450be72b97bf91e6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE DE‐AC05‐76RL01830 |
ORCID | 0000-0001-7343-4609 0000000173434609 |
OpenAccessLink | https://www.osti.gov/biblio/1616200 |
PQID | 2411440078 |
PQPubID | 2045204 |
PageCount | 13 |
ParticipantIDs | osti_scitechconnect_1616200 proquest_journals_2411440078 crossref_primary_10_1002_adfm_202001285 crossref_citationtrail_10_1002_adfm_202001285 wiley_primary_10_1002_adfm_202001285_ADFM202001285 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Germany |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2015; 162 2015; 1 2011; 158 2018; 122 2019; 9 2015; 6 2019; 4 2015; 5 2017; 2 2004; 104 2017; 27 2019; 58 2009; 156 2019; 300 1999; 146 2013; 160 2014; 136 2019; 123 2017; 117 2016; 6 2018; 9 2018; 8 2016; 7 2018; 3 2016; 1 2018; 2 2017; 17 2017; 11 2004; 151 2017; 10 1999; 59 2010; 157 2005; 109 2013; 135 2014; 13 2014; 161 2015; 119 1995; 142 2017; 365 2018; 11 2014; 7 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 1132 year: 2017 publication-title: Nano Lett. – volume: 365 start-page: 446 year: 2017 publication-title: J. Power Sources – volume: 10 start-page: 4221 year: 2017 publication-title: Nano Res. – volume: 109 year: 2005 publication-title: J. Phys. Chem. B – volume: 2 start-page: 1321 year: 2017 publication-title: ACS Energy Lett. – volume: 157 start-page: A903 year: 2010 publication-title: J. Electrochem. Soc. – volume: 160 year: 2013 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 135 year: 2019 publication-title: Sci. Rep. – volume: 13 start-page: 69 year: 2014 publication-title: Nat. Mater. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 1 start-page: 158 year: 2015 publication-title: Energy Storage Mater. – volume: 3 start-page: 14 year: 2018 publication-title: ACS Energy Lett. – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 161 year: 2014 publication-title: J. Electrochem. Soc. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 7 start-page: 513 year: 2014 publication-title: Energy Environ. Sci. – volume: 119 start-page: 8492 year: 2015 publication-title: J. Phys. Chem. C – volume: 4 start-page: 896 year: 2019 publication-title: ACS Energy Lett. – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 158 start-page: A74 year: 2011 publication-title: J. Electrochem. Soc. – volume: 135 start-page: 1167 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 123 start-page: 4431 year: 2019 publication-title: J. Phys. Chem. A – volume: 11 year: 2017 publication-title: ACS Nano – volume: 162 start-page: A398 year: 2015 publication-title: J. Electrochem. Soc. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 104 start-page: 4303 year: 2004 publication-title: Chem. Rev. – volume: 156 start-page: A726 year: 2009 publication-title: J. Electrochem. Soc. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 151 year: 2004 publication-title: J. Electrochem. Soc. – volume: 122 start-page: 9825 year: 2018 publication-title: J. Phys. Chem. C – volume: 146 start-page: 4393 year: 1999 publication-title: J. Electrochem. Soc. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 3 start-page: 674 year: 2018 publication-title: Nat. Energy – volume: 300 start-page: 299 year: 2019 publication-title: Electrochim. Acta – volume: 11 start-page: 3212 year: 2018 publication-title: Energy Environ. Sci. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 142 start-page: 2873 year: 1995 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 2942 year: 2018 publication-title: Nat. Commun. – volume: 136 start-page: 5039 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 180 year: 2019 publication-title: Nat. Energy – volume: 2 start-page: 110 year: 2018 publication-title: Joule – ident: e_1_2_7_9_1 doi: 10.1149/2.0511503jes – ident: e_1_2_7_45_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_7_5_1 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_7_27_1 doi: 10.1149/1.3429886 – ident: e_1_2_7_28_1 doi: 10.1021/acsnano.7b05664 – ident: e_1_2_7_37_1 doi: 10.1016/j.electacta.2019.01.113 – ident: e_1_2_7_20_1 doi: 10.1038/ncomms12032 – ident: e_1_2_7_39_1 doi: 10.1021/acs.jpcc.5b00826 – ident: e_1_2_7_40_1 doi: 10.1002/anie.201908874 – ident: e_1_2_7_43_1 doi: 10.1007/s12274-017-1761-6 – ident: e_1_2_7_32_1 doi: 10.1021/acs.jpcc.8b02314 – ident: e_1_2_7_41_1 doi: 10.1021/cr030203g – ident: e_1_2_7_42_1 doi: 10.1039/C8EE01040D – ident: e_1_2_7_44_1 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_7_33_1 doi: 10.1149/2.0331409jes – ident: e_1_2_7_38_1 doi: 10.1038/s41598-018-36836-9 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.201400993 – ident: e_1_2_7_24_1 doi: 10.1039/C5RA25048J – ident: e_1_2_7_14_1 doi: 10.1002/adfm.201605989 – ident: e_1_2_7_23_1 doi: 10.1021/acs.jpca.9b02170 – ident: e_1_2_7_2_1 doi: 10.1016/j.ensm.2015.07.001 – ident: e_1_2_7_8_1 doi: 10.1038/nmat3793 – ident: e_1_2_7_26_1 doi: 10.1149/1.3514705 – ident: e_1_2_7_34_1 doi: 10.1021/acs.nanolett.6b04755 – ident: e_1_2_7_1_1 doi: 10.1021/ja3091438 – ident: e_1_2_7_10_1 doi: 10.1149/1.3158548 – ident: e_1_2_7_21_1 doi: 10.1038/s41560-018-0196-y – ident: e_1_2_7_25_1 doi: 10.1016/j.jpowsour.2017.08.082 – ident: e_1_2_7_15_1 doi: 10.1021/acsenergylett.7b00300 – ident: e_1_2_7_3_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_7_1 doi: 10.1016/j.joule.2017.10.007 – ident: e_1_2_7_31_1 doi: 10.1038/nenergy.2017.12 – ident: e_1_2_7_16_1 doi: 10.1002/aenm.201703022 – ident: e_1_2_7_11_1 doi: 10.1149/1.2048658 – ident: e_1_2_7_35_1 doi: 10.1038/s41467-018-05289-z – ident: e_1_2_7_30_1 doi: 10.1149/1.1785795 – ident: e_1_2_7_13_1 doi: 10.1149/2.100310jes – ident: e_1_2_7_36_1 doi: 10.1149/1.1392649 – ident: e_1_2_7_4_1 doi: 10.1039/C3EE40795K – ident: e_1_2_7_19_1 doi: 10.1021/acsenergylett.9b00381 – ident: e_1_2_7_12_1 doi: 10.1021/jp052474w – ident: e_1_2_7_22_1 doi: 10.1021/ja412807w – ident: e_1_2_7_17_1 doi: 10.1021/acsenergylett.7b00982 – ident: e_1_2_7_18_1 doi: 10.1038/ncomms7362 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201702097 |
SSID | ssj0017734 |
Score | 2.6473246 |
Snippet | To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE)... Abstract To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acetonitrile Cathodes Current density Depletion Electrolytes Electrolytic cells High current Ion currents Lithium Lithium batteries lithium metal anode lithium metal batteries Materials science solid electrolyte interphase Solid electrolytes Stability vinylene carbonate |
Title | High‐Power Lithium Metal Batteries Enabled by High‐Concentration Acetonitrile‐Based Electrolytes with Vinylene Carbonate Additive |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202001285 https://www.proquest.com/docview/2411440078 https://www.osti.gov/biblio/1616200 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcIEDlJcILdUekDi5tdfvo5smqqoGIaAot9U-RdTiotQ5pKfeuPIb-SXMeB2TIFVIcLPlWdnenZ35dnfmG4A3iGgV-oE44EWhgyRVPFBZHAW5zI2TzkQ2pnzn6bvs5Dw5naWzjSx-zw_Rb7jRzGjtNU1wqa4Pf5OGSuMok5y3h0GUZU4BW4SKPvT8UVGe-2PlLKIAr2i2Zm0M-eF28y2vNLjC2bWFODdxa-t4Jo9Brj_Zx5tcHCwbdaBv_mBz_J9_2oFHHSpllVejJ3DP1k_h4QZX4TP4ThEhP29_vKeyauxs3nyZL7-yqUXwzjxJJ6652bhNxTJMrVgnP6K8yLoj52WVtg1ZkQV-Hj48Qh9q2NiX4rlcIexltDHMPs_rFbpDy0ZyoWh_37LKmDbM6TmcT8afRidBV8Uh0AjV0sDKQpc6DwvUlcJKNAE6yhAkpKnD5ZlWRlKJGaVdaEqtbJKGyuZclblyZWQzFb-AQX1V25fAYmkSU_C8cKVLIhsq7rSRNpWcO4mmaQjBehSF7ijOqdLGpfDkzFxQB4u-g4fwtpf_5sk97pTcJaUQCEuIW1dTEJJuBCkWSgxhb60rojMB1wKhER2cIwQbAm8H_S_vENXxZNrfvfqXRrvwgK59KNseDJrF0r5G0NSofbhfHU_PPu63E-QXYj0Usw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOAAHylOEFtgDEie39vp9TEOiAEmFUIt6W-1TRG1dFJxDOHHjym_klzDjtU2DhJDgaHtWtndnZ77dnfkG4AUiWoV-IA54UeggSRUPVBZHQS5z46QzkY0p33lxlM1OkjenaRdNSLkwnh-i33CjmdHYa5rgtCF98Is1VBpHqeS8OQ1Kr8MNKuvdrKre9wxSUZ77g-UsohCv6LTjbQz5wXb7Lb80uMT5tYU5ryLXxvVMd0B1H-0jTs7217Xa119-43P8r7-6C3daYMpGXpPuwTVb3YfbV-gKH8A3Cgr58fX7O6qsxubL-uNyfcEWFvE78zyduOxmkyYbyzC1Ya38mFIjq5afl420rcmQrPD78OEhulHDJr4az_kGkS-jvWH2YVlt0CNaNpYrRVv8lo2MaSKdHsLJdHI8ngVtIYdAI1pLAysLXeo8LFBdCivRCugoQ5yQpg5XaFoZSVVmlHahKbWySRoqm3NV5sqVkc1U_AgG1WVlHwOLpUlMwfPClS6JbKi400baVHLuJFqnIQTdMArdspxTsY1z4fmZuaAOFn0HD-FlL__J83v8UXKXtEIgMiF6XU1xSLoWpFkoMYS9TllEawU-C0RHdHaOKGwIvBn1v7xDjF5NF_3Vk39p9Bxuzo4XczF_ffR2F27RfR_ZtgeDerW2TxFD1epZM0t-AtwWFzo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkBAceCNCC-wBiZNbe_0-pnmoQFNViKLcVvsUEcWtgnMIp9565TfySzrjdUyChJDgaHtWtndnZ77dnfkG4DUiWoV-IA54UeggSRUPVBZHQS5z46QzkY0p33l6nB2eJu9m6Wwji9_zQ3QbbjQzGntNE_zCuP1fpKHSOMok581hUHoTbiVZWJBejz50BFJRnvtz5SyiCK9otqZtDPn-dvstt9Q7x-m1BTk3gWvjeSb3Qa6_2QecfNlb1mpPf_-NzvF_fuoB3GthKRt4PXoIN2z1CO5ukBU-hisKCfl5-eOE6qqxo3n9eb78yqYW0TvzLJ246GbjJhfLMLVirfyQEiOrlp2XDbStyYws8PPw4QE6UcPGvhbP2QpxL6OdYfZpXq3QH1o2lAtFG_yWDYxp4pyewOlk_HF4GLRlHAKNWC0NrCx0qfOwQGUprEQboKMMUUKaOlyfaWUk1ZhR2oWm1MomaahszlWZK1dGNlPxU-hV55V9BiyWJjEFzwtXuiSyoeJOG2lTybmTaJv6EKxHUeiW45xKbZwJz87MBXWw6Dq4D286-QvP7vFHyR1SCoG4hMh1NUUh6VqQYqFEH3bXuiJaG_BNIDaik3PEYH3gzaD_5R1iMJpMu6vn_9LoFdw-GU3E0dvj9ztwh277sLZd6NWLpX2BAKpWL5s5cg2ochXy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Power+Lithium+Metal+Batteries+Enabled+by+High%E2%80%90Concentration+Acetonitrile%E2%80%90Based+Electrolytes+with+Vinylene+Carbonate+Additive&rft.jtitle=Advanced+functional+materials&rft.au=Peng%2C+Zhe&rft.au=Cao%2C+Xia&rft.au=Gao%2C+Peiyuan&rft.au=Jia%2C+Haiping&rft.date=2020-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202001285&rft.externalDBID=10.1002%252Fadfm.202001285&rft.externalDocID=ADFM202001285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |