Recent Progress in Electric‐field Enhanced 3D Graphene Electrodes using Laser Scribing for In‐plane Microsupercapacitors
The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions. Microsupercapacitors (mSCs) with reduced dimension and novel electrode design have gained prominence. This concept paper summarizes and views the recent adv...
Saved in:
Published in | ChemElectroChem Vol. 11; no. 6 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
15.03.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions. Microsupercapacitors (mSCs) with reduced dimension and novel electrode design have gained prominence. This concept paper summarizes and views the recent advancements in mSCs with a focus on 3D graphene electrodes and their novel electrode design to increase energy performance of the devices. Especially, we focus on these 3D graphene structures fabricated using a laser‐scribing method which offer an efficient, cost‐effective approach for enhanced mSC performance. Further, this work delves into the vital link between the electrical field effect and geometrically engineered interdigitated electrodes, which is pivotal for maximizing the ion transport and mSC energy storage performance. The insights presented here are promising for meeting the power requirements of future miniature electronics.
This concept aims to introduce design of 3D graphene structures using a laser‐scribing method and to review electrochemical relationship between the electrical field effect and geometrically engineered interdigitated electrodes for development of cost‐effective and high‐performance microsupercapacitors. We believe that this concept reported here would be of significant interest to professionals working in high‐performance flexible energy storage applications. |
---|---|
AbstractList | The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions. Microsupercapacitors (mSCs) with reduced dimension and novel electrode design have gained prominence. This concept paper summarizes and views the recent advancements in mSCs with a focus on 3D graphene electrodes and their novel electrode design to increase energy performance of the devices. Especially, we focus on these 3D graphene structures fabricated using a laser‐scribing method which offer an efficient, cost‐effective approach for enhanced mSC performance. Further, this work delves into the vital link between the electrical field effect and geometrically engineered interdigitated electrodes, which is pivotal for maximizing the ion transport and mSC energy storage performance. The insights presented here are promising for meeting the power requirements of future miniature electronics. The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions. Microsupercapacitors (mSCs) with reduced dimension and novel electrode design have gained prominence. This concept paper summarizes and views the recent advancements in mSCs with a focus on 3D graphene electrodes and their novel electrode design to increase energy performance of the devices. Especially, we focus on these 3D graphene structures fabricated using a laser‐scribing method which offer an efficient, cost‐effective approach for enhanced mSC performance. Further, this work delves into the vital link between the electrical field effect and geometrically engineered interdigitated electrodes, which is pivotal for maximizing the ion transport and mSC energy storage performance. The insights presented here are promising for meeting the power requirements of future miniature electronics. This concept aims to introduce design of 3D graphene structures using a laser‐scribing method and to review electrochemical relationship between the electrical field effect and geometrically engineered interdigitated electrodes for development of cost‐effective and high‐performance microsupercapacitors. We believe that this concept reported here would be of significant interest to professionals working in high‐performance flexible energy storage applications. Abstract The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions. Microsupercapacitors (mSCs) with reduced dimension and novel electrode design have gained prominence. This concept paper summarizes and views the recent advancements in mSCs with a focus on 3D graphene electrodes and their novel electrode design to increase energy performance of the devices. Especially, we focus on these 3D graphene structures fabricated using a laser‐scribing method which offer an efficient, cost‐effective approach for enhanced mSC performance. Further, this work delves into the vital link between the electrical field effect and geometrically engineered interdigitated electrodes, which is pivotal for maximizing the ion transport and mSC energy storage performance. The insights presented here are promising for meeting the power requirements of future miniature electronics. |
Author | Lee, Young‐Woo Pak, Sangyeon Jang, A‐Rang |
Author_xml | – sequence: 1 givenname: Sangyeon surname: Pak fullname: Pak, Sangyeon email: spak@hongik.ac.kr organization: Hongik University – sequence: 2 givenname: A‐Rang surname: Jang fullname: Jang, A‐Rang email: arjang@kongju.ac.kr organization: Kongju National University – sequence: 3 givenname: Young‐Woo orcidid: 0000-0003-0777-8221 surname: Lee fullname: Lee, Young‐Woo email: ywlee@sch.ac.kr organization: Soonchunhyang University |
BookMark | eNqFkc1uEzEUhS1UJErplrUl1gn-nYmXKIQSKQjUwtq6Y1-njgZ7sCeqKrHgEXhGnoRJU6BCQqyur_Wdo3t0npKTlBMS8pyzOWdMvHTYu7lgQjKmjXpETgU3zYwJ3pw8eD8h57XuGGOcMy0XzSn5eokO00g_lLwtWCuNia56dGOJ7se37yFi7-kqXUNy6Kl8TS8KDNeY8J7KHivd15i2dAMVC71yJXaHNeRC12nyGHqY8HfRlVz3AxYHA7g45lKfkccB-orn9_OMfHqz-rh8O9u8v1gvX21mTgmpZt50vglStQoXom2BT1HAKwmm40Z4vVhwlJ0AHrznxreMayel61jQQWgf5BlZH319hp0dSvwM5dZmiPbuI5ethTJG16PVrgHQjWqkMEqptmNcGq-M60IANGzyenH0Gkr-ssc62l3elzSdb4XRLVeiUe1EqSN1CF0LBjslhjHmNBaIveXMHmqzh9rs79om2fwv2a9j_ykwR8FN7PH2P7RdrjbLP9qfzbmu4w |
CitedBy_id | crossref_primary_10_1016_j_est_2024_113885 crossref_primary_10_1088_1361_6528_ad983a crossref_primary_10_1002_bte2_20240079 crossref_primary_10_1016_j_susmat_2024_e00962 |
Cites_doi | 10.1039/c4ee00318g 10.1080/14686996.2021.1978274 10.1021/acssuschemeng.9b06164 10.1016/j.jcis.2022.10.024 10.1016/j.nanoen.2020.105609 10.1109/ACCESS.2021.3128320 10.1021/acsnano.7b06263 10.1016/j.jechem.2023.04.031 10.1002/celc.201902099 10.1039/D2NR06626B 10.29026/oea.2021.200079 10.1002/aelm.201700185 10.1038/ncomms2446 10.1038/ncomms6714 10.1016/j.apsusc.2021.149438 10.3390/ma14123388 10.1039/D2TA06105H 10.3389/fchem.2021.807500 10.1021/acsami.7b04753 10.1002/aenm.202203462 10.1063/1.5051702 10.1039/D0NR04410E 10.1002/eem2.12581 10.3390/nano11113027 10.1002/adma.201400910 10.1016/j.carbon.2019.06.050 10.1093/nsr/nwt003 10.1039/c3ee43526a 10.1002/adfm.202305191 10.1016/j.carbon.2021.05.045 10.1038/nnano.2011.110 10.1002/adma.201301332 10.1016/j.jpowsour.2019.01.010 10.1039/D2TA09002C 10.1021/acsnano.5b00436 10.1039/c3ee41286e 10.1007/s40820-020-00451-z 10.1007/s40820-020-0368-8 10.1016/j.jechem.2021.08.018 10.1002/adma.201707416 10.1016/j.carbon.2018.09.011 10.1002/aenm.202100746 10.1002/elsa.202100222 10.1126/science.1216744 10.1002/aenm.202100020 10.1038/nnano.2016.196 10.1002/smll.201801809 10.1039/C9NA00374F 10.1039/C6NR04352F 10.1038/srep45585 10.1038/nmat3001 10.1002/elan.201300238 10.1002/smtd.201800367 10.1002/aenm.201601372 10.1002/adma.201401228 10.1039/C9TA03620B 10.1038/s41528-020-00093-6 10.1021/acsaem.0c02096 10.1002/smll.201701989 10.26599/NRE.2022.9120018 10.1016/j.nanoen.2018.05.064 10.1038/s41467-020-19985-2 10.1002/adma.202205569 10.1002/smll.201901830 10.1039/C9TA01460H 10.1149/2162-8777/acdd99 10.1021/acsami.2c00196 10.1016/j.jcis.2020.12.074 10.1002/adma.202000716 |
ContentType | Journal Article |
Copyright | 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SR 8BQ 8FD JG9 DOA |
DOI | 10.1002/celc.202300594 |
DatabaseName | Wiley Online Library Open Access CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_5c6aa56463294447b0139d49cbffae90 10_1002_celc_202300594 CELC202300594 |
Genre | article |
GrantInformation_xml | – fundername: Korean government (MSIT) funderid: 2020R1A2C1101039; RS-2023-00245182 – fundername: National Research Foundation of Korea grant – fundername: Soonchunhyang University Research Fund |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ABJCF ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ARCSS AVUZU AZVAB BBNVY BENPR BGLVJ BHPHI BMXJE BRXPI CCPQU DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA GROUPED_DOAJ HCIFZ KB. LATKE LEEKS LITHE LOXES LUTES LYRES M7P MEWTI MY~ O9- P2W PDBOC R.K ROL TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ADMLS CITATION PHGZM PHGZT 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 PQGLB PUEGO |
ID | FETCH-LOGICAL-c4234-d9bd6f3474e8277a1021ad43a9b192d5881e3b2a1fdd19d7015c33cb0f5f25df3 |
IEDL.DBID | 24P |
ISSN | 2196-0216 |
IngestDate | Wed Aug 27 01:22:58 EDT 2025 Fri Jul 25 11:56:30 EDT 2025 Tue Jul 01 01:11:15 EDT 2025 Thu Apr 24 22:55:54 EDT 2025 Wed Jan 22 16:14:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4234-d9bd6f3474e8277a1021ad43a9b192d5881e3b2a1fdd19d7015c33cb0f5f25df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0777-8221 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202300594 |
PQID | 2957142647 |
PQPubID | 2034587 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c6aa56463294447b0139d49cbffae90 proquest_journals_2957142647 crossref_citationtrail_10_1002_celc_202300594 crossref_primary_10_1002_celc_202300594 wiley_primary_10_1002_celc_202300594_CELC202300594 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 15, 2024 |
PublicationDateYYYYMMDD | 2024-03-15 |
PublicationDate_xml | – month: 03 year: 2024 text: March 15, 2024 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2017; 7 2013; 25 2013; 4 2017; 3 2023; 33 2021; 22 2023; 6 2023; 8 2019; 15 2014; 26 2019; 125 2011; 10 2020; 12 2020; 11 2023; 3 2013; 6 2017; 9 2020; 8 2014; 1 2020; 7 2020; 4 2014; 5 2022; 34 2018; 30 2021; 551 2019; 152 2012; 335 2014; 7 2021; 81 2021; 9 2019; 7 2023; 13 2021; 4 2019; 3 2018; 140 2023; 11 2023; 12 2021; 588 2023; 15 2019; 1 2021; 182 2020; 32 2015; 9 2011; 6 2021; 14 2016; 6 2021; 11 2023; 630 2022; 9 2017; 13 2017; 12 2022; 14 2022; 10 2022; 1 2019; 414 2018; 50 2018; 12 2021; 63 2016; 8 2018; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 4 start-page: 208 year: 2021 publication-title: ACS Appl. Energ. Mater. – volume: 7 start-page: 867 year: 2014 publication-title: Energy Environ. Sci. – volume: 7 start-page: 2101 year: 2014 publication-title: Energy Environ. Sci. – volume: 414 start-page: 420 year: 2019 publication-title: J. Power Sources – volume: 182 start-page: 691 year: 2021 publication-title: Carbon – volume: 4 year: 2021 publication-title: Opto-Electron. Adv. – volume: 26 start-page: 4763 year: 2014 publication-title: Adv. Mater. – volume: 14 start-page: 13499 year: 2022 end-page: 13506 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 3388 year: 2021 publication-title: Materials – volume: 6 start-page: 496 year: 2011 publication-title: Nat. Nanotechnol. – volume: 63 start-page: 514 year: 2021 publication-title: J. Energy Chem. – volume: 14 year: 2018 publication-title: Small – volume: 25 start-page: 4035 year: 2013 publication-title: Adv. Mater. – volume: 4 start-page: 1475 year: 2013 publication-title: Nat. Commun. – volume: 4 start-page: 31 year: 2020 publication-title: npj Flex. Electron. – volume: 10 start-page: 23274 year: 2022 publication-title: J. Mater. Chem. A – volume: 81 year: 2021 publication-title: Nano Energy – volume: 335 start-page: 1326 year: 2012 publication-title: Science – volume: 1 year: 2022 publication-title: Nano Research Energy – volume: 12 start-page: 289 year: 2018 publication-title: ACS Nano – volume: 7 start-page: 14328 year: 2019 publication-title: J. Mater. Chem. A – volume: 12 start-page: 40 year: 2020 publication-title: Nano-Micro Lett. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 588 start-page: 62 year: 2021 publication-title: J. Colloid and Interface Sci. – volume: 9 start-page: 5868 year: 2015 publication-title: ACS Nano – volume: 11 start-page: 3027 year: 2021 publication-title: Nanomaterials – volume: 8 start-page: 15611 year: 2016 publication-title: Nanoscale – volume: 12 start-page: 7 year: 2017 publication-title: Nat. Nanotechnol. – volume: 12 year: 2023 publication-title: ECS J. Solid State Sci. Technol. – volume: 5 start-page: 5714 year: 2014 publication-title: Nat. Commun. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 9 year: 2022 publication-title: Front. Chem. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 50 start-page: 479 year: 2018 publication-title: Nano Energy – volume: 9 start-page: 19925 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 630 start-page: 586 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 1 start-page: 3807 year: 2019 publication-title: Nanoscale Adv. – volume: 10 start-page: 424 year: 2011 publication-title: Nat. Mater. – volume: 9 year: 2021 publication-title: IEEE Access – volume: 3 year: 2023 publication-title: Electrochem. Sci. Adv. – volume: 15 start-page: 2624 year: 2023 publication-title: Nanoscale – volume: 551 year: 2021 publication-title: Appl. Surf. Sci. – volume: 152 start-page: 688 year: 2019 publication-title: Carbon – volume: 15 year: 2019 publication-title: Small – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 6 year: 2023 publication-title: Energy Environ. Mater. – volume: 26 start-page: 4552 year: 2014 publication-title: Adv. Mater. – volume: 7 start-page: 45585 year: 2017 publication-title: Sci. Rep. – volume: 3 year: 2019 publication-title: Small Methods – volume: 125 year: 2019 publication-title: J. Appl. Phys. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 12779 year: 2019 publication-title: J. Mater. Chem. A – volume: 11 start-page: 4963 year: 2023 publication-title: J. Mater. Chem. A – volume: 11 start-page: 6185 year: 2020 publication-title: Nat. Commun. – volume: 12 start-page: 118 year: 2020 publication-title: Nano-Micro Lett. – volume: 12 start-page: 19438 year: 2020 publication-title: Nanoscale – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 26 start-page: 30 year: 2014 publication-title: Electroanalysis – volume: 3 year: 2017 publication-title: Adv. Electron. Mater. – volume: 8 start-page: 2409 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 1 start-page: 277 year: 2014 publication-title: Natl. Sci. Rev. – volume: 6 start-page: 3218 year: 2013 publication-title: Energy Environ. Sci. – volume: 22 start-page: 875 year: 2021 publication-title: Sci. Technol. Adv. Mater. – volume: 140 start-page: 634 year: 2018 publication-title: Carbon – volume: 13 year: 2017 publication-title: Small – volume: 8 start-page: 541 year: 2023 publication-title: J. Energy Chem. – volume: 7 start-page: 821 year: 2020 publication-title: ChemElectroChem – ident: e_1_2_7_16_1 doi: 10.1039/c4ee00318g – ident: e_1_2_7_46_1 doi: 10.1080/14686996.2021.1978274 – ident: e_1_2_7_7_1 doi: 10.1021/acssuschemeng.9b06164 – ident: e_1_2_7_24_1 doi: 10.1016/j.jcis.2022.10.024 – ident: e_1_2_7_47_1 doi: 10.1016/j.nanoen.2020.105609 – ident: e_1_2_7_53_1 doi: 10.1109/ACCESS.2021.3128320 – ident: e_1_2_7_66_1 doi: 10.1021/acsnano.7b06263 – ident: e_1_2_7_3_1 doi: 10.1016/j.jechem.2023.04.031 – ident: e_1_2_7_8_1 doi: 10.1002/celc.201902099 – ident: e_1_2_7_52_1 doi: 10.1039/D2NR06626B – ident: e_1_2_7_4_1 doi: 10.29026/oea.2021.200079 – ident: e_1_2_7_55_1 doi: 10.1002/aelm.201700185 – ident: e_1_2_7_40_1 doi: 10.1038/ncomms2446 – ident: e_1_2_7_63_1 doi: 10.1038/ncomms6714 – ident: e_1_2_7_65_1 doi: 10.1016/j.apsusc.2021.149438 – ident: e_1_2_7_67_1 doi: 10.3390/ma14123388 – ident: e_1_2_7_11_1 doi: 10.1039/D2TA06105H – ident: e_1_2_7_18_1 doi: 10.3389/fchem.2021.807500 – ident: e_1_2_7_21_1 doi: 10.1021/acsami.7b04753 – ident: e_1_2_7_48_1 doi: 10.1002/aenm.202203462 – ident: e_1_2_7_56_1 doi: 10.1063/1.5051702 – ident: e_1_2_7_54_1 doi: 10.1039/D0NR04410E – ident: e_1_2_7_26_1 doi: 10.1002/eem2.12581 – ident: e_1_2_7_50_1 doi: 10.3390/nano11113027 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201400910 – ident: e_1_2_7_23_1 doi: 10.1016/j.carbon.2019.06.050 – ident: e_1_2_7_14_1 doi: 10.1093/nsr/nwt003 – ident: e_1_2_7_17_1 doi: 10.1039/c3ee43526a – ident: e_1_2_7_68_1 doi: 10.1002/adfm.202305191 – ident: e_1_2_7_62_1 doi: 10.1016/j.carbon.2021.05.045 – ident: e_1_2_7_41_1 doi: 10.1038/nnano.2011.110 – ident: e_1_2_7_31_1 doi: 10.1002/adma.201301332 – ident: e_1_2_7_15_1 doi: 10.1016/j.jpowsour.2019.01.010 – ident: e_1_2_7_59_1 doi: 10.1039/D2TA09002C – ident: e_1_2_7_42_1 doi: 10.1021/acsnano.5b00436 – ident: e_1_2_7_30_1 doi: 10.1039/c3ee41286e – ident: e_1_2_7_13_1 doi: 10.1007/s40820-020-00451-z – ident: e_1_2_7_29_1 doi: 10.1007/s40820-020-0368-8 – ident: e_1_2_7_36_1 doi: 10.1016/j.jechem.2021.08.018 – ident: e_1_2_7_64_1 doi: 10.1002/adma.201707416 – ident: e_1_2_7_6_1 doi: 10.1016/j.carbon.2018.09.011 – ident: e_1_2_7_27_1 doi: 10.1002/aenm.202100746 – ident: e_1_2_7_10_1 doi: 10.1002/elsa.202100222 – ident: e_1_2_7_39_1 doi: 10.1126/science.1216744 – ident: e_1_2_7_38_1 doi: 10.1002/aenm.202100020 – ident: e_1_2_7_20_1 doi: 10.1038/nnano.2016.196 – ident: e_1_2_7_43_1 doi: 10.1002/smll.201801809 – ident: e_1_2_7_69_1 doi: 10.1039/C9NA00374F – ident: e_1_2_7_51_1 doi: 10.1039/C6NR04352F – ident: e_1_2_7_60_1 doi: 10.1038/srep45585 – ident: e_1_2_7_61_1 doi: 10.1038/nmat3001 – ident: e_1_2_7_22_1 doi: 10.1002/elan.201300238 – ident: e_1_2_7_49_1 doi: 10.1002/smtd.201800367 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.201601372 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201401228 – ident: e_1_2_7_58_1 doi: 10.1039/C9TA03620B – ident: e_1_2_7_9_1 doi: 10.1038/s41528-020-00093-6 – ident: e_1_2_7_45_1 doi: 10.1021/acsaem.0c02096 – ident: e_1_2_7_19_1 doi: 10.1002/smll.201701989 – ident: e_1_2_7_12_1 doi: 10.26599/NRE.2022.9120018 – ident: e_1_2_7_35_1 doi: 10.1016/j.nanoen.2018.05.064 – ident: e_1_2_7_44_1 doi: 10.1038/s41467-020-19985-2 – ident: e_1_2_7_37_1 doi: 10.1002/adma.202205569 – ident: e_1_2_7_28_1 doi: 10.1002/smll.201901830 – ident: e_1_2_7_34_1 doi: 10.1039/C9TA01460H – ident: e_1_2_7_57_1 doi: 10.1149/2162-8777/acdd99 – ident: e_1_2_7_1_1 doi: 10.1021/acsami.2c00196 – ident: e_1_2_7_5_1 doi: 10.1016/j.jcis.2020.12.074 – ident: e_1_2_7_33_1 doi: 10.1002/adma.202000716 |
SSID | ssj0001105386 |
Score | 2.3329506 |
Snippet | The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions.... Abstract The increasing demand for miniature, flexible electronic devices have fueled the need for compact and high‐performing energy storage solutions.... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 3D graphene electric field enhancement Electrodes Energy storage flexible energy storage device Graphene Ion transport laser-scribing method microsupercapacitors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09bxQxELVQGmgQn-IgIBdIVKucP9Zel3BcCChBSBApnWWPbTgp2pzuko4iPyG_kV_CjHfvdClQGkqvRtbIM-t59r59w9hbO82pWCUaAKsajRC9icZAI6OALoDQoOgH55Ov5uhUfzlrz3ZafREnbJAHHhbuoAUTQmu0UdJprS3d27mkHcRSQnb1tI41b-cwVW9XEDaozmxUGqfyAPI5KRZKVRVKblWhKtZ_C2Hu4tRaaA4fsYcjQuTvB88es3u5f8LuzzaN2Z6y3wj1sFTwb0Stwo2KL3o-r91sFvDn-qZy0vi8_1W_7XP1kX8iUWrc00ari5TXnPjuP_kx1rAV_447R6QhAlj-ucc5lkSB5SdE1ltfLfMKsKTCghrzPGOnh_Mfs6NmbKLQACIl3SQXkylKW507aW2gVt4haRVcRHCX2q4TWUUZRElJuGQRHoBSEKelLbJNRT1ne_1Fn18wTlhRuiRAg9FRhJBi1lrikSe41k7LhDWbRfUwKoxTo4tzP2gjS09B8NsgTNi7rf1y0Nb4p-UHitHWijSx6wPMFD9mir8rUyZsfxNhP76oay_Rc0Go0E6YrFG_wxU_mx_PtqOX_8OxV-wBTqiJ2SbafbZ3ubrKrxHqXMY3Nav_AtKY-uw priority: 102 providerName: Directory of Open Access Journals |
Title | Recent Progress in Electric‐field Enhanced 3D Graphene Electrodes using Laser Scribing for In‐plane Microsupercapacitors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202300594 https://www.proquest.com/docview/2957142647 https://doaj.org/article/5c6aa56463294447b0139d49cbffae90 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPcAFUR5ioax8QOIUNX7EXh_bJaVFbbUCKvVm-ZWyUpVd7bY3Dv0J_EZ-CTPebNo9VEi9xdHEsjKZmS_j8TeEfNJlio0WrAhBi0ICRC-8UqHgnoWRC0wGgQecT8_U0bn8dlFd3DvFv-KH6BNuaBnZX6OBO7_cuyMNDekKKQi5yJQjT8k2nq9F9nwuJ3dZFoAPIrd7BMvEalum1syNJd_bnGIjMmUC_w3UeR-75uBz-JK86FAj3V-peYc8Se0r8my8btb2mvwG-Afhg06w3AqcF522tM4dbqbh7-2fXKdG6_ZX3u-n4gv9ikTV4Oc6qVlMS4o18Jf0BOLagv4Ab-JxCKCWHrcwxxzLYukpFvAtb-ZpESDMhik263lDzg_rn-OjomusUARAT7KIxkfVCKllGnGtHbb3dlEKZzwAvliNRiwJzx1rYmQmaoAMQYjgy6ZqeBUb8ZZstbM2vSMU8SM3kQUZlPTMueiTlBx-g5ypdNkMSLF-qTZ0rOPY_OLKrviSuUUl2F4JA_K5l5-v-DYelDxAHfVSyJOdb8wWl7YzO1sF5VylpBLcSCk1Zn1NlCb4pnHJlAOyu9aw7Yx3aTmsnCFS1APCs9b_sxQ7rk_G_ej9Yx76QJ7DtcTqNlbtkq3rxU36CHDn2g_zFz0k2wf12eT7MCcN_gFnR_po |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELWgHMoF8SkCBXxA4rTq2p61s0cIKSkkVSVaiZvlr20jVZsoaW8c-An8Rn4JM85uSg4IieNas5a1szPz1vv8hrG3pkyxMUoUIRhVAEL0wmsdCulFGLogICg64Dw70ZNz-Pyt6tmEdBZmow-x3XCjyMj5mgKcNqQPb1VDQ7oiDUKpsubIXXYPtDQUmxJOb7dZED-o3O8RQ5PotkL30o2lPNydYqc0ZQX_Hdj5J3jN1efoIXvQwUb-fuPnR-xOah-z_VHfre0J-474D-sHPyW-FWYvPm_5OLe4mYdfP35mohoft5f5hz9XH_knUqrGRNdZLWJacyLBX_ApFrYV_4rpxNMlolp-3OIcS-LF8hkx-NY3y7QKWGfDnLr1PGXnR-Oz0aToOisUAeETFLH2UTcKDKShNMZRf28XQbnaI-KL1XAokvLSiSZGUUeDmCEoFXzZVI2sYqOesb120abnjBOAlHUUAYIGL5yLPgFI_A5ydWXKZsCK_qHa0MmOU_eLK7sRTJaWnGC3Thiwd1v75UZw46-WH8hHWysSys4Di9WF7eLOVkE7V2nQStYAYGjbt45QB980LtXlgB30HrZd9K6txJULgopmwGT2-j-WYkfj6Wh79eJ_bnrD9idns6mdHp98ecnu4zgQ1U1UB2zvenWTXiH2ufav89v9Gy2G-0U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaglYAL4qmGFvABidOq68fa2WNJE1pIq0oQVHGx_CyRqk2UtDcO_Qn8Rn4JM85m2xwQEkdbs5a145n5dnb8DSHvdBlD0oIV3mtRSIDohVPKF9wx37eeSS_wgvPJqTqayE_n1fmdW_wrfogu4YaWkf01Gvg8pP1b0lAfL5GCkItMOXKfbCNVHpzr7YNvk--T2zwLAAiRGz6CbWK9LVNr7saS728ushGbMoX_Bu68i15z-Bk9IY9b3EgPVop-Su7F5hl5OFi3a3tOfgIAhABCz7DgCtwXnTZ0mHvcTP3vm1-5Uo0Omx_5jz8Vh_QjUlWDp2ulZiEuKVbBX9AxRLYF_QL-xOEQYC09bmCNORbG0hMs4Vtez-PCQ6D1U2zX84JMRsOvg6Oiba1QeMBPsgi1CyoJqWXsc60tNvi2QQpbO4B8oer3WRSOW5ZCYHXQABq8EN6VqUq8Ckm8JFvNrIk7hCKC5HVgXnolHbM2uCglhw8hW1e6TD1SrF-q8S3vOLa_uDQrxmRuUAmmU0KPvO_k5yvGjb9KfkAddVLIlJ0nZosL0xqeqbyytlJSCV5LKTXmfesga-9SsrEue2RvrWHTmu_ScNg5Q6yoe4Rnrf9jK2YwHA-60av_eegteXB2ODLj49PPu-QRTEssdWPVHtm6WlzH14B9rtyb9nj_AXbN_D0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Electric%E2%80%90field+Enhanced+3D+Graphene+Electrodes+using+Laser+Scribing+for+In%E2%80%90plane+Microsupercapacitors&rft.jtitle=ChemElectroChem&rft.au=Pak%2C+Sangyeon&rft.au=A%E2%80%90Rang+Jang&rft.au=Young%E2%80%90Woo+Lee&rft.date=2024-03-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=11&rft.issue=6&rft_id=info:doi/10.1002%2Fcelc.202300594&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |