An Ionic Liquid‐Based Gel Electrolyte: Formation Mechanism and Feasibility for Lithium Metal Batteries
Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy density of next‐generation lithium batteries. However, the incapacity of such systems to meet the performance demands of batteries is signif...
Saved in:
Published in | ChemElectroChem Vol. 11; no. 4 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
16.02.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy density of next‐generation lithium batteries. However, the incapacity of such systems to meet the performance demands of batteries is significantly subject to the properties of the electrolyte and the intricacies of related interfacial processes. Recently, we have designed a high‐performing pyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) based QSSE (Py‐Gel), with introducing LiBF4 and LiCl, which served as a system for probing the dynamic Li deposition mechanism. Herein, we focus on understanding the mechanisms of Py‐Gel formation and examining the chemistry and structure as well as the properties of the solid‐electrolyte interphases (SEIs) formed in the Py‐Gel and their influences on Li deposition. Spectroscopic characterizations suggest the existence of a cross‐linked structure in Py‐Gel, for which multiple intermolecular/intramolecular hydrogen bondings and ionic coulumbic interactions among Py cations, TFSI− anions, and Li salts are responsible. The Py‐Gel electrolyte exhibits exceptional electrical properties at room temperature. Different SEIs are prepared in the Py‐Gel via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding SEI is vital for stable cycling of Li metal anodes in such a QSSE.
An ionic liquid‐based gel electrolyte is developed, showcasing exceptional electrical properties at room temperature. Different SEIs are prepared in this electrolyte via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding solid‐electrolyte interphase is vital for stable cycling of Li metal anodes in such system. |
---|---|
AbstractList | Abstract Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy density of next‐generation lithium batteries. However, the incapacity of such systems to meet the performance demands of batteries is significantly subject to the properties of the electrolyte and the intricacies of related interfacial processes. Recently, we have designed a high‐performing pyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) based QSSE (Py‐Gel), with introducing LiBF4 and LiCl, which served as a system for probing the dynamic Li deposition mechanism. Herein, we focus on understanding the mechanisms of Py‐Gel formation and examining the chemistry and structure as well as the properties of the solid‐electrolyte interphases (SEIs) formed in the Py‐Gel and their influences on Li deposition. Spectroscopic characterizations suggest the existence of a cross‐linked structure in Py‐Gel, for which multiple intermolecular/intramolecular hydrogen bondings and ionic coulumbic interactions among Py cations, TFSI− anions, and Li salts are responsible. The Py‐Gel electrolyte exhibits exceptional electrical properties at room temperature. Different SEIs are prepared in the Py‐Gel via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding SEI is vital for stable cycling of Li metal anodes in such a QSSE. Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy density of next‐generation lithium batteries. However, the incapacity of such systems to meet the performance demands of batteries is significantly subject to the properties of the electrolyte and the intricacies of related interfacial processes. Recently, we have designed a high‐performing pyrrolidinium bis(trifluoromethylsulfonyl)imide (Py 14 TFSI) based QSSE (Py‐Gel), with introducing LiBF 4 and LiCl, which served as a system for probing the dynamic Li deposition mechanism. Herein, we focus on understanding the mechanisms of Py‐Gel formation and examining the chemistry and structure as well as the properties of the solid‐electrolyte interphases (SEIs) formed in the Py‐Gel and their influences on Li deposition. Spectroscopic characterizations suggest the existence of a cross‐linked structure in Py‐Gel, for which multiple intermolecular/intramolecular hydrogen bondings and ionic coulumbic interactions among Py cations, TFSI − anions, and Li salts are responsible. The Py‐Gel electrolyte exhibits exceptional electrical properties at room temperature. Different SEIs are prepared in the Py‐Gel via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding SEI is vital for stable cycling of Li metal anodes in such a QSSE. Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy density of next‐generation lithium batteries. However, the incapacity of such systems to meet the performance demands of batteries is significantly subject to the properties of the electrolyte and the intricacies of related interfacial processes. Recently, we have designed a high‐performing pyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) based QSSE (Py‐Gel), with introducing LiBF4 and LiCl, which served as a system for probing the dynamic Li deposition mechanism. Herein, we focus on understanding the mechanisms of Py‐Gel formation and examining the chemistry and structure as well as the properties of the solid‐electrolyte interphases (SEIs) formed in the Py‐Gel and their influences on Li deposition. Spectroscopic characterizations suggest the existence of a cross‐linked structure in Py‐Gel, for which multiple intermolecular/intramolecular hydrogen bondings and ionic coulumbic interactions among Py cations, TFSI− anions, and Li salts are responsible. The Py‐Gel electrolyte exhibits exceptional electrical properties at room temperature. Different SEIs are prepared in the Py‐Gel via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding SEI is vital for stable cycling of Li metal anodes in such a QSSE. An ionic liquid‐based gel electrolyte is developed, showcasing exceptional electrical properties at room temperature. Different SEIs are prepared in this electrolyte via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding solid‐electrolyte interphase is vital for stable cycling of Li metal anodes in such system. Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy density of next‐generation lithium batteries. However, the incapacity of such systems to meet the performance demands of batteries is significantly subject to the properties of the electrolyte and the intricacies of related interfacial processes. Recently, we have designed a high‐performing pyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) based QSSE (Py‐Gel), with introducing LiBF4 and LiCl, which served as a system for probing the dynamic Li deposition mechanism. Herein, we focus on understanding the mechanisms of Py‐Gel formation and examining the chemistry and structure as well as the properties of the solid‐electrolyte interphases (SEIs) formed in the Py‐Gel and their influences on Li deposition. Spectroscopic characterizations suggest the existence of a cross‐linked structure in Py‐Gel, for which multiple intermolecular/intramolecular hydrogen bondings and ionic coulumbic interactions among Py cations, TFSI− anions, and Li salts are responsible. The Py‐Gel electrolyte exhibits exceptional electrical properties at room temperature. Different SEIs are prepared in the Py‐Gel via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding SEI is vital for stable cycling of Li metal anodes in such a QSSE. |
Author | Chen, Hao‐Ning Yan, Hao Mao, Bing‐Wei Gu, Yu Wang, Wei‐Wei Yan, Jia‐Wei |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-8099-4716 surname: Gu fullname: Gu, Yu email: ygu@xmu.edu.cn organization: Xiamen University – sequence: 2 givenname: Hao‐Ning surname: Chen fullname: Chen, Hao‐Ning organization: Xiamen University – sequence: 3 givenname: Wei‐Wei surname: Wang fullname: Wang, Wei‐Wei organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) – sequence: 4 givenname: Hao surname: Yan fullname: Yan, Hao organization: Xiamen University – sequence: 5 givenname: Jia‐Wei orcidid: 0000-0002-0045-6169 surname: Yan fullname: Yan, Jia‐Wei organization: Xiamen University – sequence: 6 givenname: Bing‐Wei orcidid: 0000-0002-9015-0162 surname: Mao fullname: Mao, Bing‐Wei email: bwmao@xmu.edu.cn organization: Xiamen University |
BookMark | eNqFkc1uUzEQhS1UJErplrUl1gljxz-57NooKZGC2MDa8s9c4si5bm1HKDsegWfkSbhpUEFIiNWMRvOdM5rzklwMeUBCXjOYMgD-1mPyUw58BqDm4hm55KxTE-BMXfzRvyDXte4AgDGQs7m6JNubga7zED3dxIdDDD--fb-1FQO9w0SXCX0rOR0bvqOrXPa2xTzQD-i3doh1T-0Q6AptjS6m2I60z2XUadt42I9bzSZ6a1vDErG-Is97mype_6pX5PNq-WnxfrL5eLde3GwmXvCZmATGtPcoO8ssMCecVbp3nQ6Wa62R8eC8cA69dxK162TPQYEMTKFQrNezK7I-64Zsd-a-xL0tR5NtNI-DXL4YW1r0CY2QUjvn58wKL7wKjkEnFIS-C0KidKPWm7PWfckPB6zN7PKhDOP5hndcM9bN4eQ4PW_5kmst2D-5MjCncMwpHPMUzgiIvwAf2-NrW7Ex_RvrztjXmPD4HxOzWG4Wv9mfCdSnFA |
CitedBy_id | crossref_primary_10_1016_j_polymer_2024_127911 crossref_primary_10_1088_1402_4896_ad88b3 |
Cites_doi | 10.1021/acsami.5b00209 10.1149/1.2164726 10.1016/j.joule.2019.07.008 10.1126/sciadv.adf1550 10.1201/9780824741389 10.1038/s41560-021-00852-3 10.1016/j.jpowsour.2015.05.078 10.1002/eom2.12325 10.1063/5.0165498 10.1038/s41586-023-06235-w 10.1038/s41467-023-39192-z 10.1002/aenm.202201991 10.1038/natrevmats.2015.5 10.1038/s41467-020-19469-3 10.1149/1945-7111/ac53d0 10.1021/jacs.0c09649 10.1038/s41560-018-0312-z 10.1039/C7TA08653A 10.1016/j.molliq.2006.08.054 10.1038/s41565-022-01148-7 10.1002/celc.202000772 10.1002/adfm.202303718 10.1021/acs.nanolett.2c02792 10.1038/s41586-023-05970-4 10.1038/nmat4041 10.1002/smll.202303210 10.1039/D0TA06643E 10.1021/acs.nanolett.3c02784 10.1021/acsenergylett.7b01177 10.1002/adma.202205560 10.1126/sciadv.aav3400 10.1038/s41563-022-01319-w 10.1126/sciadv.aat5383 10.1038/s41560-023-01275-y 10.1016/j.joule.2023.08.007 10.1002/celc.201800907 10.1016/j.trechm.2019.01.002 10.1016/j.ensm.2022.10.054 10.1021/jacs.0c10121 10.1002/aenm.201702675 10.1002/aenm.202002689 10.1021/acs.jpcc.1c09614 10.1016/S0008-6223(98)00119-5 10.1039/D1EE02567H 10.1039/C6CP07415D 10.1002/celc.202001277 10.1002/batt.202000022 10.1002/anie.202205075 10.1039/D1FD00043H 10.1038/s41467-018-03466-8 10.1021/jp047313r 10.1002/cssc.201700691 10.1038/s41586-021-03486-3 10.1038/s41578-019-0157-5 10.1038/s41570-023-00541-7 10.1002/anie.202107648 10.1002/adfm.202203988 10.1016/j.ensm.2018.07.017 10.1016/0032-3861(87)90394-6 10.1002/celc.201600730 |
ContentType | Journal Article |
Copyright | 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SR 8BQ 8FD JG9 DOA |
DOI | 10.1002/celc.202300684 |
DatabaseName | Wiley Online Library Open Access CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_4557bbc81a4c4c6db109460df9d45e5b 10_1002_celc_202300684 CELC202300684 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21972119; 22002129; 21991151; 22102137; 22072123; 22021001 – fundername: China Postdoctoral Science Foundation funderid: 2019TQ0177; 2022T150548 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ABJCF ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ARCSS AVUZU AZVAB BBNVY BENPR BGLVJ BHPHI BMXJE BRXPI CCPQU DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA GROUPED_DOAJ HCIFZ KB. LATKE LEEKS LITHE LOXES LUTES LYRES M7P MEWTI MY~ O9- P2W PDBOC R.K ROL TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ADMLS CITATION PHGZM PHGZT 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 PQGLB PUEGO |
ID | FETCH-LOGICAL-c4234-d117cce59a1a01b4ba67fb97da2777e12dbc4bbeccb5e7b95f20605d16e461f73 |
IEDL.DBID | DOA |
ISSN | 2196-0216 |
IngestDate | Wed Aug 27 01:02:41 EDT 2025 Fri Jul 25 11:52:38 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Tue Jul 01 01:11:15 EDT 2025 Wed Jan 22 16:14:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4234-d117cce59a1a01b4ba67fb97da2777e12dbc4bbeccb5e7b95f20605d16e461f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8099-4716 0000-0002-0045-6169 0000-0002-9015-0162 |
OpenAccessLink | https://doaj.org/article/4557bbc81a4c4c6db109460df9d45e5b |
PQID | 2927119807 |
PQPubID | 2034587 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4557bbc81a4c4c6db109460df9d45e5b proquest_journals_2927119807 crossref_primary_10_1002_celc_202300684 crossref_citationtrail_10_1002_celc_202300684 wiley_primary_10_1002_celc_202300684_CELC202300684 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 16, 2024 |
PublicationDateYYYYMMDD | 2024-02-16 |
PublicationDate_xml | – month: 02 year: 2024 text: February 16, 2024 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2017; 5 2023; 33 2017; 4 2023; 5 2023; 7 2023; 8 2023; 9 2023; 620 2022; 21 2020; 11 2023; 3 2022; 22 2022; 28 2020; 8 2020; 7 2018; 9 2020; 6 2015; 293 2018; 8 2018; 3 2020; 3 2018; 4 2023; 23 2023; 29 2022; 34 2014; 13 2021; 593 2022; 32 2023; 618 2022; 126 2022; 169 2023; 54 2022; 233 2021; 6 2019; 4 2023; 14 2019; 3 2019; 6 2019; 5 2020; 142 2020; 143 2019; 1 2023; 123 2023; 19 2006; 153 2004; 108 2015; 7 1999 2021; 14 2016; 1 2022; 61 2017; 10 2022; 12 2017; 19 2022; 2 2007; 131–132 2021; 60 1987; 28 2018; 15 2022; 17 1998; 36 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_1 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_68_2 e_1_2_8_9_2 Li D.-D. (e_1_2_8_30_2) 2022; 28 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_2 e_1_2_8_66_1 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_64_2 e_1_2_8_62_2 e_1_2_8_1_1 e_1_2_8_60_1 e_1_2_8_81_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_57_2 e_1_2_8_78_2 e_1_2_8_70_1 e_1_2_8_55_1 e_1_2_8_76_2 e_1_2_8_11_1 e_1_2_8_32_2 e_1_2_8_53_2 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_72_1 e_1_2_8_27_2 e_1_2_8_29_2 Yang W. (e_1_2_8_34_2) 2023; 29 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_2_2 e_1_2_8_80_2 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_44_1 e_1_2_8_61_2 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_56_2 e_1_2_8_79_1 Wan H. (e_1_2_8_12_2) Su H. (e_1_2_8_16_2) 2022; 2 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_75_2 e_1_2_8_50_2 e_1_2_8_73_1 Acar Z. (e_1_2_8_39_2) 2023; 3 e_1_2_8_71_1 |
References_xml | – volume: 5 year: 2023 publication-title: EcoMat – volume: 6 start-page: 181 year: 2019 end-page: 188 publication-title: ChemElectroChem – volume: 9 start-page: 1339 year: 2018 publication-title: Nat. Commun. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 11 year: 2020 publication-title: Adv. Energy Mater. – volume: 131–132 start-page: 216 year: 2007 end-page: 224 publication-title: J. Mol. Liq. – start-page: 2023 publication-title: Nature – volume: 15 start-page: 407 year: 2018 end-page: 414 publication-title: Energy Storage Mater. – volume: 29 year: 2023 publication-title: J. Electrochem. – volume: 293 start-page: 187 year: 2015 end-page: 195 publication-title: J. Power Sources – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 620 start-page: 86 year: 2023 end-page: 91 publication-title: Nature – volume: 5 start-page: 24909 year: 2017 end-page: 24919 publication-title: J. Mater. Chem. A – volume: 17 start-page: 768 year: 2022 end-page: 776 publication-title: Nat. Nanotechnol. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 13 start-page: 961 year: 2014 end-page: 969 publication-title: Nat. Mater. – volume: 22 start-page: 8224 year: 2022 end-page: 8232 publication-title: Nano Lett. – volume: 7 start-page: 2228 year: 2023 end-page: 2244 publication-title: Joule – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 593 start-page: 218 year: 2021 end-page: 222 publication-title: Nature – volume: 3 start-page: 2687 year: 2019 end-page: 2702 publication-title: Joule – volume: 10 start-page: 3135 year: 2017 end-page: 3145 publication-title: ChemSusChem – volume: 233 start-page: 190 year: 2022 end-page: 205 publication-title: Faraday Discuss. – volume: 11 start-page: 5809 year: 2020 publication-title: Nat. Commun. – volume: 19 year: 2023 publication-title: Small – volume: 14 start-page: 3536 year: 2023 publication-title: Nat. Commun. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 23 start-page: 9872 year: 2023 end-page: 9879 publication-title: Nano Lett. – volume: 126 start-page: 3839 year: 2022 end-page: 3852 publication-title: J. Phys. Chem. C – volume: 6 start-page: 723 year: 2021 end-page: 732 publication-title: Nat. Energy – volume: 28 start-page: 2324 year: 1987 end-page: 2328 publication-title: Polymer – volume: 169 year: 2022 publication-title: J. Electrochem. Soc. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 2 year: 2022 publication-title: Energy Materials – volume: 1 start-page: 126 year: 2019 end-page: 140 publication-title: Trends Chem. – volume: 14 start-page: 5834 year: 2021 end-page: 5863 publication-title: Energy Environ. Sci. – volume: 5 start-page: 105 year: 2019 end-page: 126 publication-title: Nat. Rev. Mater. – volume: 143 start-page: 839 year: 2020 end-page: 848 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 5950 year: 2015 end-page: 5958 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 4118 year: 2020 end-page: 4123 publication-title: ChemElectroChem – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 108 start-page: 7513 year: 2004 end-page: 7521 publication-title: J. Phys. Chem. A – volume: 3 start-page: 335 year: 2018 end-page: 340 publication-title: ACS Energy Lett. – volume: 123 year: 2023 publication-title: Appl. Phys. Lett. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 3 start-page: 793 year: 2020 end-page: 827 publication-title: Batteries & Supercaps – volume: 4 start-page: 261 year: 2017 end-page: 265 publication-title: ChemElectroChem – volume: 19 start-page: 2225 year: 2017 end-page: 2234 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 15005 year: 2016 publication-title: Nat. Rev. Mater. – volume: 3 year: 2023 publication-title: Energy Materials – volume: 54 start-page: 732 year: 2023 end-page: 775 publication-title: Energy Storage Mater. – volume: 8 start-page: 725 year: 2023 end-page: 735 publication-title: Nat. Energy – volume: 618 start-page: 287 year: 2023 end-page: 293 publication-title: Nature – volume: 8 start-page: 19908 year: 2020 end-page: 19916 publication-title: J. Mater. Chem. A – volume: 36 start-page: 1347 year: 1998 end-page: 1352 publication-title: Carbon – volume: 142 start-page: 21393 year: 2020 end-page: 21403 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 187 year: 2019 end-page: 196 publication-title: Nat. Energy – volume: 28 year: 2022 publication-title: J. Electrochem. – volume: 153 start-page: A595 year: 2006 end-page: A606 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 826 year: 2023 end-page: 842 publication-title: Nat. Rev. Chem. – volume: 60 start-page: 22672 year: 2021 end-page: 22677 publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 1175 year: 2022 end-page: 1182 publication-title: Nat. Mater. – volume: 8 start-page: 62 year: 2020 end-page: 69 publication-title: ChemElectroChem – year: 1999 – ident: e_1_2_8_42_2 doi: 10.1021/acsami.5b00209 – ident: e_1_2_8_31_1 – ident: e_1_2_8_69_2 doi: 10.1149/1.2164726 – ident: e_1_2_8_28_2 doi: 10.1016/j.joule.2019.07.008 – volume: 29 year: 2023 ident: e_1_2_8_34_2 publication-title: J. Electrochem. – ident: e_1_2_8_9_2 doi: 10.1126/sciadv.adf1550 – ident: e_1_2_8_75_2 doi: 10.1201/9780824741389 – ident: e_1_2_8_3_2 doi: 10.1038/s41560-021-00852-3 – ident: e_1_2_8_67_1 – ident: e_1_2_8_77_2 doi: 10.1016/j.jpowsour.2015.05.078 – ident: e_1_2_8_22_2 doi: 10.1002/eom2.12325 – ident: e_1_2_8_23_2 doi: 10.1063/5.0165498 – ident: e_1_2_8_40_1 – ident: e_1_2_8_44_1 – ident: e_1_2_8_7_2 doi: 10.1038/s41586-023-06235-w – ident: e_1_2_8_8_2 doi: 10.1038/s41467-023-39192-z – ident: e_1_2_8_63_1 – ident: e_1_2_8_15_2 doi: 10.1002/aenm.202201991 – ident: e_1_2_8_29_2 doi: 10.1038/natrevmats.2015.5 – ident: e_1_2_8_38_2 doi: 10.1038/s41467-020-19469-3 – ident: e_1_2_8_81_2 doi: 10.1149/1945-7111/ac53d0 – ident: e_1_2_8_36_2 doi: 10.1021/jacs.0c09649 – ident: e_1_2_8_59_2 doi: 10.1038/s41560-018-0312-z – volume: 3 year: 2023 ident: e_1_2_8_39_2 publication-title: Energy Materials – ident: e_1_2_8_47_2 doi: 10.1039/C7TA08653A – ident: e_1_2_8_68_2 doi: 10.1016/j.molliq.2006.08.054 – ident: e_1_2_8_18_1 – ident: e_1_2_8_58_2 doi: 10.1038/s41565-022-01148-7 – ident: e_1_2_8_50_2 doi: 10.1002/celc.202000772 – ident: e_1_2_8_14_2 doi: 10.1002/adfm.202303718 – start-page: 2023 ident: e_1_2_8_12_2 publication-title: Nature – ident: e_1_2_8_61_2 doi: 10.1021/acs.nanolett.2c02792 – ident: e_1_2_8_56_2 doi: 10.1038/s41586-023-05970-4 – ident: e_1_2_8_52_2 doi: 10.1038/nmat4041 – ident: e_1_2_8_54_2 doi: 10.1002/smll.202303210 – volume: 2 year: 2022 ident: e_1_2_8_16_2 publication-title: Energy Materials – ident: e_1_2_8_37_2 doi: 10.1039/D0TA06643E – ident: e_1_2_8_62_2 doi: 10.1021/acs.nanolett.3c02784 – ident: e_1_2_8_64_2 doi: 10.1021/acsenergylett.7b01177 – ident: e_1_2_8_11_1 – ident: e_1_2_8_51_1 – ident: e_1_2_8_17_2 doi: 10.1002/adma.202205560 – ident: e_1_2_8_65_2 doi: 10.1126/sciadv.aav3400 – ident: e_1_2_8_20_2 doi: 10.1038/s41563-022-01319-w – ident: e_1_2_8_21_2 doi: 10.1126/sciadv.aat5383 – ident: e_1_2_8_2_2 doi: 10.1038/s41560-023-01275-y – ident: e_1_2_8_6_2 doi: 10.1016/j.joule.2023.08.007 – ident: e_1_2_8_78_2 doi: 10.1002/celc.201800907 – ident: e_1_2_8_72_1 doi: 10.1016/j.trechm.2019.01.002 – ident: e_1_2_8_73_1 doi: 10.1016/j.ensm.2022.10.054 – ident: e_1_2_8_57_2 doi: 10.1021/jacs.0c10121 – ident: e_1_2_8_26_2 doi: 10.1002/aenm.201702675 – volume: 28 year: 2022 ident: e_1_2_8_30_2 publication-title: J. Electrochem. – ident: e_1_2_8_74_1 – ident: e_1_2_8_1_1 – ident: e_1_2_8_32_2 doi: 10.1002/aenm.202002689 – ident: e_1_2_8_55_1 – ident: e_1_2_8_48_2 doi: 10.1021/acs.jpcc.1c09614 – ident: e_1_2_8_76_2 doi: 10.1016/S0008-6223(98)00119-5 – ident: e_1_2_8_25_2 doi: 10.1039/D1EE02567H – ident: e_1_2_8_49_2 doi: 10.1039/C6CP07415D – ident: e_1_2_8_5_1 – ident: e_1_2_8_41_2 doi: 10.1002/celc.202001277 – ident: e_1_2_8_43_2 doi: 10.1002/batt.202000022 – ident: e_1_2_8_60_1 – ident: e_1_2_8_70_1 doi: 10.1002/anie.202205075 – ident: e_1_2_8_24_1 – ident: e_1_2_8_35_1 – ident: e_1_2_8_80_2 doi: 10.1039/D1FD00043H – ident: e_1_2_8_4_2 doi: 10.1038/s41467-018-03466-8 – ident: e_1_2_8_66_1 doi: 10.1021/jp047313r – ident: e_1_2_8_45_2 doi: 10.1002/cssc.201700691 – ident: e_1_2_8_13_2 doi: 10.1038/s41586-021-03486-3 – ident: e_1_2_8_33_2 doi: 10.1038/s41578-019-0157-5 – ident: e_1_2_8_53_2 doi: 10.1038/s41570-023-00541-7 – ident: e_1_2_8_19_2 doi: 10.1002/anie.202107648 – ident: e_1_2_8_27_2 doi: 10.1002/adfm.202203988 – ident: e_1_2_8_46_2 doi: 10.1016/j.ensm.2018.07.017 – ident: e_1_2_8_71_1 doi: 10.1016/0032-3861(87)90394-6 – ident: e_1_2_8_10_2 doi: 10.1002/celc.201600730 – ident: e_1_2_8_79_1 |
SSID | ssj0001105386 |
Score | 2.3241327 |
Snippet | Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy... Abstract Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Deposition Electrical properties Electrolytes ionic liquid Ionic liquids Lithium batteries lithium metal deposition Molten salt electrolytes quasi-solid-state electrolyte Room temperature Solid electrolytes solid-electrolyte interphase |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYoPdBLRQtVt4XKB6SeImLHv73BarcUAeoBJG5WbE_KSkto2d0Dtz5Cn7FP0nH-YA9Vpd6SaGJFM57M59HMN4QcsKowMnDITEQnF8Bj5gufZ1UBWpccLGvY9c8v1MmVOL2W10-6-Ft-iCHhljyj-V8nBy_94vCRNDTAPFEQIoTOlRHPyPPUX5uK-rj4-phlQfhQNOMe0TNTtS1TPXNjzg_Xl1iLTA2B_xrqfIpdm-Az3SYvO9RIj1ozvyIbUL8mW-N-WNsOuTmq6ZfEckvPZj9Ws_j7569jjE-RfoY5nbSjbuYPS_hEp323Ij2H1PU7W9zSso4UsWBXKftAEcjiOsub2eoWpRCe05aGE0_Vu-RqOrkcn2TdEIUsIFISWWRMh9RrVbIyZ174UunKWx1LrrUGxqMPwidLegnaW1nxHI84kSkQilW6eEM267sa3hJqQVkZUt40WKELY7wBAz4EZgyiAjUiWa9AFzqG8TToYu5abmTuksLdoPAR-TjIf2-5Nf4qeZzsMUglTuzmwd39N9e5mBNSau-DYaUIIqjoGR5dVR4rG4UE6Udkr7em6xx14bjlmjFrcj0ivLHwPz7FjSdn4-Hu3f-89J68wGuRar-Z2iOby_sV7CO0WfoPze79A9tq78Y priority: 102 providerName: Wiley-Blackwell |
Title | An Ionic Liquid‐Based Gel Electrolyte: Formation Mechanism and Feasibility for Lithium Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202300684 https://www.proquest.com/docview/2927119807 https://doaj.org/article/4557bbc81a4c4c6db109460df9d45e5b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZaemgvFdBWTYHIByROK9ZeP3sjUQKtACFUJG7W2p4VkcL2QXLg1p_Ab-SXMN5HFA4Vlx53NbJGM2PPN5bnG0L2WVUYGThkJuImF8Bj5gufZ1UBWpccLGvY9c_O1cmV-H4tr9dGfaU3YS09cGu4QyGl9j4YVooggoqeYUGi8ljZKCRIn05fzHlrxVRzu4KwoTCqZ2nM-WGAeWIsRMSdKyOeZaGGrP8ZwlzHqU2imW6S9x1CpEetZlvkFdTb5O24H8z2gdwc1fRbYrSlp7Pfy1l8_PswwlwU6THM6aQdazO_X8BXOu07E-kZpA7f2d0tLetIEfd1r2LvKYJWXGdxM1veohRCcdpSbmIF_ZFcTSc_xidZNzAhC4iKRBYZ0yH1VZWszJkXvlS68lbHkmutgfHog_DJa16C9lZWPMdyJjIFQrFKF5_IRv2zhs-EWlBWhnRHGqzQhTHegAEfAjMGEYAakKw3oAsdm3gaajF3LQ8yd8ngbmXwATlYyf9qeTT-KTlK_lhJJf7r5gdGheuiwr0UFQOy23vTdZvyznHLNWPW5HpAeOPhF1Rx48npePX15X8otkPe4YIivftmapdsLP4sYQ9hzcIPyWsuLobkzWhyfnE5bOL5CUNH9f0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagPZRLVV4ipYAPSJxWXXv9Wm5plJBC0lODEBdrbc_SSOkW2uTQGz-hv5FfwnhfJQeExHGtWWvl8ex8M5r5hpC3rMyM9BwSE9DIBfCQuMylSZmB1gWHnNXs-vMzNV2Ij19kV00Ye2Eafog-4RYto_5fRwOPCenje9ZQD6vIQYgYOlVGPCS7Edrgxd4dfl58XdwnWhBBZPXERzTOWHDLVEfemPLj7U22nFPN4b8FPP-Er7X_mRyQ_RY40mGj6cfkAVRPyN6om9f2lFwMK3oaiW7pbPljswy_ft6doIsK9AOs6LiZdrO6XcN7OukaFukcYuPv8uaSFlWgCAfbYtlbilgW91lfLDeXKIUInTZMnBhYPyOLyfh8NE3aOQqJR7AkksCY9rHdqmBFypxwhdKly3UouNYaGA_OCxeV6SRol8uSpxjlBKZAKFbq7DnZqa4qeEFoDiqXPqZOfS50ZowzYMB5z4xBYKAGJOkO0PqWZDzOuljZhh6Z23jgtj_wAXnXy39v6DX-KnkS9dFLRVrseuHq-pttrcwKKbVz3rBCeOFVcAyjV5WGMg9CgnQDctRp07a2emN5zjVjuUn1gPBaw__4FDsaz0b90-H_vPSG7E3P5zM7Oz379JI8wnURS8GZOiI76-sNvEKks3av27v8G5Do9QE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BKgEXxFOkFNgDEier3vW-3FsaElpIKw4EVVxW3odppNQtbXLojZ_Ab-SXMOtXmwNC4ujVeGXt7Hi-Gc18A_CWlpkWjoVEezRyHphPbGbTpMyCUgULOa3Z9Y-O5cGcfzwRJ7e6-Bt-iD7hFi2j_l9HA7_w5e4NaagLy0hBiBA6lZrfhS2BrikdwNbo6_zb_CbPggAiqwc-om3GelsqO-7GlO1ubrLhm2oK_w3ceRu91u5n-ggetriRjBpFP4Y7oXoC98fduLancDqqyGHkuSWzxY_1wv_--WsfPZQnH8KSTJphN8vrVdgj065fkRyF2Pe7uDojReUJosG2VvaaIJTFfVani_UZSiFAJw0RJ8bVz2A-nXwZHyTtGIXEIVbiiadUudhtVdAipZbbQqrS5soXTCkVKPPWcRt1aUVQNhclSzHI8VQGLmmpsucwqM6r8AJIHmQuXMycupyrTGurgw7WOao14gI5hKQ7QONajvE46mJpGnZkZuKBm_7Ah_Cul79o2DX-Krkf9dFLRVbseuH88rtpjcxwIZS1TtOCO-6ktxSDV5n6MvdcBGGHsNNp07SmemVYzhSluU7VEFit4X98ihlPZuP-aft_XnoD9z6_n5rZ4fGnl_AAl3ksBKdyBwary3V4hThnZV-3V_kP9Xb0IQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ionic+Liquid%E2%80%90Based+Gel+Electrolyte%3A+Formation+Mechanism+and+Feasibility+for+Lithium+Metal+Batteries&rft.jtitle=ChemElectroChem&rft.au=Dr.+Yu+Gu&rft.au=Hao%E2%80%90Ning+Chen&rft.au=Dr.+Wei%E2%80%90Wei+Wang&rft.au=Hao+Yan&rft.date=2024-02-16&rft.pub=Wiley-VCH&rft.eissn=2196-0216&rft.volume=11&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcelc.202300684&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4557bbc81a4c4c6db109460df9d45e5b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |