Multifunctional Electronic Textiles by Direct 3D Printing of Stretchable Conductive Fibers

The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating fiber devices into textiles is needed to address the challenge of incorporating functional fiber into ready‐made garments without tearing down...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 9; no. 4
Main Authors Wang, Yuntian, Wang, Zhixun, Wang, Zhe, Xiong, Ting, Shum, Perry Ping, Wei, Lei
Format Journal Article
LanguageEnglish
Published Seoul John Wiley & Sons, Inc 01.04.2023
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating fiber devices into textiles is needed to address the challenge of incorporating functional fiber into ready‐made garments without tearing down the clothing and re‐weaving. A 3D printing method to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns is presented. The fabricated sheath–core fiber consists of a styrene–ethylene–butylene–styrene (SEBS) shell and a Ga–In–Sn alloy liquid metal core. The SEBS shell guarantees the high stretchability (up to 600%) and flexibility, while the liquid metal core offers a high conductivity maintained at large deformation. It is shown that sophisticated patterns, which have millimeter‐level‐resolution that are difficult to be integrated into textiles by weaving, and even more laborious to be incorporated into ready‐made garments, can now be easily modified and implemented into both textiles and ready‐made garments by a time‐saving and low‐cost 3D printing method. Utilizing the electrical characteristics of the fiber in pre‐designed patterns, on‐clothing soft electronics can be printed directly. A printed on‐clothing strain sensor, bending sensor, wireless charging coil, and a touch‐sensing network are demonstrated to show the potential applications in wearable electronics. A 3D printing method is developed to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns, achieving diverse functions, for example, a printed on‐clothing wireless charging coil.
AbstractList Abstract The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating fiber devices into textiles is needed to address the challenge of incorporating functional fiber into ready‐made garments without tearing down the clothing and re‐weaving. A 3D printing method to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns is presented. The fabricated sheath–core fiber consists of a styrene–ethylene–butylene–styrene (SEBS) shell and a Ga–In–Sn alloy liquid metal core. The SEBS shell guarantees the high stretchability (up to 600%) and flexibility, while the liquid metal core offers a high conductivity maintained at large deformation. It is shown that sophisticated patterns, which have millimeter‐level‐resolution that are difficult to be integrated into textiles by weaving, and even more laborious to be incorporated into ready‐made garments, can now be easily modified and implemented into both textiles and ready‐made garments by a time‐saving and low‐cost 3D printing method. Utilizing the electrical characteristics of the fiber in pre‐designed patterns, on‐clothing soft electronics can be printed directly. A printed on‐clothing strain sensor, bending sensor, wireless charging coil, and a touch‐sensing network are demonstrated to show the potential applications in wearable electronics.
The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating fiber devices into textiles is needed to address the challenge of incorporating functional fiber into ready‐made garments without tearing down the clothing and re‐weaving. A 3D printing method to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns is presented. The fabricated sheath–core fiber consists of a styrene–ethylene–butylene–styrene (SEBS) shell and a Ga–In–Sn alloy liquid metal core. The SEBS shell guarantees the high stretchability (up to 600%) and flexibility, while the liquid metal core offers a high conductivity maintained at large deformation. It is shown that sophisticated patterns, which have millimeter‐level‐resolution that are difficult to be integrated into textiles by weaving, and even more laborious to be incorporated into ready‐made garments, can now be easily modified and implemented into both textiles and ready‐made garments by a time‐saving and low‐cost 3D printing method. Utilizing the electrical characteristics of the fiber in pre‐designed patterns, on‐clothing soft electronics can be printed directly. A printed on‐clothing strain sensor, bending sensor, wireless charging coil, and a touch‐sensing network are demonstrated to show the potential applications in wearable electronics.
The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating fiber devices into textiles is needed to address the challenge of incorporating functional fiber into ready‐made garments without tearing down the clothing and re‐weaving. A 3D printing method to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns is presented. The fabricated sheath–core fiber consists of a styrene–ethylene–butylene–styrene (SEBS) shell and a Ga–In–Sn alloy liquid metal core. The SEBS shell guarantees the high stretchability (up to 600%) and flexibility, while the liquid metal core offers a high conductivity maintained at large deformation. It is shown that sophisticated patterns, which have millimeter‐level‐resolution that are difficult to be integrated into textiles by weaving, and even more laborious to be incorporated into ready‐made garments, can now be easily modified and implemented into both textiles and ready‐made garments by a time‐saving and low‐cost 3D printing method. Utilizing the electrical characteristics of the fiber in pre‐designed patterns, on‐clothing soft electronics can be printed directly. A printed on‐clothing strain sensor, bending sensor, wireless charging coil, and a touch‐sensing network are demonstrated to show the potential applications in wearable electronics. A 3D printing method is developed to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns, achieving diverse functions, for example, a printed on‐clothing wireless charging coil.
Author Wang, Zhe
Shum, Perry Ping
Wang, Yuntian
Wang, Zhixun
Xiong, Ting
Wei, Lei
Author_xml – sequence: 1
  givenname: Yuntian
  surname: Wang
  fullname: Wang, Yuntian
  organization: Southern University of Science and Technology
– sequence: 2
  givenname: Zhixun
  surname: Wang
  fullname: Wang, Zhixun
  organization: Nanyang Technological University
– sequence: 3
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  organization: Nanyang Technological University
– sequence: 4
  givenname: Ting
  surname: Xiong
  fullname: Xiong, Ting
  organization: Nanyang Technological University
– sequence: 5
  givenname: Perry Ping
  surname: Shum
  fullname: Shum, Perry Ping
  email: shenp@sustech.edu.cn
  organization: Southern University of Science and Technology
– sequence: 6
  givenname: Lei
  orcidid: 0000-0003-0819-8325
  surname: Wei
  fullname: Wei, Lei
  email: wei.lei@ntu.edu.sg
  organization: Nanyang Technological University
BookMark eNqFkd1rFDEUxYO0YG376nPA593efEwyeSzbrRa2KFhBfAmZTFKzpJOaZKr733fGrR8I0peby-X8DuGcV-hgSIND6DWBJQGgZ8bFuyUFSoEQxV-gI0qUWhABnw_-2l-i01K2AECkYLxhR-jL9Rhr8ONga0iDiXgdna05DcHiG_ejhugK7nb4IuTpjtkF_pDDUMNwi5PHH2t21X41XXR4lYZ-nFweHL4MncvlBB16E4s7fXqP0afL9c3q3WLz_u3V6nyzsJwyvrCm8Zb3FjhwT70ksoHet5RQyqU3zArLmBBtJ4U00HrVtx3MwwvgwgA7Rld73z6Zrb7P4c7knU4m6J-HlG-1yTXY6LRR4Lzs-iknz1vmTSNa7jhI21CpPJu83uy97nP6NrpS9TaNecqlaAYKVCMln1V8r7I5lZKd1zZUMwdYswlRE9BzKXouRf8uZcKW_2C_PvtfQO2B71MNu2fU-ny9uf7DPgKB-KC1
CitedBy_id crossref_primary_10_1002_admt_202302162
crossref_primary_10_1021_acs_chemrev_3c00569
crossref_primary_10_1016_j_cej_2023_147944
crossref_primary_10_3390_s24113390
crossref_primary_10_1021_acsami_4c06404
crossref_primary_10_1080_14606925_2025_2452084
crossref_primary_10_51473_rcmos_v1i1_2025_871
crossref_primary_10_1088_2058_8585_ad0ea6
crossref_primary_10_1038_s41467_023_40109_z
crossref_primary_10_1002_aelm_202300343
crossref_primary_10_1021_acs_chemrev_3c00507
Cites_doi 10.1088/1361-6439/aa62b7
10.3390/polym10060568
10.1002/adfm.202000739
10.1002/advs.201600212
10.1002/smll.202102903
10.3390/polym13152407
10.1021/acsami.9b16618
10.1073/pnas.1707778114
10.1002/smsc.202000080
10.3389/fmats.2021.725420
10.1002/adhm.201800074
10.3390/s22083028
10.1039/C7MH00104E
10.1002/smll.201702817
10.1007/s12221-022-4389-4
10.1021/acsami.7b19823
10.1039/D1TA03663G
10.1016/j.matdes.2017.06.011
10.1186/s40691-020-00233-6
10.1002/adfm.201705591
10.1016/S0032-3861(98)00524-2
10.1038/s41928-019-0257-7
10.1177/2211068215575688
10.1002/aenm.201702047
10.1016/j.bios.2019.111471
10.1002/aelm.202100233
10.1149/2.1121704jes
10.1016/j.eml.2022.101791
10.1007/s42765-022-00173-4
ContentType Journal Article
Copyright 2023 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
JQ2
DOA
DOI 10.1002/aelm.202201194
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Computer Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_a90ef7bd022f483fa5684e407c5279f3
10_1002_aelm_202201194
AELM202201194
Genre article
GrantInformation_xml – fundername: Singapore Ministry of Education Academic Research Fund Tier 2
  funderid: MOE2019‐T2‐2‐127; MOE‐T2EP50120‐0002
– fundername: Schaeffler Hub for Advanced Research
– fundername: Singapore Ministry of Education Academic Research Fund Tier 1
  funderid: RG62/22
– fundername: NTU‐PSL Joint Lab
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAFWJ
AAYXX
ABJNI
ADMLS
AFPKN
CITATION
M~E
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
ID FETCH-LOGICAL-c4234-ca5fc4dc0404f2f71750df8212247fa3c6c33668b767a08f9d8b09d8bf6046a03
IEDL.DBID DOA
ISSN 2199-160X
IngestDate Wed Aug 27 01:27:46 EDT 2025
Fri Jul 25 11:48:45 EDT 2025
Tue Jul 01 00:35:23 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Wed Jan 22 16:23:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4234-ca5fc4dc0404f2f71750df8212247fa3c6c33668b767a08f9d8b09d8bf6046a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0819-8325
OpenAccessLink https://doaj.org/article/a90ef7bd022f483fa5684e407c5279f3
PQID 3090957743
PQPubID 6852865
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_a90ef7bd022f483fa5684e407c5279f3
proquest_journals_3090957743
crossref_citationtrail_10_1002_aelm_202201194
crossref_primary_10_1002_aelm_202201194
wiley_primary_10_1002_aelm_202201194_AELM202201194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Advanced electronic materials
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2021; 9
2021; 8
2021; 7
2018; 28
2017; 4
2019; 2
2019; 11
2017; 27
2022; 23
2017; 131
1999; 40
2022; 22
2021; 1
2019; 141
2017; 114
2018; 7
2021; 13
2021; 38
2021; 59
2018; 8
2018; 17
2016; 3
2020; 30
2022; 4
2021
2015; 20
2021; 17
2016
2015
2017; 164
2022; 55
2018; 10
2018; 14
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
Yoshida T. (e_1_2_8_36_1) 2015
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Kon L. S. (e_1_2_8_24_1) 2018; 17
e_1_2_8_6_1
Shin D. (e_1_2_8_19_1) 2021
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
Song M. J. (e_1_2_8_12_1) 2021; 59
Liu X. (e_1_2_8_15_1) 2021; 38
Chen R. (e_1_2_8_9_1) 2016
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 40
  start-page: 2993
  year: 1999
  publication-title: Polymer
– volume: 4
  start-page: 477
  year: 2017
  publication-title: Mater. Horiz.
– volume: 20
  start-page: 463
  year: 2015
  publication-title: J. Lab. Autom.
– volume: 10
  start-page: 568
  year: 2018
  publication-title: Polymers
– volume: 141
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 1
  year: 2021
  publication-title: Small Sci.
– volume: 17
  start-page: 53
  year: 2018
  publication-title: J. Korean Soc. Manuf. Process Eng.
– volume: 59
  start-page: 159
  year: 2021
  publication-title: Korean Chem. Eng. Res.
– volume: 38
  start-page: 67
  year: 2021
  publication-title: Acta Mater. Compos. Sin.
– volume: 8
  year: 2021
  publication-title: Front. Mater.
– year: 2021
– volume: 131
  start-page: 394
  year: 2017
  publication-title: Mater. Des.
– volume: 14
  year: 2018
  publication-title: Small
– start-page: 230
  year: 2015
  end-page: 233
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 13
  start-page: 2407
  year: 2021
  publication-title: Polymers
– volume: 17
  year: 2021
  publication-title: Small
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– year: 2016
– volume: 22
  start-page: 3028
  year: 2022
  publication-title: Sensors
– volume: 2
  start-page: 243
  year: 2019
  publication-title: Nat. Electron.
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 8
  start-page: 5
  year: 2021
  publication-title: Fash. Text.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 987
  year: 2022
  publication-title: Adv. Fiber Mater.
– start-page: 478
  year: 2021
  end-page: 481
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 164
  start-page: B136
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 114
  start-page: 7240
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  year: 2017
  publication-title: J. Micromech. Microeng.
– volume: 55
  year: 2022
  publication-title: Extreme Mech. Lett.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 2994
  year: 2022
  publication-title: Fibers Polym.
– ident: e_1_2_8_25_1
  doi: 10.1088/1361-6439/aa62b7
– ident: e_1_2_8_4_1
  doi: 10.3390/polym10060568
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.202000739
– ident: e_1_2_8_32_1
  doi: 10.1002/advs.201600212
– ident: e_1_2_8_10_1
  doi: 10.1002/smll.202102903
– ident: e_1_2_8_22_1
  doi: 10.3390/polym13152407
– ident: e_1_2_8_28_1
  doi: 10.1021/acsami.9b16618
– ident: e_1_2_8_29_1
  doi: 10.1073/pnas.1707778114
– ident: e_1_2_8_26_1
  doi: 10.1002/smsc.202000080
– ident: e_1_2_8_2_1
  doi: 10.3389/fmats.2021.725420
– ident: e_1_2_8_6_1
  doi: 10.1002/adhm.201800074
– ident: e_1_2_8_1_1
  doi: 10.3390/s22083028
– ident: e_1_2_8_8_1
  doi: 10.1039/C7MH00104E
– volume: 38
  start-page: 67
  year: 2021
  ident: e_1_2_8_15_1
  publication-title: Acta Mater. Compos. Sin.
– ident: e_1_2_8_35_1
  doi: 10.1002/smll.201702817
– ident: e_1_2_8_14_1
  doi: 10.1007/s12221-022-4389-4
– start-page: 478
  volume-title: 2021 IEEE International Workshop on Metrology for Industry 4.0 & IOT (IEEE METROIND4.0 & IOT)
  year: 2021
  ident: e_1_2_8_19_1
– ident: e_1_2_8_20_1
  doi: 10.1021/acsami.7b19823
– ident: e_1_2_8_11_1
  doi: 10.1039/D1TA03663G
– ident: e_1_2_8_23_1
  doi: 10.1016/j.matdes.2017.06.011
– ident: e_1_2_8_5_1
– ident: e_1_2_8_34_1
  doi: 10.1186/s40691-020-00233-6
– start-page: 230
  volume-title: 2015 7th Asia‐Pacific Conf. on Environmental Electromagnetics (CEEM)
  year: 2015
  ident: e_1_2_8_36_1
– volume: 59
  start-page: 159
  year: 2021
  ident: e_1_2_8_12_1
  publication-title: Korean Chem. Eng. Res.
– ident: e_1_2_8_17_1
  doi: 10.1002/adfm.201705591
– volume-title: Intelligent Robotics and Applications, 9th Int. Conf., ICIRA 2016, Tokyo, Japan, August 22‐24, 2016, Proc., Part II
  year: 2016
  ident: e_1_2_8_9_1
– ident: e_1_2_8_31_1
  doi: 10.1016/S0032-3861(98)00524-2
– ident: e_1_2_8_3_1
  doi: 10.1038/s41928-019-0257-7
– ident: e_1_2_8_27_1
  doi: 10.1177/2211068215575688
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.201702047
– ident: e_1_2_8_18_1
  doi: 10.1016/j.bios.2019.111471
– ident: e_1_2_8_30_1
  doi: 10.1002/aelm.202100233
– ident: e_1_2_8_7_1
  doi: 10.1149/2.1121704jes
– ident: e_1_2_8_33_1
  doi: 10.1016/j.eml.2022.101791
– ident: e_1_2_8_21_1
  doi: 10.1007/s42765-022-00173-4
– volume: 17
  start-page: 53
  year: 2018
  ident: e_1_2_8_24_1
  publication-title: J. Korean Soc. Manuf. Process Eng.
SSID ssj0001763453
Score 2.3428464
Snippet The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating...
Abstract The integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3-D printers
3D printing
additive manufacturing
Casting
Deformation
Design
Elastomers
electronic textiles
Electronics
Gallium
Garments
Liquid metals
Metals
Physiology
Printing
Raw materials
sensors
Sheaths
soft electronics
Stretchability
Styrenes
Textiles
Three dimensional printing
Tin base alloys
Viscosity
Wearable computers
Wearable technology
Weaving
wireless charging
Wireless power transmission
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA6re_Eiii47rkoOgqfGbJJO0kcfM4ioeFAY9hLyFEFmZGY87L-3Kt3TOgcRvDR0dxJCVb5K5VFfEXLkTXZCcwASrBUqaWRdeQdj2agUfah90iVI7OZWXT7Iq3E9_hDF3_JD9BtuiIxirxHgzs9P3klDXXrGSHKOM1gj18hPjK9F9nwu7953WQA-slBRAjKb6q9i4yVzI-Mnq02szEyFwH_F6_zou5bJZ7RFNjuvkZ62at4mP9Jkh_wrwbM4MbX7eXTYp7Sh92BzoaE59f9pa9WouKB3s6eSGIJOM8XjaNAYRk7R8-kEaV_B8NER3iCZ75KH0fD-_LLqUiVUAfwhWQVX5yBjAEjKzDPIvWYxG47nZhq0EVQQQinjtdKOmdxE4xk-soIFsmPiF1mfTCfpN6FcCFjkiahNijJo1mSWgosiR1drr_mAVEsx2dDxiGM6i2fbMiBzi2K1vVgH5Lgv_9IyaHxa8gyl3pdC5uvyYTp7tB2QrGtYytpHqJSlEdnVysgEPQ41100WA7K_1Jnt4Di3gjXgSoKnC7950eMXXbGnw-ub_m3vO5X-kA1MTd_e8tkn64vZazoAB2bhD8sYfQMu6OXQ
  priority: 102
  providerName: Wiley-Blackwell
Title Multifunctional Electronic Textiles by Direct 3D Printing of Stretchable Conductive Fibers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202201194
https://www.proquest.com/docview/3090957743
https://doaj.org/article/a90ef7bd022f483fa5684e407c5279f3
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7akxdRVKyPkoPgaTHksckeq7YUsdKDgngJeYIgW2nrwX_vJLtd2oN48bKwm7CEbzKZmSTzDUJXVkXDJAVFglih4IqLwhqYy6oM3jphg8xJYtOncvLCH17F60apr3QnrKEHboC7MRUJUVoPtiZyxaIRpeIBwhAnqKxi5vkEm7cRTOXdFVAbLtiapZHQGxM-UuI5TQav4ltWKJP1b3mYm35qNjTjA7Tfeoh42IzsEO2E-gi95UTZZISavTs86srX4GdYX-FHS2y_cbOCYXaPZ4v3XAQCzyNOR88gnZQlhe_mdaJ4hUUOj9NtkeUxehmPnu8mRVsWoXDg-_DCGREd9w7Uj0caAWNBfFQ0nZFJQN6VjrGyVFaW0hAVK68sSY9YQjBsCDtBvXpeh1OEKWOAJPNSBc-dJFUkwRnPojdCWkn7qFjDpF3LGZ5KV3zohu2Y6gSr7mDto-uu_2fDlvFrz9uEetcrsVznDyB73cpe_yX7PrpYy0y3qrfUjFTgNoJXC800y_GPoejh6HHavZ39x8DO0V4qS9_c8LlAvdXiK1yC87KyA7RL-WyQZ-sPIYvpkQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxELUoHOilagWoaSn4gMRphbG9tvdIaaIUEsQhSIiL5c-qEkqqhB767zvj3SzNoUListLu2pY142ePx543hJx4k53QHIAEe4VKGllX3sFYNipFH2qfdAkSm96o8Z28uq_XtwkxFqblh-gdboiMMl8jwNEhffbMGurSI4aSc1zCGvmG7EjFNWKTy9tnNwvgRxYuSoBmU50rdr-mbmT8bLOJjaWpMPhvmJ3_Gq9l9Rm9J-86s5FetHr-QLbSfI88lOhZXJlahx4d9jlt6AwmXWhoRf0f2k5rVHyjt8ufJTMEXWSK59GgMgydopeLOfK-wsxHR3iFZLVP7kbD2eW46nIlVAEMIlkFV-cgYwBMyswzCL5mMRuOB2ca1BFUEEIp47XSjpncROMZPrKCHbJj4oBszxfz9JFQLgTs8kTUJkUZNGsyS8FFkaOrtdd8QKq1mGzoiMQxn8WjbSmQuUWx2l6sA3Lal__VUmj8t-RXlHpfCqmvy4fF8oftkGRdw1LWPkKlLI3IrlZGJuhxqLlushiQw7XObIfHlRWsAVsSTF34zYseX-iKvRhOpv3bp9dUOia749l0Yiffb64_k7eYp7698nNItp-Wv9MXsGae_FEZr38BpT3pPA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFA9VQbyUllZca9scCj0NxiSTZI6r7mJbFQ9uWbyEfBZBdmVXD_73vpeZHd1DKfQyMDNJCO_l9_Ly8X6PkG_eZCc0ByDBWqGSRtaVdzCWjUrRh9onXYLELi7V2UT-nNbTV1H8LT9Ev-GGyCj2GgF-H_PhC2moS3cYSc5xBmvkBtlCqjwY11vD35Obycs-CwBIFjJKwGZTHSk2XXE3Mn643sja3FQo_Nf8ztfea5l-xu_I285vpMNW0e_JmzT7QG5K-CxOTe2OHh31SW3oNVhdaGhJ_RNt7RoVp_RqcVtSQ9B5pnggDTrD2Cl6Mp8h8SuYPjrGOyTLj2QyHl2fnFVdsoQqgEckq-DqHGQMAEqZeQbJ1yxmw_HkTIM-ggpCKGW8Vtoxk5toPMNHVrBEdkzsks3ZfJb2COVCwDJPRG1SlEGzJrMUXBQ5ulp7zQekWonJho5JHBNa3NmWA5lbFKvtxTog3_vy9y2Hxl9LHqPU-1LIfV0-zBd_bAcl6xqWsvYRKmVpRHa1MjJBj0PNdZPFgBysdGY7QC6tYA04k-Drwm9e9PiPrtjh6Pyif9v_n0pfyfbV6die_7j89YnsYJ769srPAdl8WDymz-DNPPgv3YB9Bsip6jQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Electronic+Textiles+by+Direct+3D+Printing+of+Stretchable+Conductive+Fibers&rft.jtitle=Advanced+electronic+materials&rft.au=Wang%2C+Yuntian&rft.au=Wang%2C+Zhixun&rft.au=Wang%2C+Zhe&rft.au=Xiong%2C+Ting&rft.date=2023-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=9&rft.issue=4&rft_id=info:doi/10.1002%2Faelm.202201194&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon