Multifunctional Electronic Textiles by Direct 3D Printing of Stretchable Conductive Fibers
The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating fiber devices into textiles is needed to address the challenge of incorporating functional fiber into ready‐made garments without tearing down...
Saved in:
Published in | Advanced electronic materials Vol. 9; no. 4 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
John Wiley & Sons, Inc
01.04.2023
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating fiber devices into textiles is needed to address the challenge of incorporating functional fiber into ready‐made garments without tearing down the clothing and re‐weaving. A 3D printing method to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns is presented. The fabricated sheath–core fiber consists of a styrene–ethylene–butylene–styrene (SEBS) shell and a Ga–In–Sn alloy liquid metal core. The SEBS shell guarantees the high stretchability (up to 600%) and flexibility, while the liquid metal core offers a high conductivity maintained at large deformation. It is shown that sophisticated patterns, which have millimeter‐level‐resolution that are difficult to be integrated into textiles by weaving, and even more laborious to be incorporated into ready‐made garments, can now be easily modified and implemented into both textiles and ready‐made garments by a time‐saving and low‐cost 3D printing method. Utilizing the electrical characteristics of the fiber in pre‐designed patterns, on‐clothing soft electronics can be printed directly. A printed on‐clothing strain sensor, bending sensor, wireless charging coil, and a touch‐sensing network are demonstrated to show the potential applications in wearable electronics.
A 3D printing method is developed to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns, achieving diverse functions, for example, a printed on‐clothing wireless charging coil. |
---|---|
AbstractList | Abstract The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating fiber devices into textiles is needed to address the challenge of incorporating functional fiber into ready‐made garments without tearing down the clothing and re‐weaving. A 3D printing method to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns is presented. The fabricated sheath–core fiber consists of a styrene–ethylene–butylene–styrene (SEBS) shell and a Ga–In–Sn alloy liquid metal core. The SEBS shell guarantees the high stretchability (up to 600%) and flexibility, while the liquid metal core offers a high conductivity maintained at large deformation. It is shown that sophisticated patterns, which have millimeter‐level‐resolution that are difficult to be integrated into textiles by weaving, and even more laborious to be incorporated into ready‐made garments, can now be easily modified and implemented into both textiles and ready‐made garments by a time‐saving and low‐cost 3D printing method. Utilizing the electrical characteristics of the fiber in pre‐designed patterns, on‐clothing soft electronics can be printed directly. A printed on‐clothing strain sensor, bending sensor, wireless charging coil, and a touch‐sensing network are demonstrated to show the potential applications in wearable electronics. The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating fiber devices into textiles is needed to address the challenge of incorporating functional fiber into ready‐made garments without tearing down the clothing and re‐weaving. A 3D printing method to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns is presented. The fabricated sheath–core fiber consists of a styrene–ethylene–butylene–styrene (SEBS) shell and a Ga–In–Sn alloy liquid metal core. The SEBS shell guarantees the high stretchability (up to 600%) and flexibility, while the liquid metal core offers a high conductivity maintained at large deformation. It is shown that sophisticated patterns, which have millimeter‐level‐resolution that are difficult to be integrated into textiles by weaving, and even more laborious to be incorporated into ready‐made garments, can now be easily modified and implemented into both textiles and ready‐made garments by a time‐saving and low‐cost 3D printing method. Utilizing the electrical characteristics of the fiber in pre‐designed patterns, on‐clothing soft electronics can be printed directly. A printed on‐clothing strain sensor, bending sensor, wireless charging coil, and a touch‐sensing network are demonstrated to show the potential applications in wearable electronics. The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating fiber devices into textiles is needed to address the challenge of incorporating functional fiber into ready‐made garments without tearing down the clothing and re‐weaving. A 3D printing method to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns is presented. The fabricated sheath–core fiber consists of a styrene–ethylene–butylene–styrene (SEBS) shell and a Ga–In–Sn alloy liquid metal core. The SEBS shell guarantees the high stretchability (up to 600%) and flexibility, while the liquid metal core offers a high conductivity maintained at large deformation. It is shown that sophisticated patterns, which have millimeter‐level‐resolution that are difficult to be integrated into textiles by weaving, and even more laborious to be incorporated into ready‐made garments, can now be easily modified and implemented into both textiles and ready‐made garments by a time‐saving and low‐cost 3D printing method. Utilizing the electrical characteristics of the fiber in pre‐designed patterns, on‐clothing soft electronics can be printed directly. A printed on‐clothing strain sensor, bending sensor, wireless charging coil, and a touch‐sensing network are demonstrated to show the potential applications in wearable electronics. A 3D printing method is developed to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns, achieving diverse functions, for example, a printed on‐clothing wireless charging coil. |
Author | Wang, Zhe Shum, Perry Ping Wang, Yuntian Wang, Zhixun Xiong, Ting Wei, Lei |
Author_xml | – sequence: 1 givenname: Yuntian surname: Wang fullname: Wang, Yuntian organization: Southern University of Science and Technology – sequence: 2 givenname: Zhixun surname: Wang fullname: Wang, Zhixun organization: Nanyang Technological University – sequence: 3 givenname: Zhe surname: Wang fullname: Wang, Zhe organization: Nanyang Technological University – sequence: 4 givenname: Ting surname: Xiong fullname: Xiong, Ting organization: Nanyang Technological University – sequence: 5 givenname: Perry Ping surname: Shum fullname: Shum, Perry Ping email: shenp@sustech.edu.cn organization: Southern University of Science and Technology – sequence: 6 givenname: Lei orcidid: 0000-0003-0819-8325 surname: Wei fullname: Wei, Lei email: wei.lei@ntu.edu.sg organization: Nanyang Technological University |
BookMark | eNqFkd1rFDEUxYO0YG376nPA593efEwyeSzbrRa2KFhBfAmZTFKzpJOaZKr733fGrR8I0peby-X8DuGcV-hgSIND6DWBJQGgZ8bFuyUFSoEQxV-gI0qUWhABnw_-2l-i01K2AECkYLxhR-jL9Rhr8ONga0iDiXgdna05DcHiG_ejhugK7nb4IuTpjtkF_pDDUMNwi5PHH2t21X41XXR4lYZ-nFweHL4MncvlBB16E4s7fXqP0afL9c3q3WLz_u3V6nyzsJwyvrCm8Zb3FjhwT70ksoHet5RQyqU3zArLmBBtJ4U00HrVtx3MwwvgwgA7Rld73z6Zrb7P4c7knU4m6J-HlG-1yTXY6LRR4Lzs-iknz1vmTSNa7jhI21CpPJu83uy97nP6NrpS9TaNecqlaAYKVCMln1V8r7I5lZKd1zZUMwdYswlRE9BzKXouRf8uZcKW_2C_PvtfQO2B71MNu2fU-ny9uf7DPgKB-KC1 |
CitedBy_id | crossref_primary_10_1002_admt_202302162 crossref_primary_10_1021_acs_chemrev_3c00569 crossref_primary_10_1016_j_cej_2023_147944 crossref_primary_10_3390_s24113390 crossref_primary_10_1021_acsami_4c06404 crossref_primary_10_1080_14606925_2025_2452084 crossref_primary_10_51473_rcmos_v1i1_2025_871 crossref_primary_10_1088_2058_8585_ad0ea6 crossref_primary_10_1038_s41467_023_40109_z crossref_primary_10_1002_aelm_202300343 crossref_primary_10_1021_acs_chemrev_3c00507 |
Cites_doi | 10.1088/1361-6439/aa62b7 10.3390/polym10060568 10.1002/adfm.202000739 10.1002/advs.201600212 10.1002/smll.202102903 10.3390/polym13152407 10.1021/acsami.9b16618 10.1073/pnas.1707778114 10.1002/smsc.202000080 10.3389/fmats.2021.725420 10.1002/adhm.201800074 10.3390/s22083028 10.1039/C7MH00104E 10.1002/smll.201702817 10.1007/s12221-022-4389-4 10.1021/acsami.7b19823 10.1039/D1TA03663G 10.1016/j.matdes.2017.06.011 10.1186/s40691-020-00233-6 10.1002/adfm.201705591 10.1016/S0032-3861(98)00524-2 10.1038/s41928-019-0257-7 10.1177/2211068215575688 10.1002/aenm.201702047 10.1016/j.bios.2019.111471 10.1002/aelm.202100233 10.1149/2.1121704jes 10.1016/j.eml.2022.101791 10.1007/s42765-022-00173-4 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION JQ2 DOA |
DOI | 10.1002/aelm.202201194 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Computer Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_a90ef7bd022f483fa5684e407c5279f3 10_1002_aelm_202201194 AELM202201194 |
Genre | article |
GrantInformation_xml | – fundername: Singapore Ministry of Education Academic Research Fund Tier 2 funderid: MOE2019‐T2‐2‐127; MOE‐T2EP50120‐0002 – fundername: Schaeffler Hub for Advanced Research – fundername: Singapore Ministry of Education Academic Research Fund Tier 1 funderid: RG62/22 – fundername: NTU‐PSL Joint Lab |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAFWJ AAYXX ABJNI ADMLS AFPKN CITATION M~E AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 |
ID | FETCH-LOGICAL-c4234-ca5fc4dc0404f2f71750df8212247fa3c6c33668b767a08f9d8b09d8bf6046a03 |
IEDL.DBID | DOA |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 01:27:46 EDT 2025 Fri Jul 25 11:48:45 EDT 2025 Tue Jul 01 00:35:23 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Wed Jan 22 16:23:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4234-ca5fc4dc0404f2f71750df8212247fa3c6c33668b767a08f9d8b09d8bf6046a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0819-8325 |
OpenAccessLink | https://doaj.org/article/a90ef7bd022f483fa5684e407c5279f3 |
PQID | 3090957743 |
PQPubID | 6852865 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a90ef7bd022f483fa5684e407c5279f3 proquest_journals_3090957743 crossref_citationtrail_10_1002_aelm_202201194 crossref_primary_10_1002_aelm_202201194 wiley_primary_10_1002_aelm_202201194_AELM202201194 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 20230401 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2021; 9 2021; 8 2021; 7 2018; 28 2017; 4 2019; 2 2019; 11 2017; 27 2022; 23 2017; 131 1999; 40 2022; 22 2021; 1 2019; 141 2017; 114 2018; 7 2021; 13 2021; 38 2021; 59 2018; 8 2018; 17 2016; 3 2020; 30 2022; 4 2021 2015; 20 2021; 17 2016 2015 2017; 164 2022; 55 2018; 10 2018; 14 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 Yoshida T. (e_1_2_8_36_1) 2015 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 Kon L. S. (e_1_2_8_24_1) 2018; 17 e_1_2_8_6_1 Shin D. (e_1_2_8_19_1) 2021 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 Song M. J. (e_1_2_8_12_1) 2021; 59 Liu X. (e_1_2_8_15_1) 2021; 38 Chen R. (e_1_2_8_9_1) 2016 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 40 start-page: 2993 year: 1999 publication-title: Polymer – volume: 4 start-page: 477 year: 2017 publication-title: Mater. Horiz. – volume: 20 start-page: 463 year: 2015 publication-title: J. Lab. Autom. – volume: 10 start-page: 568 year: 2018 publication-title: Polymers – volume: 141 year: 2019 publication-title: Biosens. Bioelectron. – volume: 1 year: 2021 publication-title: Small Sci. – volume: 17 start-page: 53 year: 2018 publication-title: J. Korean Soc. Manuf. Process Eng. – volume: 59 start-page: 159 year: 2021 publication-title: Korean Chem. Eng. Res. – volume: 38 start-page: 67 year: 2021 publication-title: Acta Mater. Compos. Sin. – volume: 8 year: 2021 publication-title: Front. Mater. – year: 2021 – volume: 131 start-page: 394 year: 2017 publication-title: Mater. Des. – volume: 14 year: 2018 publication-title: Small – start-page: 230 year: 2015 end-page: 233 – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 13 start-page: 2407 year: 2021 publication-title: Polymers – volume: 17 year: 2021 publication-title: Small – volume: 3 year: 2016 publication-title: Adv. Sci. – year: 2016 – volume: 22 start-page: 3028 year: 2022 publication-title: Sensors – volume: 2 start-page: 243 year: 2019 publication-title: Nat. Electron. – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 8 start-page: 5 year: 2021 publication-title: Fash. Text. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 987 year: 2022 publication-title: Adv. Fiber Mater. – start-page: 478 year: 2021 end-page: 481 – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 164 start-page: B136 year: 2017 publication-title: J. Electrochem. Soc. – volume: 114 start-page: 7240 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 year: 2017 publication-title: J. Micromech. Microeng. – volume: 55 year: 2022 publication-title: Extreme Mech. Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 23 start-page: 2994 year: 2022 publication-title: Fibers Polym. – ident: e_1_2_8_25_1 doi: 10.1088/1361-6439/aa62b7 – ident: e_1_2_8_4_1 doi: 10.3390/polym10060568 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.202000739 – ident: e_1_2_8_32_1 doi: 10.1002/advs.201600212 – ident: e_1_2_8_10_1 doi: 10.1002/smll.202102903 – ident: e_1_2_8_22_1 doi: 10.3390/polym13152407 – ident: e_1_2_8_28_1 doi: 10.1021/acsami.9b16618 – ident: e_1_2_8_29_1 doi: 10.1073/pnas.1707778114 – ident: e_1_2_8_26_1 doi: 10.1002/smsc.202000080 – ident: e_1_2_8_2_1 doi: 10.3389/fmats.2021.725420 – ident: e_1_2_8_6_1 doi: 10.1002/adhm.201800074 – ident: e_1_2_8_1_1 doi: 10.3390/s22083028 – ident: e_1_2_8_8_1 doi: 10.1039/C7MH00104E – volume: 38 start-page: 67 year: 2021 ident: e_1_2_8_15_1 publication-title: Acta Mater. Compos. Sin. – ident: e_1_2_8_35_1 doi: 10.1002/smll.201702817 – ident: e_1_2_8_14_1 doi: 10.1007/s12221-022-4389-4 – start-page: 478 volume-title: 2021 IEEE International Workshop on Metrology for Industry 4.0 & IOT (IEEE METROIND4.0 & IOT) year: 2021 ident: e_1_2_8_19_1 – ident: e_1_2_8_20_1 doi: 10.1021/acsami.7b19823 – ident: e_1_2_8_11_1 doi: 10.1039/D1TA03663G – ident: e_1_2_8_23_1 doi: 10.1016/j.matdes.2017.06.011 – ident: e_1_2_8_5_1 – ident: e_1_2_8_34_1 doi: 10.1186/s40691-020-00233-6 – start-page: 230 volume-title: 2015 7th Asia‐Pacific Conf. on Environmental Electromagnetics (CEEM) year: 2015 ident: e_1_2_8_36_1 – volume: 59 start-page: 159 year: 2021 ident: e_1_2_8_12_1 publication-title: Korean Chem. Eng. Res. – ident: e_1_2_8_17_1 doi: 10.1002/adfm.201705591 – volume-title: Intelligent Robotics and Applications, 9th Int. Conf., ICIRA 2016, Tokyo, Japan, August 22‐24, 2016, Proc., Part II year: 2016 ident: e_1_2_8_9_1 – ident: e_1_2_8_31_1 doi: 10.1016/S0032-3861(98)00524-2 – ident: e_1_2_8_3_1 doi: 10.1038/s41928-019-0257-7 – ident: e_1_2_8_27_1 doi: 10.1177/2211068215575688 – ident: e_1_2_8_16_1 doi: 10.1002/aenm.201702047 – ident: e_1_2_8_18_1 doi: 10.1016/j.bios.2019.111471 – ident: e_1_2_8_30_1 doi: 10.1002/aelm.202100233 – ident: e_1_2_8_7_1 doi: 10.1149/2.1121704jes – ident: e_1_2_8_33_1 doi: 10.1016/j.eml.2022.101791 – ident: e_1_2_8_21_1 doi: 10.1007/s42765-022-00173-4 – volume: 17 start-page: 53 year: 2018 ident: e_1_2_8_24_1 publication-title: J. Korean Soc. Manuf. Process Eng. |
SSID | ssj0001763453 |
Score | 2.3428464 |
Snippet | The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating... Abstract The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 3-D printers 3D printing additive manufacturing Casting Deformation Design Elastomers electronic textiles Electronics Gallium Garments Liquid metals Metals Physiology Printing Raw materials sensors Sheaths soft electronics Stretchability Styrenes Textiles Three dimensional printing Tin base alloys Viscosity Wearable computers Wearable technology Weaving wireless charging Wireless power transmission |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA6re_Eiii47rkoOgqfGbJJO0kcfM4ioeFAY9hLyFEFmZGY87L-3Kt3TOgcRvDR0dxJCVb5K5VFfEXLkTXZCcwASrBUqaWRdeQdj2agUfah90iVI7OZWXT7Iq3E9_hDF3_JD9BtuiIxirxHgzs9P3klDXXrGSHKOM1gj18hPjK9F9nwu7953WQA-slBRAjKb6q9i4yVzI-Mnq02szEyFwH_F6_zou5bJZ7RFNjuvkZ62at4mP9Jkh_wrwbM4MbX7eXTYp7Sh92BzoaE59f9pa9WouKB3s6eSGIJOM8XjaNAYRk7R8-kEaV_B8NER3iCZ75KH0fD-_LLqUiVUAfwhWQVX5yBjAEjKzDPIvWYxG47nZhq0EVQQQinjtdKOmdxE4xk-soIFsmPiF1mfTCfpN6FcCFjkiahNijJo1mSWgosiR1drr_mAVEsx2dDxiGM6i2fbMiBzi2K1vVgH5Lgv_9IyaHxa8gyl3pdC5uvyYTp7tB2QrGtYytpHqJSlEdnVysgEPQ41100WA7K_1Jnt4Di3gjXgSoKnC7950eMXXbGnw-ub_m3vO5X-kA1MTd_e8tkn64vZazoAB2bhD8sYfQMu6OXQ priority: 102 providerName: Wiley-Blackwell |
Title | Multifunctional Electronic Textiles by Direct 3D Printing of Stretchable Conductive Fibers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202201194 https://www.proquest.com/docview/3090957743 https://doaj.org/article/a90ef7bd022f483fa5684e407c5279f3 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7akxdRVKyPkoPgaTHksckeq7YUsdKDgngJeYIgW2nrwX_vJLtd2oN48bKwm7CEbzKZmSTzDUJXVkXDJAVFglih4IqLwhqYy6oM3jphg8xJYtOncvLCH17F60apr3QnrKEHboC7MRUJUVoPtiZyxaIRpeIBwhAnqKxi5vkEm7cRTOXdFVAbLtiapZHQGxM-UuI5TQav4ltWKJP1b3mYm35qNjTjA7Tfeoh42IzsEO2E-gi95UTZZISavTs86srX4GdYX-FHS2y_cbOCYXaPZ4v3XAQCzyNOR88gnZQlhe_mdaJ4hUUOj9NtkeUxehmPnu8mRVsWoXDg-_DCGREd9w7Uj0caAWNBfFQ0nZFJQN6VjrGyVFaW0hAVK68sSY9YQjBsCDtBvXpeh1OEKWOAJPNSBc-dJFUkwRnPojdCWkn7qFjDpF3LGZ5KV3zohu2Y6gSr7mDto-uu_2fDlvFrz9uEetcrsVznDyB73cpe_yX7PrpYy0y3qrfUjFTgNoJXC800y_GPoejh6HHavZ39x8DO0V4qS9_c8LlAvdXiK1yC87KyA7RL-WyQZ-sPIYvpkQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxELUoHOilagWoaSn4gMRphbG9tvdIaaIUEsQhSIiL5c-qEkqqhB767zvj3SzNoUListLu2pY142ePx543hJx4k53QHIAEe4VKGllX3sFYNipFH2qfdAkSm96o8Z28uq_XtwkxFqblh-gdboiMMl8jwNEhffbMGurSI4aSc1zCGvmG7EjFNWKTy9tnNwvgRxYuSoBmU50rdr-mbmT8bLOJjaWpMPhvmJ3_Gq9l9Rm9J-86s5FetHr-QLbSfI88lOhZXJlahx4d9jlt6AwmXWhoRf0f2k5rVHyjt8ufJTMEXWSK59GgMgydopeLOfK-wsxHR3iFZLVP7kbD2eW46nIlVAEMIlkFV-cgYwBMyswzCL5mMRuOB2ca1BFUEEIp47XSjpncROMZPrKCHbJj4oBszxfz9JFQLgTs8kTUJkUZNGsyS8FFkaOrtdd8QKq1mGzoiMQxn8WjbSmQuUWx2l6sA3Lal__VUmj8t-RXlHpfCqmvy4fF8oftkGRdw1LWPkKlLI3IrlZGJuhxqLlushiQw7XObIfHlRWsAVsSTF34zYseX-iKvRhOpv3bp9dUOia749l0Yiffb64_k7eYp7698nNItp-Wv9MXsGae_FEZr38BpT3pPA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFA9VQbyUllZca9scCj0NxiSTZI6r7mJbFQ9uWbyEfBZBdmVXD_73vpeZHd1DKfQyMDNJCO_l9_Ly8X6PkG_eZCc0ByDBWqGSRtaVdzCWjUrRh9onXYLELi7V2UT-nNbTV1H8LT9Ev-GGyCj2GgF-H_PhC2moS3cYSc5xBmvkBtlCqjwY11vD35Obycs-CwBIFjJKwGZTHSk2XXE3Mn643sja3FQo_Nf8ztfea5l-xu_I285vpMNW0e_JmzT7QG5K-CxOTe2OHh31SW3oNVhdaGhJ_RNt7RoVp_RqcVtSQ9B5pnggDTrD2Cl6Mp8h8SuYPjrGOyTLj2QyHl2fnFVdsoQqgEckq-DqHGQMAEqZeQbJ1yxmw_HkTIM-ggpCKGW8Vtoxk5toPMNHVrBEdkzsks3ZfJb2COVCwDJPRG1SlEGzJrMUXBQ5ulp7zQekWonJho5JHBNa3NmWA5lbFKvtxTog3_vy9y2Hxl9LHqPU-1LIfV0-zBd_bAcl6xqWsvYRKmVpRHa1MjJBj0PNdZPFgBysdGY7QC6tYA04k-Drwm9e9PiPrtjh6Pyif9v_n0pfyfbV6die_7j89YnsYJ769srPAdl8WDymz-DNPPgv3YB9Bsip6jQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Electronic+Textiles+by+Direct+3D+Printing+of+Stretchable+Conductive+Fibers&rft.jtitle=Advanced+electronic+materials&rft.au=Wang%2C+Yuntian&rft.au=Wang%2C+Zhixun&rft.au=Wang%2C+Zhe&rft.au=Xiong%2C+Ting&rft.date=2023-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=9&rft.issue=4&rft_id=info:doi/10.1002%2Faelm.202201194&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |