Successful UV‐Induced RICFP of Epoxy‐Composites
The UV‐curing of epoxy monomers by cationic photopolymerization is a powerful method for the production of polymer materials. The limit of film thickness in cationic photopolymerization of epoxy monomers has been recently overcome by introducing a novel radical induced cationic frontal polymerizatio...
Saved in:
Published in | Macromolecular chemistry and physics Vol. 218; no. 18 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1022-1352 1521-3935 |
DOI | 10.1002/macp.201700313 |
Cover
Loading…
Abstract | The UV‐curing of epoxy monomers by cationic photopolymerization is a powerful method for the production of polymer materials. The limit of film thickness in cationic photopolymerization of epoxy monomers has been recently overcome by introducing a novel radical induced cationic frontal polymerization (RICFP) system within this research group. The possibility to cure epoxides in bulk by UV‐light promoted here presents the novel approach to photocured composites. In the present work, the recently established RICFP system is applied on SiO2‐filled epoxy formulations based on bisphenol‐A diglycidyl ether. The influence of filler content on frontal propagation is examined in RICFP experiments. The composite materials are also investigated by dynamic mechanical thermal analysis to determine mechanical properties of the frontally polymerized products.
UV‐cured bulk epoxy composites are successfully produced by bubble‐free radical induced cationic frontal polymerization (RICFP) and investigated regarding the frontal polymerization behavior. SiO2 nanopowder is used as filler to demonstrate the limits of heat‐insulating materials for RICFP composites. |
---|---|
AbstractList | The UV‐curing of epoxy monomers by cationic photopolymerization is a powerful method for the production of polymer materials. The limit of film thickness in cationic photopolymerization of epoxy monomers has been recently overcome by introducing a novel radical induced cationic frontal polymerization (RICFP) system within this research group. The possibility to cure epoxides in bulk by UV‐light promoted here presents the novel approach to photocured composites. In the present work, the recently established RICFP system is applied on SiO2‐filled epoxy formulations based on bisphenol‐A diglycidyl ether. The influence of filler content on frontal propagation is examined in RICFP experiments. The composite materials are also investigated by dynamic mechanical thermal analysis to determine mechanical properties of the frontally polymerized products.
UV‐cured bulk epoxy composites are successfully produced by bubble‐free radical induced cationic frontal polymerization (RICFP) and investigated regarding the frontal polymerization behavior. SiO2 nanopowder is used as filler to demonstrate the limits of heat‐insulating materials for RICFP composites. The UV‐curing of epoxy monomers by cationic photopolymerization is a powerful method for the production of polymer materials. The limit of film thickness in cationic photopolymerization of epoxy monomers has been recently overcome by introducing a novel radical induced cationic frontal polymerization (RICFP) system within this research group. The possibility to cure epoxides in bulk by UV‐light promoted here presents the novel approach to photocured composites. In the present work, the recently established RICFP system is applied on SiO 2 ‐filled epoxy formulations based on bisphenol‐A diglycidyl ether. The influence of filler content on frontal propagation is examined in RICFP experiments. The composite materials are also investigated by dynamic mechanical thermal analysis to determine mechanical properties of the frontally polymerized products. The UV-curing of epoxy monomers by cationic photopolymerization is a powerful method for the production of polymer materials. The limit of film thickness in cationic photopolymerization of epoxy monomers has been recently overcome by introducing a novel radical induced cationic frontal polymerization (RICFP) system within this research group. The possibility to cure epoxides in bulk by UV-light promoted here presents the novel approach to photocured composites. In the present work, the recently established RICFP system is applied on SiO2-filled epoxy formulations based on bisphenol-A diglycidyl ether. The influence of filler content on frontal propagation is examined in RICFP experiments. The composite materials are also investigated by dynamic mechanical thermal analysis to determine mechanical properties of the frontally polymerized products. |
Author | Liska, Robert D'Anna, Alessandra Sangermano, Marco Klikovits, Nicolas |
Author_xml | – sequence: 1 givenname: Nicolas surname: Klikovits fullname: Klikovits, Nicolas organization: TU Wien – sequence: 2 givenname: Robert surname: Liska fullname: Liska, Robert organization: TU Wien – sequence: 3 givenname: Alessandra surname: D'Anna fullname: D'Anna, Alessandra organization: Politecnico di Torino – sequence: 4 givenname: Marco surname: Sangermano fullname: Sangermano, Marco email: marco.sangermano@polito.it organization: Politecnico di Torino |
BookMark | eNqFkFFLwzAUhYMouE1ffS743HmTNM3yOMqmg4lDna-hSRPo6JqatOje_An-Rn-JHRMFQXy6F-757uGcITquXW0QusAwxgDkapvrZkwAcwCK6REaYEZwTAVlx_0OhMSYMnKKhiFsAGACgg8Qfei0NiHYrorWTx9v74u66LQpovtFNl9Fzkazxr3u-kPmto0LZWvCGTqxeRXM-dccofV89pjdxMu760U2XcY6IZTGieGFKJJUs2TCU6U5Bs3B8kQJbkjKFSZMKJYKoxVRDBMFtMgtm3AglBBLR-jy8Lfx7rkzoZUb1_m6t5RYUMFFnzrtVeODSnsXgjdWNr7c5n4nMch9MXJfjPwupgeSX4Au27wtXd36vKz-xsQBeykrs_vHRN5Os9UP-wm8_nmH |
CitedBy_id | crossref_primary_10_1016_j_jphotochem_2023_114811 crossref_primary_10_1002_pi_6156 crossref_primary_10_1016_j_polymer_2018_11_037 crossref_primary_10_1016_j_porgcoat_2021_106159 crossref_primary_10_1039_D0RA07561B crossref_primary_10_3390_polym16152159 crossref_primary_10_1021_acsami_3c00187 crossref_primary_10_2494_photopolymer_32_233 crossref_primary_10_1002_slct_201803894 crossref_primary_10_1039_D1PY01332G crossref_primary_10_1016_j_cej_2024_154148 crossref_primary_10_1002_mame_202100864 crossref_primary_10_1016_j_compositesb_2018_02_014 crossref_primary_10_3390_c9020038 crossref_primary_10_1039_D0RA04146G crossref_primary_10_1002_pol_20210183 crossref_primary_10_1016_j_jmapro_2021_10_014 crossref_primary_10_1039_D1PY00596K crossref_primary_10_1002_pi_5875 crossref_primary_10_3390_polym15041024 crossref_primary_10_1007_s00706_020_02726_y crossref_primary_10_3390_polym12092146 crossref_primary_10_3390_polym16020185 crossref_primary_10_1002_app_55399 crossref_primary_10_1002_macp_201700352 crossref_primary_10_1002_pola_29375 crossref_primary_10_1002_macp_202400080 crossref_primary_10_1016_j_jphotochem_2022_113938 crossref_primary_10_1016_j_eurpolymj_2025_113902 crossref_primary_10_3389_fmats_2023_1166986 crossref_primary_10_1002_pc_28013 crossref_primary_10_1016_j_compositesa_2020_105855 crossref_primary_10_1021_acsapm_2c01465 crossref_primary_10_1002_pol_20210196 crossref_primary_10_3390_polym10020136 crossref_primary_10_1002_mame_202100495 |
Cites_doi | 10.1002/mame.200800201 10.1016/S0079-6700(98)00010-0 10.1002/pola.20051 10.1002/pc.22775 10.1002/pola.28274 10.1016/0032-3861(78)90074-5 10.1002/mame.201200346 10.1039/C5PY01451D 10.1002/9783527628704.ch12 10.1021/cm980494n 10.1016/j.polymer.2016.11.064 10.1016/j.polymer.2011.08.039 10.1002/app.30799 10.1007/s10853-014-8619-z |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
DOI | 10.1002/macp.201700313 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3935 |
EndPage | n/a |
ExternalDocumentID | 10_1002_macp_201700313 MACP201700313 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4233-4e7d9d46c54876bc710c70f74b97e267b1259b569ecb2b512b03daf58702322f3 |
IEDL.DBID | DR2 |
ISSN | 1022-1352 |
IngestDate | Fri Jul 25 11:51:42 EDT 2025 Wed Aug 20 07:46:20 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Wed Aug 20 07:27:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4233-4e7d9d46c54876bc710c70f74b97e267b1259b569ecb2b512b03daf58702322f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/macp.201700313 |
PQID | 1939790026 |
PQPubID | 2034252 |
PageCount | 4 |
ParticipantIDs | proquest_journals_1939790026 crossref_primary_10_1002_macp_201700313 crossref_citationtrail_10_1002_macp_201700313 wiley_primary_10_1002_macp_201700313_MACP201700313 |
PublicationCentury | 2000 |
PublicationDate | September 2017 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Macromolecular chemistry and physics |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 108 2004; 42 2015; 6 2000 2010 2015; 50 2009 2016; 54 2011; 52 2013; 298 1978; 19 2014; 35 1998; 10 2009; 114 1998; 23 2008; 293 e_1_2_6_10_1 Pham H. Q. (e_1_2_6_2_1) 2000 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 Sangermano M. (e_1_2_6_11_1) 2010 e_1_2_6_6_1 e_1_2_6_13_1 Pascault J. P. (e_1_2_6_1_1) 2009 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 52 start-page: 4664 year: 2011 publication-title: Polymer – year: 2009 – volume: 293 start-page: 964 year: 2008 publication-title: Macromol. Mater. Eng. – volume: 10 start-page: 3724 year: 1998 publication-title: Chem. Mater. – volume: 42 start-page: 2066 year: 2004 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 108 start-page: 251 year: 2017 publication-title: Polymer – volume: 6 start-page: 8161 year: 2015 publication-title: Polym. Chem. – volume: 23 start-page: 1485 year: 1998 publication-title: Prog. Polym. Sci. – volume: 35 start-page: 1253 year: 2014 publication-title: Polym. Compos. – volume: 50 start-page: 605 year: 2015 publication-title: J. Mater. Sci. – volume: 54 start-page: 3751 year: 2016 publication-title: J. Polym. Sci., Part A: Polym. Chem. – year: 2000 – volume: 298 start-page: 1184 year: 2013 publication-title: Macromol. Mater. Eng. – volume: 114 start-page: 2541 year: 2009 publication-title: J. Appl. Polym. Sci. – volume: 19 start-page: 1219 year: 1978 publication-title: Polymer – year: 2010 – start-page: 149 year: 2010 end-page: 163 – ident: e_1_2_6_3_1 doi: 10.1002/mame.200800201 – ident: e_1_2_6_13_1 doi: 10.1016/S0079-6700(98)00010-0 – ident: e_1_2_6_15_1 doi: 10.1002/pola.20051 – ident: e_1_2_6_6_1 doi: 10.1002/pc.22775 – ident: e_1_2_6_17_1 doi: 10.1002/pola.28274 – start-page: 149 volume-title: Basic and Applications of Photopolymerization reactions year: 2010 ident: e_1_2_6_11_1 – ident: e_1_2_6_12_1 doi: 10.1016/0032-3861(78)90074-5 – ident: e_1_2_6_5_1 doi: 10.1002/mame.201200346 – ident: e_1_2_6_16_1 doi: 10.1039/C5PY01451D – ident: e_1_2_6_10_1 doi: 10.1002/9783527628704.ch12 – volume-title: Ullmann's Encyclopedia of Industrial Chemistry year: 2000 ident: e_1_2_6_2_1 – ident: e_1_2_6_14_1 doi: 10.1021/cm980494n – ident: e_1_2_6_8_1 doi: 10.1016/j.polymer.2016.11.064 – ident: e_1_2_6_4_1 doi: 10.1016/j.polymer.2011.08.039 – ident: e_1_2_6_9_1 doi: 10.1002/app.30799 – volume-title: Epoxy Polymers: New Materials and Innovations year: 2009 ident: e_1_2_6_1_1 – ident: e_1_2_6_7_1 doi: 10.1007/s10853-014-8619-z |
SSID | ssj0008097 |
Score | 2.3791995 |
Snippet | The UV‐curing of epoxy monomers by cationic photopolymerization is a powerful method for the production of polymer materials. The limit of film thickness in... The UV-curing of epoxy monomers by cationic photopolymerization is a powerful method for the production of polymer materials. The limit of film thickness in... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bisphenol A bisphenol‐A diglycidyl ether Cationic polymerization Composite materials epoxy composites Film thickness Formulations Mechanical properties Monomers Photopolymerization Polymer matrix composites Polymerization Propagation (polymerization) radical induced cationic frontal polymerization silica nanopowder Silicon dioxide Thermal analysis UV‐curing |
Title | Successful UV‐Induced RICFP of Epoxy‐Composites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.201700313 https://www.proquest.com/docview/1939790026 |
Volume | 218 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NT8IwGMcbw0UvvhtRNDuYeCpsXdeuRzIhaIIhKIbb0rddRCDCLp78CH5GP4nt3gATY6K3LWuXre3T_rs8-_0BuPKE5Ap7AgbMCyHmmEKOiISKolAjrSTJaPv9e9Ib4btxMF77iz_nQ1Qf3GxkZPO1DXAuFq0VNPSFS8ubtHw5P7Ot9Xxi4fk3wxU_KnRzdxWbsu4ZqVFSG13U2qy-uSqtpOa6YM1WnO4e4OWz5okmz810KZry7RvG8T8vsw92CznqtPPxcwC29PQQbEelC9wR8B_SzFIxSSfO6Onz_cN6fUitnOFt1B04s8TpzM3zmQt2ZrEZYHpxDEbdzmPUg4XRApRGTfkQa6qYwkTa7QsR0qgOSd2EYsGoRoQKo4KYCAjTUiBhJIJwfcWTwMS6EWQo8U9AbTqb6lPgBKGSlHmCmDpYER0G1qHShLpGKsEJqwNYNnQsCwq5NcOYxDk_GcW2KeKqKerguio_z_kbP5ZslP0WF3G4iI08ZZTZjWYdoKwDfrlL3G9Hg-rs7C-VzsGOPc4T0RqgtnxN9YVRLktxmY3OLwva46c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4MHvDitxFF3cHE02DrunY9EoSAAiEIxtuyfuyiAhG4ePIn-Bv9Jfbd2BATY6LHbW3Tvu3bPm_z7nkQunSFjBRxhe1zN7BJRJgdYSptxXCgsVaSJmz73R5tjcjNg59lE8K_MCk_RH7hBp6R7Nfg4HAhXV2xhj5HEggngWDOA93aTWLQBsRf14MVg1TgpPoqkLTuGrCR8TY6uLpef_1cWoHNr5A1OXOaO0hkvU1TTR4ri7moyNdvRI7_Gs4u2l4iUquWLqE9tKHH-6hYz4TgDpB3t0hUFU1L1uj-4-0d5D6kVtagXW_2rUlsNaamg-YDbC6QBKZnh2jUbAzrLXuptWBLA6g8m2imuCJUQgRDhTTAQzInZkRwpjFlwgAhLnzKtRRYGJQgHE9FsW_c3WAyHHtHqDCejPUxsvxAScZdQU0doqgOfBCpNN6usYpJzEvIziwdyiUROehhPIUphTIOwRRhbooSusrLT1MKjh9LlrOJC5euOAsNQuWMQ6xZQjiZgV9aCbu1ej9_OvlLpQtUbA27nbDT7t2eoi14n-allVFh_rLQZwbIzMV5slQ_AWbV58Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NT8IwGMcbo4l68d2Iou5g4mmwdV27HslkARVCUAy3ZX3ZRQQi7OLJj-Bn9JPY7g0wMSZ63NYuW9un_XV59v8DcGUzHglkM9OltmeiCBEzgpibgkBPQik4TtX2O13cGqDboTtc-os_04coP7jpyEjnax3gUxHXF6KhLxHXepNaX87RtrUbCCuc0FjUXwhIeVZmr6Jz1m3FGoVsowXrq_VXl6UFay4Ta7rkBLsgKh42yzR5riVzVuNv33Qc__M2e2An51GjkQ2gfbAmxwdgyy9s4A6B85CknopxMjIGT5_vH9rsg0th9Nt-0DMmsdGcqudTF_TUolPA5OwIDILmo98yc6cFkyucckwkiaACYa73L5hxhR2cWDFBjBIJMWEKgyhzMZWcQaYYgVmOiGJXBbsiMhg7x2B9PBnLE2C4nuCE2gyrOkhg6bnaolLFuoQiRjGtALNo6JDnMuTaDWMUZgLKMNRNEZZNUQHXZflpJsDxY8lq0W9hHoizUPEpJVTvNCsAph3wy13CTsPvlUenf6l0CTZ7N0F43-7enYFtfTpLSquC9flrIs8VxczZRTpQvwC6GeZ1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Successful+UV%E2%80%90Induced+RICFP+of+Epoxy%E2%80%90Composites&rft.jtitle=Macromolecular+chemistry+and+physics&rft.au=Klikovits%2C+Nicolas&rft.au=Liska%2C+Robert&rft.au=D%27Anna%2C+Alessandra&rft.au=Sangermano%2C+Marco&rft.date=2017-09-01&rft.issn=1022-1352&rft.eissn=1521-3935&rft.volume=218&rft.issue=18&rft_id=info:doi/10.1002%2Fmacp.201700313&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_macp_201700313 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1352&client=summon |