Proton Irradiation Effects on the Pyroelectric Properties of P‐Type Bismuth Antimonide/Poly(vinylidene fluoride–trifluoroethylene) Composite Films
Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability. Real‐time monitoring of the physiological state of the human body requires pyroelectric materials with a fast response time and large output volta...
Saved in:
Published in | Advanced electronic materials Vol. 9; no. 4 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
John Wiley & Sons, Inc
01.04.2023
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability. Real‐time monitoring of the physiological state of the human body requires pyroelectric materials with a fast response time and large output voltage. In this study, the pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) (P(VDF–TrFE)) films are improved with the use of commercial inorganic P‐type bismuth antimonide (P‐Bi2Te3) fillers. Composite films with 0.2 wt% P‐Bi2Te3 increase the pyroelectric response time and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s. The proton irradiation‐induced ionization energy loss improves the conductivity of the composite films, thereby enhancing the pyroelectric response time. These results show that P‐Bi2Te3 doping is beneficial for improving the pyroelectric properties of P(VDF–TrFE) and that proton irradiation is an effective method for further improving the response time of inorganic–organic composite films.
The pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) films are improved with the use of inorganic P‐type bismuth antimonide (P–Bi2Te3) fillers. Composite films with 0.2 wt% P‐Bi2Te3 increase the pyroelectric response and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s. |
---|---|
AbstractList | Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability. Real‐time monitoring of the physiological state of the human body requires pyroelectric materials with a fast response time and large output voltage. In this study, the pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) (P(VDF–TrFE)) films are improved with the use of commercial inorganic P‐type bismuth antimonide (P‐Bi
2
Te
3
) fillers. Composite films with 0.2 wt% P‐Bi
2
Te
3
increase the pyroelectric response time and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s. The proton irradiation‐induced ionization energy loss improves the conductivity of the composite films, thereby enhancing the pyroelectric response time. These results show that P‐Bi
2
Te
3
doping is beneficial for improving the pyroelectric properties of P(VDF–TrFE) and that proton irradiation is an effective method for further improving the response time of inorganic–organic composite films. Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability. Real‐time monitoring of the physiological state of the human body requires pyroelectric materials with a fast response time and large output voltage. In this study, the pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) (P(VDF–TrFE)) films are improved with the use of commercial inorganic P‐type bismuth antimonide (P‐Bi2Te3) fillers. Composite films with 0.2 wt% P‐Bi2Te3 increase the pyroelectric response time and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s. The proton irradiation‐induced ionization energy loss improves the conductivity of the composite films, thereby enhancing the pyroelectric response time. These results show that P‐Bi2Te3 doping is beneficial for improving the pyroelectric properties of P(VDF–TrFE) and that proton irradiation is an effective method for further improving the response time of inorganic–organic composite films. Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability. Real‐time monitoring of the physiological state of the human body requires pyroelectric materials with a fast response time and large output voltage. In this study, the pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) (P(VDF–TrFE)) films are improved with the use of commercial inorganic P‐type bismuth antimonide (P‐Bi2Te3) fillers. Composite films with 0.2 wt% P‐Bi2Te3 increase the pyroelectric response time and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s. The proton irradiation‐induced ionization energy loss improves the conductivity of the composite films, thereby enhancing the pyroelectric response time. These results show that P‐Bi2Te3 doping is beneficial for improving the pyroelectric properties of P(VDF–TrFE) and that proton irradiation is an effective method for further improving the response time of inorganic–organic composite films. The pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) films are improved with the use of inorganic P‐type bismuth antimonide (P–Bi2Te3) fillers. Composite films with 0.2 wt% P‐Bi2Te3 increase the pyroelectric response and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s. Abstract Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability. Real‐time monitoring of the physiological state of the human body requires pyroelectric materials with a fast response time and large output voltage. In this study, the pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) (P(VDF–TrFE)) films are improved with the use of commercial inorganic P‐type bismuth antimonide (P‐Bi2Te3) fillers. Composite films with 0.2 wt% P‐Bi2Te3 increase the pyroelectric response time and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s. The proton irradiation‐induced ionization energy loss improves the conductivity of the composite films, thereby enhancing the pyroelectric response time. These results show that P‐Bi2Te3 doping is beneficial for improving the pyroelectric properties of P(VDF–TrFE) and that proton irradiation is an effective method for further improving the response time of inorganic–organic composite films. |
Author | Li, Bo Han, Zhijia Zhang, Hong Hou, Pengfei Wang, Fang Cai, Chuanyang Liu, Weishu |
Author_xml | – sequence: 1 givenname: Chuanyang surname: Cai fullname: Cai, Chuanyang organization: Xiangtan University – sequence: 2 givenname: Hong surname: Zhang fullname: Zhang, Hong organization: Xiangtan University – sequence: 3 givenname: Bo orcidid: 0000-0001-6429-1765 surname: Li fullname: Li, Bo email: lib6@sustech.edu.cn organization: Southern University of Science and Technology – sequence: 4 givenname: Zhijia surname: Han fullname: Han, Zhijia organization: Southern University of Science and Technology – sequence: 5 givenname: Fang surname: Wang fullname: Wang, Fang email: fang.wang1@siat.ac.cn organization: Chinese Academy of Sciences (CAS) – sequence: 6 givenname: Pengfei surname: Hou fullname: Hou, Pengfei email: houpf@xtu.edu.cn organization: Xiangtan University – sequence: 7 givenname: Weishu surname: Liu fullname: Liu, Weishu email: liuws@sustech.edu.cn organization: Southern University of Science and Technology |
BookMark | eNqFUU2P0zAQjdAisSx75WyJCxzatR3Hjo-l6kKlInpYJG6Wk4ypKycOtgvKbX8CEhI_cH8J3pYvISFOfjPz3tOM3-PibPADFMVTgucEY3qlwfVziinFBNfsQXFOiZQzwvH7sz_wo-Iyxj3GmAhesqo8L75tg09-QOsQdGd1shmvjIE2RZRh2gHaTsGDy51gW5TpI4RkIY8N2t7dfrmZRkAvbewPaYcWQ7K9H2wHV1vvpuef7DC5XA2AjDv4kOHd7dfsdKw8pN3k8vAFWvp-9NEmQNfW9fFJ8dBoF-Hyx3tRvLte3SxfzzZvX62Xi82sZbRkM9lUphK1AN5UtGkMb_PxHQhSlo3UjLNKCsNKzgFr03GBayCUGSyJqGvCoLwo1iffzuu9GoPtdZiU11YdGz58UDpf2zpQXcW5lKYRIIFxwRsiGkZk3WBGeV3z7PXs5DUG__EAMam9P4Qhr69KLLGshCA0s9iJ1QYfYwCjWpuO_56Ctk4RrO4DVfeBql-BZtn8L9nPZf8pkCfBZ-tg-g9bLVabN7-13wFVkLlJ |
CitedBy_id | crossref_primary_10_1039_D4NR02776K crossref_primary_10_1039_D4NR05200E crossref_primary_10_1016_j_jmat_2024_05_012 |
Cites_doi | 10.1016/j.compscitech.2015.08.020 10.1016/j.memsci.2005.06.009 10.1002/aelm.201800786 10.1039/C9RA01738K 10.1063/1.5036856 10.1021/acsapm.9b00846 10.1038/asiamat.2010.138 10.1016/j.nanoen.2016.11.008 10.1002/adma.202002752 10.1016/j.ceramint.2018.05.118 10.1039/D1NR07960C 10.1016/j.sna.2022.113415 10.1038/s41586-018-0550-z 10.1039/D0TA07188A 10.1002/adma.201707269 10.1016/j.jallcom.2021.160829 10.1016/j.radphyschem.2017.03.035 10.1016/j.sna.2013.02.005 10.1016/S0924-4247(02)00127-9 10.1063/1.1290266 10.1021/acsanm.9b00033 10.1002/pssb.202000429 10.1021/acsami.1c08347 10.1016/j.nanoen.2018.11.020 10.1021/acsami.5b11356 10.1002/adma.201900875 10.1002/1521-396X(200211)194:1<349::AID-PSSA349>3.0.CO;2-5 10.1016/j.polymdegradstab.2015.10.017 10.1021/acsaelm.1c00165 10.1016/j.nimb.2005.06.204 10.1016/j.cej.2021.130345 10.1039/C5RA21903E 10.1126/science.280.5372.2101 10.1002/adma.202005902 10.1016/j.sna.2013.04.025 10.1109/94.848915 10.1007/s10965-015-0688-4 10.1016/j.sna.2018.04.014 10.1016/j.matpr.2017.10.187 10.1021/acsami.9b04812 10.1002/adem.200600130 10.1016/j.nanoen.2020.105251 10.1002/smll.201604245 10.1021/acssuschemeng.1c06374 10.1016/j.radphyschem.2013.01.007 10.1016/j.net.2019.07.018 10.1021/am100654p 10.1038/s41563-019-0538-6 10.1002/adma.202110236 10.1088/0034-4885/49/12/002 10.1039/C8NR05292A 10.1016/j.nanoen.2020.105442 10.1021/acsami.9b16120 10.1039/C9NR03603B 10.1063/1.371883 10.1002/adfm.201803275 10.1002/aenm.201803204 10.1039/C4TC02079K |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION JQ2 DOA |
DOI | 10.1002/aelm.202201084 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Computer Science Collection Open Access资源_DOAJ |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_d56699fb7e9e4676b17b4198b0426886 10_1002_aelm_202201084 AELM202201084 |
Genre | article |
GrantInformation_xml | – fundername: Research Foundation of Education Bureau of Hunan Province funderid: 22A0134 – fundername: National Natural Science Foundation of China funderid: 12175191 – fundername: Natural Science Foundation of Guangdong Province – fundername: Guangdong Innovative and Entrepreneurial Research Team Program funderid: 2016ZT06G587 – fundername: Shenzhen Innovation Program for Distinguished Young Scholars funderid: RCJC20210706091949018 – fundername: Natural Science Foundation of Hunan Province funderid: 2022JJ30566 – fundername: State Key Laboratory of Intense Pulsed Radiation Simulation and Effect funderid: SKLIPR1816 – fundername: Shenzhen Science Technology Fund funderid: KYDPT20181011104007 – fundername: China Postdoctoral Science Foundation funderid: 2019M663178 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAFWJ AAYXX ABJNI ADMLS AFPKN CITATION M~E AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 |
ID | FETCH-LOGICAL-c4234-9b5f5787e6b52bbf6c084de7133b9a464597f4366e0afd6708e124f09178814e3 |
IEDL.DBID | 24P |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 01:30:39 EDT 2025 Fri Jul 25 11:58:27 EDT 2025 Tue Jul 01 00:35:23 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Wed Jan 22 16:23:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4234-9b5f5787e6b52bbf6c084de7133b9a464597f4366e0afd6708e124f09178814e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6429-1765 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202201084 |
PQID | 3090957712 |
PQPubID | 6852865 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d56699fb7e9e4676b17b4198b0426886 proquest_journals_3090957712 crossref_citationtrail_10_1002_aelm_202201084 crossref_primary_10_1002_aelm_202201084 wiley_primary_10_1002_aelm_202201084_AELM202201084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 20230401 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2018; 562 1998; 280 2002; 194 2019; 11 2021; 885 2019; 55 2000; 87 2000; 7 1970 2018; 44 2022; 337 2020; 19 2020; 8 2021; 79 2017; 31 2018; 5 2020; 2 2021; 33 2020; 52 2002; 100 1986; 49 2013; 199 2022; 35 2018; 30 2010; 2 2013; 194 2021; 9 2018; 142 2019; 9 2018; 28 2015; 5 2021; 3 2019; 5 2015; 3 2019; 31 2019; 2 2015; 122 2013; 86 2021; 426 2006; 8 2020; 78 2020; 32 2015; 7 2021; 13 2018; 276 2018; 1963 2005; 240 2021; 258 2000; 77 2017; 13 2015; 22 2022; 14 2015; 118 2018; 10 2016; 8 2006; 268 e_1_2_8_28_1 Putley E. H. (e_1_2_8_26_1) 1970 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Simaite A. (e_1_2_8_18_1) 2015; 7 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 9 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 194 start-page: 349 year: 2002 publication-title: Phys. Status Solidi A – volume: 49 start-page: 1335 year: 1986 publication-title: Rep. Prog. Phys. – volume: 2 start-page: 2013 year: 2019 publication-title: ACS Appl. Nano Mater. – volume: 142 start-page: 54 year: 2018 publication-title: Radiat. Phys. Chem. – volume: 14 start-page: 1755 year: 2022 publication-title: Nanoscale – volume: 562 start-page: 96 year: 2018 publication-title: Nature – volume: 31 start-page: 49 year: 2017 publication-title: Nano Energy – volume: 194 start-page: 228 year: 2013 publication-title: Sens. Actuators, A – volume: 44 year: 2018 publication-title: Ceram. Int. – volume: 276 start-page: 165 year: 2018 publication-title: Sens. Actuators, A – volume: 122 start-page: 110 year: 2015 publication-title: Polym. Degrad. Stab. – volume: 199 start-page: 24 year: 2013 publication-title: Sens. Actuators, A – volume: 8 start-page: 1140 year: 2006 publication-title: Adv. Eng. Mater. – volume: 2 start-page: 152 year: 2010 publication-title: NPG Asia Mater. – volume: 52 start-page: 373 year: 2020 publication-title: Nucl. Eng. Technol. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 268 start-page: 96 year: 2006 publication-title: J. Membr. Sci. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 9 year: 2019 publication-title: RSC Adv. – volume: 337 year: 2022 publication-title: Sens. Actuators, A – volume: 885 year: 2021 publication-title: J. Alloys Compd. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 7 year: 2015 publication-title: Sens. Actuators, A – volume: 3 start-page: 2449 year: 2021 publication-title: ACS Appl. Electron. Mater. – volume: 8 start-page: 4532 year: 2016 publication-title: ACS Appl. Nano Mater. – volume: 35 year: 2022 publication-title: Adv. Mater. – volume: 100 start-page: 231 year: 2002 publication-title: Sens. Actuators, A – start-page: 259 year: 1970 – volume: 7 start-page: 353 year: 2000 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 118 start-page: 163 year: 2015 publication-title: Compos. Sci. Technol. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 87 start-page: 452 year: 2000 publication-title: J. Appl. Phys. – volume: 426 year: 2021 publication-title: Chem. Eng. J. – volume: 79 year: 2021 publication-title: Nano Energy – volume: 19 start-page: 158 year: 2020 publication-title: Nat. Mater. – volume: 258 year: 2021 publication-title: Phys. Status Solidi B – volume: 3 start-page: 2366 year: 2015 publication-title: J. Mater. Chem. C – volume: 10 year: 2018 publication-title: Nanoscale – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 1963 year: 2018 publication-title: AIP Conf. Proc. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 2 start-page: 3170 year: 2010 publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 42 year: 2015 publication-title: J. Polym. Res. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 240 start-page: 834 year: 2005 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B – volume: 280 start-page: 2101 year: 1998 publication-title: Science – volume: 2 start-page: 862 year: 2020 publication-title: ACS Appl. Polym. Mater. – volume: 55 start-page: 534 year: 2019 publication-title: Nano Energy – volume: 5 start-page: 9916 year: 2018 publication-title: Mater. Today: Proc. – volume: 13 year: 2017 publication-title: Small – volume: 77 start-page: 1713 year: 2000 publication-title: Appl. Phys. Lett. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 86 start-page: 110 year: 2013 publication-title: Radiat. Phys. Chem. – ident: e_1_2_8_54_1 doi: 10.1016/j.compscitech.2015.08.020 – ident: e_1_2_8_36_1 doi: 10.1016/j.memsci.2005.06.009 – ident: e_1_2_8_43_1 doi: 10.1002/aelm.201800786 – ident: e_1_2_8_52_1 doi: 10.1039/C9RA01738K – ident: e_1_2_8_56_1 doi: 10.1063/1.5036856 – ident: e_1_2_8_48_1 doi: 10.1021/acsapm.9b00846 – ident: e_1_2_8_28_1 doi: 10.1038/asiamat.2010.138 – ident: e_1_2_8_16_1 doi: 10.1016/j.nanoen.2016.11.008 – ident: e_1_2_8_30_1 doi: 10.1002/adma.202002752 – ident: e_1_2_8_24_1 doi: 10.1016/j.ceramint.2018.05.118 – ident: e_1_2_8_50_1 doi: 10.1039/D1NR07960C – ident: e_1_2_8_15_1 doi: 10.1016/j.sna.2022.113415 – start-page: 259 volume-title: Semiconductors and Semimetals year: 1970 ident: e_1_2_8_26_1 – ident: e_1_2_8_14_1 doi: 10.1038/s41586-018-0550-z – ident: e_1_2_8_51_1 doi: 10.1039/D0TA07188A – ident: e_1_2_8_9_1 doi: 10.1002/adma.201707269 – ident: e_1_2_8_7_1 doi: 10.1016/j.jallcom.2021.160829 – ident: e_1_2_8_34_1 doi: 10.1016/j.radphyschem.2017.03.035 – ident: e_1_2_8_12_1 doi: 10.1016/j.sna.2013.02.005 – ident: e_1_2_8_45_1 doi: 10.1016/S0924-4247(02)00127-9 – ident: e_1_2_8_33_1 doi: 10.1063/1.1290266 – ident: e_1_2_8_6_1 doi: 10.1021/acsanm.9b00033 – ident: e_1_2_8_41_1 doi: 10.1002/pssb.202000429 – volume: 7 year: 2015 ident: e_1_2_8_18_1 publication-title: Sens. Actuators, A – ident: e_1_2_8_27_1 doi: 10.1021/acsami.1c08347 – ident: e_1_2_8_44_1 doi: 10.1016/j.nanoen.2018.11.020 – ident: e_1_2_8_11_1 doi: 10.1021/acsami.5b11356 – ident: e_1_2_8_10_1 doi: 10.1002/adma.201900875 – ident: e_1_2_8_37_1 doi: 10.1002/1521-396X(200211)194:1<349::AID-PSSA349>3.0.CO;2-5 – ident: e_1_2_8_42_1 doi: 10.1016/j.polymdegradstab.2015.10.017 – ident: e_1_2_8_46_1 doi: 10.1021/acsaelm.1c00165 – ident: e_1_2_8_32_1 doi: 10.1016/j.nimb.2005.06.204 – ident: e_1_2_8_4_1 doi: 10.1016/j.cej.2021.130345 – ident: e_1_2_8_60_1 doi: 10.1039/C5RA21903E – ident: e_1_2_8_39_1 doi: 10.1126/science.280.5372.2101 – ident: e_1_2_8_1_1 doi: 10.1002/adma.202005902 – ident: e_1_2_8_22_1 doi: 10.1016/j.sna.2013.04.025 – ident: e_1_2_8_38_1 doi: 10.1109/94.848915 – ident: e_1_2_8_23_1 doi: 10.1007/s10965-015-0688-4 – ident: e_1_2_8_47_1 doi: 10.1016/j.sna.2018.04.014 – ident: e_1_2_8_31_1 doi: 10.1016/j.matpr.2017.10.187 – ident: e_1_2_8_21_1 doi: 10.1021/acsami.9b04812 – ident: e_1_2_8_53_1 doi: 10.1002/adem.200600130 – ident: e_1_2_8_2_1 doi: 10.1016/j.nanoen.2020.105251 – ident: e_1_2_8_13_1 doi: 10.1002/smll.201604245 – ident: e_1_2_8_20_1 doi: 10.1021/acssuschemeng.1c06374 – ident: e_1_2_8_58_1 doi: 10.1016/j.radphyschem.2013.01.007 – ident: e_1_2_8_40_1 doi: 10.1016/j.net.2019.07.018 – ident: e_1_2_8_59_1 doi: 10.1021/am100654p – ident: e_1_2_8_25_1 doi: 10.1038/s41563-019-0538-6 – ident: e_1_2_8_29_1 doi: 10.1002/adma.202110236 – ident: e_1_2_8_49_1 doi: 10.1088/0034-4885/49/12/002 – ident: e_1_2_8_8_1 doi: 10.1039/C8NR05292A – ident: e_1_2_8_5_1 doi: 10.1016/j.nanoen.2020.105442 – ident: e_1_2_8_3_1 doi: 10.1021/acsami.9b16120 – ident: e_1_2_8_17_1 doi: 10.1039/C9NR03603B – ident: e_1_2_8_35_1 doi: 10.1063/1.371883 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.201803275 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.201803204 – ident: e_1_2_8_57_1 doi: 10.1039/C4TC02079K |
SSID | ssj0001763453 |
Score | 2.2763197 |
Snippet | Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability.... Abstract Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Biocompatibility Bismuth tellurides Electric potential Energy Fluorides Heat conductivity Physiological effects Polymers Proton irradiation pyroelectrics P‐Bi 2Te 3/P(VDF‐TrFE) composite films Response time Temperature sensors Thermal diffusivity Vinylidene Vinylidene fluoride Voltage |
SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7EkxdRVKwv9iCoh9A0u3kdq7RUUclBwduSTWYxEBNJW6G3_gRB8Af6S5xJ0lIP4sVL2A1DWOaR_WYf3zB2KkSMWbIwFqJlgQmKiyEVBNpKAk14ONC2obvDd_fe6FHePLlPK6W-6ExYQw_cKK6bIt4IQ6N9CAGD2tM9X0vMlDWB_yCoybZxzltJpurVFQwb6YoFS6PtdGPI6eK5Q7u_gfwxC9Vk_T8Q5ipOrSea4RbbbBEi7zcj22ZrUOywz6gqEaXx66oiMgHSJm-Ih8ccm4jieDSryqaoTZbwiNbYKyJL5aXh0df8nRJOfpmNX6aTZ94vJmijIkuhG5X57PwtK2Y5lRcFbvJpWWHza_6BX6p7JaA1cXaCC06_DzrmBXyY5S_jXfY4HDxcjay2pIKVIG6SVqhdQzEKnnYdrY2XoDJSoExVhzHtcoa-kcLzwI5N6vl2AAgADCqYaOcliD22XpQF7DNu7LTnaLuXpr6Q-NCxC4g2TeKgnDSmw6yFilXS8o1T2YtcNUzJjiKTqKVJOuxsKf_aMG38KnlJFltKEUN2_QL9RrV-o_7ymw47WthbtWE7VsIOEXL6fs_pMKf2gT-GovqD27tl7-A_BnbINqikfXM66IitT6opHCPwmeiT2se_AersACg priority: 102 providerName: Directory of Open Access Journals |
Title | Proton Irradiation Effects on the Pyroelectric Properties of P‐Type Bismuth Antimonide/Poly(vinylidene fluoride–trifluoroethylene) Composite Films |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202201084 https://www.proquest.com/docview/3090957712 https://doaj.org/article/d56699fb7e9e4676b17b4198b0426886 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELagXLggECAW2soHJOAQbeI4TnLcoq4KoigHKu3NipMxREqTKtlF2lsfAakSD9gnYcbJpt0DQuIS2dEksjwezzf--Yaxt2GYY5QcWg_RcogBSoQmlSTGKxJDeDgxvqW7w-df1dmF_LyKVvdu8Q_8ENOCG1mGm6_JwHPTz-9IQ3Oo6Sa5oO3cRD5kj-h-LR3qEzK7W2VB85GOihItM_UC5a92zI2-mO__Ys8zOQL_PdR5H7s657N8yp6MqJEvBjU_Yw-gec5-Z12LyI1_6joiGKAe5gMZcc-xiMiOZ9uuHRLdVAXPaN29IwJV3lqe3V7_oiCUn1T95Wb9gy-aNeqtqUqYZ229ff-zarY1pRwFbutN22Hx9voG_-RqLaCG0WPBB05TCh39Ar6s6sv-BbtYnn77eOaNaRa8ArGU9FITWbJbUCYSxlhVYGeUQNGrSXPa-UxjK0OlwM9tqWI_AQQFFoEGUdFLCF-yg6Zt4BXj1i8DYfygLONQ4sPkESACtYVAOWntjHm7LtbFyEFOqTBqPbAnC00q0ZNKZuzdJH81sG_8VfKENDZJEWu2e9F23_VohLpE7IqtMTGkgA5CmSA2MkhxQCJOSRI1Y4c7fevRlHsd-inC0DgOxIwJNwb-0RS9OP1yPtVe_89Hb9hjSms_nBA6ZAfrbgNHCH7W5tiN72O3dPAHbnP_Cw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKe4ALagWILYX6AAIO0SZ2fg8cttDVLt2tcuiiFRcTJzZEShOU7BbtrY-AVKnvwSv1SZhJsil7QEhIvUSO5VhWZsbzjX--IeQl5xFEyVwbgJY5BCgOmJTvSyP2JeJhX5oa7w5PT93RzP44d-Zb5Nf6LkzDD9EtuKFl1PM1GjguSPdvWUMjleFVcob7ub7dnqs8UasfELVV78YfQMSvGBsen70fGW1iASMG9GAbgXQ0aqpypcOk1G4MHSQK4zUZRLjXF3ja5q6rzEgnrmf6CtygBteK5Ou24tDvPbKDUAoMaWfwafZ5druwAxZr1-yXMBkEhuWa8zVZpMn6m4PecIZ1zoANoPsnXK793XCXPGyBKh00mrVHtlT-iFyHZQFgkY7LEjkNUKi04T-uKBQBTNJwVRZNbp00piEu9ZfI2UoLTcOby58Y99KjtDpfLr7RQb4AVcnTRPXDIlu9uUjzVYZZThXV2bIooXhzeQU91W-FAqUCJ6neUpzF8LSZosM0O68ek9mdCOAJ2c6LXD0lVJuJxaRpJYnHbXjIyFEAenXMoJ2tdY8Y618s4pb2HLNvZKIhbGYCRSI6kfTI667994bw468tj1BiXSsk6q4rivKraO1eJACXYTTSU4ECn-RKy5O2FYANADTyfbdHDtbyFu3sUQluBoB8Pc9iPcJqHfjHUMTgeDLt3vb_56NDcn90Np2Iyfj05Bl5APW8OaB0QLYX5VI9B-y1kC9abafky10b2G-J2Tty |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NitRAEC7WWRAvi6Li6K72QVEPYZLO_8HDrLvDjvtDDo4MXtp00q2BbLIkM8rc9hEEwefwmfZJrEoyWecggrCX0Gk6TZOq6vqqf74CeG7bMUbJtjYQLdsYoLhoUkEgjSSQhIcDaWq6O3x65h3NnHdzd74Fv9Z3YVp-iH7BjSyjma_JwC9SPbomDY1VTjfJOW3nBk53rPJYrb5h0Fa_mR6ghF9wPjl8__bI6PIKGAmCB8cIpatJUZUnXS6l9hLsIFUUrskwpq2-0NeO7XnKjHXq-Wag0Atq9KzEve4oG_u9BdsuukJzANvjD7OPs-t1HTRYpyG_xLkgNCzPnK-5Ik0-2hz0hi9sUgZs4Nw_0XLj7iZ3YafDqWzcKtY92FLFffgZVSViRTatKqI0IJmylv64ZlhELMmiVVW2qXWyhEW00l8RZSsrNYuuLr9T2Mv2s_p8ufjCxsUCNaXIUjWKynz16mtWrHJKcqqYzpdlhcWryx_YU_NWKtQp9JHqNaNJjA6bKTbJ8vP6AcxuRAAPYVCUhXoETJupxaVppalvO_iQsasQ8-qEYztH6yEY618sko71nJJv5KLla-aCRCJ6kQzhZd_-ouX7-GvLfZJY34p4upuKsvosOrMXKaJlHI30VajQJXnS8qVjhWgCiIyCwBvC7lreops8amGbIQJf37f4EHijA_8Yihgfnpz2b4__56NncDs6mIiT6dnxE7iD1XZ7PGkXBotqqfYQeS3k007ZGXy6afv6DSOyOpI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proton+Irradiation+Effects+on+the+Pyroelectric+Properties+of+P%E2%80%90Type+Bismuth+Antimonide%2FPoly%28vinylidene+fluoride%E2%80%93trifluoroethylene%29+Composite+Films&rft.jtitle=Advanced+electronic+materials&rft.au=Cai%2C+Chuanyang&rft.au=Zhang%2C+Hong&rft.au=Li%2C+Bo&rft.au=Han%2C+Zhijia&rft.date=2023-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=9&rft.issue=4&rft_id=info:doi/10.1002%2Faelm.202201084&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |