Recent Progress in Electric‐field Enhanced 3D Graphene Electrodes using Laser Scribing for In‐plane Microsupercapacitors

The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions. Microsupercapacitors (mSCs) with reduced dimension and novel electrode design have gained prominence. This concept paper summarizes and views the recent adv...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 11; no. 6
Main Authors Pak, Sangyeon, Jang, A‐Rang, Lee, Young‐Woo
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 15.03.2024
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions. Microsupercapacitors (mSCs) with reduced dimension and novel electrode design have gained prominence. This concept paper summarizes and views the recent advancements in mSCs with a focus on 3D graphene electrodes and their novel electrode design to increase energy performance of the devices. Especially, we focus on these 3D graphene structures fabricated using a laser‐scribing method which offer an efficient, cost‐effective approach for enhanced mSC performance. Further, this work delves into the vital link between the electrical field effect and geometrically engineered interdigitated electrodes, which is pivotal for maximizing the ion transport and mSC energy storage performance. The insights presented here are promising for meeting the power requirements of future miniature electronics. This concept aims to introduce design of 3D graphene structures using a laser‐scribing method and to review electrochemical relationship between the electrical field effect and geometrically engineered interdigitated electrodes for development of cost‐effective and high‐performance microsupercapacitors. We believe that this concept reported here would be of significant interest to professionals working in high‐performance flexible energy storage applications.
AbstractList The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions. Microsupercapacitors (mSCs) with reduced dimension and novel electrode design have gained prominence. This concept paper summarizes and views the recent advancements in mSCs with a focus on 3D graphene electrodes and their novel electrode design to increase energy performance of the devices. Especially, we focus on these 3D graphene structures fabricated using a laser‐scribing method which offer an efficient, cost‐effective approach for enhanced mSC performance. Further, this work delves into the vital link between the electrical field effect and geometrically engineered interdigitated electrodes, which is pivotal for maximizing the ion transport and mSC energy storage performance. The insights presented here are promising for meeting the power requirements of future miniature electronics.
The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions. Microsupercapacitors (mSCs) with reduced dimension and novel electrode design have gained prominence. This concept paper summarizes and views the recent advancements in mSCs with a focus on 3D graphene electrodes and their novel electrode design to increase energy performance of the devices. Especially, we focus on these 3D graphene structures fabricated using a laser‐scribing method which offer an efficient, cost‐effective approach for enhanced mSC performance. Further, this work delves into the vital link between the electrical field effect and geometrically engineered interdigitated electrodes, which is pivotal for maximizing the ion transport and mSC energy storage performance. The insights presented here are promising for meeting the power requirements of future miniature electronics. This concept aims to introduce design of 3D graphene structures using a laser‐scribing method and to review electrochemical relationship between the electrical field effect and geometrically engineered interdigitated electrodes for development of cost‐effective and high‐performance microsupercapacitors. We believe that this concept reported here would be of significant interest to professionals working in high‐performance flexible energy storage applications.
Abstract The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions. Microsupercapacitors (mSCs) with reduced dimension and novel electrode design have gained prominence. This concept paper summarizes and views the recent advancements in mSCs with a focus on 3D graphene electrodes and their novel electrode design to increase energy performance of the devices. Especially, we focus on these 3D graphene structures fabricated using a laser‐scribing method which offer an efficient, cost‐effective approach for enhanced mSC performance. Further, this work delves into the vital link between the electrical field effect and geometrically engineered interdigitated electrodes, which is pivotal for maximizing the ion transport and mSC energy storage performance. The insights presented here are promising for meeting the power requirements of future miniature electronics.
Author Lee, Young‐Woo
Pak, Sangyeon
Jang, A‐Rang
Author_xml – sequence: 1
  givenname: Sangyeon
  surname: Pak
  fullname: Pak, Sangyeon
  email: spak@hongik.ac.kr
  organization: Hongik University
– sequence: 2
  givenname: A‐Rang
  surname: Jang
  fullname: Jang, A‐Rang
  email: arjang@kongju.ac.kr
  organization: Kongju National University
– sequence: 3
  givenname: Young‐Woo
  orcidid: 0000-0003-0777-8221
  surname: Lee
  fullname: Lee, Young‐Woo
  email: ywlee@sch.ac.kr
  organization: Soonchunhyang University
BookMark eNqFkc1uEzEUhS1UJErplrUl1gn-nYmXKIQSKQjUwtq6Y1-njgZ7sCeqKrHgEXhGnoRJU6BCQqyur_Wdo3t0npKTlBMS8pyzOWdMvHTYu7lgQjKmjXpETgU3zYwJ3pw8eD8h57XuGGOcMy0XzSn5eokO00g_lLwtWCuNia56dGOJ7se37yFi7-kqXUNy6Kl8TS8KDNeY8J7KHivd15i2dAMVC71yJXaHNeRC12nyGHqY8HfRlVz3AxYHA7g45lKfkccB-orn9_OMfHqz-rh8O9u8v1gvX21mTgmpZt50vglStQoXom2BT1HAKwmm40Z4vVhwlJ0AHrznxreMayel61jQQWgf5BlZH319hp0dSvwM5dZmiPbuI5ethTJG16PVrgHQjWqkMEqptmNcGq-M60IANGzyenH0Gkr-ssc62l3elzSdb4XRLVeiUe1EqSN1CF0LBjslhjHmNBaIveXMHmqzh9rs79om2fwv2a9j_ykwR8FN7PH2P7RdrjbLP9qfzbmu4w
CitedBy_id crossref_primary_10_1016_j_est_2024_113885
crossref_primary_10_1088_1361_6528_ad983a
crossref_primary_10_1002_bte2_20240079
crossref_primary_10_1016_j_susmat_2024_e00962
Cites_doi 10.1039/c4ee00318g
10.1080/14686996.2021.1978274
10.1021/acssuschemeng.9b06164
10.1016/j.jcis.2022.10.024
10.1016/j.nanoen.2020.105609
10.1109/ACCESS.2021.3128320
10.1021/acsnano.7b06263
10.1016/j.jechem.2023.04.031
10.1002/celc.201902099
10.1039/D2NR06626B
10.29026/oea.2021.200079
10.1002/aelm.201700185
10.1038/ncomms2446
10.1038/ncomms6714
10.1016/j.apsusc.2021.149438
10.3390/ma14123388
10.1039/D2TA06105H
10.3389/fchem.2021.807500
10.1021/acsami.7b04753
10.1002/aenm.202203462
10.1063/1.5051702
10.1039/D0NR04410E
10.1002/eem2.12581
10.3390/nano11113027
10.1002/adma.201400910
10.1016/j.carbon.2019.06.050
10.1093/nsr/nwt003
10.1039/c3ee43526a
10.1002/adfm.202305191
10.1016/j.carbon.2021.05.045
10.1038/nnano.2011.110
10.1002/adma.201301332
10.1016/j.jpowsour.2019.01.010
10.1039/D2TA09002C
10.1021/acsnano.5b00436
10.1039/c3ee41286e
10.1007/s40820-020-00451-z
10.1007/s40820-020-0368-8
10.1016/j.jechem.2021.08.018
10.1002/adma.201707416
10.1016/j.carbon.2018.09.011
10.1002/aenm.202100746
10.1002/elsa.202100222
10.1126/science.1216744
10.1002/aenm.202100020
10.1038/nnano.2016.196
10.1002/smll.201801809
10.1039/C9NA00374F
10.1039/C6NR04352F
10.1038/srep45585
10.1038/nmat3001
10.1002/elan.201300238
10.1002/smtd.201800367
10.1002/aenm.201601372
10.1002/adma.201401228
10.1039/C9TA03620B
10.1038/s41528-020-00093-6
10.1021/acsaem.0c02096
10.1002/smll.201701989
10.26599/NRE.2022.9120018
10.1016/j.nanoen.2018.05.064
10.1038/s41467-020-19985-2
10.1002/adma.202205569
10.1002/smll.201901830
10.1039/C9TA01460H
10.1149/2162-8777/acdd99
10.1021/acsami.2c00196
10.1016/j.jcis.2020.12.074
10.1002/adma.202000716
ContentType Journal Article
Copyright 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOA
DOI 10.1002/celc.202300594
DatabaseName Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef
Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage n/a
ExternalDocumentID oai_doaj_org_article_5c6aa56463294447b0139d49cbffae90
10_1002_celc_202300594
CELC202300594
Genre article
GrantInformation_xml – fundername: Korean government (MSIT)
  funderid: 2020R1A2C1101039; RS-2023-00245182
– fundername: National Research Foundation of Korea grant
– fundername: Soonchunhyang University Research Fund
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BBNVY
BENPR
BGLVJ
BHPHI
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7P
MEWTI
MY~
O9-
P2W
PDBOC
R.K
ROL
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ADMLS
CITATION
PHGZM
PHGZT
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
PQGLB
PUEGO
ID FETCH-LOGICAL-c4234-d9bd6f3474e8277a1021ad43a9b192d5881e3b2a1fdd19d7015c33cb0f5f25df3
IEDL.DBID 24P
ISSN 2196-0216
IngestDate Wed Aug 27 01:22:58 EDT 2025
Fri Jul 25 11:56:30 EDT 2025
Tue Jul 01 01:11:15 EDT 2025
Thu Apr 24 22:55:54 EDT 2025
Wed Jan 22 16:14:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4234-d9bd6f3474e8277a1021ad43a9b192d5881e3b2a1fdd19d7015c33cb0f5f25df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0777-8221
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202300594
PQID 2957142647
PQPubID 2034587
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_5c6aa56463294447b0139d49cbffae90
proquest_journals_2957142647
crossref_citationtrail_10_1002_celc_202300594
crossref_primary_10_1002_celc_202300594
wiley_primary_10_1002_celc_202300594_CELC202300594
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 15, 2024
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: March 15, 2024
  day: 15
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2017; 7
2013; 25
2013; 4
2017; 3
2023; 33
2021; 22
2023; 6
2023; 8
2019; 15
2014; 26
2019; 125
2011; 10
2020; 12
2020; 11
2023; 3
2013; 6
2017; 9
2020; 8
2014; 1
2020; 7
2020; 4
2014; 5
2022; 34
2018; 30
2021; 551
2019; 152
2012; 335
2014; 7
2021; 81
2021; 9
2019; 7
2023; 13
2021; 4
2019; 3
2018; 140
2023; 11
2023; 12
2021; 588
2023; 15
2019; 1
2021; 182
2020; 32
2015; 9
2011; 6
2021; 14
2016; 6
2021; 11
2023; 630
2022; 9
2017; 13
2017; 12
2022; 14
2022; 10
2022; 1
2019; 414
2018; 50
2018; 12
2021; 63
2016; 8
2018; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 4
  start-page: 208
  year: 2021
  publication-title: ACS Appl. Energ. Mater.
– volume: 7
  start-page: 867
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 2101
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 414
  start-page: 420
  year: 2019
  publication-title: J. Power Sources
– volume: 182
  start-page: 691
  year: 2021
  publication-title: Carbon
– volume: 4
  year: 2021
  publication-title: Opto-Electron. Adv.
– volume: 26
  start-page: 4763
  year: 2014
  publication-title: Adv. Mater.
– volume: 14
  start-page: 13499
  year: 2022
  end-page: 13506
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 3388
  year: 2021
  publication-title: Materials
– volume: 6
  start-page: 496
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 63
  start-page: 514
  year: 2021
  publication-title: J. Energy Chem.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 25
  start-page: 4035
  year: 2013
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1475
  year: 2013
  publication-title: Nat. Commun.
– volume: 4
  start-page: 31
  year: 2020
  publication-title: npj Flex. Electron.
– volume: 10
  start-page: 23274
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 81
  year: 2021
  publication-title: Nano Energy
– volume: 335
  start-page: 1326
  year: 2012
  publication-title: Science
– volume: 1
  year: 2022
  publication-title: Nano Research Energy
– volume: 12
  start-page: 289
  year: 2018
  publication-title: ACS Nano
– volume: 7
  start-page: 14328
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 40
  year: 2020
  publication-title: Nano-Micro Lett.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 588
  start-page: 62
  year: 2021
  publication-title: J. Colloid and Interface Sci.
– volume: 9
  start-page: 5868
  year: 2015
  publication-title: ACS Nano
– volume: 11
  start-page: 3027
  year: 2021
  publication-title: Nanomaterials
– volume: 8
  start-page: 15611
  year: 2016
  publication-title: Nanoscale
– volume: 12
  start-page: 7
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 12
  year: 2023
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 5
  start-page: 5714
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2022
  publication-title: Front. Chem.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 50
  start-page: 479
  year: 2018
  publication-title: Nano Energy
– volume: 9
  start-page: 19925
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 630
  start-page: 586
  year: 2023
  publication-title: J. Colloid Interface Sci.
– volume: 1
  start-page: 3807
  year: 2019
  publication-title: Nanoscale Adv.
– volume: 10
  start-page: 424
  year: 2011
  publication-title: Nat. Mater.
– volume: 9
  year: 2021
  publication-title: IEEE Access
– volume: 3
  year: 2023
  publication-title: Electrochem. Sci. Adv.
– volume: 15
  start-page: 2624
  year: 2023
  publication-title: Nanoscale
– volume: 551
  year: 2021
  publication-title: Appl. Surf. Sci.
– volume: 152
  start-page: 688
  year: 2019
  publication-title: Carbon
– volume: 15
  year: 2019
  publication-title: Small
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2023
  publication-title: Energy Environ. Mater.
– volume: 26
  start-page: 4552
  year: 2014
  publication-title: Adv. Mater.
– volume: 7
  start-page: 45585
  year: 2017
  publication-title: Sci. Rep.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 125
  year: 2019
  publication-title: J. Appl. Phys.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 12779
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 4963
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 6185
  year: 2020
  publication-title: Nat. Commun.
– volume: 12
  start-page: 118
  year: 2020
  publication-title: Nano-Micro Lett.
– volume: 12
  start-page: 19438
  year: 2020
  publication-title: Nanoscale
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 26
  start-page: 30
  year: 2014
  publication-title: Electroanalysis
– volume: 3
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 8
  start-page: 2409
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 1
  start-page: 277
  year: 2014
  publication-title: Natl. Sci. Rev.
– volume: 6
  start-page: 3218
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 875
  year: 2021
  publication-title: Sci. Technol. Adv. Mater.
– volume: 140
  start-page: 634
  year: 2018
  publication-title: Carbon
– volume: 13
  year: 2017
  publication-title: Small
– volume: 8
  start-page: 541
  year: 2023
  publication-title: J. Energy Chem.
– volume: 7
  start-page: 821
  year: 2020
  publication-title: ChemElectroChem
– ident: e_1_2_7_16_1
  doi: 10.1039/c4ee00318g
– ident: e_1_2_7_46_1
  doi: 10.1080/14686996.2021.1978274
– ident: e_1_2_7_7_1
  doi: 10.1021/acssuschemeng.9b06164
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jcis.2022.10.024
– ident: e_1_2_7_47_1
  doi: 10.1016/j.nanoen.2020.105609
– ident: e_1_2_7_53_1
  doi: 10.1109/ACCESS.2021.3128320
– ident: e_1_2_7_66_1
  doi: 10.1021/acsnano.7b06263
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jechem.2023.04.031
– ident: e_1_2_7_8_1
  doi: 10.1002/celc.201902099
– ident: e_1_2_7_52_1
  doi: 10.1039/D2NR06626B
– ident: e_1_2_7_4_1
  doi: 10.29026/oea.2021.200079
– ident: e_1_2_7_55_1
  doi: 10.1002/aelm.201700185
– ident: e_1_2_7_40_1
  doi: 10.1038/ncomms2446
– ident: e_1_2_7_63_1
  doi: 10.1038/ncomms6714
– ident: e_1_2_7_65_1
  doi: 10.1016/j.apsusc.2021.149438
– ident: e_1_2_7_67_1
  doi: 10.3390/ma14123388
– ident: e_1_2_7_11_1
  doi: 10.1039/D2TA06105H
– ident: e_1_2_7_18_1
  doi: 10.3389/fchem.2021.807500
– ident: e_1_2_7_21_1
  doi: 10.1021/acsami.7b04753
– ident: e_1_2_7_48_1
  doi: 10.1002/aenm.202203462
– ident: e_1_2_7_56_1
  doi: 10.1063/1.5051702
– ident: e_1_2_7_54_1
  doi: 10.1039/D0NR04410E
– ident: e_1_2_7_26_1
  doi: 10.1002/eem2.12581
– ident: e_1_2_7_50_1
  doi: 10.3390/nano11113027
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201400910
– ident: e_1_2_7_23_1
  doi: 10.1016/j.carbon.2019.06.050
– ident: e_1_2_7_14_1
  doi: 10.1093/nsr/nwt003
– ident: e_1_2_7_17_1
  doi: 10.1039/c3ee43526a
– ident: e_1_2_7_68_1
  doi: 10.1002/adfm.202305191
– ident: e_1_2_7_62_1
  doi: 10.1016/j.carbon.2021.05.045
– ident: e_1_2_7_41_1
  doi: 10.1038/nnano.2011.110
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201301332
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jpowsour.2019.01.010
– ident: e_1_2_7_59_1
  doi: 10.1039/D2TA09002C
– ident: e_1_2_7_42_1
  doi: 10.1021/acsnano.5b00436
– ident: e_1_2_7_30_1
  doi: 10.1039/c3ee41286e
– ident: e_1_2_7_13_1
  doi: 10.1007/s40820-020-00451-z
– ident: e_1_2_7_29_1
  doi: 10.1007/s40820-020-0368-8
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jechem.2021.08.018
– ident: e_1_2_7_64_1
  doi: 10.1002/adma.201707416
– ident: e_1_2_7_6_1
  doi: 10.1016/j.carbon.2018.09.011
– ident: e_1_2_7_27_1
  doi: 10.1002/aenm.202100746
– ident: e_1_2_7_10_1
  doi: 10.1002/elsa.202100222
– ident: e_1_2_7_39_1
  doi: 10.1126/science.1216744
– ident: e_1_2_7_38_1
  doi: 10.1002/aenm.202100020
– ident: e_1_2_7_20_1
  doi: 10.1038/nnano.2016.196
– ident: e_1_2_7_43_1
  doi: 10.1002/smll.201801809
– ident: e_1_2_7_69_1
  doi: 10.1039/C9NA00374F
– ident: e_1_2_7_51_1
  doi: 10.1039/C6NR04352F
– ident: e_1_2_7_60_1
  doi: 10.1038/srep45585
– ident: e_1_2_7_61_1
  doi: 10.1038/nmat3001
– ident: e_1_2_7_22_1
  doi: 10.1002/elan.201300238
– ident: e_1_2_7_49_1
  doi: 10.1002/smtd.201800367
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.201601372
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201401228
– ident: e_1_2_7_58_1
  doi: 10.1039/C9TA03620B
– ident: e_1_2_7_9_1
  doi: 10.1038/s41528-020-00093-6
– ident: e_1_2_7_45_1
  doi: 10.1021/acsaem.0c02096
– ident: e_1_2_7_19_1
  doi: 10.1002/smll.201701989
– ident: e_1_2_7_12_1
  doi: 10.26599/NRE.2022.9120018
– ident: e_1_2_7_35_1
  doi: 10.1016/j.nanoen.2018.05.064
– ident: e_1_2_7_44_1
  doi: 10.1038/s41467-020-19985-2
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.202205569
– ident: e_1_2_7_28_1
  doi: 10.1002/smll.201901830
– ident: e_1_2_7_34_1
  doi: 10.1039/C9TA01460H
– ident: e_1_2_7_57_1
  doi: 10.1149/2162-8777/acdd99
– ident: e_1_2_7_1_1
  doi: 10.1021/acsami.2c00196
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jcis.2020.12.074
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.202000716
SSID ssj0001105386
Score 2.3329506
Snippet The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions....
Abstract The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions....
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3D graphene
electric field enhancement
Electrodes
Energy storage
flexible energy storage device
Graphene
Ion transport
laser-scribing method
microsupercapacitors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09bxQxELVQGmgQn-IgIBdIVKucP9Zel3BcCChBSBApnWWPbTgp2pzuko4iPyG_kV_CjHfvdClQGkqvRtbIM-t59r59w9hbO82pWCUaAKsajRC9icZAI6OALoDQoOgH55Ov5uhUfzlrz3ZafREnbJAHHhbuoAUTQmu0UdJprS3d27mkHcRSQnb1tI41b-cwVW9XEDaozmxUGqfyAPI5KRZKVRVKblWhKtZ_C2Hu4tRaaA4fsYcjQuTvB88es3u5f8LuzzaN2Z6y3wj1sFTwb0Stwo2KL3o-r91sFvDn-qZy0vi8_1W_7XP1kX8iUWrc00ari5TXnPjuP_kx1rAV_447R6QhAlj-ucc5lkSB5SdE1ltfLfMKsKTCghrzPGOnh_Mfs6NmbKLQACIl3SQXkylKW507aW2gVt4haRVcRHCX2q4TWUUZRElJuGQRHoBSEKelLbJNRT1ne_1Fn18wTlhRuiRAg9FRhJBi1lrikSe41k7LhDWbRfUwKoxTo4tzP2gjS09B8NsgTNi7rf1y0Nb4p-UHitHWijSx6wPMFD9mir8rUyZsfxNhP76oay_Rc0Go0E6YrFG_wxU_mx_PtqOX_8OxV-wBTqiJ2SbafbZ3ubrKrxHqXMY3Nav_AtKY-uw
  priority: 102
  providerName: Directory of Open Access Journals
Title Recent Progress in Electric‐field Enhanced 3D Graphene Electrodes using Laser Scribing for In‐plane Microsupercapacitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202300594
https://www.proquest.com/docview/2957142647
https://doaj.org/article/5c6aa56463294447b0139d49cbffae90
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPcAFUR5ioax8QOIUNX7EXh_bJaVFbbUCKvVm-ZWyUpVd7bY3Dv0J_EZ-CTPebNo9VEi9xdHEsjKZmS_j8TeEfNJlio0WrAhBi0ICRC-8UqHgnoWRC0wGgQecT8_U0bn8dlFd3DvFv-KH6BNuaBnZX6OBO7_cuyMNDekKKQi5yJQjT8k2nq9F9nwuJ3dZFoAPIrd7BMvEalum1syNJd_bnGIjMmUC_w3UeR-75uBz-JK86FAj3V-peYc8Se0r8my8btb2mvwG-Afhg06w3AqcF522tM4dbqbh7-2fXKdG6_ZX3u-n4gv9ikTV4Oc6qVlMS4o18Jf0BOLagv4Ab-JxCKCWHrcwxxzLYukpFvAtb-ZpESDMhik263lDzg_rn-OjomusUARAT7KIxkfVCKllGnGtHbb3dlEKZzwAvliNRiwJzx1rYmQmaoAMQYjgy6ZqeBUb8ZZstbM2vSMU8SM3kQUZlPTMueiTlBx-g5ypdNkMSLF-qTZ0rOPY_OLKrviSuUUl2F4JA_K5l5-v-DYelDxAHfVSyJOdb8wWl7YzO1sF5VylpBLcSCk1Zn1NlCb4pnHJlAOyu9aw7Yx3aTmsnCFS1APCs9b_sxQ7rk_G_ej9Yx76QJ7DtcTqNlbtkq3rxU36CHDn2g_zFz0k2wf12eT7MCcN_gFnR_po
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELWgHMoF8SkCBXxA4rTq2p61s0cIKSkkVSVaiZvlr20jVZsoaW8c-An8Rn4JM85uSg4IieNas5a1szPz1vv8hrG3pkyxMUoUIRhVAEL0wmsdCulFGLogICg64Dw70ZNz-Pyt6tmEdBZmow-x3XCjyMj5mgKcNqQPb1VDQ7oiDUKpsubIXXYPtDQUmxJOb7dZED-o3O8RQ5PotkL30o2lPNydYqc0ZQX_Hdj5J3jN1efoIXvQwUb-fuPnR-xOah-z_VHfre0J-474D-sHPyW-FWYvPm_5OLe4mYdfP35mohoft5f5hz9XH_knUqrGRNdZLWJacyLBX_ApFrYV_4rpxNMlolp-3OIcS-LF8hkx-NY3y7QKWGfDnLr1PGXnR-Oz0aToOisUAeETFLH2UTcKDKShNMZRf28XQbnaI-KL1XAokvLSiSZGUUeDmCEoFXzZVI2sYqOesb120abnjBOAlHUUAYIGL5yLPgFI_A5ydWXKZsCK_qHa0MmOU_eLK7sRTJaWnGC3Thiwd1v75UZw46-WH8hHWysSys4Di9WF7eLOVkE7V2nQStYAYGjbt45QB980LtXlgB30HrZd9K6txJULgopmwGT2-j-WYkfj6Wh79eJ_bnrD9idns6mdHp98ecnu4zgQ1U1UB2zvenWTXiH2ufav89v9Gy2G-0U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaglYAL4qmGFvABidOq68fa2WNJE1pIq0oQVHGx_CyRqk2UtDcO_Qn8Rn4JM85m2xwQEkdbs5a145n5dnb8DSHvdBlD0oIV3mtRSIDohVPKF9wx37eeSS_wgvPJqTqayE_n1fmdW_wrfogu4YaWkf01Gvg8pP1b0lAfL5GCkItMOXKfbCNVHpzr7YNvk--T2zwLAAiRGz6CbWK9LVNr7saS728ushGbMoX_Bu68i15z-Bk9IY9b3EgPVop-Su7F5hl5OFi3a3tOfgIAhABCz7DgCtwXnTZ0mHvcTP3vm1-5Uo0Omx_5jz8Vh_QjUlWDp2ulZiEuKVbBX9AxRLYF_QL-xOEQYC09bmCNORbG0hMs4Vtez-PCQ6D1U2zX84JMRsOvg6Oiba1QeMBPsgi1CyoJqWXsc60tNvi2QQpbO4B8oer3WRSOW5ZCYHXQABq8EN6VqUq8Ckm8JFvNrIk7hCKC5HVgXnolHbM2uCglhw8hW1e6TD1SrF-q8S3vOLa_uDQrxmRuUAmmU0KPvO_k5yvGjb9KfkAddVLIlJ0nZosL0xqeqbyytlJSCV5LKTXmfesga-9SsrEue2RvrWHTmu_ScNg5Q6yoe4Rnrf9jK2YwHA-60av_eegteXB2ODLj49PPu-QRTEssdWPVHtm6WlzH14B9rtyb9nj_AXbN_D0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Electric%E2%80%90field+Enhanced+3D+Graphene+Electrodes+using+Laser+Scribing+for+In%E2%80%90plane+Microsupercapacitors&rft.jtitle=ChemElectroChem&rft.au=Pak%2C+Sangyeon&rft.au=A%E2%80%90Rang+Jang&rft.au=Young%E2%80%90Woo+Lee&rft.date=2024-03-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=11&rft.issue=6&rft_id=info:doi/10.1002%2Fcelc.202300594&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon