Aromatization of Ethylene – Main Intermediate for MDA?
Methane dehydroaromatization (MDA) over Mo/HZSM‐5 has been hypothesized in literature to proceed via a two‐step mechanism: methane is first converted to ethylene on the molybdenum (Mo) functionality and then ethylene is oligomerized, cyclized and dehydrogenated on the Brønsted acid sites (BAS) of th...
Saved in:
Published in | ChemCatChem Vol. 12; no. 2; pp. 544 - 549 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
18.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methane dehydroaromatization (MDA) over Mo/HZSM‐5 has been hypothesized in literature to proceed via a two‐step mechanism: methane is first converted to ethylene on the molybdenum (Mo) functionality and then ethylene is oligomerized, cyclized and dehydrogenated on the Brønsted acid sites (BAS) of the HZSM‐5 support. This hypothesis is tested by studying the conversion of ethylene at the same conditions as used for MDA, namely 700 °C, atmospheric pressure, and by co‐feeding experiments with H2 and CH4. Our results suggest that ethylene is not the main intermediate for MDA, because the aromatic selectivities obtained from methane conversion are higher than selectivities measured during ethylene conversion. Furthermore, carbonaceous deposits formed during MDA have a lower density, are more hydrogenated and more active than the ones formed during ethylene aromatization (EDA). Similarly as for MDA, an activation period in which Mo carburizes to its active phase and an induction period, in which aromatics formation rates increase to their maximum are observed for ethylene conversion. The induction period, which was explained by the buildup of a hydrocarbon pool (HCP) is much faster with methane than with ethylene. This period, is attributed to a slow buildup of hydrocarbons, strongly adsorbed on Mo sites, because it is only observed with catalysts containing Mo. Hydrogen co‐feeding with ethylene leads to the formation of more reactive coke species and a significantly prolonged lifetime of the catalyst, but not to a faster buildup of the HCP.
Does it all revolve around ethylene? According to our study this is very unlikely. In contrast to what had been hypothesized, the formation of aromatics from methane does not proceed solely via the formation of ethylene in a first step. Likely other intermediates and aromatics can directly form on Mo, while intermediate alkenes get aromatized on Brønsted acid sites in the zeolite pores of the catalyst. |
---|---|
AbstractList | Methane dehydroaromatization (MDA) over Mo/HZSM‐5 has been hypothesized in literature to proceed via a two‐step mechanism: methane is first converted to ethylene on the molybdenum (Mo) functionality and then ethylene is oligomerized, cyclized and dehydrogenated on the Brønsted acid sites (BAS) of the HZSM‐5 support. This hypothesis is tested by studying the conversion of ethylene at the same conditions as used for MDA, namely 700 °C, atmospheric pressure, and by co‐feeding experiments with H
2
and CH
4
. Our results suggest that ethylene is not the main intermediate for MDA, because the aromatic selectivities obtained from methane conversion are higher than selectivities measured during ethylene conversion. Furthermore, carbonaceous deposits formed during MDA have a lower density, are more hydrogenated and more active than the ones formed during ethylene aromatization (EDA). Similarly as for MDA, an activation period in which Mo carburizes to its active phase and an induction period, in which aromatics formation rates increase to their maximum are observed for ethylene conversion. The induction period, which was explained by the buildup of a hydrocarbon pool (HCP) is much faster with methane than with ethylene. This period, is attributed to a slow buildup of hydrocarbons, strongly adsorbed on Mo sites, because it is only observed with catalysts containing Mo. Hydrogen co‐feeding with ethylene leads to the formation of more reactive coke species and a significantly prolonged lifetime of the catalyst, but not to a faster buildup of the HCP. Methane dehydroaromatization (MDA) over Mo/HZSM‐5 has been hypothesized in literature to proceed via a two‐step mechanism: methane is first converted to ethylene on the molybdenum (Mo) functionality and then ethylene is oligomerized, cyclized and dehydrogenated on the Brønsted acid sites (BAS) of the HZSM‐5 support. This hypothesis is tested by studying the conversion of ethylene at the same conditions as used for MDA, namely 700 °C, atmospheric pressure, and by co‐feeding experiments with H2 and CH4. Our results suggest that ethylene is not the main intermediate for MDA, because the aromatic selectivities obtained from methane conversion are higher than selectivities measured during ethylene conversion. Furthermore, carbonaceous deposits formed during MDA have a lower density, are more hydrogenated and more active than the ones formed during ethylene aromatization (EDA). Similarly as for MDA, an activation period in which Mo carburizes to its active phase and an induction period, in which aromatics formation rates increase to their maximum are observed for ethylene conversion. The induction period, which was explained by the buildup of a hydrocarbon pool (HCP) is much faster with methane than with ethylene. This period, is attributed to a slow buildup of hydrocarbons, strongly adsorbed on Mo sites, because it is only observed with catalysts containing Mo. Hydrogen co‐feeding with ethylene leads to the formation of more reactive coke species and a significantly prolonged lifetime of the catalyst, but not to a faster buildup of the HCP. Methane dehydroaromatization (MDA) over Mo/HZSM‐5 has been hypothesized in literature to proceed via a two‐step mechanism: methane is first converted to ethylene on the molybdenum (Mo) functionality and then ethylene is oligomerized, cyclized and dehydrogenated on the Brønsted acid sites (BAS) of the HZSM‐5 support. This hypothesis is tested by studying the conversion of ethylene at the same conditions as used for MDA, namely 700 °C, atmospheric pressure, and by co‐feeding experiments with H2 and CH4. Our results suggest that ethylene is not the main intermediate for MDA, because the aromatic selectivities obtained from methane conversion are higher than selectivities measured during ethylene conversion. Furthermore, carbonaceous deposits formed during MDA have a lower density, are more hydrogenated and more active than the ones formed during ethylene aromatization (EDA). Similarly as for MDA, an activation period in which Mo carburizes to its active phase and an induction period, in which aromatics formation rates increase to their maximum are observed for ethylene conversion. The induction period, which was explained by the buildup of a hydrocarbon pool (HCP) is much faster with methane than with ethylene. This period, is attributed to a slow buildup of hydrocarbons, strongly adsorbed on Mo sites, because it is only observed with catalysts containing Mo. Hydrogen co‐feeding with ethylene leads to the formation of more reactive coke species and a significantly prolonged lifetime of the catalyst, but not to a faster buildup of the HCP. Does it all revolve around ethylene? According to our study this is very unlikely. In contrast to what had been hypothesized, the formation of aromatics from methane does not proceed solely via the formation of ethylene in a first step. Likely other intermediates and aromatics can directly form on Mo, while intermediate alkenes get aromatized on Brønsted acid sites in the zeolite pores of the catalyst. |
Author | Kapteijn, Freek Abou‐Hamad, Edy Vollmer, Ina Gascon, Jorge |
Author_xml | – sequence: 1 givenname: Ina orcidid: 0000-0001-9917-1499 surname: Vollmer fullname: Vollmer, Ina email: i.vollmer@tudelft.nl organization: Delft University of Technology – sequence: 2 givenname: Edy orcidid: 0000-0003-1639-609X surname: Abou‐Hamad fullname: Abou‐Hamad, Edy organization: King Abdullah University of Science and Technology – sequence: 3 givenname: Jorge orcidid: 0000-0001-7558-7123 surname: Gascon fullname: Gascon, Jorge organization: King Abdullah University of Science and Technology – sequence: 4 givenname: Freek orcidid: 0000-0003-0575-7953 surname: Kapteijn fullname: Kapteijn, Freek organization: Delft University of Technology |
BookMark | eNqFkEFLwzAUx4NMcJtePRc8d760SZucZNSpgw0v8xzSNMGOLplphszTvoPf0E9i52SCIB4e7x3-v_eH3wD1rLMaoUsMIwyQXCsV1CgBzAFnlJ6gPmZZHqeM897xZnCGBm27BMh4mtM-YmPvVjLUb904GzkTTcLzttFWRx-792guaxtNbdB-pataBh0Z56P57fjmHJ0a2bT64nsP0dPdZFE8xLPH-2kxnsWKJCmNM4BcU254VUqVgKGqkkAkK2lqGCZZxRQBkJnEqsoZLXNa5aQkPKOGKSAmHaKrw9-1dy8b3QaxdBtvu0qRpCQlCeaMdanRIaW8a1uvjVj7eiX9VmAQeztib0cc7XQA-QWoOnw5CF7Wzd8YP2CvdaO3_5SIolgUP-wnJ9B7Nw |
CitedBy_id | crossref_primary_10_1002_adma_202002565 crossref_primary_10_1016_j_cej_2023_147777 crossref_primary_10_1002_ange_202007283 crossref_primary_10_1016_j_fuproc_2023_107739 crossref_primary_10_1039_D0NR07044K crossref_primary_10_1039_D0CS01459A crossref_primary_10_1039_D0CS01016B crossref_primary_10_1039_D3CC03277A crossref_primary_10_1016_j_apcata_2021_118019 crossref_primary_10_1016_j_apcatb_2022_121274 crossref_primary_10_1016_j_cej_2025_160527 crossref_primary_10_1021_acs_chemrev_4c00087 crossref_primary_10_1016_j_molstruc_2020_128720 crossref_primary_10_1016_j_cej_2020_125182 crossref_primary_10_1002_anie_202007283 crossref_primary_10_1039_D0RA03365K crossref_primary_10_3390_catal11020282 crossref_primary_10_1021_acs_energyfuels_2c03479 crossref_primary_10_1039_D4RE00384E crossref_primary_10_1016_j_apcatb_2021_120377 crossref_primary_10_1016_j_apcatb_2021_120960 crossref_primary_10_1021_acscatal_4c00262 |
Cites_doi | 10.1038/s41929-018-0078-5 10.1016/j.cattod.2010.11.063 10.1002/anie.201711098 10.1006/jcat.1998.2319 10.1007/BF00815284 10.1016/0021-9517(78)90006-4 10.1006/jcat.1995.1279 10.1006/jcat.1997.1478 10.1002/cphc.201201023 10.1007/s10562-007-9346-8 10.1007/BF00813680 10.1006/jcat.2002.3540 10.1021/jp020166h 10.1021/acscatal.8b02491 10.1016/0021-9517(87)90029-7 10.1023/A:1019046714762 10.1016/S1387-1811(01)00385-7 10.1023/A:1019014431678 10.1016/S1381-1169(99)00050-3 10.1007/BF02113855 10.1023/A:1019087313679 10.1016/j.catcom.2010.08.017 10.1007/BF00769305 10.1039/C8SC01263F 10.1007/s10562-006-0136-5 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/cctc.201901655 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1867-3899 |
EndPage | 549 |
ExternalDocumentID | 10_1002_cctc_201901655 CCTC201901655 |
Genre | article |
GrantInformation_xml | – fundername: SABIC-NWO CATC1CHEM CHIPP project |
GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 5DZ 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI DCZOG DRFUL DRSTM DU5 EBS ESX G-S HGLYW HZ~ I-F LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- P2W P4E ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ XV2 ZZTAW AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c4235-6007e59f9dbac20f5cda04a8b53f8146d8c400a6a1cd785b75d74b4965f8c04f3 |
IEDL.DBID | 24P |
ISSN | 1867-3880 |
IngestDate | Fri Jul 25 12:18:55 EDT 2025 Thu Apr 24 23:01:20 EDT 2025 Tue Jul 01 00:42:24 EDT 2025 Wed Jan 22 16:36:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4235-6007e59f9dbac20f5cda04a8b53f8146d8c400a6a1cd785b75d74b4965f8c04f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1639-609X 0000-0003-0575-7953 0000-0001-7558-7123 0000-0001-9917-1499 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.201901655 |
PQID | 2343421988 |
PQPubID | 986343 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2343421988 crossref_primary_10_1002_cctc_201901655 crossref_citationtrail_10_1002_cctc_201901655 wiley_primary_10_1002_cctc_201901655_CCTC201901655 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 18, 2020 |
PublicationDateYYYYMMDD | 2020-01-18 |
PublicationDate_xml | – month: 01 year: 2020 text: January 18, 2020 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemCatChem |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 1987; 105 1978; 53 1993; 20 2000; 64 1995; 157 1999; 144 2008; 122 2001; 47 2006; 111 2018; 9 2011; 169 2013; 14 2018; 1 1999; 182 1997; 165 1999; 57 2002; 106 2018 1996; 40 2017 2016 2002; 208 1998; 52 1996; 3 1994; 30 2018; 57 e_1_2_11_31_2 e_1_2_11_30_2 e_1_2_11_36_1 e_1_2_11_13_1 e_1_2_11_34_2 e_1_2_11_12_1 e_1_2_11_33_2 e_1_2_11_10_2 e_1_2_11_11_1 e_1_2_11_32_2 e_1_2_11_6_2 e_1_2_11_5_2 e_1_2_11_28_1 e_1_2_11_4_2 e_1_2_11_26_2 e_1_2_11_27_1 e_1_2_11_25_2 e_1_2_11_3_1 e_1_2_11_2_1 e_1_2_11_1_1 Kosinov N. (e_1_2_11_35_1) 2016 Hsieh M.-F. (e_1_2_11_15_2) 2017 e_1_2_11_29_2 e_1_2_11_20_2 e_1_2_11_21_1 e_1_2_11_24_2 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_22_2 e_1_2_11_7_2 e_1_2_11_8_1 e_1_2_11_17_2 e_1_2_11_16_1 e_1_2_11_14_2 e_1_2_11_19_2 e_1_2_11_18_2 |
References_xml | – volume: 64 start-page: 49 year: 2000 end-page: 51 publication-title: Catal. Lett. – volume: 182 start-page: 92 year: 1999 end-page: 103 publication-title: J. Catal. – start-page: 8459 year: 2018 end-page: 8467 publication-title: ACS Catal. – volume: 14 start-page: 1526 year: 2013 end-page: 1545 publication-title: ChemPhysChem – volume: 53 start-page: 40 year: 1978 end-page: 55 publication-title: J. Catal. – volume: 30 start-page: 135 year: 1994 end-page: 149 publication-title: Catal. Lett. – volume: 3 start-page: 289 year: 1996 end-page: 297 publication-title: Top. Catal. – volume: 52 start-page: 37 year: 1998 end-page: 42 publication-title: Catal. Lett. – volume: 9 start-page: 4801 year: 2018 end-page: 4807 publication-title: Chem. Sci. – volume: 106 start-page: 8524 year: 2002 end-page: 8530 publication-title: J. Phys. Chem. B – volume: 165 start-page: 150 year: 1997 end-page: 161 publication-title: J. Catal. – volume: 57 start-page: 95 year: 1999 end-page: 102 publication-title: Catal. Lett. – start-page: 520 year: 2016 end-page: 529 publication-title: ACS Catal. – year: 2017 publication-title: ChemCatChem – volume: 47 start-page: 253 year: 2001 end-page: 267 publication-title: Microporous Mesoporous Mater. – volume: 122 start-page: 84 year: 2008 end-page: 90 publication-title: Catal. Lett. – volume: 144 start-page: 469 year: 1999 end-page: 471 publication-title: J. Mol. Catal. A – volume: 57 start-page: 1016 year: 2018 end-page: 1020 publication-title: Angew. Chem. – volume: 1 start-page: 398 year: 2018 end-page: 411 publication-title: Nature Catalysis – volume: 40 start-page: 207 year: 1996 end-page: 214 publication-title: Catal. Lett. – volume: 12 start-page: 127 year: 2010 end-page: 131 publication-title: Catal. Commun. – volume: 105 start-page: 270 year: 1987 end-page: 275 publication-title: J. Catal. – volume: 157 start-page: 190 year: 1995 end-page: 200 publication-title: J. Catal. – volume: 169 start-page: 75 year: 2011 end-page: 84 publication-title: Catal. Today – volume: 20 start-page: 329 year: 1993 end-page: 336 publication-title: Catal. Lett. – volume: 208 start-page: 260 year: 2002 end-page: 269 publication-title: J. Catal. – volume: 111 start-page: 111 year: 2006 end-page: 114 publication-title: Catal. Lett. – ident: e_1_2_11_25_2 doi: 10.1038/s41929-018-0078-5 – ident: e_1_2_11_34_2 doi: 10.1016/j.cattod.2010.11.063 – ident: e_1_2_11_13_1 – ident: e_1_2_11_22_2 doi: 10.1002/anie.201711098 – start-page: 520 year: 2016 ident: e_1_2_11_35_1 publication-title: ACS Catal. – ident: e_1_2_11_32_2 doi: 10.1006/jcat.1998.2319 – ident: e_1_2_11_2_1 – ident: e_1_2_11_16_1 – ident: e_1_2_11_21_1 – ident: e_1_2_11_6_2 doi: 10.1007/BF00815284 – ident: e_1_2_11_23_2 doi: 10.1016/0021-9517(78)90006-4 – ident: e_1_2_11_5_2 doi: 10.1006/jcat.1995.1279 – ident: e_1_2_11_7_2 doi: 10.1006/jcat.1997.1478 – ident: e_1_2_11_26_2 doi: 10.1002/cphc.201201023 – ident: e_1_2_11_19_2 doi: 10.1007/s10562-007-9346-8 – ident: e_1_2_11_8_1 – ident: e_1_2_11_4_2 doi: 10.1007/BF00813680 – ident: e_1_2_11_29_2 doi: 10.1006/jcat.2002.3540 – ident: e_1_2_11_31_2 doi: 10.1021/jp020166h – ident: e_1_2_11_33_2 doi: 10.1021/acscatal.8b02491 – ident: e_1_2_11_11_1 doi: 10.1016/0021-9517(87)90029-7 – ident: e_1_2_11_12_1 doi: 10.1023/A:1019046714762 – ident: e_1_2_11_1_1 – ident: e_1_2_11_14_2 doi: 10.1016/S1387-1811(01)00385-7 – year: 2017 ident: e_1_2_11_15_2 publication-title: ChemCatChem – ident: e_1_2_11_28_1 – ident: e_1_2_11_10_2 doi: 10.1023/A:1019014431678 – ident: e_1_2_11_9_2 doi: 10.1016/S1381-1169(99)00050-3 – ident: e_1_2_11_20_2 doi: 10.1007/BF02113855 – ident: e_1_2_11_36_1 – ident: e_1_2_11_17_2 doi: 10.1023/A:1019087313679 – ident: e_1_2_11_18_2 doi: 10.1016/j.catcom.2010.08.017 – ident: e_1_2_11_3_1 – ident: e_1_2_11_24_2 doi: 10.1007/BF00769305 – ident: e_1_2_11_27_1 doi: 10.1039/C8SC01263F – ident: e_1_2_11_30_2 doi: 10.1007/s10562-006-0136-5 |
SSID | ssj0069375 |
Score | 2.3619094 |
Snippet | Methane dehydroaromatization (MDA) over Mo/HZSM‐5 has been hypothesized in literature to proceed via a two‐step mechanism: methane is first converted to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 544 |
SubjectTerms | Carburizing Catalysts coking Conversion Dehydrogenation Ethylene ethylene aromatization Hydrocarbons Hydrogen storage HZSM-5 Methane methane dehydroaromatization Molybdenum Oligomerization |
Title | Aromatization of Ethylene – Main Intermediate for MDA? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.201901655 https://www.proquest.com/docview/2343421988 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27TsMwFIaPoB1gQVxFoVQekJiiJo6dOBNK01YVUhFDK3WLEl8m1KK27LwDb8iT4JMb7YCQGCPZHn77-Py2cj4D3EcGmSyZ56DbtwcUzhzBtO_4THpUhsoLDBY4T5-DyZw9Lfhip4q_5EM0F24YGcV-jQGe5Zv-DzRUygJBiAkt4PwQ2lhfi_R8yl7qvTiwyRd_YkRqm4PYkxrb6NL-fv_9tPTjNXcda5FyxqdwUnlFEpeTewYHenkOR0n9RNsFiHi9QsdZllKSlSEjq7vNI5p8fXySqT31k-LKr6gP2WpiHSqZDuPHS5iPR7Nk4lRPITjS-h3uIEVe88hEKkemouFSZS7LRM59g5d4SkgbjJkVXapQ8DzkKmQ5suCNkC4z_hW0lqulvgbCpMo9LTxJbShGWkV2GCXDyNhY1lngdsCplUhlxQnH5ype05JwTFNULm2U68BD0_6tJGT82rJbC5tWkbJJqc98ZrdNITpAC7H_GCVNklnSfN38p9MtHFM8NtvV6YkutLbrd31nvcU27xXLpwfteDAcjL8BLxzFMg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWgDGVBPEWhgAckJquJYyfOhKrQqkBTMbQSm5X4MaEWlbLzD_whX4JvXqUDQmKMZHs48fE9vvI9F6Hr2IInS-YTUPvugsIZEcwEJGDKpyrSfmihwDmdhKMZe3jm9WtCqIUp_SGahBswozivgeCQkO6tXUOVKjwIIaKFnG-jHRbSCLhJ2VN9GIcu-sIrRrBtI-B7Uvs2erS3OX8zLq3F5k_JWsSc4T7aq8Qi7pd_9wBtmfkhaid1j7YjJPrLBUjOspYSLyweOOBdIDH46-MTp-7aj4ucX1EgsjLYSVSc3vVvj9FsOJgmI1L1QiDKCR5OwEbe8NjGOgdTRcuVzjyWiZwHFrJ4WijHxsyhrnQkeB5xHbEczOCtUB6zwQlqzRdzc4owUzr3jfAVdVyMjY7dMlpFsXVkNlnodRCpkZCqMgqHfhUvsrQ4phKQkw1yHXTTjH8tLTJ-HdmtgZUVVd4kDVjA3LkpRAfRAuw_VpFJMk2ar7P_TLpC7dE0Hcvx_eTxHO1SuEO7reqLLmqtlu_mwgmNVX5ZbKVvtTTHLA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27TsMwFIYtKBKwIK6iUMADEpPVJrETZ0JV2qpcWnVopW5W4suE2qqUnXfgDXkSfJxL2wEhMUayPfzx8fnt5HxG6D42wGRJPQJu325QGCWc6oAEVHq-jJQXGihwHgzD_oQ-T9l0o4o_50NUB24QGW69hgBfKNNcQ0OldAhCSGghY7toz33xA7YzHZVrcWiTL_zECNQ2AtiTEtvY8pvb_bfT0tprbjpWl3J6x-io8Iq4nb_cE7SjZ6foICmvaDtDvL2cg-PMSynx3OCu1d3mEY2_P7_wwO76sTvyc_UhK42tQ8WDTvvxHE163XHSJ8VVCERav8MIUOQ1i02sMmAqGiZV2qIpz1hg4BBPcWmDMbWiSxVxlkVMRTQDFrzhskVNcIFqs_lMXyJMpco8zT3p21CMtYrtMEpGsbGxrNOwVUekVELIghMO11W8iZxw7AtQTlTK1dFD1X6REzJ-bdkohRVFpLwLP6ABtcsm53XkO7H_GEUkyTipnq7-0-kO7Y86PfH6NHy5Roc-7KDtRPV4A9VWyw99Y23GKrt1M-kHtYDGXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aromatization+of+Ethylene+%E2%80%93+Main+Intermediate+for+MDA%3F&rft.jtitle=ChemCatChem&rft.au=Vollmer%2C+Ina&rft.au=Edy+Abou%E2%80%90Hamad&rft.au=Gascon%2C+Jorge&rft.au=Kapteijn%2C+Freek&rft.date=2020-01-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=12&rft.issue=2&rft.spage=544&rft.epage=549&rft_id=info:doi/10.1002%2Fcctc.201901655&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon |