An Ionic Liquid‐Based Gel Electrolyte: Formation Mechanism and Feasibility for Lithium Metal Batteries

Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy density of next‐generation lithium batteries. However, the incapacity of such systems to meet the performance demands of batteries is signif...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 11; no. 4
Main Authors Gu, Yu, Chen, Hao‐Ning, Wang, Wei‐Wei, Yan, Hao, Yan, Jia‐Wei, Mao, Bing‐Wei
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 16.02.2024
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy density of next‐generation lithium batteries. However, the incapacity of such systems to meet the performance demands of batteries is significantly subject to the properties of the electrolyte and the intricacies of related interfacial processes. Recently, we have designed a high‐performing pyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) based QSSE (Py‐Gel), with introducing LiBF4 and LiCl, which served as a system for probing the dynamic Li deposition mechanism. Herein, we focus on understanding the mechanisms of Py‐Gel formation and examining the chemistry and structure as well as the properties of the solid‐electrolyte interphases (SEIs) formed in the Py‐Gel and their influences on Li deposition. Spectroscopic characterizations suggest the existence of a cross‐linked structure in Py‐Gel, for which multiple intermolecular/intramolecular hydrogen bondings and ionic coulumbic interactions among Py cations, TFSI− anions, and Li salts are responsible. The Py‐Gel electrolyte exhibits exceptional electrical properties at room temperature. Different SEIs are prepared in the Py‐Gel via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding SEI is vital for stable cycling of Li metal anodes in such a QSSE. An ionic liquid‐based gel electrolyte is developed, showcasing exceptional electrical properties at room temperature. Different SEIs are prepared in this electrolyte via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding solid‐electrolyte interphase is vital for stable cycling of Li metal anodes in such system.
AbstractList Abstract Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy density of next‐generation lithium batteries. However, the incapacity of such systems to meet the performance demands of batteries is significantly subject to the properties of the electrolyte and the intricacies of related interfacial processes. Recently, we have designed a high‐performing pyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) based QSSE (Py‐Gel), with introducing LiBF4 and LiCl, which served as a system for probing the dynamic Li deposition mechanism. Herein, we focus on understanding the mechanisms of Py‐Gel formation and examining the chemistry and structure as well as the properties of the solid‐electrolyte interphases (SEIs) formed in the Py‐Gel and their influences on Li deposition. Spectroscopic characterizations suggest the existence of a cross‐linked structure in Py‐Gel, for which multiple intermolecular/intramolecular hydrogen bondings and ionic coulumbic interactions among Py cations, TFSI− anions, and Li salts are responsible. The Py‐Gel electrolyte exhibits exceptional electrical properties at room temperature. Different SEIs are prepared in the Py‐Gel via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding SEI is vital for stable cycling of Li metal anodes in such a QSSE.
Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy density of next‐generation lithium batteries. However, the incapacity of such systems to meet the performance demands of batteries is significantly subject to the properties of the electrolyte and the intricacies of related interfacial processes. Recently, we have designed a high‐performing pyrrolidinium bis(trifluoromethylsulfonyl)imide (Py 14 TFSI) based QSSE (Py‐Gel), with introducing LiBF 4 and LiCl, which served as a system for probing the dynamic Li deposition mechanism. Herein, we focus on understanding the mechanisms of Py‐Gel formation and examining the chemistry and structure as well as the properties of the solid‐electrolyte interphases (SEIs) formed in the Py‐Gel and their influences on Li deposition. Spectroscopic characterizations suggest the existence of a cross‐linked structure in Py‐Gel, for which multiple intermolecular/intramolecular hydrogen bondings and ionic coulumbic interactions among Py cations, TFSI − anions, and Li salts are responsible. The Py‐Gel electrolyte exhibits exceptional electrical properties at room temperature. Different SEIs are prepared in the Py‐Gel via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding SEI is vital for stable cycling of Li metal anodes in such a QSSE.
Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy density of next‐generation lithium batteries. However, the incapacity of such systems to meet the performance demands of batteries is significantly subject to the properties of the electrolyte and the intricacies of related interfacial processes. Recently, we have designed a high‐performing pyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) based QSSE (Py‐Gel), with introducing LiBF4 and LiCl, which served as a system for probing the dynamic Li deposition mechanism. Herein, we focus on understanding the mechanisms of Py‐Gel formation and examining the chemistry and structure as well as the properties of the solid‐electrolyte interphases (SEIs) formed in the Py‐Gel and their influences on Li deposition. Spectroscopic characterizations suggest the existence of a cross‐linked structure in Py‐Gel, for which multiple intermolecular/intramolecular hydrogen bondings and ionic coulumbic interactions among Py cations, TFSI− anions, and Li salts are responsible. The Py‐Gel electrolyte exhibits exceptional electrical properties at room temperature. Different SEIs are prepared in the Py‐Gel via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding SEI is vital for stable cycling of Li metal anodes in such a QSSE. An ionic liquid‐based gel electrolyte is developed, showcasing exceptional electrical properties at room temperature. Different SEIs are prepared in this electrolyte via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding solid‐electrolyte interphase is vital for stable cycling of Li metal anodes in such system.
Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy density of next‐generation lithium batteries. However, the incapacity of such systems to meet the performance demands of batteries is significantly subject to the properties of the electrolyte and the intricacies of related interfacial processes. Recently, we have designed a high‐performing pyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) based QSSE (Py‐Gel), with introducing LiBF4 and LiCl, which served as a system for probing the dynamic Li deposition mechanism. Herein, we focus on understanding the mechanisms of Py‐Gel formation and examining the chemistry and structure as well as the properties of the solid‐electrolyte interphases (SEIs) formed in the Py‐Gel and their influences on Li deposition. Spectroscopic characterizations suggest the existence of a cross‐linked structure in Py‐Gel, for which multiple intermolecular/intramolecular hydrogen bondings and ionic coulumbic interactions among Py cations, TFSI− anions, and Li salts are responsible. The Py‐Gel electrolyte exhibits exceptional electrical properties at room temperature. Different SEIs are prepared in the Py‐Gel via electrochemical protocols to elucidate that the synergy between a well‐featured electrolyte and an outstanding SEI is vital for stable cycling of Li metal anodes in such a QSSE.
Author Chen, Hao‐Ning
Yan, Hao
Mao, Bing‐Wei
Gu, Yu
Wang, Wei‐Wei
Yan, Jia‐Wei
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-8099-4716
  surname: Gu
  fullname: Gu, Yu
  email: ygu@xmu.edu.cn
  organization: Xiamen University
– sequence: 2
  givenname: Hao‐Ning
  surname: Chen
  fullname: Chen, Hao‐Ning
  organization: Xiamen University
– sequence: 3
  givenname: Wei‐Wei
  surname: Wang
  fullname: Wang, Wei‐Wei
  organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
– sequence: 4
  givenname: Hao
  surname: Yan
  fullname: Yan, Hao
  organization: Xiamen University
– sequence: 5
  givenname: Jia‐Wei
  orcidid: 0000-0002-0045-6169
  surname: Yan
  fullname: Yan, Jia‐Wei
  organization: Xiamen University
– sequence: 6
  givenname: Bing‐Wei
  orcidid: 0000-0002-9015-0162
  surname: Mao
  fullname: Mao, Bing‐Wei
  email: bwmao@xmu.edu.cn
  organization: Xiamen University
BookMark eNqFkc1uUzEQhS1UJErplrUl1gljxz-57NooKZGC2MDa8s9c4si5bm1HKDsegWfkSbhpUEFIiNWMRvOdM5rzklwMeUBCXjOYMgD-1mPyUw58BqDm4hm55KxTE-BMXfzRvyDXte4AgDGQs7m6JNubga7zED3dxIdDDD--fb-1FQO9w0SXCX0rOR0bvqOrXPa2xTzQD-i3doh1T-0Q6AptjS6m2I60z2XUadt42I9bzSZ6a1vDErG-Is97mype_6pX5PNq-WnxfrL5eLde3GwmXvCZmATGtPcoO8ssMCecVbp3nQ6Wa62R8eC8cA69dxK162TPQYEMTKFQrNezK7I-64Zsd-a-xL0tR5NtNI-DXL4YW1r0CY2QUjvn58wKL7wKjkEnFIS-C0KidKPWm7PWfckPB6zN7PKhDOP5hndcM9bN4eQ4PW_5kmst2D-5MjCncMwpHPMUzgiIvwAf2-NrW7Ex_RvrztjXmPD4HxOzWG4Wv9mfCdSnFA
CitedBy_id crossref_primary_10_1016_j_polymer_2024_127911
crossref_primary_10_1088_1402_4896_ad88b3
Cites_doi 10.1021/acsami.5b00209
10.1149/1.2164726
10.1016/j.joule.2019.07.008
10.1126/sciadv.adf1550
10.1201/9780824741389
10.1038/s41560-021-00852-3
10.1016/j.jpowsour.2015.05.078
10.1002/eom2.12325
10.1063/5.0165498
10.1038/s41586-023-06235-w
10.1038/s41467-023-39192-z
10.1002/aenm.202201991
10.1038/natrevmats.2015.5
10.1038/s41467-020-19469-3
10.1149/1945-7111/ac53d0
10.1021/jacs.0c09649
10.1038/s41560-018-0312-z
10.1039/C7TA08653A
10.1016/j.molliq.2006.08.054
10.1038/s41565-022-01148-7
10.1002/celc.202000772
10.1002/adfm.202303718
10.1021/acs.nanolett.2c02792
10.1038/s41586-023-05970-4
10.1038/nmat4041
10.1002/smll.202303210
10.1039/D0TA06643E
10.1021/acs.nanolett.3c02784
10.1021/acsenergylett.7b01177
10.1002/adma.202205560
10.1126/sciadv.aav3400
10.1038/s41563-022-01319-w
10.1126/sciadv.aat5383
10.1038/s41560-023-01275-y
10.1016/j.joule.2023.08.007
10.1002/celc.201800907
10.1016/j.trechm.2019.01.002
10.1016/j.ensm.2022.10.054
10.1021/jacs.0c10121
10.1002/aenm.201702675
10.1002/aenm.202002689
10.1021/acs.jpcc.1c09614
10.1016/S0008-6223(98)00119-5
10.1039/D1EE02567H
10.1039/C6CP07415D
10.1002/celc.202001277
10.1002/batt.202000022
10.1002/anie.202205075
10.1039/D1FD00043H
10.1038/s41467-018-03466-8
10.1021/jp047313r
10.1002/cssc.201700691
10.1038/s41586-021-03486-3
10.1038/s41578-019-0157-5
10.1038/s41570-023-00541-7
10.1002/anie.202107648
10.1002/adfm.202203988
10.1016/j.ensm.2018.07.017
10.1016/0032-3861(87)90394-6
10.1002/celc.201600730
ContentType Journal Article
Copyright 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOA
DOI 10.1002/celc.202300684
DatabaseName Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage n/a
ExternalDocumentID oai_doaj_org_article_4557bbc81a4c4c6db109460df9d45e5b
10_1002_celc_202300684
CELC202300684
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21972119; 22002129; 21991151; 22102137; 22072123; 22021001
– fundername: China Postdoctoral Science Foundation
  funderid: 2019TQ0177; 2022T150548
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BBNVY
BENPR
BGLVJ
BHPHI
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7P
MEWTI
MY~
O9-
P2W
PDBOC
R.K
ROL
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ADMLS
CITATION
PHGZM
PHGZT
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
PQGLB
PUEGO
ID FETCH-LOGICAL-c4234-d117cce59a1a01b4ba67fb97da2777e12dbc4bbeccb5e7b95f20605d16e461f73
IEDL.DBID DOA
ISSN 2196-0216
IngestDate Wed Aug 27 01:02:41 EDT 2025
Fri Jul 25 11:52:38 EDT 2025
Thu Apr 24 23:11:22 EDT 2025
Tue Jul 01 01:11:15 EDT 2025
Wed Jan 22 16:14:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4234-d117cce59a1a01b4ba67fb97da2777e12dbc4bbeccb5e7b95f20605d16e461f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8099-4716
0000-0002-0045-6169
0000-0002-9015-0162
OpenAccessLink https://doaj.org/article/4557bbc81a4c4c6db109460df9d45e5b
PQID 2927119807
PQPubID 2034587
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_4557bbc81a4c4c6db109460df9d45e5b
proquest_journals_2927119807
crossref_primary_10_1002_celc_202300684
crossref_citationtrail_10_1002_celc_202300684
wiley_primary_10_1002_celc_202300684_CELC202300684
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 16, 2024
PublicationDateYYYYMMDD 2024-02-16
PublicationDate_xml – month: 02
  year: 2024
  text: February 16, 2024
  day: 16
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2017; 5
2023; 33
2017; 4
2023; 5
2023; 7
2023; 8
2023; 9
2023; 620
2022; 21
2020; 11
2023; 3
2022; 22
2022; 28
2020; 8
2020; 7
2018; 9
2020; 6
2015; 293
2018; 8
2018; 3
2020; 3
2018; 4
2023; 23
2023; 29
2022; 34
2014; 13
2021; 593
2022; 32
2023; 618
2022; 126
2022; 169
2023; 54
2022; 233
2021; 6
2019; 4
2023; 14
2019; 3
2019; 6
2019; 5
2020; 142
2020; 143
2019; 1
2023; 123
2023; 19
2006; 153
2004; 108
2015; 7
1999
2021; 14
2016; 1
2022; 61
2017; 10
2022; 12
2017; 19
2022; 2
2007; 131–132
2021; 60
1987; 28
2018; 15
2022; 17
1998; 36
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_1
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_68_2
e_1_2_8_9_2
Li D.-D. (e_1_2_8_30_2) 2022; 28
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_2
e_1_2_8_66_1
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_64_2
e_1_2_8_62_2
e_1_2_8_1_1
e_1_2_8_60_1
e_1_2_8_81_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_57_2
e_1_2_8_78_2
e_1_2_8_70_1
e_1_2_8_55_1
e_1_2_8_76_2
e_1_2_8_11_1
e_1_2_8_32_2
e_1_2_8_53_2
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_72_1
e_1_2_8_27_2
e_1_2_8_29_2
Yang W. (e_1_2_8_34_2) 2023; 29
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_2_2
e_1_2_8_80_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_1
e_1_2_8_61_2
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_58_2
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_79_1
Wan H. (e_1_2_8_12_2)
Su H. (e_1_2_8_16_2) 2022; 2
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_75_2
e_1_2_8_50_2
e_1_2_8_73_1
Acar Z. (e_1_2_8_39_2) 2023; 3
e_1_2_8_71_1
References_xml – volume: 5
  year: 2023
  publication-title: EcoMat
– volume: 6
  start-page: 181
  year: 2019
  end-page: 188
  publication-title: ChemElectroChem
– volume: 9
  start-page: 1339
  year: 2018
  publication-title: Nat. Commun.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 131–132
  start-page: 216
  year: 2007
  end-page: 224
  publication-title: J. Mol. Liq.
– start-page: 2023
  publication-title: Nature
– volume: 15
  start-page: 407
  year: 2018
  end-page: 414
  publication-title: Energy Storage Mater.
– volume: 29
  year: 2023
  publication-title: J. Electrochem.
– volume: 293
  start-page: 187
  year: 2015
  end-page: 195
  publication-title: J. Power Sources
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 620
  start-page: 86
  year: 2023
  end-page: 91
  publication-title: Nature
– volume: 5
  start-page: 24909
  year: 2017
  end-page: 24919
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 768
  year: 2022
  end-page: 776
  publication-title: Nat. Nanotechnol.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 961
  year: 2014
  end-page: 969
  publication-title: Nat. Mater.
– volume: 22
  start-page: 8224
  year: 2022
  end-page: 8232
  publication-title: Nano Lett.
– volume: 7
  start-page: 2228
  year: 2023
  end-page: 2244
  publication-title: Joule
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 593
  start-page: 218
  year: 2021
  end-page: 222
  publication-title: Nature
– volume: 3
  start-page: 2687
  year: 2019
  end-page: 2702
  publication-title: Joule
– volume: 10
  start-page: 3135
  year: 2017
  end-page: 3145
  publication-title: ChemSusChem
– volume: 233
  start-page: 190
  year: 2022
  end-page: 205
  publication-title: Faraday Discuss.
– volume: 11
  start-page: 5809
  year: 2020
  publication-title: Nat. Commun.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 14
  start-page: 3536
  year: 2023
  publication-title: Nat. Commun.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 9872
  year: 2023
  end-page: 9879
  publication-title: Nano Lett.
– volume: 126
  start-page: 3839
  year: 2022
  end-page: 3852
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 723
  year: 2021
  end-page: 732
  publication-title: Nat. Energy
– volume: 28
  start-page: 2324
  year: 1987
  end-page: 2328
  publication-title: Polymer
– volume: 169
  year: 2022
  publication-title: J. Electrochem. Soc.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  year: 2022
  publication-title: Energy Materials
– volume: 1
  start-page: 126
  year: 2019
  end-page: 140
  publication-title: Trends Chem.
– volume: 14
  start-page: 5834
  year: 2021
  end-page: 5863
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 105
  year: 2019
  end-page: 126
  publication-title: Nat. Rev. Mater.
– volume: 143
  start-page: 839
  year: 2020
  end-page: 848
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 5950
  year: 2015
  end-page: 5958
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 4118
  year: 2020
  end-page: 4123
  publication-title: ChemElectroChem
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 108
  start-page: 7513
  year: 2004
  end-page: 7521
  publication-title: J. Phys. Chem. A
– volume: 3
  start-page: 335
  year: 2018
  end-page: 340
  publication-title: ACS Energy Lett.
– volume: 123
  year: 2023
  publication-title: Appl. Phys. Lett.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 3
  start-page: 793
  year: 2020
  end-page: 827
  publication-title: Batteries & Supercaps
– volume: 4
  start-page: 261
  year: 2017
  end-page: 265
  publication-title: ChemElectroChem
– volume: 19
  start-page: 2225
  year: 2017
  end-page: 2234
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 15005
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 3
  year: 2023
  publication-title: Energy Materials
– volume: 54
  start-page: 732
  year: 2023
  end-page: 775
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 725
  year: 2023
  end-page: 735
  publication-title: Nat. Energy
– volume: 618
  start-page: 287
  year: 2023
  end-page: 293
  publication-title: Nature
– volume: 8
  start-page: 19908
  year: 2020
  end-page: 19916
  publication-title: J. Mater. Chem. A
– volume: 36
  start-page: 1347
  year: 1998
  end-page: 1352
  publication-title: Carbon
– volume: 142
  start-page: 21393
  year: 2020
  end-page: 21403
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 187
  year: 2019
  end-page: 196
  publication-title: Nat. Energy
– volume: 28
  year: 2022
  publication-title: J. Electrochem.
– volume: 153
  start-page: A595
  year: 2006
  end-page: A606
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 826
  year: 2023
  end-page: 842
  publication-title: Nat. Rev. Chem.
– volume: 60
  start-page: 22672
  year: 2021
  end-page: 22677
  publication-title: Angew. Chem. Int. Ed.
– volume: 21
  start-page: 1175
  year: 2022
  end-page: 1182
  publication-title: Nat. Mater.
– volume: 8
  start-page: 62
  year: 2020
  end-page: 69
  publication-title: ChemElectroChem
– year: 1999
– ident: e_1_2_8_42_2
  doi: 10.1021/acsami.5b00209
– ident: e_1_2_8_31_1
– ident: e_1_2_8_69_2
  doi: 10.1149/1.2164726
– ident: e_1_2_8_28_2
  doi: 10.1016/j.joule.2019.07.008
– volume: 29
  year: 2023
  ident: e_1_2_8_34_2
  publication-title: J. Electrochem.
– ident: e_1_2_8_9_2
  doi: 10.1126/sciadv.adf1550
– ident: e_1_2_8_75_2
  doi: 10.1201/9780824741389
– ident: e_1_2_8_3_2
  doi: 10.1038/s41560-021-00852-3
– ident: e_1_2_8_67_1
– ident: e_1_2_8_77_2
  doi: 10.1016/j.jpowsour.2015.05.078
– ident: e_1_2_8_22_2
  doi: 10.1002/eom2.12325
– ident: e_1_2_8_23_2
  doi: 10.1063/5.0165498
– ident: e_1_2_8_40_1
– ident: e_1_2_8_44_1
– ident: e_1_2_8_7_2
  doi: 10.1038/s41586-023-06235-w
– ident: e_1_2_8_8_2
  doi: 10.1038/s41467-023-39192-z
– ident: e_1_2_8_63_1
– ident: e_1_2_8_15_2
  doi: 10.1002/aenm.202201991
– ident: e_1_2_8_29_2
  doi: 10.1038/natrevmats.2015.5
– ident: e_1_2_8_38_2
  doi: 10.1038/s41467-020-19469-3
– ident: e_1_2_8_81_2
  doi: 10.1149/1945-7111/ac53d0
– ident: e_1_2_8_36_2
  doi: 10.1021/jacs.0c09649
– ident: e_1_2_8_59_2
  doi: 10.1038/s41560-018-0312-z
– volume: 3
  year: 2023
  ident: e_1_2_8_39_2
  publication-title: Energy Materials
– ident: e_1_2_8_47_2
  doi: 10.1039/C7TA08653A
– ident: e_1_2_8_68_2
  doi: 10.1016/j.molliq.2006.08.054
– ident: e_1_2_8_18_1
– ident: e_1_2_8_58_2
  doi: 10.1038/s41565-022-01148-7
– ident: e_1_2_8_50_2
  doi: 10.1002/celc.202000772
– ident: e_1_2_8_14_2
  doi: 10.1002/adfm.202303718
– start-page: 2023
  ident: e_1_2_8_12_2
  publication-title: Nature
– ident: e_1_2_8_61_2
  doi: 10.1021/acs.nanolett.2c02792
– ident: e_1_2_8_56_2
  doi: 10.1038/s41586-023-05970-4
– ident: e_1_2_8_52_2
  doi: 10.1038/nmat4041
– ident: e_1_2_8_54_2
  doi: 10.1002/smll.202303210
– volume: 2
  year: 2022
  ident: e_1_2_8_16_2
  publication-title: Energy Materials
– ident: e_1_2_8_37_2
  doi: 10.1039/D0TA06643E
– ident: e_1_2_8_62_2
  doi: 10.1021/acs.nanolett.3c02784
– ident: e_1_2_8_64_2
  doi: 10.1021/acsenergylett.7b01177
– ident: e_1_2_8_11_1
– ident: e_1_2_8_51_1
– ident: e_1_2_8_17_2
  doi: 10.1002/adma.202205560
– ident: e_1_2_8_65_2
  doi: 10.1126/sciadv.aav3400
– ident: e_1_2_8_20_2
  doi: 10.1038/s41563-022-01319-w
– ident: e_1_2_8_21_2
  doi: 10.1126/sciadv.aat5383
– ident: e_1_2_8_2_2
  doi: 10.1038/s41560-023-01275-y
– ident: e_1_2_8_6_2
  doi: 10.1016/j.joule.2023.08.007
– ident: e_1_2_8_78_2
  doi: 10.1002/celc.201800907
– ident: e_1_2_8_72_1
  doi: 10.1016/j.trechm.2019.01.002
– ident: e_1_2_8_73_1
  doi: 10.1016/j.ensm.2022.10.054
– ident: e_1_2_8_57_2
  doi: 10.1021/jacs.0c10121
– ident: e_1_2_8_26_2
  doi: 10.1002/aenm.201702675
– volume: 28
  year: 2022
  ident: e_1_2_8_30_2
  publication-title: J. Electrochem.
– ident: e_1_2_8_74_1
– ident: e_1_2_8_1_1
– ident: e_1_2_8_32_2
  doi: 10.1002/aenm.202002689
– ident: e_1_2_8_55_1
– ident: e_1_2_8_48_2
  doi: 10.1021/acs.jpcc.1c09614
– ident: e_1_2_8_76_2
  doi: 10.1016/S0008-6223(98)00119-5
– ident: e_1_2_8_25_2
  doi: 10.1039/D1EE02567H
– ident: e_1_2_8_49_2
  doi: 10.1039/C6CP07415D
– ident: e_1_2_8_5_1
– ident: e_1_2_8_41_2
  doi: 10.1002/celc.202001277
– ident: e_1_2_8_43_2
  doi: 10.1002/batt.202000022
– ident: e_1_2_8_60_1
– ident: e_1_2_8_70_1
  doi: 10.1002/anie.202205075
– ident: e_1_2_8_24_1
– ident: e_1_2_8_35_1
– ident: e_1_2_8_80_2
  doi: 10.1039/D1FD00043H
– ident: e_1_2_8_4_2
  doi: 10.1038/s41467-018-03466-8
– ident: e_1_2_8_66_1
  doi: 10.1021/jp047313r
– ident: e_1_2_8_45_2
  doi: 10.1002/cssc.201700691
– ident: e_1_2_8_13_2
  doi: 10.1038/s41586-021-03486-3
– ident: e_1_2_8_33_2
  doi: 10.1038/s41578-019-0157-5
– ident: e_1_2_8_53_2
  doi: 10.1038/s41570-023-00541-7
– ident: e_1_2_8_19_2
  doi: 10.1002/anie.202107648
– ident: e_1_2_8_27_2
  doi: 10.1002/adfm.202203988
– ident: e_1_2_8_46_2
  doi: 10.1016/j.ensm.2018.07.017
– ident: e_1_2_8_71_1
  doi: 10.1016/0032-3861(87)90394-6
– ident: e_1_2_8_10_2
  doi: 10.1002/celc.201600730
– ident: e_1_2_8_79_1
SSID ssj0001105386
Score 2.3241327
Snippet Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and high energy...
Abstract Quasi‐solid‐state electrolytes (QSSEs) based on ionic liquids are recognized as one of the frontrunners of electrolytes for ensuring the safety and...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Deposition
Electrical properties
Electrolytes
ionic liquid
Ionic liquids
Lithium batteries
lithium metal deposition
Molten salt electrolytes
quasi-solid-state electrolyte
Room temperature
Solid electrolytes
solid-electrolyte interphase
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYoPdBLRQtVt4XKB6SeImLHv73BarcUAeoBJG5WbE_KSkto2d0Dtz5Cn7FP0nH-YA9Vpd6SaGJFM57M59HMN4QcsKowMnDITEQnF8Bj5gufZ1UBWpccLGvY9c8v1MmVOL2W10-6-Ft-iCHhljyj-V8nBy_94vCRNDTAPFEQIoTOlRHPyPPUX5uK-rj4-phlQfhQNOMe0TNTtS1TPXNjzg_Xl1iLTA2B_xrqfIpdm-Az3SYvO9RIj1ozvyIbUL8mW-N-WNsOuTmq6ZfEckvPZj9Ws_j7569jjE-RfoY5nbSjbuYPS_hEp323Ij2H1PU7W9zSso4UsWBXKftAEcjiOsub2eoWpRCe05aGE0_Vu-RqOrkcn2TdEIUsIFISWWRMh9RrVbIyZ174UunKWx1LrrUGxqMPwidLegnaW1nxHI84kSkQilW6eEM267sa3hJqQVkZUt40WKELY7wBAz4EZgyiAjUiWa9AFzqG8TToYu5abmTuksLdoPAR-TjIf2-5Nf4qeZzsMUglTuzmwd39N9e5mBNSau-DYaUIIqjoGR5dVR4rG4UE6Udkr7em6xx14bjlmjFrcj0ivLHwPz7FjSdn4-Hu3f-89J68wGuRar-Z2iOby_sV7CO0WfoPze79A9tq78Y
  priority: 102
  providerName: Wiley-Blackwell
Title An Ionic Liquid‐Based Gel Electrolyte: Formation Mechanism and Feasibility for Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202300684
https://www.proquest.com/docview/2927119807
https://doaj.org/article/4557bbc81a4c4c6db109460df9d45e5b
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZaemgvFdBWTYHIByROK9ZeP3sjUQKtACFUJG7W2p4VkcL2QXLg1p_Ab-SXMN5HFA4Vlx53NbJGM2PPN5bnG0L2WVUYGThkJuImF8Bj5gufZ1UBWpccLGvY9c_O1cmV-H4tr9dGfaU3YS09cGu4QyGl9j4YVooggoqeYUGi8ljZKCRIn05fzHlrxVRzu4KwoTCqZ2nM-WGAeWIsRMSdKyOeZaGGrP8ZwlzHqU2imW6S9x1CpEetZlvkFdTb5O24H8z2gdwc1fRbYrSlp7Pfy1l8_PswwlwU6THM6aQdazO_X8BXOu07E-kZpA7f2d0tLetIEfd1r2LvKYJWXGdxM1veohRCcdpSbmIF_ZFcTSc_xidZNzAhC4iKRBYZ0yH1VZWszJkXvlS68lbHkmutgfHog_DJa16C9lZWPMdyJjIFQrFKF5_IRv2zhs-EWlBWhnRHGqzQhTHegAEfAjMGEYAakKw3oAsdm3gaajF3LQ8yd8ngbmXwATlYyf9qeTT-KTlK_lhJJf7r5gdGheuiwr0UFQOy23vTdZvyznHLNWPW5HpAeOPhF1Rx48npePX15X8otkPe4YIivftmapdsLP4sYQ9hzcIPyWsuLobkzWhyfnE5bOL5CUNH9f0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagPZRLVV4ipYAPSJxWXXv9Wm5plJBC0lODEBdrbc_SSOkW2uTQGz-hv5FfwnhfJQeExHGtWWvl8ex8M5r5hpC3rMyM9BwSE9DIBfCQuMylSZmB1gWHnNXs-vMzNV2Ij19kV00Ye2Eafog-4RYto_5fRwOPCenje9ZQD6vIQYgYOlVGPCS7Edrgxd4dfl58XdwnWhBBZPXERzTOWHDLVEfemPLj7U22nFPN4b8FPP-Er7X_mRyQ_RY40mGj6cfkAVRPyN6om9f2lFwMK3oaiW7pbPljswy_ft6doIsK9AOs6LiZdrO6XcN7OukaFukcYuPv8uaSFlWgCAfbYtlbilgW91lfLDeXKIUInTZMnBhYPyOLyfh8NE3aOQqJR7AkksCY9rHdqmBFypxwhdKly3UouNYaGA_OCxeV6SRol8uSpxjlBKZAKFbq7DnZqa4qeEFoDiqXPqZOfS50ZowzYMB5z4xBYKAGJOkO0PqWZDzOuljZhh6Z23jgtj_wAXnXy39v6DX-KnkS9dFLRVrseuHq-pttrcwKKbVz3rBCeOFVcAyjV5WGMg9CgnQDctRp07a2emN5zjVjuUn1gPBaw__4FDsaz0b90-H_vPSG7E3P5zM7Oz379JI8wnURS8GZOiI76-sNvEKks3av27v8G5Do9QE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BKgEXxFOkFNgDEier3vW-3FsaElpIKw4EVVxW3odppNQtbXLojZ_Ab-SXMOtXmwNC4ujVeGXt7Hi-Gc18A_CWlpkWjoVEezRyHphPbGbTpMyCUgULOa3Z9Y-O5cGcfzwRJ7e6-Bt-iD7hFi2j_l9HA7_w5e4NaagLy0hBiBA6lZrfhS2BrikdwNbo6_zb_CbPggAiqwc-om3GelsqO-7GlO1ubrLhm2oK_w3ceRu91u5n-ggetriRjBpFP4Y7oXoC98fduLancDqqyGHkuSWzxY_1wv_--WsfPZQnH8KSTJphN8vrVdgj065fkRyF2Pe7uDojReUJosG2VvaaIJTFfVani_UZSiFAJw0RJ8bVz2A-nXwZHyTtGIXEIVbiiadUudhtVdAipZbbQqrS5soXTCkVKPPWcRt1aUVQNhclSzHI8VQGLmmpsucwqM6r8AJIHmQuXMycupyrTGurgw7WOao14gI5hKQ7QONajvE46mJpGnZkZuKBm_7Ah_Cul79o2DX-Krkf9dFLRVbseuH88rtpjcxwIZS1TtOCO-6ktxSDV5n6MvdcBGGHsNNp07SmemVYzhSluU7VEFit4X98ihlPZuP-aft_XnoD9z6_n5rZ4fGnl_AAl3ksBKdyBwary3V4hThnZV-3V_kP9Xb0IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ionic+Liquid%E2%80%90Based+Gel+Electrolyte%3A+Formation+Mechanism+and+Feasibility+for+Lithium+Metal+Batteries&rft.jtitle=ChemElectroChem&rft.au=Dr.+Yu+Gu&rft.au=Hao%E2%80%90Ning+Chen&rft.au=Dr.+Wei%E2%80%90Wei+Wang&rft.au=Hao+Yan&rft.date=2024-02-16&rft.pub=Wiley-VCH&rft.eissn=2196-0216&rft.volume=11&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcelc.202300684&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4557bbc81a4c4c6db109460df9d45e5b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon