Proton Irradiation Effects on the Pyroelectric Properties of P‐Type Bismuth Antimonide/Poly(vinylidene fluoride–trifluoroethylene) Composite Films

Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability. Real‐time monitoring of the physiological state of the human body requires pyroelectric materials with a fast response time and large output volta...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 9; no. 4
Main Authors Cai, Chuanyang, Zhang, Hong, Li, Bo, Han, Zhijia, Wang, Fang, Hou, Pengfei, Liu, Weishu
Format Journal Article
LanguageEnglish
Published Seoul John Wiley & Sons, Inc 01.04.2023
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability. Real‐time monitoring of the physiological state of the human body requires pyroelectric materials with a fast response time and large output voltage. In this study, the pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) (P(VDF–TrFE)) films are improved with the use of commercial inorganic P‐type bismuth antimonide (P‐Bi2Te3) fillers. Composite films with 0.2 wt% P‐Bi2Te3 increase the pyroelectric response time and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s. The proton irradiation‐induced ionization energy loss improves the conductivity of the composite films, thereby enhancing the pyroelectric response time. These results show that P‐Bi2Te3 doping is beneficial for improving the pyroelectric properties of P(VDF–TrFE) and that proton irradiation is an effective method for further improving the response time of inorganic–organic composite films. The pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) films are improved with the use of inorganic P‐type bismuth antimonide (P–Bi2Te3) fillers. Composite films with 0.2 wt% P‐Bi2Te3 increase the pyroelectric response and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s.
AbstractList Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability. Real‐time monitoring of the physiological state of the human body requires pyroelectric materials with a fast response time and large output voltage. In this study, the pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) (P(VDF–TrFE)) films are improved with the use of commercial inorganic P‐type bismuth antimonide (P‐Bi 2 Te 3 ) fillers. Composite films with 0.2 wt% P‐Bi 2 Te 3 increase the pyroelectric response time and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s. The proton irradiation‐induced ionization energy loss improves the conductivity of the composite films, thereby enhancing the pyroelectric response time. These results show that P‐Bi 2 Te 3 doping is beneficial for improving the pyroelectric properties of P(VDF–TrFE) and that proton irradiation is an effective method for further improving the response time of inorganic–organic composite films.
Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability. Real‐time monitoring of the physiological state of the human body requires pyroelectric materials with a fast response time and large output voltage. In this study, the pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) (P(VDF–TrFE)) films are improved with the use of commercial inorganic P‐type bismuth antimonide (P‐Bi2Te3) fillers. Composite films with 0.2 wt% P‐Bi2Te3 increase the pyroelectric response time and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s. The proton irradiation‐induced ionization energy loss improves the conductivity of the composite films, thereby enhancing the pyroelectric response time. These results show that P‐Bi2Te3 doping is beneficial for improving the pyroelectric properties of P(VDF–TrFE) and that proton irradiation is an effective method for further improving the response time of inorganic–organic composite films.
Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability. Real‐time monitoring of the physiological state of the human body requires pyroelectric materials with a fast response time and large output voltage. In this study, the pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) (P(VDF–TrFE)) films are improved with the use of commercial inorganic P‐type bismuth antimonide (P‐Bi2Te3) fillers. Composite films with 0.2 wt% P‐Bi2Te3 increase the pyroelectric response time and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s. The proton irradiation‐induced ionization energy loss improves the conductivity of the composite films, thereby enhancing the pyroelectric response time. These results show that P‐Bi2Te3 doping is beneficial for improving the pyroelectric properties of P(VDF–TrFE) and that proton irradiation is an effective method for further improving the response time of inorganic–organic composite films. The pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) films are improved with the use of inorganic P‐type bismuth antimonide (P–Bi2Te3) fillers. Composite films with 0.2 wt% P‐Bi2Te3 increase the pyroelectric response and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s.
Abstract Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability. Real‐time monitoring of the physiological state of the human body requires pyroelectric materials with a fast response time and large output voltage. In this study, the pyroelectric characteristics of poly(vinylidene fluoride–trifluoroethylene) (P(VDF–TrFE)) films are improved with the use of commercial inorganic P‐type bismuth antimonide (P‐Bi2Te3) fillers. Composite films with 0.2 wt% P‐Bi2Te3 increase the pyroelectric response time and voltage by improving the thermal diffusivity and enhancing the β‐phase content, respectively. Proton irradiation results in further improvement of the pyroelectric response time from 22 to 0.5 s. The proton irradiation‐induced ionization energy loss improves the conductivity of the composite films, thereby enhancing the pyroelectric response time. These results show that P‐Bi2Te3 doping is beneficial for improving the pyroelectric properties of P(VDF–TrFE) and that proton irradiation is an effective method for further improving the response time of inorganic–organic composite films.
Author Li, Bo
Han, Zhijia
Zhang, Hong
Hou, Pengfei
Wang, Fang
Cai, Chuanyang
Liu, Weishu
Author_xml – sequence: 1
  givenname: Chuanyang
  surname: Cai
  fullname: Cai, Chuanyang
  organization: Xiangtan University
– sequence: 2
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: Xiangtan University
– sequence: 3
  givenname: Bo
  orcidid: 0000-0001-6429-1765
  surname: Li
  fullname: Li, Bo
  email: lib6@sustech.edu.cn
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Zhijia
  surname: Han
  fullname: Han, Zhijia
  organization: Southern University of Science and Technology
– sequence: 5
  givenname: Fang
  surname: Wang
  fullname: Wang, Fang
  email: fang.wang1@siat.ac.cn
  organization: Chinese Academy of Sciences (CAS)
– sequence: 6
  givenname: Pengfei
  surname: Hou
  fullname: Hou, Pengfei
  email: houpf@xtu.edu.cn
  organization: Xiangtan University
– sequence: 7
  givenname: Weishu
  surname: Liu
  fullname: Liu, Weishu
  email: liuws@sustech.edu.cn
  organization: Southern University of Science and Technology
BookMark eNqFUU2P0zAQjdAisSx75WyJCxzatR3Hjo-l6kKlInpYJG6Wk4ypKycOtgvKbX8CEhI_cH8J3pYvISFOfjPz3tOM3-PibPADFMVTgucEY3qlwfVziinFBNfsQXFOiZQzwvH7sz_wo-Iyxj3GmAhesqo8L75tg09-QOsQdGd1shmvjIE2RZRh2gHaTsGDy51gW5TpI4RkIY8N2t7dfrmZRkAvbewPaYcWQ7K9H2wHV1vvpuef7DC5XA2AjDv4kOHd7dfsdKw8pN3k8vAFWvp-9NEmQNfW9fFJ8dBoF-Hyx3tRvLte3SxfzzZvX62Xi82sZbRkM9lUphK1AN5UtGkMb_PxHQhSlo3UjLNKCsNKzgFr03GBayCUGSyJqGvCoLwo1iffzuu9GoPtdZiU11YdGz58UDpf2zpQXcW5lKYRIIFxwRsiGkZk3WBGeV3z7PXs5DUG__EAMam9P4Qhr69KLLGshCA0s9iJ1QYfYwCjWpuO_56Ctk4RrO4DVfeBql-BZtn8L9nPZf8pkCfBZ-tg-g9bLVabN7-13wFVkLlJ
CitedBy_id crossref_primary_10_1039_D4NR02776K
crossref_primary_10_1039_D4NR05200E
crossref_primary_10_1016_j_jmat_2024_05_012
Cites_doi 10.1016/j.compscitech.2015.08.020
10.1016/j.memsci.2005.06.009
10.1002/aelm.201800786
10.1039/C9RA01738K
10.1063/1.5036856
10.1021/acsapm.9b00846
10.1038/asiamat.2010.138
10.1016/j.nanoen.2016.11.008
10.1002/adma.202002752
10.1016/j.ceramint.2018.05.118
10.1039/D1NR07960C
10.1016/j.sna.2022.113415
10.1038/s41586-018-0550-z
10.1039/D0TA07188A
10.1002/adma.201707269
10.1016/j.jallcom.2021.160829
10.1016/j.radphyschem.2017.03.035
10.1016/j.sna.2013.02.005
10.1016/S0924-4247(02)00127-9
10.1063/1.1290266
10.1021/acsanm.9b00033
10.1002/pssb.202000429
10.1021/acsami.1c08347
10.1016/j.nanoen.2018.11.020
10.1021/acsami.5b11356
10.1002/adma.201900875
10.1002/1521-396X(200211)194:1<349::AID-PSSA349>3.0.CO;2-5
10.1016/j.polymdegradstab.2015.10.017
10.1021/acsaelm.1c00165
10.1016/j.nimb.2005.06.204
10.1016/j.cej.2021.130345
10.1039/C5RA21903E
10.1126/science.280.5372.2101
10.1002/adma.202005902
10.1016/j.sna.2013.04.025
10.1109/94.848915
10.1007/s10965-015-0688-4
10.1016/j.sna.2018.04.014
10.1016/j.matpr.2017.10.187
10.1021/acsami.9b04812
10.1002/adem.200600130
10.1016/j.nanoen.2020.105251
10.1002/smll.201604245
10.1021/acssuschemeng.1c06374
10.1016/j.radphyschem.2013.01.007
10.1016/j.net.2019.07.018
10.1021/am100654p
10.1038/s41563-019-0538-6
10.1002/adma.202110236
10.1088/0034-4885/49/12/002
10.1039/C8NR05292A
10.1016/j.nanoen.2020.105442
10.1021/acsami.9b16120
10.1039/C9NR03603B
10.1063/1.371883
10.1002/adfm.201803275
10.1002/aenm.201803204
10.1039/C4TC02079K
ContentType Journal Article
Copyright 2023 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
JQ2
DOA
DOI 10.1002/aelm.202201084
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Computer Science Collection
Open Access资源_DOAJ
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_d56699fb7e9e4676b17b4198b0426886
10_1002_aelm_202201084
AELM202201084
Genre article
GrantInformation_xml – fundername: Research Foundation of Education Bureau of Hunan Province
  funderid: 22A0134
– fundername: National Natural Science Foundation of China
  funderid: 12175191
– fundername: Natural Science Foundation of Guangdong Province
– fundername: Guangdong Innovative and Entrepreneurial Research Team Program
  funderid: 2016ZT06G587
– fundername: Shenzhen Innovation Program for Distinguished Young Scholars
  funderid: RCJC20210706091949018
– fundername: Natural Science Foundation of Hunan Province
  funderid: 2022JJ30566
– fundername: State Key Laboratory of Intense Pulsed Radiation Simulation and Effect
  funderid: SKLIPR1816
– fundername: Shenzhen Science Technology Fund
  funderid: KYDPT20181011104007
– fundername: China Postdoctoral Science Foundation
  funderid: 2019M663178
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAFWJ
AAYXX
ABJNI
ADMLS
AFPKN
CITATION
M~E
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
ID FETCH-LOGICAL-c4234-9b5f5787e6b52bbf6c084de7133b9a464597f4366e0afd6708e124f09178814e3
IEDL.DBID 24P
ISSN 2199-160X
IngestDate Wed Aug 27 01:30:39 EDT 2025
Fri Jul 25 11:58:27 EDT 2025
Tue Jul 01 00:35:23 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Wed Jan 22 16:23:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4234-9b5f5787e6b52bbf6c084de7133b9a464597f4366e0afd6708e124f09178814e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6429-1765
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202201084
PQID 3090957712
PQPubID 6852865
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_d56699fb7e9e4676b17b4198b0426886
proquest_journals_3090957712
crossref_citationtrail_10_1002_aelm_202201084
crossref_primary_10_1002_aelm_202201084
wiley_primary_10_1002_aelm_202201084_AELM202201084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Advanced electronic materials
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2018; 562
1998; 280
2002; 194
2019; 11
2021; 885
2019; 55
2000; 87
2000; 7
1970
2018; 44
2022; 337
2020; 19
2020; 8
2021; 79
2017; 31
2018; 5
2020; 2
2021; 33
2020; 52
2002; 100
1986; 49
2013; 199
2022; 35
2018; 30
2010; 2
2013; 194
2021; 9
2018; 142
2019; 9
2018; 28
2015; 5
2021; 3
2019; 5
2015; 3
2019; 31
2019; 2
2015; 122
2013; 86
2021; 426
2006; 8
2020; 78
2020; 32
2015; 7
2021; 13
2018; 276
2018; 1963
2005; 240
2021; 258
2000; 77
2017; 13
2015; 22
2022; 14
2015; 118
2018; 10
2016; 8
2006; 268
e_1_2_8_28_1
Putley E. H. (e_1_2_8_26_1) 1970
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Simaite A. (e_1_2_8_18_1) 2015; 7
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 9
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 194
  start-page: 349
  year: 2002
  publication-title: Phys. Status Solidi A
– volume: 49
  start-page: 1335
  year: 1986
  publication-title: Rep. Prog. Phys.
– volume: 2
  start-page: 2013
  year: 2019
  publication-title: ACS Appl. Nano Mater.
– volume: 142
  start-page: 54
  year: 2018
  publication-title: Radiat. Phys. Chem.
– volume: 14
  start-page: 1755
  year: 2022
  publication-title: Nanoscale
– volume: 562
  start-page: 96
  year: 2018
  publication-title: Nature
– volume: 31
  start-page: 49
  year: 2017
  publication-title: Nano Energy
– volume: 194
  start-page: 228
  year: 2013
  publication-title: Sens. Actuators, A
– volume: 44
  year: 2018
  publication-title: Ceram. Int.
– volume: 276
  start-page: 165
  year: 2018
  publication-title: Sens. Actuators, A
– volume: 122
  start-page: 110
  year: 2015
  publication-title: Polym. Degrad. Stab.
– volume: 199
  start-page: 24
  year: 2013
  publication-title: Sens. Actuators, A
– volume: 8
  start-page: 1140
  year: 2006
  publication-title: Adv. Eng. Mater.
– volume: 2
  start-page: 152
  year: 2010
  publication-title: NPG Asia Mater.
– volume: 52
  start-page: 373
  year: 2020
  publication-title: Nucl. Eng. Technol.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 268
  start-page: 96
  year: 2006
  publication-title: J. Membr. Sci.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 9
  year: 2019
  publication-title: RSC Adv.
– volume: 337
  year: 2022
  publication-title: Sens. Actuators, A
– volume: 885
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 7
  year: 2015
  publication-title: Sens. Actuators, A
– volume: 3
  start-page: 2449
  year: 2021
  publication-title: ACS Appl. Electron. Mater.
– volume: 8
  start-page: 4532
  year: 2016
  publication-title: ACS Appl. Nano Mater.
– volume: 35
  year: 2022
  publication-title: Adv. Mater.
– volume: 100
  start-page: 231
  year: 2002
  publication-title: Sens. Actuators, A
– start-page: 259
  year: 1970
– volume: 7
  start-page: 353
  year: 2000
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 118
  start-page: 163
  year: 2015
  publication-title: Compos. Sci. Technol.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 87
  start-page: 452
  year: 2000
  publication-title: J. Appl. Phys.
– volume: 426
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 79
  year: 2021
  publication-title: Nano Energy
– volume: 19
  start-page: 158
  year: 2020
  publication-title: Nat. Mater.
– volume: 258
  year: 2021
  publication-title: Phys. Status Solidi B
– volume: 3
  start-page: 2366
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1963
  year: 2018
  publication-title: AIP Conf. Proc.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 2
  start-page: 3170
  year: 2010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 42
  year: 2015
  publication-title: J. Polym. Res.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 240
  start-page: 834
  year: 2005
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– volume: 280
  start-page: 2101
  year: 1998
  publication-title: Science
– volume: 2
  start-page: 862
  year: 2020
  publication-title: ACS Appl. Polym. Mater.
– volume: 55
  start-page: 534
  year: 2019
  publication-title: Nano Energy
– volume: 5
  start-page: 9916
  year: 2018
  publication-title: Mater. Today: Proc.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 77
  start-page: 1713
  year: 2000
  publication-title: Appl. Phys. Lett.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 86
  start-page: 110
  year: 2013
  publication-title: Radiat. Phys. Chem.
– ident: e_1_2_8_54_1
  doi: 10.1016/j.compscitech.2015.08.020
– ident: e_1_2_8_36_1
  doi: 10.1016/j.memsci.2005.06.009
– ident: e_1_2_8_43_1
  doi: 10.1002/aelm.201800786
– ident: e_1_2_8_52_1
  doi: 10.1039/C9RA01738K
– ident: e_1_2_8_56_1
  doi: 10.1063/1.5036856
– ident: e_1_2_8_48_1
  doi: 10.1021/acsapm.9b00846
– ident: e_1_2_8_28_1
  doi: 10.1038/asiamat.2010.138
– ident: e_1_2_8_16_1
  doi: 10.1016/j.nanoen.2016.11.008
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.202002752
– ident: e_1_2_8_24_1
  doi: 10.1016/j.ceramint.2018.05.118
– ident: e_1_2_8_50_1
  doi: 10.1039/D1NR07960C
– ident: e_1_2_8_15_1
  doi: 10.1016/j.sna.2022.113415
– start-page: 259
  volume-title: Semiconductors and Semimetals
  year: 1970
  ident: e_1_2_8_26_1
– ident: e_1_2_8_14_1
  doi: 10.1038/s41586-018-0550-z
– ident: e_1_2_8_51_1
  doi: 10.1039/D0TA07188A
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.201707269
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jallcom.2021.160829
– ident: e_1_2_8_34_1
  doi: 10.1016/j.radphyschem.2017.03.035
– ident: e_1_2_8_12_1
  doi: 10.1016/j.sna.2013.02.005
– ident: e_1_2_8_45_1
  doi: 10.1016/S0924-4247(02)00127-9
– ident: e_1_2_8_33_1
  doi: 10.1063/1.1290266
– ident: e_1_2_8_6_1
  doi: 10.1021/acsanm.9b00033
– ident: e_1_2_8_41_1
  doi: 10.1002/pssb.202000429
– volume: 7
  year: 2015
  ident: e_1_2_8_18_1
  publication-title: Sens. Actuators, A
– ident: e_1_2_8_27_1
  doi: 10.1021/acsami.1c08347
– ident: e_1_2_8_44_1
  doi: 10.1016/j.nanoen.2018.11.020
– ident: e_1_2_8_11_1
  doi: 10.1021/acsami.5b11356
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.201900875
– ident: e_1_2_8_37_1
  doi: 10.1002/1521-396X(200211)194:1<349::AID-PSSA349>3.0.CO;2-5
– ident: e_1_2_8_42_1
  doi: 10.1016/j.polymdegradstab.2015.10.017
– ident: e_1_2_8_46_1
  doi: 10.1021/acsaelm.1c00165
– ident: e_1_2_8_32_1
  doi: 10.1016/j.nimb.2005.06.204
– ident: e_1_2_8_4_1
  doi: 10.1016/j.cej.2021.130345
– ident: e_1_2_8_60_1
  doi: 10.1039/C5RA21903E
– ident: e_1_2_8_39_1
  doi: 10.1126/science.280.5372.2101
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.202005902
– ident: e_1_2_8_22_1
  doi: 10.1016/j.sna.2013.04.025
– ident: e_1_2_8_38_1
  doi: 10.1109/94.848915
– ident: e_1_2_8_23_1
  doi: 10.1007/s10965-015-0688-4
– ident: e_1_2_8_47_1
  doi: 10.1016/j.sna.2018.04.014
– ident: e_1_2_8_31_1
  doi: 10.1016/j.matpr.2017.10.187
– ident: e_1_2_8_21_1
  doi: 10.1021/acsami.9b04812
– ident: e_1_2_8_53_1
  doi: 10.1002/adem.200600130
– ident: e_1_2_8_2_1
  doi: 10.1016/j.nanoen.2020.105251
– ident: e_1_2_8_13_1
  doi: 10.1002/smll.201604245
– ident: e_1_2_8_20_1
  doi: 10.1021/acssuschemeng.1c06374
– ident: e_1_2_8_58_1
  doi: 10.1016/j.radphyschem.2013.01.007
– ident: e_1_2_8_40_1
  doi: 10.1016/j.net.2019.07.018
– ident: e_1_2_8_59_1
  doi: 10.1021/am100654p
– ident: e_1_2_8_25_1
  doi: 10.1038/s41563-019-0538-6
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.202110236
– ident: e_1_2_8_49_1
  doi: 10.1088/0034-4885/49/12/002
– ident: e_1_2_8_8_1
  doi: 10.1039/C8NR05292A
– ident: e_1_2_8_5_1
  doi: 10.1016/j.nanoen.2020.105442
– ident: e_1_2_8_3_1
  doi: 10.1021/acsami.9b16120
– ident: e_1_2_8_17_1
  doi: 10.1039/C9NR03603B
– ident: e_1_2_8_35_1
  doi: 10.1063/1.371883
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.201803275
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201803204
– ident: e_1_2_8_57_1
  doi: 10.1039/C4TC02079K
SSID ssj0001763453
Score 2.2763197
Snippet Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and stability....
Abstract Organic pyroelectric materials are widely applied as temperature sensors in wearable electronic devices due to their good biocompatibility and...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Biocompatibility
Bismuth tellurides
Electric potential
Energy
Fluorides
Heat conductivity
Physiological effects
Polymers
Proton irradiation
pyroelectrics
P‐Bi 2Te 3/P(VDF‐TrFE) composite films
Response time
Temperature sensors
Thermal diffusivity
Vinylidene
Vinylidene fluoride
Voltage
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7EkxdRVKwv9iCoh9A0u3kdq7RUUclBwduSTWYxEBNJW6G3_gRB8Af6S5xJ0lIP4sVL2A1DWOaR_WYf3zB2KkSMWbIwFqJlgQmKiyEVBNpKAk14ONC2obvDd_fe6FHePLlPK6W-6ExYQw_cKK6bIt4IQ6N9CAGD2tM9X0vMlDWB_yCoybZxzltJpurVFQwb6YoFS6PtdGPI6eK5Q7u_gfwxC9Vk_T8Q5ipOrSea4RbbbBEi7zcj22ZrUOywz6gqEaXx66oiMgHSJm-Ih8ccm4jieDSryqaoTZbwiNbYKyJL5aXh0df8nRJOfpmNX6aTZ94vJmijIkuhG5X57PwtK2Y5lRcFbvJpWWHza_6BX6p7JaA1cXaCC06_DzrmBXyY5S_jXfY4HDxcjay2pIKVIG6SVqhdQzEKnnYdrY2XoDJSoExVhzHtcoa-kcLzwI5N6vl2AAgADCqYaOcliD22XpQF7DNu7LTnaLuXpr6Q-NCxC4g2TeKgnDSmw6yFilXS8o1T2YtcNUzJjiKTqKVJOuxsKf_aMG38KnlJFltKEUN2_QL9RrV-o_7ymw47WthbtWE7VsIOEXL6fs_pMKf2gT-GovqD27tl7-A_BnbINqikfXM66IitT6opHCPwmeiT2se_AersACg
  priority: 102
  providerName: Directory of Open Access Journals
Title Proton Irradiation Effects on the Pyroelectric Properties of P‐Type Bismuth Antimonide/Poly(vinylidene fluoride–trifluoroethylene) Composite Films
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202201084
https://www.proquest.com/docview/3090957712
https://doaj.org/article/d56699fb7e9e4676b17b4198b0426886
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELagXLggECAW2soHJOAQbeI4TnLcoq4KoigHKu3NipMxREqTKtlF2lsfAakSD9gnYcbJpt0DQuIS2dEksjwezzf--Yaxt2GYY5QcWg_RcogBSoQmlSTGKxJDeDgxvqW7w-df1dmF_LyKVvdu8Q_8ENOCG1mGm6_JwHPTz-9IQ3Oo6Sa5oO3cRD5kj-h-LR3qEzK7W2VB85GOihItM_UC5a92zI2-mO__Ys8zOQL_PdR5H7s657N8yp6MqJEvBjU_Yw-gec5-Z12LyI1_6joiGKAe5gMZcc-xiMiOZ9uuHRLdVAXPaN29IwJV3lqe3V7_oiCUn1T95Wb9gy-aNeqtqUqYZ229ff-zarY1pRwFbutN22Hx9voG_-RqLaCG0WPBB05TCh39Ar6s6sv-BbtYnn77eOaNaRa8ArGU9FITWbJbUCYSxlhVYGeUQNGrSXPa-UxjK0OlwM9tqWI_AQQFFoEGUdFLCF-yg6Zt4BXj1i8DYfygLONQ4sPkESACtYVAOWntjHm7LtbFyEFOqTBqPbAnC00q0ZNKZuzdJH81sG_8VfKENDZJEWu2e9F23_VohLpE7IqtMTGkgA5CmSA2MkhxQCJOSRI1Y4c7fevRlHsd-inC0DgOxIwJNwb-0RS9OP1yPtVe_89Hb9hjSms_nBA6ZAfrbgNHCH7W5tiN72O3dPAHbnP_Cw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKe4ALagWILYX6AAIO0SZ2fg8cttDVLt2tcuiiFRcTJzZEShOU7BbtrY-AVKnvwSv1SZhJsil7QEhIvUSO5VhWZsbzjX--IeQl5xFEyVwbgJY5BCgOmJTvSyP2JeJhX5oa7w5PT93RzP44d-Zb5Nf6LkzDD9EtuKFl1PM1GjguSPdvWUMjleFVcob7ub7dnqs8UasfELVV78YfQMSvGBsen70fGW1iASMG9GAbgXQ0aqpypcOk1G4MHSQK4zUZRLjXF3ja5q6rzEgnrmf6CtygBteK5Ou24tDvPbKDUAoMaWfwafZ5druwAxZr1-yXMBkEhuWa8zVZpMn6m4PecIZ1zoANoPsnXK793XCXPGyBKh00mrVHtlT-iFyHZQFgkY7LEjkNUKi04T-uKBQBTNJwVRZNbp00piEu9ZfI2UoLTcOby58Y99KjtDpfLr7RQb4AVcnTRPXDIlu9uUjzVYZZThXV2bIooXhzeQU91W-FAqUCJ6neUpzF8LSZosM0O68ek9mdCOAJ2c6LXD0lVJuJxaRpJYnHbXjIyFEAenXMoJ2tdY8Y618s4pb2HLNvZKIhbGYCRSI6kfTI667994bw468tj1BiXSsk6q4rivKraO1eJACXYTTSU4ECn-RKy5O2FYANADTyfbdHDtbyFu3sUQluBoB8Pc9iPcJqHfjHUMTgeDLt3vb_56NDcn90Np2Iyfj05Bl5APW8OaB0QLYX5VI9B-y1kC9abafky10b2G-J2Tty
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NitRAEC7WWRAvi6Li6K72QVEPYZLO_8HDrLvDjvtDDo4MXtp00q2BbLIkM8rc9hEEwefwmfZJrEoyWecggrCX0Gk6TZOq6vqqf74CeG7bMUbJtjYQLdsYoLhoUkEgjSSQhIcDaWq6O3x65h3NnHdzd74Fv9Z3YVp-iH7BjSyjma_JwC9SPbomDY1VTjfJOW3nBk53rPJYrb5h0Fa_mR6ghF9wPjl8__bI6PIKGAmCB8cIpatJUZUnXS6l9hLsIFUUrskwpq2-0NeO7XnKjHXq-Wag0Atq9KzEve4oG_u9BdsuukJzANvjD7OPs-t1HTRYpyG_xLkgNCzPnK-5Ik0-2hz0hi9sUgZs4Nw_0XLj7iZ3YafDqWzcKtY92FLFffgZVSViRTatKqI0IJmylv64ZlhELMmiVVW2qXWyhEW00l8RZSsrNYuuLr9T2Mv2s_p8ufjCxsUCNaXIUjWKynz16mtWrHJKcqqYzpdlhcWryx_YU_NWKtQp9JHqNaNJjA6bKTbJ8vP6AcxuRAAPYVCUhXoETJupxaVppalvO_iQsasQ8-qEYztH6yEY618sko71nJJv5KLla-aCRCJ6kQzhZd_-ouX7-GvLfZJY34p4upuKsvosOrMXKaJlHI30VajQJXnS8qVjhWgCiIyCwBvC7lreops8amGbIQJf37f4EHijA_8Yihgfnpz2b4__56NncDs6mIiT6dnxE7iD1XZ7PGkXBotqqfYQeS3k007ZGXy6afv6DSOyOpI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proton+Irradiation+Effects+on+the+Pyroelectric+Properties+of+P%E2%80%90Type+Bismuth+Antimonide%2FPoly%28vinylidene+fluoride%E2%80%93trifluoroethylene%29+Composite+Films&rft.jtitle=Advanced+electronic+materials&rft.au=Cai%2C+Chuanyang&rft.au=Zhang%2C+Hong&rft.au=Li%2C+Bo&rft.au=Han%2C+Zhijia&rft.date=2023-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=9&rft.issue=4&rft_id=info:doi/10.1002%2Faelm.202201084&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon