Aromatization of Ethylene – Main Intermediate for MDA?

Methane dehydroaromatization (MDA) over Mo/HZSM‐5 has been hypothesized in literature to proceed via a two‐step mechanism: methane is first converted to ethylene on the molybdenum (Mo) functionality and then ethylene is oligomerized, cyclized and dehydrogenated on the Brønsted acid sites (BAS) of th...

Full description

Saved in:
Bibliographic Details
Published inChemCatChem Vol. 12; no. 2; pp. 544 - 549
Main Authors Vollmer, Ina, Abou‐Hamad, Edy, Gascon, Jorge, Kapteijn, Freek
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 18.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methane dehydroaromatization (MDA) over Mo/HZSM‐5 has been hypothesized in literature to proceed via a two‐step mechanism: methane is first converted to ethylene on the molybdenum (Mo) functionality and then ethylene is oligomerized, cyclized and dehydrogenated on the Brønsted acid sites (BAS) of the HZSM‐5 support. This hypothesis is tested by studying the conversion of ethylene at the same conditions as used for MDA, namely 700 °C, atmospheric pressure, and by co‐feeding experiments with H2 and CH4. Our results suggest that ethylene is not the main intermediate for MDA, because the aromatic selectivities obtained from methane conversion are higher than selectivities measured during ethylene conversion. Furthermore, carbonaceous deposits formed during MDA have a lower density, are more hydrogenated and more active than the ones formed during ethylene aromatization (EDA). Similarly as for MDA, an activation period in which Mo carburizes to its active phase and an induction period, in which aromatics formation rates increase to their maximum are observed for ethylene conversion. The induction period, which was explained by the buildup of a hydrocarbon pool (HCP) is much faster with methane than with ethylene. This period, is attributed to a slow buildup of hydrocarbons, strongly adsorbed on Mo sites, because it is only observed with catalysts containing Mo. Hydrogen co‐feeding with ethylene leads to the formation of more reactive coke species and a significantly prolonged lifetime of the catalyst, but not to a faster buildup of the HCP. Does it all revolve around ethylene? According to our study this is very unlikely. In contrast to what had been hypothesized, the formation of aromatics from methane does not proceed solely via the formation of ethylene in a first step. Likely other intermediates and aromatics can directly form on Mo, while intermediate alkenes get aromatized on Brønsted acid sites in the zeolite pores of the catalyst.
AbstractList Methane dehydroaromatization (MDA) over Mo/HZSM‐5 has been hypothesized in literature to proceed via a two‐step mechanism: methane is first converted to ethylene on the molybdenum (Mo) functionality and then ethylene is oligomerized, cyclized and dehydrogenated on the Brønsted acid sites (BAS) of the HZSM‐5 support. This hypothesis is tested by studying the conversion of ethylene at the same conditions as used for MDA, namely 700 °C, atmospheric pressure, and by co‐feeding experiments with H 2 and CH 4 . Our results suggest that ethylene is not the main intermediate for MDA, because the aromatic selectivities obtained from methane conversion are higher than selectivities measured during ethylene conversion. Furthermore, carbonaceous deposits formed during MDA have a lower density, are more hydrogenated and more active than the ones formed during ethylene aromatization (EDA). Similarly as for MDA, an activation period in which Mo carburizes to its active phase and an induction period, in which aromatics formation rates increase to their maximum are observed for ethylene conversion. The induction period, which was explained by the buildup of a hydrocarbon pool (HCP) is much faster with methane than with ethylene. This period, is attributed to a slow buildup of hydrocarbons, strongly adsorbed on Mo sites, because it is only observed with catalysts containing Mo. Hydrogen co‐feeding with ethylene leads to the formation of more reactive coke species and a significantly prolonged lifetime of the catalyst, but not to a faster buildup of the HCP.
Methane dehydroaromatization (MDA) over Mo/HZSM‐5 has been hypothesized in literature to proceed via a two‐step mechanism: methane is first converted to ethylene on the molybdenum (Mo) functionality and then ethylene is oligomerized, cyclized and dehydrogenated on the Brønsted acid sites (BAS) of the HZSM‐5 support. This hypothesis is tested by studying the conversion of ethylene at the same conditions as used for MDA, namely 700 °C, atmospheric pressure, and by co‐feeding experiments with H2 and CH4. Our results suggest that ethylene is not the main intermediate for MDA, because the aromatic selectivities obtained from methane conversion are higher than selectivities measured during ethylene conversion. Furthermore, carbonaceous deposits formed during MDA have a lower density, are more hydrogenated and more active than the ones formed during ethylene aromatization (EDA). Similarly as for MDA, an activation period in which Mo carburizes to its active phase and an induction period, in which aromatics formation rates increase to their maximum are observed for ethylene conversion. The induction period, which was explained by the buildup of a hydrocarbon pool (HCP) is much faster with methane than with ethylene. This period, is attributed to a slow buildup of hydrocarbons, strongly adsorbed on Mo sites, because it is only observed with catalysts containing Mo. Hydrogen co‐feeding with ethylene leads to the formation of more reactive coke species and a significantly prolonged lifetime of the catalyst, but not to a faster buildup of the HCP.
Methane dehydroaromatization (MDA) over Mo/HZSM‐5 has been hypothesized in literature to proceed via a two‐step mechanism: methane is first converted to ethylene on the molybdenum (Mo) functionality and then ethylene is oligomerized, cyclized and dehydrogenated on the Brønsted acid sites (BAS) of the HZSM‐5 support. This hypothesis is tested by studying the conversion of ethylene at the same conditions as used for MDA, namely 700 °C, atmospheric pressure, and by co‐feeding experiments with H2 and CH4. Our results suggest that ethylene is not the main intermediate for MDA, because the aromatic selectivities obtained from methane conversion are higher than selectivities measured during ethylene conversion. Furthermore, carbonaceous deposits formed during MDA have a lower density, are more hydrogenated and more active than the ones formed during ethylene aromatization (EDA). Similarly as for MDA, an activation period in which Mo carburizes to its active phase and an induction period, in which aromatics formation rates increase to their maximum are observed for ethylene conversion. The induction period, which was explained by the buildup of a hydrocarbon pool (HCP) is much faster with methane than with ethylene. This period, is attributed to a slow buildup of hydrocarbons, strongly adsorbed on Mo sites, because it is only observed with catalysts containing Mo. Hydrogen co‐feeding with ethylene leads to the formation of more reactive coke species and a significantly prolonged lifetime of the catalyst, but not to a faster buildup of the HCP. Does it all revolve around ethylene? According to our study this is very unlikely. In contrast to what had been hypothesized, the formation of aromatics from methane does not proceed solely via the formation of ethylene in a first step. Likely other intermediates and aromatics can directly form on Mo, while intermediate alkenes get aromatized on Brønsted acid sites in the zeolite pores of the catalyst.
Author Kapteijn, Freek
Abou‐Hamad, Edy
Vollmer, Ina
Gascon, Jorge
Author_xml – sequence: 1
  givenname: Ina
  orcidid: 0000-0001-9917-1499
  surname: Vollmer
  fullname: Vollmer, Ina
  email: i.vollmer@tudelft.nl
  organization: Delft University of Technology
– sequence: 2
  givenname: Edy
  orcidid: 0000-0003-1639-609X
  surname: Abou‐Hamad
  fullname: Abou‐Hamad, Edy
  organization: King Abdullah University of Science and Technology
– sequence: 3
  givenname: Jorge
  orcidid: 0000-0001-7558-7123
  surname: Gascon
  fullname: Gascon, Jorge
  organization: King Abdullah University of Science and Technology
– sequence: 4
  givenname: Freek
  orcidid: 0000-0003-0575-7953
  surname: Kapteijn
  fullname: Kapteijn, Freek
  organization: Delft University of Technology
BookMark eNqFkEFLwzAUx4NMcJtePRc8d760SZucZNSpgw0v8xzSNMGOLplphszTvoPf0E9i52SCIB4e7x3-v_eH3wD1rLMaoUsMIwyQXCsV1CgBzAFnlJ6gPmZZHqeM897xZnCGBm27BMh4mtM-YmPvVjLUb904GzkTTcLzttFWRx-792guaxtNbdB-pataBh0Z56P57fjmHJ0a2bT64nsP0dPdZFE8xLPH-2kxnsWKJCmNM4BcU254VUqVgKGqkkAkK2lqGCZZxRQBkJnEqsoZLXNa5aQkPKOGKSAmHaKrw9-1dy8b3QaxdBtvu0qRpCQlCeaMdanRIaW8a1uvjVj7eiX9VmAQeztib0cc7XQA-QWoOnw5CF7Wzd8YP2CvdaO3_5SIolgUP-wnJ9B7Nw
CitedBy_id crossref_primary_10_1002_adma_202002565
crossref_primary_10_1016_j_cej_2023_147777
crossref_primary_10_1002_ange_202007283
crossref_primary_10_1016_j_fuproc_2023_107739
crossref_primary_10_1039_D0NR07044K
crossref_primary_10_1039_D0CS01459A
crossref_primary_10_1039_D0CS01016B
crossref_primary_10_1039_D3CC03277A
crossref_primary_10_1016_j_apcata_2021_118019
crossref_primary_10_1016_j_apcatb_2022_121274
crossref_primary_10_1016_j_cej_2025_160527
crossref_primary_10_1021_acs_chemrev_4c00087
crossref_primary_10_1016_j_molstruc_2020_128720
crossref_primary_10_1016_j_cej_2020_125182
crossref_primary_10_1002_anie_202007283
crossref_primary_10_1039_D0RA03365K
crossref_primary_10_3390_catal11020282
crossref_primary_10_1021_acs_energyfuels_2c03479
crossref_primary_10_1039_D4RE00384E
crossref_primary_10_1016_j_apcatb_2021_120377
crossref_primary_10_1016_j_apcatb_2021_120960
crossref_primary_10_1021_acscatal_4c00262
Cites_doi 10.1038/s41929-018-0078-5
10.1016/j.cattod.2010.11.063
10.1002/anie.201711098
10.1006/jcat.1998.2319
10.1007/BF00815284
10.1016/0021-9517(78)90006-4
10.1006/jcat.1995.1279
10.1006/jcat.1997.1478
10.1002/cphc.201201023
10.1007/s10562-007-9346-8
10.1007/BF00813680
10.1006/jcat.2002.3540
10.1021/jp020166h
10.1021/acscatal.8b02491
10.1016/0021-9517(87)90029-7
10.1023/A:1019046714762
10.1016/S1387-1811(01)00385-7
10.1023/A:1019014431678
10.1016/S1381-1169(99)00050-3
10.1007/BF02113855
10.1023/A:1019087313679
10.1016/j.catcom.2010.08.017
10.1007/BF00769305
10.1039/C8SC01263F
10.1007/s10562-006-0136-5
ContentType Journal Article
Copyright 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
– notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
AAYXX
CITATION
DOI 10.1002/cctc.201901655
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1867-3899
EndPage 549
ExternalDocumentID 10_1002_cctc_201901655
CCTC201901655
Genre article
GrantInformation_xml – fundername: SABIC-NWO CATC1CHEM CHIPP project
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
5DZ
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
DCZOG
DRFUL
DRSTM
DU5
EBS
ESX
G-S
HGLYW
HZ~
I-F
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
P2W
P4E
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4235-6007e59f9dbac20f5cda04a8b53f8146d8c400a6a1cd785b75d74b4965f8c04f3
IEDL.DBID 24P
ISSN 1867-3880
IngestDate Fri Jul 25 12:18:55 EDT 2025
Thu Apr 24 23:01:20 EDT 2025
Tue Jul 01 00:42:24 EDT 2025
Wed Jan 22 16:36:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4235-6007e59f9dbac20f5cda04a8b53f8146d8c400a6a1cd785b75d74b4965f8c04f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1639-609X
0000-0003-0575-7953
0000-0001-7558-7123
0000-0001-9917-1499
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.201901655
PQID 2343421988
PQPubID 986343
PageCount 6
ParticipantIDs proquest_journals_2343421988
crossref_primary_10_1002_cctc_201901655
crossref_citationtrail_10_1002_cctc_201901655
wiley_primary_10_1002_cctc_201901655_CCTC201901655
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 18, 2020
PublicationDateYYYYMMDD 2020-01-18
PublicationDate_xml – month: 01
  year: 2020
  text: January 18, 2020
  day: 18
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemCatChem
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
1987; 105
1978; 53
1993; 20
2000; 64
1995; 157
1999; 144
2008; 122
2001; 47
2006; 111
2018; 9
2011; 169
2013; 14
2018; 1
1999; 182
1997; 165
1999; 57
2002; 106
2018
1996; 40
2017
2016
2002; 208
1998; 52
1996; 3
1994; 30
2018; 57
e_1_2_11_31_2
e_1_2_11_30_2
e_1_2_11_36_1
e_1_2_11_13_1
e_1_2_11_34_2
e_1_2_11_12_1
e_1_2_11_33_2
e_1_2_11_10_2
e_1_2_11_11_1
e_1_2_11_32_2
e_1_2_11_6_2
e_1_2_11_5_2
e_1_2_11_28_1
e_1_2_11_4_2
e_1_2_11_26_2
e_1_2_11_27_1
e_1_2_11_25_2
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_1_1
Kosinov N. (e_1_2_11_35_1) 2016
Hsieh M.-F. (e_1_2_11_15_2) 2017
e_1_2_11_29_2
e_1_2_11_20_2
e_1_2_11_21_1
e_1_2_11_24_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_22_2
e_1_2_11_7_2
e_1_2_11_8_1
e_1_2_11_17_2
e_1_2_11_16_1
e_1_2_11_14_2
e_1_2_11_19_2
e_1_2_11_18_2
References_xml – volume: 64
  start-page: 49
  year: 2000
  end-page: 51
  publication-title: Catal. Lett.
– volume: 182
  start-page: 92
  year: 1999
  end-page: 103
  publication-title: J. Catal.
– start-page: 8459
  year: 2018
  end-page: 8467
  publication-title: ACS Catal.
– volume: 14
  start-page: 1526
  year: 2013
  end-page: 1545
  publication-title: ChemPhysChem
– volume: 53
  start-page: 40
  year: 1978
  end-page: 55
  publication-title: J. Catal.
– volume: 30
  start-page: 135
  year: 1994
  end-page: 149
  publication-title: Catal. Lett.
– volume: 3
  start-page: 289
  year: 1996
  end-page: 297
  publication-title: Top. Catal.
– volume: 52
  start-page: 37
  year: 1998
  end-page: 42
  publication-title: Catal. Lett.
– volume: 9
  start-page: 4801
  year: 2018
  end-page: 4807
  publication-title: Chem. Sci.
– volume: 106
  start-page: 8524
  year: 2002
  end-page: 8530
  publication-title: J. Phys. Chem. B
– volume: 165
  start-page: 150
  year: 1997
  end-page: 161
  publication-title: J. Catal.
– volume: 57
  start-page: 95
  year: 1999
  end-page: 102
  publication-title: Catal. Lett.
– start-page: 520
  year: 2016
  end-page: 529
  publication-title: ACS Catal.
– year: 2017
  publication-title: ChemCatChem
– volume: 47
  start-page: 253
  year: 2001
  end-page: 267
  publication-title: Microporous Mesoporous Mater.
– volume: 122
  start-page: 84
  year: 2008
  end-page: 90
  publication-title: Catal. Lett.
– volume: 144
  start-page: 469
  year: 1999
  end-page: 471
  publication-title: J. Mol. Catal. A
– volume: 57
  start-page: 1016
  year: 2018
  end-page: 1020
  publication-title: Angew. Chem.
– volume: 1
  start-page: 398
  year: 2018
  end-page: 411
  publication-title: Nature Catalysis
– volume: 40
  start-page: 207
  year: 1996
  end-page: 214
  publication-title: Catal. Lett.
– volume: 12
  start-page: 127
  year: 2010
  end-page: 131
  publication-title: Catal. Commun.
– volume: 105
  start-page: 270
  year: 1987
  end-page: 275
  publication-title: J. Catal.
– volume: 157
  start-page: 190
  year: 1995
  end-page: 200
  publication-title: J. Catal.
– volume: 169
  start-page: 75
  year: 2011
  end-page: 84
  publication-title: Catal. Today
– volume: 20
  start-page: 329
  year: 1993
  end-page: 336
  publication-title: Catal. Lett.
– volume: 208
  start-page: 260
  year: 2002
  end-page: 269
  publication-title: J. Catal.
– volume: 111
  start-page: 111
  year: 2006
  end-page: 114
  publication-title: Catal. Lett.
– ident: e_1_2_11_25_2
  doi: 10.1038/s41929-018-0078-5
– ident: e_1_2_11_34_2
  doi: 10.1016/j.cattod.2010.11.063
– ident: e_1_2_11_13_1
– ident: e_1_2_11_22_2
  doi: 10.1002/anie.201711098
– start-page: 520
  year: 2016
  ident: e_1_2_11_35_1
  publication-title: ACS Catal.
– ident: e_1_2_11_32_2
  doi: 10.1006/jcat.1998.2319
– ident: e_1_2_11_2_1
– ident: e_1_2_11_16_1
– ident: e_1_2_11_21_1
– ident: e_1_2_11_6_2
  doi: 10.1007/BF00815284
– ident: e_1_2_11_23_2
  doi: 10.1016/0021-9517(78)90006-4
– ident: e_1_2_11_5_2
  doi: 10.1006/jcat.1995.1279
– ident: e_1_2_11_7_2
  doi: 10.1006/jcat.1997.1478
– ident: e_1_2_11_26_2
  doi: 10.1002/cphc.201201023
– ident: e_1_2_11_19_2
  doi: 10.1007/s10562-007-9346-8
– ident: e_1_2_11_8_1
– ident: e_1_2_11_4_2
  doi: 10.1007/BF00813680
– ident: e_1_2_11_29_2
  doi: 10.1006/jcat.2002.3540
– ident: e_1_2_11_31_2
  doi: 10.1021/jp020166h
– ident: e_1_2_11_33_2
  doi: 10.1021/acscatal.8b02491
– ident: e_1_2_11_11_1
  doi: 10.1016/0021-9517(87)90029-7
– ident: e_1_2_11_12_1
  doi: 10.1023/A:1019046714762
– ident: e_1_2_11_1_1
– ident: e_1_2_11_14_2
  doi: 10.1016/S1387-1811(01)00385-7
– year: 2017
  ident: e_1_2_11_15_2
  publication-title: ChemCatChem
– ident: e_1_2_11_28_1
– ident: e_1_2_11_10_2
  doi: 10.1023/A:1019014431678
– ident: e_1_2_11_9_2
  doi: 10.1016/S1381-1169(99)00050-3
– ident: e_1_2_11_20_2
  doi: 10.1007/BF02113855
– ident: e_1_2_11_36_1
– ident: e_1_2_11_17_2
  doi: 10.1023/A:1019087313679
– ident: e_1_2_11_18_2
  doi: 10.1016/j.catcom.2010.08.017
– ident: e_1_2_11_3_1
– ident: e_1_2_11_24_2
  doi: 10.1007/BF00769305
– ident: e_1_2_11_27_1
  doi: 10.1039/C8SC01263F
– ident: e_1_2_11_30_2
  doi: 10.1007/s10562-006-0136-5
SSID ssj0069375
Score 2.3619094
Snippet Methane dehydroaromatization (MDA) over Mo/HZSM‐5 has been hypothesized in literature to proceed via a two‐step mechanism: methane is first converted to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 544
SubjectTerms Carburizing
Catalysts
coking
Conversion
Dehydrogenation
Ethylene
ethylene aromatization
Hydrocarbons
Hydrogen storage
HZSM-5
Methane
methane dehydroaromatization
Molybdenum
Oligomerization
Title Aromatization of Ethylene – Main Intermediate for MDA?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.201901655
https://www.proquest.com/docview/2343421988
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27TsMwFIaPoB1gQVxFoVQekJiiJo6dOBNK01YVUhFDK3WLEl8m1KK27LwDb8iT4JMb7YCQGCPZHn77-Py2cj4D3EcGmSyZ56DbtwcUzhzBtO_4THpUhsoLDBY4T5-DyZw9Lfhip4q_5EM0F24YGcV-jQGe5Zv-DzRUygJBiAkt4PwQ2lhfi_R8yl7qvTiwyRd_YkRqm4PYkxrb6NL-fv_9tPTjNXcda5FyxqdwUnlFEpeTewYHenkOR0n9RNsFiHi9QsdZllKSlSEjq7vNI5p8fXySqT31k-LKr6gP2WpiHSqZDuPHS5iPR7Nk4lRPITjS-h3uIEVe88hEKkemouFSZS7LRM59g5d4SkgbjJkVXapQ8DzkKmQ5suCNkC4z_hW0lqulvgbCpMo9LTxJbShGWkV2GCXDyNhY1lngdsCplUhlxQnH5ype05JwTFNULm2U68BD0_6tJGT82rJbC5tWkbJJqc98ZrdNITpAC7H_GCVNklnSfN38p9MtHFM8NtvV6YkutLbrd31nvcU27xXLpwfteDAcjL8BLxzFMg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWgDGVBPEWhgAckJquJYyfOhKrQqkBTMbQSm5X4MaEWlbLzD_whX4JvXqUDQmKMZHs48fE9vvI9F6Hr2IInS-YTUPvugsIZEcwEJGDKpyrSfmihwDmdhKMZe3jm9WtCqIUp_SGahBswozivgeCQkO6tXUOVKjwIIaKFnG-jHRbSCLhJ2VN9GIcu-sIrRrBtI-B7Uvs2erS3OX8zLq3F5k_JWsSc4T7aq8Qi7pd_9wBtmfkhaid1j7YjJPrLBUjOspYSLyweOOBdIDH46-MTp-7aj4ucX1EgsjLYSVSc3vVvj9FsOJgmI1L1QiDKCR5OwEbe8NjGOgdTRcuVzjyWiZwHFrJ4WijHxsyhrnQkeB5xHbEczOCtUB6zwQlqzRdzc4owUzr3jfAVdVyMjY7dMlpFsXVkNlnodRCpkZCqMgqHfhUvsrQ4phKQkw1yHXTTjH8tLTJ-HdmtgZUVVd4kDVjA3LkpRAfRAuw_VpFJMk2ar7P_TLpC7dE0Hcvx_eTxHO1SuEO7reqLLmqtlu_mwgmNVX5ZbKVvtTTHLA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27TsMwFIYtKBKwIK6iUMADEpPVJrETZ0JV2qpcWnVopW5W4suE2qqUnXfgDXkSfJxL2wEhMUayPfzx8fnt5HxG6D42wGRJPQJu325QGCWc6oAEVHq-jJQXGihwHgzD_oQ-T9l0o4o_50NUB24QGW69hgBfKNNcQ0OldAhCSGghY7toz33xA7YzHZVrcWiTL_zECNQ2AtiTEtvY8pvb_bfT0tprbjpWl3J6x-io8Iq4nb_cE7SjZ6foICmvaDtDvL2cg-PMSynx3OCu1d3mEY2_P7_wwO76sTvyc_UhK42tQ8WDTvvxHE163XHSJ8VVCERav8MIUOQ1i02sMmAqGiZV2qIpz1hg4BBPcWmDMbWiSxVxlkVMRTQDFrzhskVNcIFqs_lMXyJMpco8zT3p21CMtYrtMEpGsbGxrNOwVUekVELIghMO11W8iZxw7AtQTlTK1dFD1X6REzJ-bdkohRVFpLwLP6ABtcsm53XkO7H_GEUkyTipnq7-0-kO7Y86PfH6NHy5Roc-7KDtRPV4A9VWyw99Y23GKrt1M-kHtYDGXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aromatization+of+Ethylene+%E2%80%93+Main+Intermediate+for+MDA%3F&rft.jtitle=ChemCatChem&rft.au=Vollmer%2C+Ina&rft.au=Edy+Abou%E2%80%90Hamad&rft.au=Gascon%2C+Jorge&rft.au=Kapteijn%2C+Freek&rft.date=2020-01-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=12&rft.issue=2&rft.spage=544&rft.epage=549&rft_id=info:doi/10.1002%2Fcctc.201901655&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon