High‐Power Lithium Metal Batteries Enabled by High‐Concentration Acetonitrile‐Based Electrolytes with Vinylene Carbonate Additive

To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stabilit...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 24
Main Authors Peng, Zhe, Cao, Xia, Gao, Peiyuan, Jia, Haiping, Ren, Xiaodi, Roy, Swadipta, Li, Zhendong, Zhu, Yun, Xie, Weiping, Liu, Dianying, Li, Qiuyan, Wang, Deyu, Xu, Wu, Zhang, Ji‐Guang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2020
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li+ depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm‐2. Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm‐2, and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm‐2 is also demonstrated. A highly concentrated acetonitrile‐based electrolyte with a vinylene carbonate additive is developed to significantly suppress Li+ depletion and side reactions on Li metal anode (LMA) at high current densities. High‐power Li metal batteries can be obtained using this electrolyte with a much stabilized LMA and accelerated ion transfer.
AbstractList To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li + depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm ‐2 . Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm ‐2 , and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm ‐2 is also demonstrated.
To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li+ depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm‐2. Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm‐2, and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm‐2 is also demonstrated.
To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li+ depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm‐2. Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm‐2, and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm‐2 is also demonstrated. A highly concentrated acetonitrile‐based electrolyte with a vinylene carbonate additive is developed to significantly suppress Li+ depletion and side reactions on Li metal anode (LMA) at high current densities. High‐power Li metal batteries can be obtained using this electrolyte with a much stabilized LMA and accelerated ion transfer.
Abstract To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li + depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm ‐2 . Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm ‐2 , and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm ‐2 is also demonstrated.
Author Xu, Wu
Zhu, Yun
Liu, Dianying
Jia, Haiping
Li, Qiuyan
Wang, Deyu
Li, Zhendong
Gao, Peiyuan
Ren, Xiaodi
Roy, Swadipta
Peng, Zhe
Xie, Weiping
Zhang, Ji‐Guang
Cao, Xia
Author_xml – sequence: 1
  givenname: Zhe
  surname: Peng
  fullname: Peng, Zhe
  organization: Pacific Northwest National Laboratory
– sequence: 2
  givenname: Xia
  surname: Cao
  fullname: Cao, Xia
  organization: Pacific Northwest National Laboratory
– sequence: 3
  givenname: Peiyuan
  surname: Gao
  fullname: Gao, Peiyuan
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Haiping
  surname: Jia
  fullname: Jia, Haiping
  organization: Pacific Northwest National Laboratory
– sequence: 5
  givenname: Xiaodi
  surname: Ren
  fullname: Ren, Xiaodi
  organization: Pacific Northwest National Laboratory
– sequence: 6
  givenname: Swadipta
  surname: Roy
  fullname: Roy, Swadipta
  organization: Pacific Northwest National Laboratory
– sequence: 7
  givenname: Zhendong
  surname: Li
  fullname: Li, Zhendong
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Yun
  surname: Zhu
  fullname: Zhu, Yun
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Weiping
  surname: Xie
  fullname: Xie, Weiping
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Dianying
  surname: Liu
  fullname: Liu, Dianying
  organization: Pacific Northwest National Laboratory
– sequence: 11
  givenname: Qiuyan
  surname: Li
  fullname: Li, Qiuyan
  organization: Pacific Northwest National Laboratory
– sequence: 12
  givenname: Deyu
  surname: Wang
  fullname: Wang, Deyu
  email: wangdy@nimte.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 13
  givenname: Wu
  surname: Xu
  fullname: Xu, Wu
  email: wu.xu@pnnl.gov
  organization: Pacific Northwest National Laboratory
– sequence: 14
  givenname: Ji‐Guang
  orcidid: 0000-0001-7343-4609
  surname: Zhang
  fullname: Zhang, Ji‐Guang
  email: jiguang.zhang@pnnl.gov
  organization: Pacific Northwest National Laboratory
BackLink https://www.osti.gov/biblio/1616200$$D View this record in Osti.gov
BookMark eNqFkc1KAzEUhYMoaNWt66Dr1mR-OjPLtrYqVHSh4i4kmTs2ZZrUJLXMzp1bn9EnMbWlgiCuciHfOfdyTgvtaqMBoRNKOpSQ6JyX1awTkYgQGuXpDjqgXdptxyTKd7czfdpHLeemgcmyODlA71fqefL59nFnlmDxWPmJWszwDXhe4z73HqwCh4eaixpKLBq84QdGS9Decq-Mxj0J3mjlraohfPa5C_CwBumtqRsfHJbBGT8q3dSgAQ-4FUZzD7hXlsqrVzhCexWvHRxv3kP0MBreD67a49vL60Fv3JZJFKdt4LksZEZyKXkOnBIqaTdP4zStCE2kKHlK41jIipSFFJCkREAWiSITVUGhK-JDdLr2Nc4r5qTyICfSaB1uZauQQnwBOltDc2teFuA8m5qF1eEuFiWUJgkhWR6ozpqS1jhnoWJzq2bcNowStmqErRph20aCIPklCOu_Aww5qvpvWbGWLUO6zT9LWO9idPOj_QJcdqei
CitedBy_id crossref_primary_10_1016_j_cej_2021_129739
crossref_primary_10_1016_j_ensm_2021_02_033
crossref_primary_10_1016_j_ensm_2024_103698
crossref_primary_10_1021_acsaem_2c01261
crossref_primary_10_1021_acsami_1c21638
crossref_primary_10_1021_acs_chemrev_0c00275
crossref_primary_10_1021_acs_chemrev_3c00826
crossref_primary_10_1002_cssc_202300995
crossref_primary_10_1002_aenm_202300918
crossref_primary_10_1002_smll_202004369
crossref_primary_10_1002_anie_202206770
crossref_primary_10_1016_j_jechem_2022_11_042
crossref_primary_10_1021_acsami_0c12829
crossref_primary_10_1021_acsnano_4c11217
crossref_primary_10_20935_AcadEnergy7555
crossref_primary_10_1016_j_saa_2020_119065
crossref_primary_10_1038_s41467_022_32794_z
crossref_primary_10_1002_aenm_202002891
crossref_primary_10_1021_acsaem_3c00250
crossref_primary_10_1021_acsenergylett_2c02903
crossref_primary_10_1002_ange_202419995
crossref_primary_10_1149_1945_7111_ac797a
crossref_primary_10_2139_ssrn_4150540
crossref_primary_10_1016_j_ensm_2021_03_008
crossref_primary_10_1002_smll_202107492
crossref_primary_10_1002_ange_202401051
crossref_primary_10_1002_ange_202218005
crossref_primary_10_1002_ente_202201397
crossref_primary_10_1016_j_mattod_2023_09_004
crossref_primary_10_1016_j_powera_2022_100088
crossref_primary_10_1002_anie_202419995
crossref_primary_10_1002_adma_202103178
crossref_primary_10_1002_batt_202000236
crossref_primary_10_1002_celc_202100927
crossref_primary_10_1002_adma_202006702
crossref_primary_10_1021_acsami_0c14995
crossref_primary_10_1039_D3TA01684F
crossref_primary_10_1016_j_jallcom_2022_168108
crossref_primary_10_1002_smll_202401857
crossref_primary_10_1002_smll_202400365
crossref_primary_10_1016_j_est_2024_112615
crossref_primary_10_1021_acsami_1c24808
crossref_primary_10_1016_j_ceramint_2025_01_467
crossref_primary_10_1002_adfm_202009694
crossref_primary_10_1002_smll_202408771
crossref_primary_10_1002_adfm_202421802
crossref_primary_10_1002_adfm_202102228
crossref_primary_10_1038_s41893_024_01414_7
crossref_primary_10_1002_adma_202404271
crossref_primary_10_1021_acs_jpclett_0c02995
crossref_primary_10_1038_s41560_021_00910_w
crossref_primary_10_1002_celc_202300702
crossref_primary_10_1016_j_ensm_2022_11_051
crossref_primary_10_1002_adma_202416377
crossref_primary_10_1002_bte2_20230018
crossref_primary_10_1142_S1793604723500054
crossref_primary_10_1016_j_ensm_2023_102777
crossref_primary_10_1016_j_apsusc_2022_154468
crossref_primary_10_1002_metm_6
crossref_primary_10_1016_j_cej_2025_160482
crossref_primary_10_1038_s41586_022_05281_0
crossref_primary_10_1002_ange_202314876
crossref_primary_10_1016_j_ensm_2024_103783
crossref_primary_10_12677_JAPC_2023_124040
crossref_primary_10_1039_D4CC03431G
crossref_primary_10_1002_eem2_12355
crossref_primary_10_1021_acsenergylett_1c02425
crossref_primary_10_1002_aenm_202202529
crossref_primary_10_1021_acsenergylett_1c01213
crossref_primary_10_1002_adfm_202008644
crossref_primary_10_1021_acsaem_1c03336
crossref_primary_10_1039_D4EB00042K
crossref_primary_10_1039_D2CS00873D
crossref_primary_10_1016_j_jechem_2022_11_013
crossref_primary_10_1002_smll_202308959
crossref_primary_10_1039_D0CS01017K
crossref_primary_10_1038_s41467_023_35934_1
crossref_primary_10_1039_D4FD00026A
crossref_primary_10_1039_D2TA07696A
crossref_primary_10_1002_ange_202206770
crossref_primary_10_1088_2752_5724_acac68
crossref_primary_10_1002_aenm_202100935
crossref_primary_10_1002_smll_202312087
crossref_primary_10_1007_s12209_023_00355_0
crossref_primary_10_1002_batt_202300053
crossref_primary_10_1021_acsaem_0c01679
crossref_primary_10_1002_anie_202314876
crossref_primary_10_1016_j_ensm_2022_03_034
crossref_primary_10_1002_anie_202401051
crossref_primary_10_1021_acsami_1c18783
crossref_primary_10_1002_bte2_20240106
crossref_primary_10_1039_D4CS00826J
crossref_primary_10_1016_j_jpowsour_2022_232557
crossref_primary_10_3390_molecules29194698
crossref_primary_10_1016_j_chempr_2021_02_025
crossref_primary_10_1039_D0TA10861H
crossref_primary_10_1002_adfm_202212866
crossref_primary_10_1002_adma_202202869
crossref_primary_10_1002_smtd_202300228
crossref_primary_10_1007_s41918_022_00158_2
crossref_primary_10_1021_acsenergylett_2c02399
crossref_primary_10_1002_smll_202205653
crossref_primary_10_1002_aenm_202401377
crossref_primary_10_1002_anie_202412239
crossref_primary_10_3390_batteries9030149
crossref_primary_10_3390_en13236363
crossref_primary_10_1039_D1CS00450F
crossref_primary_10_1021_acs_iecr_2c00958
crossref_primary_10_34133_2022_9837586
crossref_primary_10_1007_s12274_022_5147_z
crossref_primary_10_1039_D2TA04309B
crossref_primary_10_1038_s41557_024_01585_y
crossref_primary_10_1002_adma_202312302
crossref_primary_10_1039_D2TA07985B
crossref_primary_10_1002_sus2_37
crossref_primary_10_1002_adfm_202205622
crossref_primary_10_1021_acsenergylett_3c00324
crossref_primary_10_1007_s41918_022_00147_5
crossref_primary_10_1002_smsc_202100107
crossref_primary_10_1016_j_cej_2023_144993
crossref_primary_10_1021_acs_chemrev_3c00646
crossref_primary_10_1021_acs_jpcb_1c04486
crossref_primary_10_1016_j_nanoen_2023_108370
crossref_primary_10_1016_j_ensm_2022_11_012
crossref_primary_10_1007_s11581_022_04867_y
crossref_primary_10_1016_j_ensm_2022_07_038
crossref_primary_10_1021_acsami_1c01849
crossref_primary_10_1002_adsu_202400247
crossref_primary_10_1016_j_electacta_2023_143189
crossref_primary_10_1002_batt_202100416
crossref_primary_10_1021_acsami_1c15690
crossref_primary_10_1021_acsnano_3c12877
crossref_primary_10_1007_s11705_022_2286_4
crossref_primary_10_1002_anie_202218005
crossref_primary_10_1007_s40820_025_01663_x
crossref_primary_10_1016_j_jelechem_2022_116126
crossref_primary_10_1002_eem2_12317
crossref_primary_10_1002_smll_202302388
crossref_primary_10_1002_batt_202200231
crossref_primary_10_1021_acsenergylett_4c00481
crossref_primary_10_1021_acsenergylett_3c01004
crossref_primary_10_1002_eem2_12393
crossref_primary_10_1016_j_esci_2022_06_005
crossref_primary_10_1002_advs_202102215
crossref_primary_10_1016_j_ensm_2024_103741
crossref_primary_10_1002_adfm_202210669
crossref_primary_10_1002_batt_202400550
crossref_primary_10_1002_eom2_12325
crossref_primary_10_1002_smll_202102233
crossref_primary_10_1002_aenm_202104021
crossref_primary_10_1016_j_jallcom_2023_169662
crossref_primary_10_1016_j_carbon_2020_09_061
crossref_primary_10_1063_5_0130338
crossref_primary_10_1002_inf2_12166
crossref_primary_10_1002_adfm_202408422
crossref_primary_10_1002_ange_202412239
crossref_primary_10_1016_j_susmat_2024_e00964
crossref_primary_10_1016_j_nanoen_2022_107677
Cites_doi 10.1149/2.0511503jes
10.1103/PhysRevB.59.1758
10.1038/natrevmats.2016.13
10.1149/1.3429886
10.1021/acsnano.7b05664
10.1016/j.electacta.2019.01.113
10.1038/ncomms12032
10.1021/acs.jpcc.5b00826
10.1002/anie.201908874
10.1007/s12274-017-1761-6
10.1021/acs.jpcc.8b02314
10.1021/cr030203g
10.1039/C8EE01040D
10.1038/s41560-019-0338-x
10.1149/2.0331409jes
10.1038/s41598-018-36836-9
10.1002/aenm.201400993
10.1039/C5RA25048J
10.1002/adfm.201605989
10.1021/acs.jpca.9b02170
10.1016/j.ensm.2015.07.001
10.1038/nmat3793
10.1149/1.3514705
10.1021/acs.nanolett.6b04755
10.1021/ja3091438
10.1149/1.3158548
10.1038/s41560-018-0196-y
10.1016/j.jpowsour.2017.08.082
10.1021/acsenergylett.7b00300
10.1021/acs.chemrev.7b00115
10.1016/j.joule.2017.10.007
10.1038/nenergy.2017.12
10.1002/aenm.201703022
10.1149/1.2048658
10.1038/s41467-018-05289-z
10.1149/1.1785795
10.1149/2.100310jes
10.1149/1.1392649
10.1039/C3EE40795K
10.1021/acsenergylett.9b00381
10.1021/jp052474w
10.1021/ja412807w
10.1021/acsenergylett.7b00982
10.1038/ncomms7362
10.1002/aenm.201702097
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1002/adfm.202001285
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 1616200
10_1002_adfm_202001285
ADFM202001285
Genre article
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation
  funderid: LQ17E020004; 2018B10060
– fundername: National Key R&D Program of China
  funderid: 2018YFB0905400
– fundername: DOE's Office of Biological and Environmental Research
  funderid: DE‐AC05‐76RL01830
– fundername: U.S. Department of Energy
  funderid: DE‐AC05‐76RL01830
– fundername: Natural Science Foundation of Ningbo
  funderid: 2018A610014
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c4235-ea8c9c708cca8ea101c1685355f014cbda5133bcf0d9cbe450be72b97bf91e6b3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Sep 11 05:25:47 EDT 2023
Fri Jul 25 07:18:55 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Tue Jul 01 04:12:12 EDT 2025
Wed Jan 22 16:34:28 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4235-ea8c9c708cca8ea101c1685355f014cbda5133bcf0d9cbe450be72b97bf91e6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
DE‐AC05‐76RL01830
ORCID 0000-0001-7343-4609
0000000173434609
OpenAccessLink https://www.osti.gov/biblio/1616200
PQID 2411440078
PQPubID 2045204
PageCount 13
ParticipantIDs osti_scitechconnect_1616200
proquest_journals_2411440078
crossref_primary_10_1002_adfm_202001285
crossref_citationtrail_10_1002_adfm_202001285
wiley_primary_10_1002_adfm_202001285_ADFM202001285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Germany
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2015; 162
2015; 1
2011; 158
2018; 122
2019; 9
2015; 6
2019; 4
2015; 5
2017; 2
2004; 104
2017; 27
2019; 58
2009; 156
2019; 300
1999; 146
2013; 160
2014; 136
2019; 123
2017; 117
2016; 6
2018; 9
2018; 8
2016; 7
2018; 3
2016; 1
2018; 2
2017; 17
2017; 11
2004; 151
2017; 10
1999; 59
2010; 157
2005; 109
2013; 135
2014; 13
2014; 161
2015; 119
1995; 142
2017; 365
2018; 11
2014; 7
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 1132
  year: 2017
  publication-title: Nano Lett.
– volume: 365
  start-page: 446
  year: 2017
  publication-title: J. Power Sources
– volume: 10
  start-page: 4221
  year: 2017
  publication-title: Nano Res.
– volume: 109
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 2
  start-page: 1321
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 157
  start-page: A903
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 160
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 135
  year: 2019
  publication-title: Sci. Rep.
– volume: 13
  start-page: 69
  year: 2014
  publication-title: Nat. Mater.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 1
  start-page: 158
  year: 2015
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 14
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 161
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 7
  start-page: 513
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 119
  start-page: 8492
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 896
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 158
  start-page: A74
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 135
  start-page: 1167
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 123
  start-page: 4431
  year: 2019
  publication-title: J. Phys. Chem. A
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 162
  start-page: A398
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 104
  start-page: 4303
  year: 2004
  publication-title: Chem. Rev.
– volume: 156
  start-page: A726
  year: 2009
  publication-title: J. Electrochem. Soc.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 151
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 122
  start-page: 9825
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 146
  start-page: 4393
  year: 1999
  publication-title: J. Electrochem. Soc.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 674
  year: 2018
  publication-title: Nat. Energy
– volume: 300
  start-page: 299
  year: 2019
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 3212
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 142
  start-page: 2873
  year: 1995
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 2942
  year: 2018
  publication-title: Nat. Commun.
– volume: 136
  start-page: 5039
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 180
  year: 2019
  publication-title: Nat. Energy
– volume: 2
  start-page: 110
  year: 2018
  publication-title: Joule
– ident: e_1_2_7_9_1
  doi: 10.1149/2.0511503jes
– ident: e_1_2_7_45_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_7_5_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_7_27_1
  doi: 10.1149/1.3429886
– ident: e_1_2_7_28_1
  doi: 10.1021/acsnano.7b05664
– ident: e_1_2_7_37_1
  doi: 10.1016/j.electacta.2019.01.113
– ident: e_1_2_7_20_1
  doi: 10.1038/ncomms12032
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.jpcc.5b00826
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.201908874
– ident: e_1_2_7_43_1
  doi: 10.1007/s12274-017-1761-6
– ident: e_1_2_7_32_1
  doi: 10.1021/acs.jpcc.8b02314
– ident: e_1_2_7_41_1
  doi: 10.1021/cr030203g
– ident: e_1_2_7_42_1
  doi: 10.1039/C8EE01040D
– ident: e_1_2_7_44_1
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_7_33_1
  doi: 10.1149/2.0331409jes
– ident: e_1_2_7_38_1
  doi: 10.1038/s41598-018-36836-9
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.201400993
– ident: e_1_2_7_24_1
  doi: 10.1039/C5RA25048J
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.201605989
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.jpca.9b02170
– ident: e_1_2_7_2_1
  doi: 10.1016/j.ensm.2015.07.001
– ident: e_1_2_7_8_1
  doi: 10.1038/nmat3793
– ident: e_1_2_7_26_1
  doi: 10.1149/1.3514705
– ident: e_1_2_7_34_1
  doi: 10.1021/acs.nanolett.6b04755
– ident: e_1_2_7_1_1
  doi: 10.1021/ja3091438
– ident: e_1_2_7_10_1
  doi: 10.1149/1.3158548
– ident: e_1_2_7_21_1
  doi: 10.1038/s41560-018-0196-y
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jpowsour.2017.08.082
– ident: e_1_2_7_15_1
  doi: 10.1021/acsenergylett.7b00300
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_7_1
  doi: 10.1016/j.joule.2017.10.007
– ident: e_1_2_7_31_1
  doi: 10.1038/nenergy.2017.12
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.201703022
– ident: e_1_2_7_11_1
  doi: 10.1149/1.2048658
– ident: e_1_2_7_35_1
  doi: 10.1038/s41467-018-05289-z
– ident: e_1_2_7_30_1
  doi: 10.1149/1.1785795
– ident: e_1_2_7_13_1
  doi: 10.1149/2.100310jes
– ident: e_1_2_7_36_1
  doi: 10.1149/1.1392649
– ident: e_1_2_7_4_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_7_19_1
  doi: 10.1021/acsenergylett.9b00381
– ident: e_1_2_7_12_1
  doi: 10.1021/jp052474w
– ident: e_1_2_7_22_1
  doi: 10.1021/ja412807w
– ident: e_1_2_7_17_1
  doi: 10.1021/acsenergylett.7b00982
– ident: e_1_2_7_18_1
  doi: 10.1038/ncomms7362
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201702097
SSID ssj0017734
Score 2.6473246
Snippet To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE)...
Abstract To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acetonitrile
Cathodes
Current density
Depletion
Electrolytes
Electrolytic cells
High current
Ion currents
Lithium
Lithium batteries
lithium metal anode
lithium metal batteries
Materials science
solid electrolyte interphase
Solid electrolytes
Stability
vinylene carbonate
Title High‐Power Lithium Metal Batteries Enabled by High‐Concentration Acetonitrile‐Based Electrolytes with Vinylene Carbonate Additive
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202001285
https://www.proquest.com/docview/2411440078
https://www.osti.gov/biblio/1616200
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcIEDlJcILdUekDi5tdfvo5smqqoGIaAot9U-RdTiotQ5pKfeuPIb-SXMeB2TIFVIcLPlWdnenZ35dnfmG4A3iGgV-oE44EWhgyRVPFBZHAW5zI2TzkQ2pnzn6bvs5Dw5naWzjSx-zw_Rb7jRzGjtNU1wqa4Pf5OGSuMok5y3h0GUZU4BW4SKPvT8UVGe-2PlLKIAr2i2Zm0M-eF28y2vNLjC2bWFODdxa-t4Jo9Brj_Zx5tcHCwbdaBv_mBz_J9_2oFHHSpllVejJ3DP1k_h4QZX4TP4ThEhP29_vKeyauxs3nyZL7-yqUXwzjxJJ6652bhNxTJMrVgnP6K8yLoj52WVtg1ZkQV-Hj48Qh9q2NiX4rlcIexltDHMPs_rFbpDy0ZyoWh_37LKmDbM6TmcT8afRidBV8Uh0AjV0sDKQpc6DwvUlcJKNAE6yhAkpKnD5ZlWRlKJGaVdaEqtbJKGyuZclblyZWQzFb-AQX1V25fAYmkSU_C8cKVLIhsq7rSRNpWcO4mmaQjBehSF7ijOqdLGpfDkzFxQB4u-g4fwtpf_5sk97pTcJaUQCEuIW1dTEJJuBCkWSgxhb60rojMB1wKhER2cIwQbAm8H_S_vENXxZNrfvfqXRrvwgK59KNseDJrF0r5G0NSofbhfHU_PPu63E-QXYj0Usw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOAAHylOEFtgDEie39vp9TEOiAEmFUIt6W-1TRG1dFJxDOHHjym_klzDjtU2DhJDgaHtWtndnZ77dnfkG4AUiWoV-IA54UeggSRUPVBZHQS5z46QzkY0p33lxlM1OkjenaRdNSLkwnh-i33CjmdHYa5rgtCF98Is1VBpHqeS8OQ1Kr8MNKuvdrKre9wxSUZ77g-UsohCv6LTjbQz5wXb7Lb80uMT5tYU5ryLXxvVMd0B1H-0jTs7217Xa119-43P8r7-6C3daYMpGXpPuwTVb3YfbV-gKH8A3Cgr58fX7O6qsxubL-uNyfcEWFvE78zyduOxmkyYbyzC1Ya38mFIjq5afl420rcmQrPD78OEhulHDJr4az_kGkS-jvWH2YVlt0CNaNpYrRVv8lo2MaSKdHsLJdHI8ngVtIYdAI1pLAysLXeo8LFBdCivRCugoQ5yQpg5XaFoZSVVmlHahKbWySRoqm3NV5sqVkc1U_AgG1WVlHwOLpUlMwfPClS6JbKi400baVHLuJFqnIQTdMArdspxTsY1z4fmZuaAOFn0HD-FlL__J83v8UXKXtEIgMiF6XU1xSLoWpFkoMYS9TllEawU-C0RHdHaOKGwIvBn1v7xDjF5NF_3Vk39p9Bxuzo4XczF_ffR2F27RfR_ZtgeDerW2TxFD1epZM0t-AtwWFzo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkBAceCNCC-wBiZNbe_0-pnmoQFNViKLcVvsUEcWtgnMIp9565TfySzrjdUyChJDgaHtWtndnZ77dnfkG4DUiWoV-IA54UeggSRUPVBZHQS5z46QzkY0p33l6nB2eJu9m6Wwji9_zQ3QbbjQzGntNE_zCuP1fpKHSOMok581hUHoTbiVZWJBejz50BFJRnvtz5SyiCK9otqZtDPn-dvstt9Q7x-m1BTk3gWvjeSb3Qa6_2QecfNlb1mpPf_-NzvF_fuoB3GthKRt4PXoIN2z1CO5ukBU-hisKCfl5-eOE6qqxo3n9eb78yqYW0TvzLJ246GbjJhfLMLVirfyQEiOrlp2XDbStyYws8PPw4QE6UcPGvhbP2QpxL6OdYfZpXq3QH1o2lAtFG_yWDYxp4pyewOlk_HF4GLRlHAKNWC0NrCx0qfOwQGUprEQboKMMUUKaOlyfaWUk1ZhR2oWm1MomaahszlWZK1dGNlPxU-hV55V9BiyWJjEFzwtXuiSyoeJOG2lTybmTaJv6EKxHUeiW45xKbZwJz87MBXWw6Dq4D286-QvP7vFHyR1SCoG4hMh1NUUh6VqQYqFEH3bXuiJaG_BNIDaik3PEYH3gzaD_5R1iMJpMu6vn_9LoFdw-GU3E0dvj9ztwh277sLZd6NWLpX2BAKpWL5s5cg2ochXy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Power+Lithium+Metal+Batteries+Enabled+by+High%E2%80%90Concentration+Acetonitrile%E2%80%90Based+Electrolytes+with+Vinylene+Carbonate+Additive&rft.jtitle=Advanced+functional+materials&rft.au=Peng%2C+Zhe&rft.au=Cao%2C+Xia&rft.au=Gao%2C+Peiyuan&rft.au=Jia%2C+Haiping&rft.date=2020-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202001285&rft.externalDBID=10.1002%252Fadfm.202001285&rft.externalDocID=ADFM202001285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon