Device Performance of Emerging Photovoltaic Materials (Version 3)

Following the 2nd release of the “Emerging PV reports,” the best achievements in the performance of emerging photovoltaic devices in diverse emerging photovoltaic research subjects are summarized, as reported in peer‐reviewed articles in academic journals since August 2021. Updated graphs, tables, a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 13; no. 1
Main Authors Almora, Osbel, Baran, Derya, Bazan, Guillermo C., Cabrera, Carlos I., Erten‐Ela, Sule, Forberich, Karen, Guo, Fei, Hauch, Jens, Ho‐Baillie, Anita W. Y., Jacobsson, T. Jesper, Janssen, Rene A. J., Kirchartz, Thomas, Kopidakis, Nikos, Loi, Maria A., Lunt, Richard R., Mathew, Xavier, McGehee, Michael D., Min, Jie, Mitzi, David B., Nazeeruddin, Mohammad K., Nelson, Jenny, Nogueira, Ana F., Paetzold, Ulrich W., Rand, Barry P., Rau, Uwe, Snaith, Henry J., Unger, Eva, Vaillant‐Roca, Lídice, Yang, Chenchen, Yip, Hin‐Lap, Brabec, Christoph J.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.01.2023
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.202203313

Cover

Loading…
Abstract Following the 2nd release of the “Emerging PV reports,” the best achievements in the performance of emerging photovoltaic devices in diverse emerging photovoltaic research subjects are summarized, as reported in peer‐reviewed articles in academic journals since August 2021. Updated graphs, tables, and analyses are provided with several performance parameters, e.g., power conversion efficiency, open‐circuit voltage, short‐circuit current density, fill factor, light utilization efficiency, and stability test energy yield. These parameters are presented as a function of the photovoltaic bandgap energy and the average visible transmittance for each technology and application, and are put into perspective using, e.g., the detailed balance efficiency limit. The 3rd installment of the “Emerging PV reports” extends the scope toward triple junction solar cells. The 3rd installment of the “Emerging PV reports” continues presenting and analyzing the best research achievements in the performance of emerging single‐junction and monolithic multijunction solar cells, as reported in peer‐reviewed articles in academic journals since August 2021. In this installment, for the first time, AgBiS2 and triple junction cells are considered.
AbstractList Following the 2nd release of the “Emerging PV reports,” the best achievements in the performance of emerging photovoltaic devices in diverse emerging photovoltaic research subjects are summarized, as reported in peer‐reviewed articles in academic journals since August 2021. Updated graphs, tables, and analyses are provided with several performance parameters, e.g., power conversion efficiency, open‐circuit voltage, short‐circuit current density, fill factor, light utilization efficiency, and stability test energy yield. These parameters are presented as a function of the photovoltaic bandgap energy and the average visible transmittance for each technology and application, and are put into perspective using, e.g., the detailed balance efficiency limit. The 3rd installment of the “Emerging PV reports” extends the scope toward triple junction solar cells. The 3rd installment of the “Emerging PV reports” continues presenting and analyzing the best research achievements in the performance of emerging single‐junction and monolithic multijunction solar cells, as reported in peer‐reviewed articles in academic journals since August 2021. In this installment, for the first time, AgBiS2 and triple junction cells are considered.
Following the 2nd release of the “Emerging PV reports,” the best achievements in the performance of emerging photovoltaic devices in diverse emerging photovoltaic research subjects are summarized, as reported in peer‐reviewed articles in academic journals since August 2021. Updated graphs, tables, and analyses are provided with several performance parameters, e.g., power conversion efficiency, open‐circuit voltage, short‐circuit current density, fill factor, light utilization efficiency, and stability test energy yield. These parameters are presented as a function of the photovoltaic bandgap energy and the average visible transmittance for each technology and application, and are put into perspective using, e.g., the detailed balance efficiency limit. The 3rd installment of the “Emerging PV reports” extends the scope toward triple junction solar cells.
Author Erten‐Ela, Sule
Yang, Chenchen
Almora, Osbel
Forberich, Karen
Mitzi, David B.
Mathew, Xavier
Brabec, Christoph J.
Yip, Hin‐Lap
Bazan, Guillermo C.
Cabrera, Carlos I.
Baran, Derya
Rau, Uwe
Min, Jie
Snaith, Henry J.
Janssen, Rene A. J.
Unger, Eva
Vaillant‐Roca, Lídice
Kopidakis, Nikos
Rand, Barry P.
Lunt, Richard R.
Guo, Fei
Nazeeruddin, Mohammad K.
Jacobsson, T. Jesper
Loi, Maria A.
Kirchartz, Thomas
Paetzold, Ulrich W.
Hauch, Jens
Nogueira, Ana F.
Nelson, Jenny
McGehee, Michael D.
Ho‐Baillie, Anita W. Y.
Author_xml – sequence: 1
  givenname: Osbel
  orcidid: 0000-0002-2523-0203
  surname: Almora
  fullname: Almora, Osbel
  email: osbel.almora@fau.de
  organization: Erlangen Graduate School of Advanced Optical Technologies (SAOT)
– sequence: 2
  givenname: Derya
  orcidid: 0000-0003-2196-8187
  surname: Baran
  fullname: Baran, Derya
  organization: KAUST Solar Center (KSC)
– sequence: 3
  givenname: Guillermo C.
  orcidid: 0000-0002-2537-0310
  surname: Bazan
  fullname: Bazan, Guillermo C.
  organization: National University of Singapore
– sequence: 4
  givenname: Carlos I.
  orcidid: 0000-0003-1699-695X
  surname: Cabrera
  fullname: Cabrera, Carlos I.
  organization: Universidad Autónoma de Zacatecas
– sequence: 5
  givenname: Sule
  orcidid: 0000-0001-9512-4919
  surname: Erten‐Ela
  fullname: Erten‐Ela, Sule
  organization: Ege University
– sequence: 6
  givenname: Karen
  orcidid: 0000-0001-6433-9562
  surname: Forberich
  fullname: Forberich, Karen
  organization: Institute of Materials for Electronics and Energy Technology (i‐MEET)
– sequence: 7
  givenname: Fei
  surname: Guo
  fullname: Guo, Fei
  organization: Jinan University
– sequence: 8
  givenname: Jens
  orcidid: 0000-0003-4384-2112
  surname: Hauch
  fullname: Hauch, Jens
  organization: Institute of Materials for Electronics and Energy Technology (i‐MEET)
– sequence: 9
  givenname: Anita W. Y.
  orcidid: 0000-0001-9849-4755
  surname: Ho‐Baillie
  fullname: Ho‐Baillie, Anita W. Y.
  organization: The University of Sydney
– sequence: 10
  givenname: T. Jesper
  orcidid: 0000-0002-4317-2879
  surname: Jacobsson
  fullname: Jacobsson, T. Jesper
  organization: Nankai University
– sequence: 11
  givenname: Rene A. J.
  orcidid: 0000-0002-1920-5124
  surname: Janssen
  fullname: Janssen, Rene A. J.
  organization: Dutch Institute for Fundamental Energy Research
– sequence: 12
  givenname: Thomas
  orcidid: 0000-0002-6954-8213
  surname: Kirchartz
  fullname: Kirchartz, Thomas
  organization: University of Duisburg‐Essen
– sequence: 13
  givenname: Nikos
  surname: Kopidakis
  fullname: Kopidakis, Nikos
  organization: National Renewable Energy Laboratory (NREL)
– sequence: 14
  givenname: Maria A.
  orcidid: 0000-0002-7985-7431
  surname: Loi
  fullname: Loi, Maria A.
  organization: University of Groningen
– sequence: 15
  givenname: Richard R.
  orcidid: 0000-0003-4248-6312
  surname: Lunt
  fullname: Lunt, Richard R.
  organization: Michigan State University
– sequence: 16
  givenname: Xavier
  orcidid: 0000-0002-3017-5552
  surname: Mathew
  fullname: Mathew, Xavier
  organization: Universidad Nacional Autónoma de México
– sequence: 17
  givenname: Michael D.
  orcidid: 0000-0001-9609-9030
  surname: McGehee
  fullname: McGehee, Michael D.
  organization: National Renewable Energy Laboratory
– sequence: 18
  givenname: Jie
  surname: Min
  fullname: Min, Jie
  organization: Ministry of Education
– sequence: 19
  givenname: David B.
  orcidid: 0000-0001-5189-4612
  surname: Mitzi
  fullname: Mitzi, David B.
  organization: Duke University
– sequence: 20
  givenname: Mohammad K.
  orcidid: 0000-0001-5955-4786
  surname: Nazeeruddin
  fullname: Nazeeruddin, Mohammad K.
  organization: Institut des Sciences et Ingénierie Chimiques
– sequence: 21
  givenname: Jenny
  orcidid: 0000-0003-1048-1330
  surname: Nelson
  fullname: Nelson, Jenny
  organization: Imperial College London
– sequence: 22
  givenname: Ana F.
  orcidid: 0000-0002-0838-7962
  surname: Nogueira
  fullname: Nogueira, Ana F.
  organization: University of Campinas
– sequence: 23
  givenname: Ulrich W.
  orcidid: 0000-0002-1557-8361
  surname: Paetzold
  fullname: Paetzold, Ulrich W.
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 24
  givenname: Barry P.
  orcidid: 0000-0003-4409-8751
  surname: Rand
  fullname: Rand, Barry P.
  organization: Princeton University
– sequence: 25
  givenname: Uwe
  orcidid: 0000-0003-3526-3081
  surname: Rau
  fullname: Rau, Uwe
  organization: Forschungszentrum Jülich
– sequence: 26
  givenname: Henry J.
  orcidid: 0000-0001-8511-790X
  surname: Snaith
  fullname: Snaith, Henry J.
  organization: University of Oxford
– sequence: 27
  givenname: Eva
  orcidid: 0000-0002-3343-867X
  surname: Unger
  fullname: Unger, Eva
  organization: Helmholtz‐Zentrum Berlin
– sequence: 28
  givenname: Lídice
  orcidid: 0000-0003-1552-7449
  surname: Vaillant‐Roca
  fullname: Vaillant‐Roca, Lídice
  organization: University of Havana
– sequence: 29
  givenname: Chenchen
  surname: Yang
  fullname: Yang, Chenchen
  organization: Solaria Corporation
– sequence: 30
  givenname: Hin‐Lap
  orcidid: 0000-0002-5750-9751
  surname: Yip
  fullname: Yip, Hin‐Lap
  organization: City University of Hong Kong
– sequence: 31
  givenname: Christoph J.
  orcidid: 0000-0002-9440-0253
  surname: Brabec
  fullname: Brabec, Christoph J.
  email: christoph.brabec@fau.de
  organization: Zernike Institute for Advanced Materials University of Groningen
BookMark eNqFkM1LAzEQxYNUsNZePS940cPWZGa7uzmWWj_Aag_qNWSzSU3Zbmp2W-l_b0qlgiDOZR7D-80M75R0aldrQs4ZHTBK4VrqejkACkARGR6RLktZEqd5QjsHjXBC-k2zoKESzoKzS0Y3emOVjmbaG-eXsg7amWiy1H5u63k0e3et27iqlVZFU9lqb2XVRJdv2jfW1RFenZFjE0a6_9175PV28jK-jx-f7x7Go8dYJYAYQ15yzPMMAQtKSwDIMo5lURQcUkjTIXBUANzwQiuuhhqoxqTMTG5AopHYIxf7vSvvPta6acXCrX0dTgrIUsY4Mp4HV7J3Ke-axmsjlG1lG15tvbSVYFTs8hK7vMQhr4ANfmErb5fSb_8G-B74tJXe_uMWo8nT9If9ApU8fXY
CitedBy_id crossref_primary_10_1002_solr_202400456
crossref_primary_10_1016_j_heliyon_2023_e20558
crossref_primary_10_1021_acsaem_4c01847
crossref_primary_10_1002_adma_202409340
crossref_primary_10_1021_acsami_4c01071
crossref_primary_10_1088_2515_7655_ace07b
crossref_primary_10_1002_adma_202311305
crossref_primary_10_1002_pssa_202300227
crossref_primary_10_1016_j_cej_2024_154944
crossref_primary_10_1002_sstr_202300547
crossref_primary_10_1007_s10800_023_02013_8
crossref_primary_10_3390_machines12090594
crossref_primary_10_3390_nano14070594
crossref_primary_10_1039_D2NR06496K
crossref_primary_10_3390_mi15040493
crossref_primary_10_1002_anie_202403264
crossref_primary_10_1615_HeatTransRes_2024054385
crossref_primary_10_1021_acs_jpcc_4c01340
crossref_primary_10_1002_aenm_202400115
crossref_primary_10_1021_acs_chemrev_4c00073
crossref_primary_10_1039_D4CS00132J
crossref_primary_10_1002_aesr_202400032
crossref_primary_10_1002_mgea_28
crossref_primary_10_1002_adma_202307855
crossref_primary_10_1016_j_ijleo_2023_171160
crossref_primary_10_1038_s41566_025_01644_x
crossref_primary_10_1007_s10853_024_10090_z
crossref_primary_10_1002_advs_202408181
crossref_primary_10_1039_D4CC02299H
crossref_primary_10_1039_D3TC02570E
crossref_primary_10_1021_prechem_3c00018
crossref_primary_10_1002_solr_202300156
crossref_primary_10_1021_acsnano_3c09437
crossref_primary_10_1002_pssa_202300449
crossref_primary_10_35848_1347_4065_adb315
crossref_primary_10_1016_j_nanoen_2023_108731
crossref_primary_10_1002_aenm_202302614
crossref_primary_10_1002_aenm_202400663
crossref_primary_10_1103_PhysRevB_108_035147
crossref_primary_10_1039_D4MH01430H
crossref_primary_10_1021_acsenergylett_3c01952
crossref_primary_10_1002_solr_202400016
crossref_primary_10_1002_slct_202302617
crossref_primary_10_1021_acsami_4c20462
crossref_primary_10_1021_acs_jpclett_3c01158
crossref_primary_10_1007_s40820_024_01393_6
crossref_primary_10_1002_pip_3786
crossref_primary_10_3390_pr11051542
crossref_primary_10_1002_ange_202311559
crossref_primary_10_1021_acsphotonics_3c01013
crossref_primary_10_1002_aenm_202401262
crossref_primary_10_1039_D3TA04603F
crossref_primary_10_1016_j_apmt_2025_102608
crossref_primary_10_1016_j_joule_2023_09_007
crossref_primary_10_1038_s41467_024_45228_9
crossref_primary_10_1021_acsami_4c01154
crossref_primary_10_1002_aesr_202400003
crossref_primary_10_1002_smll_202410993
crossref_primary_10_1038_s41467_024_47483_2
crossref_primary_10_1021_acs_chemmater_3c00243
crossref_primary_10_1038_s41467_024_46144_8
crossref_primary_10_1002_solr_202300811
crossref_primary_10_1038_s44328_024_00015_w
crossref_primary_10_1016_j_cej_2024_151630
crossref_primary_10_1016_j_cocis_2024_101871
crossref_primary_10_1063_5_0159289
crossref_primary_10_1021_acsami_3c09984
crossref_primary_10_3390_en16237722
crossref_primary_10_1002_aenm_202403706
crossref_primary_10_1002_ange_202403264
crossref_primary_10_1002_adfm_202303455
crossref_primary_10_1002_adom_202300980
crossref_primary_10_1039_D3RA02315J
crossref_primary_10_3390_coatings13101673
crossref_primary_10_1002_aenm_202303173
crossref_primary_10_1002_adma_202308578
crossref_primary_10_1002_aenm_202204370
crossref_primary_10_14710_transmisi_26_1_31_39
crossref_primary_10_1002_adma_202305238
crossref_primary_10_1063_5_0190890
crossref_primary_10_1002_solr_202300984
crossref_primary_10_1016_j_cej_2023_143824
crossref_primary_10_1039_D3EE01801F
crossref_primary_10_1016_j_mtener_2024_101523
crossref_primary_10_1002_anie_202311559
crossref_primary_10_1016_j_fuel_2025_134963
crossref_primary_10_1002_adma_202300872
crossref_primary_10_1039_D3EE02475J
crossref_primary_10_1016_j_mseb_2023_117153
crossref_primary_10_1039_D3EE02027D
crossref_primary_10_1002_solr_202400180
crossref_primary_10_1016_j_cej_2024_152370
crossref_primary_10_1051_e3sconf_202447503009
crossref_primary_10_1002_aenm_202404386
crossref_primary_10_1021_acsaem_3c00526
crossref_primary_10_1021_acsenergylett_3c02602
crossref_primary_10_1007_s10853_024_09381_2
Cites_doi 10.1002/adma.202109879
10.1016/j.joule.2022.06.009
10.1002/aenm.202102596
10.1002/solr.202100814
10.1002/solr.202200507
10.1016/j.joule.2022.04.024
10.1038/s41566-022-01033-8
10.1002/advs.202201487
10.1002/admi.202101595
10.1002/anie.202116111
10.1038/s41566-019-0479-2
10.1002/aenm.202200453
10.1002/aenm.202100022
10.1002/adma.202105539
10.1039/D1EE03263A
10.1016/j.solener.2020.11.043
10.1002/aenm.202102526
10.1002/adma.202200337
10.1016/j.cej.2022.137144
10.1016/j.solmat.2022.111791
10.1002/adma.202201840
10.1039/D2SE00111J
10.1038/s41586-022-04961-1
10.1021/acsenergylett.2c00274
10.1002/adfm.202200107
10.1002/adma.202109078
10.1126/science.abl5676
10.1016/j.solener.2022.05.043
10.1002/aenm.202202438
10.1016/j.joule.2021.06.017
10.1021/acsenergylett.0c01184
10.1039/C8TA08900K
10.1002/adma.202102420
10.1039/D1TA09143C
10.1002/pip.3542
10.1002/adfm.202108634
10.1063/1.1736034
10.1002/adma.202108829
10.1021/acsami.9b06356
10.1038/s41566-021-00950-4
10.1002/adma.202201604
10.1016/j.matlet.2022.132460
10.1002/aenm.202201672
10.1038/s41467-022-33754-3
10.1016/j.nanoen.2022.106978
10.1002/aenm.202002774
10.1002/adma.202105803
10.1038/s41586-022-05268-x
10.1021/acsaem.2c00091
10.1002/pip.2855
10.1002/anie.202116534
10.1038/s41586-022-04604-5
10.1063/1.4870834
10.1002/aenm.202002341
10.1021/acs.jpcc.2c03162
10.1002/adma.202205809
10.1002/aenm.202104060
10.1021/acsami.1c22748
10.1002/adma.202206242
10.1126/science.abn7696
10.1002/adfm.202106460
10.1016/j.joule.2021.12.017
10.1002/aenm.202200700
10.1016/j.solener.2016.02.015
10.1002/adfm.201304238
10.1038/s41560-017-0016-9
10.1016/S1386-9477(02)00364-8
10.1038/s41586-022-05460-z
10.1021/acsenergylett.2c00707
10.1002/adfm.202109631
10.1002/adma.202110155
10.1021/acsenergylett.2c01130
10.1039/D1EE03989J
10.1002/adma.202204718
10.1126/science.abj2637
10.1002/adfm.202103614
10.1002/adma.202206193
10.1002/adma.202201681
10.1016/j.nanoen.2022.107138
10.1016/j.cej.2022.136777
10.1021/acs.jpcc.1c05736
10.1002/adfm.202112511
10.1016/j.mssp.2021.106301
10.1002/pip.3444
10.1016/j.joule.2022.02.003
10.1038/s41586-021-04216-5
10.1016/j.joule.2019.06.005
10.1002/aenm.201300173
10.1039/D0EE02239J
10.1002/pip.3595
10.1126/science.abm8566
10.1002/solr.202200441
10.1002/adom.201901536
10.1038/s41563-022-01244-y
10.1016/j.joule.2019.10.009
10.1002/aenm.202103015
10.1016/j.matt.2021.06.010
10.1016/j.joule.2022.02.014
10.1038/s41560-020-0652-3
10.1002/adma.202110053
10.1016/j.joule.2021.04.014
10.1002/adma.202202858
10.1039/D2TA01592G
10.1038/s41528-021-00127-7
10.1002/anie.202201300
10.1002/adma.202205844
10.1021/acsenergylett.1c02718
10.1016/j.joule.2021.12.004
10.1002/adma.202110276
10.1002/pip.2163
10.1016/j.solmat.2021.111453
10.1039/D2EE00977C
10.1002/aenm.202003581
10.1016/j.cej.2021.131950
10.1002/anie.202207459
10.1002/adma.202110356
10.1021/jacs.2c01503
10.1016/j.joule.2022.02.001
10.1038/s41467-020-19062-8
10.1002/smll.202201347
10.1126/science.abp8873
10.1039/D1EE02897A
10.1016/j.ceramint.2022.03.264
10.1002/aenm.202201243
10.1021/acsenergylett.1c02431
10.1002/aenm.202200821
10.1002/aenm.201902573
10.1002/adma.202101733
10.1002/adfm.202107827
10.1038/s41565-021-01011-1
10.1038/s41560-022-01045-2
10.1002/adfm.202111760
10.1016/j.cap.2022.06.012
10.1038/s41586-021-04372-8
10.1021/acsaem.1c04085
10.1002/aenm.201602117
10.1039/D1SE01777B
10.1126/science.abh1885
10.1021/acsenergylett.2c01556
10.1002/adfm.202109321
10.1002/aenm.202102397
10.1038/nchem.1861
10.1002/pip.2352
10.1007/s11426-022-1242-9
10.1002/adom.201400103
10.1016/j.cej.2022.137416
10.1021/acsenergylett.1c02645
10.1016/j.cej.2022.135181
10.1002/adma.202106118
10.1021/acsami.2c04507
10.1021/acsenergylett.2c00776
10.1007/s40820-022-00842-4
10.1002/adfm.202108614
ContentType Journal Article
Copyright 2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202203313
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202203313
AENM202203313
Genre reviewArticle
GrantInformation_xml – fundername: European Union's Horizon 2020 Research and Innovation Programme
  funderid: 742708
– fundername: Bavaria (EnCN and SFF)
– fundername: Solar Technologies go Hybrid
– fundername: Office of Energy Efficiency and Renewable Energy
– fundername: Solar Energy Technologies Office
  funderid: 38262
– fundername: Ministerio de Ciencia e Innovación
– fundername: Agencia Estatal de Investigación
  funderid: PCI2019‐111839‐2
– fundername: National Science Foundation
  funderid: CBET‐1702591
– fundername: DFG
  funderid: 182849149
– fundername: U.S. Department of Energy
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4233-28d93887323b00d2227793dbbb9262665293c229f9bec9c5e20e34d7f8f2a3fa3
IEDL.DBID 24P
ISSN 1614-6832
IngestDate Fri Jul 25 12:10:04 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Tue Jul 01 01:43:48 EDT 2025
Wed Jan 22 16:19:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4233-28d93887323b00d2227793dbbb9262665293c229f9bec9c5e20e34d7f8f2a3fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7985-7431
0000-0002-5750-9751
0000-0002-1920-5124
0000-0002-9440-0253
0000-0002-0838-7962
0000-0003-1552-7449
0000-0003-4248-6312
0000-0001-9512-4919
0000-0002-3343-867X
0000-0002-2537-0310
0000-0002-3017-5552
0000-0003-4409-8751
0000-0001-9609-9030
0000-0001-9849-4755
0000-0003-3526-3081
0000-0001-5955-4786
0000-0003-1048-1330
0000-0001-5189-4612
0000-0003-2196-8187
0000-0002-2523-0203
0000-0001-8511-790X
0000-0003-4384-2112
0000-0001-6433-9562
0000-0003-1699-695X
0000-0002-6954-8213
0000-0002-4317-2879
0000-0002-1557-8361
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203313
PQID 2761193198
PQPubID 886389
PageCount 28
ParticipantIDs proquest_journals_2761193198
crossref_citationtrail_10_1002_aenm_202203313
crossref_primary_10_1002_aenm_202203313
wiley_primary_10_1002_aenm_202203313_AENM202203313
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 6, 2023
PublicationDateYYYYMMDD 2023-01-06
PublicationDate_xml – month: 01
  year: 2023
  text: January 6, 2023
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 375
2022; 376
2002; 14
2017; 7
2013; 3
2017; 2
2013; 21
2019; 11
2021; 125
2019; 13
2021; 29
2014; 24
2022; 21
2020; 11
2022; 65
1961; 32
2020; 10
2022; 611
2022; 138
2022; 377
2022; 243
2020; 8
2018; 6
2022; 321
2020; 5
2021; 31
2022; 240
2021; 33
2014; 2
2022; 34
2022; 30
2022; 608
2022; 32
2022; 605
2022; 603
2022; 601
2014; 6
2022; 126
2012; 20
2022; 446
2021; 5
2019; 3
2021; 4
2017; 25
2022; 95
2022; 48
2022; 41
2002
2022; 437
2022; 235
2022; 144
2021; 14
2021; 11
2022
2022; 61
2021; 214
2022; 5
2022; 6
2020
2022; 7
2022; 9
2022; 12
2022; 13
2022; 14
2022; 15
2022; 96
2022; 10
2022; 428
2022; 16
2016; 130
2022; 17
2014; 104
2022; 18
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
Brown A. S. (e_1_2_10_6_1) 2002; 14
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_154_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_147_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
Brown A. S. (e_1_2_10_5_1) 2002
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
Odobel F. (e_1_2_10_152_1) 2022; 61
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_130_1
e_1_2_10_157_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_153_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1121
  year: 2022
  publication-title: Joule
– volume: 3
  start-page: 1143
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 608
  start-page: 317
  year: 2022
  publication-title: Nature
– volume: 24
  start-page: 3587
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 708
  year: 2022
  publication-title: Nat. Energy
– volume: 18
  year: 2022
  publication-title: Small
– volume: 130
  start-page: 139
  year: 2016
  publication-title: Sol. Energy
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 8
  year: 2022
  publication-title: Joule
– volume: 3
  start-page: 1803
  year: 2019
  publication-title: Joule
– volume: 376
  start-page: 762
  year: 2022
  publication-title: Science
– volume: 11
  start-page: 5254
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2542
  year: 2021
  publication-title: Matter
– volume: 611
  start-page: 278
  year: 2022
  publication-title: Nature
– volume: 377
  start-page: 531
  year: 2022
  publication-title: Science
– volume: 603
  start-page: 73
  year: 2022
  publication-title: Nature
– volume: 5
  start-page: 587
  year: 2020
  publication-title: Nat. Energy
– volume: 7
  start-page: 1298
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 41
  start-page: 66
  year: 2022
  publication-title: Curr. Appl. Phys.
– year: 2022
– volume: 14
  start-page: 96
  year: 2002
  publication-title: Phys. Educ.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2022
  publication-title: Adv. Mater. Interfaces
– volume: 5
  start-page: 3568
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 6
  start-page: 676
  year: 2022
  publication-title: Joule
– volume: 126
  year: 2022
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 2273
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 861
  year: 2022
  publication-title: Joule
– volume: 5
  start-page: 2819
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 104
  year: 2014
  publication-title: Appl. Phys. Lett.
– start-page: 868
  year: 2002
  end-page: 871
– volume: 30
  start-page: 687
  year: 2022
  publication-title: Prog. Photovoltaics
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 235
  year: 2022
  publication-title: Nat. Photonics
– volume: 32
  start-page: 510
  year: 1961
  publication-title: J. Appl. Phys.
– volume: 96
  year: 2022
  publication-title: Nano Energy
– volume: 375
  start-page: 71
  year: 2022
  publication-title: Science
– volume: 14
  start-page: 96
  year: 2002
  publication-title: Phys. E
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 3668
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 2
  start-page: 849
  year: 2017
  publication-title: Nat. Energy
– volume: 15
  start-page: 1078
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 605
  start-page: 268
  year: 2022
  publication-title: Nature
– volume: 5
  start-page: 1587
  year: 2021
  publication-title: Joule
– volume: 7
  start-page: 2256
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 601
  start-page: 573
  year: 2022
  publication-title: Nature
– volume: 20
  start-page: 12
  year: 2012
  publication-title: Prog. Photovoltaics
– volume: 29
  start-page: 657
  year: 2021
  publication-title: Prog. Photovoltaics
– volume: 6
  year: 2022
  publication-title: Sol. RRL
– volume: 428
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 5946
  year: 2022
  publication-title: Nat. Commun.
– volume: 95
  year: 2022
  publication-title: Nano Energy
– volume: 6
  start-page: 744
  year: 2022
  publication-title: Sustainable Energy Fuels
– volume: 6
  start-page: 1918
  year: 2022
  publication-title: Joule
– volume: 437
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 48
  year: 2022
  publication-title: Ceram. Int.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 10
  start-page: 1343
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 53
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 138
  year: 2022
  publication-title: Mater. Sci. Semicond. Process.
– volume: 6
  start-page: 242
  year: 2014
  publication-title: Nat. Chem.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 16
  start-page: 588
  year: 2022
  publication-title: Nat. Photonics
– volume: 6
  start-page: 2503
  year: 2022
  publication-title: Sustainable Energy Fuels
– volume: 15
  start-page: 1563
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 656
  year: 2022
  publication-title: Nat. Mater.
– volume: 2
  start-page: 606
  year: 2014
  publication-title: Adv. Opt. Mater.
– volume: 25
  start-page: 3
  year: 2017
  publication-title: Prog. Photovoltaics
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 321
  year: 2022
  publication-title: Mater. Lett.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 822
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 65
  start-page: 1164
  year: 2022
  publication-title: Sci China Chem
– volume: 6
  start-page: 662
  year: 2022
  publication-title: Joule
– volume: 7
  start-page: 1112
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 13
  start-page: 501
  year: 2019
  publication-title: Nat. Photonics
– volume: 30
  start-page: 1003
  year: 2022
  publication-title: Prog. Photovoltaics
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 243
  year: 2022
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 144
  start-page: 8658
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 966
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 240
  start-page: 399
  year: 2022
  publication-title: Sol. Energy
– volume: 7
  start-page: 757
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 99
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 5
  start-page: 2395
  year: 2021
  publication-title: Joule
– volume: 375
  start-page: 302
  year: 2022
  publication-title: Science
– volume: 375
  start-page: 434
  year: 2022
  publication-title: Science
– volume: 6
  start-page: 171
  year: 2022
  publication-title: Joule
– volume: 3
  start-page: 2871
  year: 2019
  publication-title: Joule
– volume: 15
  start-page: 2629
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 359
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 1
  year: 2013
  publication-title: Prog. Photovoltaics
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– year: 2022
  publication-title: Nature
– volume: 235
  year: 2022
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 214
  start-page: 110
  year: 2021
  publication-title: Sol. Energy
– volume: 5
  start-page: 31
  year: 2021
  publication-title: npj Flexible Electron.
– volume: 7
  start-page: 3003
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 2079
  year: 2022
  publication-title: ACS Energy Lett.
– year: 2020
– volume: 446
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 376
  start-page: 416
  year: 2022
  publication-title: Science
– volume: 5
  year: 2021
  publication-title: Sol. RRL
– ident: e_1_2_10_118_1
  doi: 10.1002/adma.202109879
– ident: e_1_2_10_44_1
  doi: 10.1016/j.joule.2022.06.009
– ident: e_1_2_10_93_1
  doi: 10.1002/aenm.202102596
– ident: e_1_2_10_108_1
  doi: 10.1002/solr.202100814
– ident: e_1_2_10_18_1
  doi: 10.1002/solr.202200507
– ident: e_1_2_10_40_1
  doi: 10.1016/j.joule.2022.04.024
– ident: e_1_2_10_64_1
  doi: 10.1038/s41566-022-01033-8
– ident: e_1_2_10_45_1
  doi: 10.1002/advs.202201487
– ident: e_1_2_10_139_1
  doi: 10.1002/admi.202101595
– ident: e_1_2_10_144_1
  doi: 10.1002/anie.202116111
– ident: e_1_2_10_10_1
  doi: 10.1038/s41566-019-0479-2
– volume: 14
  start-page: 96
  year: 2002
  ident: e_1_2_10_6_1
  publication-title: Phys. Educ.
– ident: e_1_2_10_148_1
  doi: 10.1002/aenm.202200453
– ident: e_1_2_10_7_1
  doi: 10.1002/aenm.202100022
– ident: e_1_2_10_120_1
  doi: 10.1002/adma.202105539
– ident: e_1_2_10_91_1
  doi: 10.1039/D1EE03263A
– ident: e_1_2_10_79_1
  doi: 10.1016/j.solener.2020.11.043
– ident: e_1_2_10_2_1
  doi: 10.1002/aenm.202102526
– ident: e_1_2_10_27_1
  doi: 10.1002/adma.202200337
– ident: e_1_2_10_77_1
  doi: 10.1016/j.cej.2022.137144
– ident: e_1_2_10_136_1
  doi: 10.1016/j.solmat.2022.111791
– ident: e_1_2_10_122_1
  doi: 10.1002/adma.202201840
– ident: e_1_2_10_129_1
  doi: 10.1039/D2SE00111J
– ident: e_1_2_10_23_1
  doi: 10.1038/s41586-022-04961-1
– ident: e_1_2_10_106_1
  doi: 10.1021/acsenergylett.2c00274
– ident: e_1_2_10_146_1
  doi: 10.1002/adfm.202200107
– ident: e_1_2_10_100_1
  doi: 10.1002/adma.202109078
– ident: e_1_2_10_60_1
  doi: 10.1126/science.abl5676
– ident: e_1_2_10_99_1
  doi: 10.1016/j.solener.2022.05.043
– ident: e_1_2_10_130_1
  doi: 10.1002/aenm.202202438
– ident: e_1_2_10_126_1
  doi: 10.1016/j.joule.2021.06.017
– ident: e_1_2_10_39_1
  doi: 10.1021/acsenergylett.0c01184
– ident: e_1_2_10_76_1
  doi: 10.1039/C8TA08900K
– ident: e_1_2_10_92_1
  doi: 10.1002/adma.202102420
– ident: e_1_2_10_105_1
  doi: 10.1039/D1TA09143C
– ident: e_1_2_10_43_1
  doi: 10.1002/pip.3542
– ident: e_1_2_10_149_1
  doi: 10.1002/adfm.202108634
– ident: e_1_2_10_33_1
– ident: e_1_2_10_4_1
  doi: 10.1063/1.1736034
– ident: e_1_2_10_68_1
  doi: 10.1002/adma.202108829
– ident: e_1_2_10_72_1
  doi: 10.1021/acsami.9b06356
– ident: e_1_2_10_32_1
  doi: 10.1038/s41566-021-00950-4
– ident: e_1_2_10_145_1
  doi: 10.1002/adma.202201604
– ident: e_1_2_10_116_1
  doi: 10.1016/j.matlet.2022.132460
– ident: e_1_2_10_20_1
  doi: 10.1002/aenm.202201672
– ident: e_1_2_10_90_1
  doi: 10.1038/s41467-022-33754-3
– ident: e_1_2_10_138_1
  doi: 10.1016/j.nanoen.2022.106978
– ident: e_1_2_10_1_1
  doi: 10.1002/aenm.202002774
– ident: e_1_2_10_84_1
  doi: 10.1002/adma.202105803
– ident: e_1_2_10_22_1
  doi: 10.1038/s41586-022-05268-x
– ident: e_1_2_10_134_1
  doi: 10.1021/acsaem.2c00091
– ident: e_1_2_10_115_1
  doi: 10.1002/pip.2855
– ident: e_1_2_10_63_1
  doi: 10.1002/anie.202116534
– start-page: 868
  volume-title: Conf. Record of the Twenty‐Ninth IEEE Photovoltaic Specialists Conf.
  year: 2002
  ident: e_1_2_10_5_1
– ident: e_1_2_10_58_1
  doi: 10.1038/s41586-022-04604-5
– ident: e_1_2_10_137_1
  doi: 10.1063/1.4870834
– ident: e_1_2_10_30_1
  doi: 10.1002/aenm.202002341
– ident: e_1_2_10_151_1
  doi: 10.1021/acs.jpcc.2c03162
– ident: e_1_2_10_24_1
  doi: 10.1002/adma.202205809
– ident: e_1_2_10_89_1
  doi: 10.1002/aenm.202104060
– ident: e_1_2_10_141_1
  doi: 10.1021/acsami.1c22748
– ident: e_1_2_10_103_1
  doi: 10.1002/adma.202206242
– ident: e_1_2_10_67_1
  doi: 10.1126/science.abn7696
– ident: e_1_2_10_121_1
  doi: 10.1002/adfm.202106460
– ident: e_1_2_10_111_1
  doi: 10.1016/j.joule.2021.12.017
– ident: e_1_2_10_101_1
  doi: 10.1002/aenm.202200700
– ident: e_1_2_10_13_1
  doi: 10.1016/j.solener.2016.02.015
– ident: e_1_2_10_29_1
  doi: 10.1002/adfm.201304238
– ident: e_1_2_10_12_1
  doi: 10.1038/s41560-017-0016-9
– ident: e_1_2_10_9_1
  doi: 10.1016/S1386-9477(02)00364-8
– ident: e_1_2_10_14_1
  doi: 10.1038/s41586-022-05460-z
– ident: e_1_2_10_35_1
  doi: 10.1021/acsenergylett.2c00707
– ident: e_1_2_10_52_1
  doi: 10.1002/adfm.202109631
– ident: e_1_2_10_156_1
– ident: e_1_2_10_95_1
  doi: 10.1002/adma.202110155
– ident: e_1_2_10_117_1
  doi: 10.1021/acsenergylett.2c01130
– ident: e_1_2_10_86_1
  doi: 10.1039/D1EE03989J
– ident: e_1_2_10_26_1
  doi: 10.1002/adma.202204718
– ident: e_1_2_10_55_1
  doi: 10.1126/science.abj2637
– ident: e_1_2_10_69_1
  doi: 10.1002/adfm.202103614
– ident: e_1_2_10_37_1
  doi: 10.1002/adma.202206193
– ident: e_1_2_10_119_1
  doi: 10.1002/adma.202201681
– ident: e_1_2_10_74_1
  doi: 10.1016/j.nanoen.2022.107138
– ident: e_1_2_10_98_1
  doi: 10.1016/j.cej.2022.136777
– ident: e_1_2_10_143_1
  doi: 10.1021/acs.jpcc.1c05736
– ident: e_1_2_10_88_1
  doi: 10.1002/adfm.202112511
– ident: e_1_2_10_131_1
  doi: 10.1016/j.mssp.2021.106301
– ident: e_1_2_10_114_1
  doi: 10.1002/pip.3444
– ident: e_1_2_10_57_1
  doi: 10.1016/j.joule.2022.02.003
– ident: e_1_2_10_19_1
  doi: 10.1038/s41586-021-04216-5
– ident: e_1_2_10_11_1
  doi: 10.1016/j.joule.2019.06.005
– ident: e_1_2_10_154_1
  doi: 10.1002/aenm.201300173
– ident: e_1_2_10_102_1
  doi: 10.1039/D0EE02239J
– ident: e_1_2_10_3_1
  doi: 10.1002/pip.3595
– ident: e_1_2_10_21_1
  doi: 10.1126/science.abm8566
– ident: e_1_2_10_142_1
  doi: 10.1002/solr.202200441
– ident: e_1_2_10_153_1
  doi: 10.1002/adom.201901536
– ident: e_1_2_10_25_1
  doi: 10.1038/s41563-022-01244-y
– ident: e_1_2_10_46_1
  doi: 10.1016/j.joule.2019.10.009
– ident: e_1_2_10_15_1
  doi: 10.1002/aenm.202103015
– ident: e_1_2_10_94_1
  doi: 10.1016/j.matt.2021.06.010
– ident: e_1_2_10_49_1
  doi: 10.1016/j.joule.2022.02.014
– ident: e_1_2_10_31_1
  doi: 10.1038/s41560-020-0652-3
– ident: e_1_2_10_107_1
  doi: 10.1002/adma.202110053
– ident: e_1_2_10_123_1
  doi: 10.1016/j.joule.2021.04.014
– ident: e_1_2_10_28_1
  doi: 10.1002/adma.202202858
– ident: e_1_2_10_110_1
  doi: 10.1039/D2TA01592G
– ident: e_1_2_10_128_1
  doi: 10.1038/s41528-021-00127-7
– ident: e_1_2_10_65_1
  doi: 10.1002/anie.202201300
– ident: e_1_2_10_87_1
  doi: 10.1002/adma.202205844
– ident: e_1_2_10_50_1
  doi: 10.1021/acsenergylett.1c02718
– ident: e_1_2_10_47_1
  doi: 10.1016/j.joule.2021.12.004
– ident: e_1_2_10_125_1
  doi: 10.1002/adma.202110276
– ident: e_1_2_10_34_1
  doi: 10.1002/pip.2163
– ident: e_1_2_10_16_1
  doi: 10.1016/j.solmat.2021.111453
– ident: e_1_2_10_150_1
  doi: 10.1039/D2EE00977C
– ident: e_1_2_10_48_1
  doi: 10.1002/aenm.202003581
– ident: e_1_2_10_75_1
  doi: 10.1016/j.cej.2021.131950
– volume: 61
  start-page: 202207459
  year: 2022
  ident: e_1_2_10_152_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202207459
– ident: e_1_2_10_66_1
  doi: 10.1002/adma.202110356
– ident: e_1_2_10_42_1
  doi: 10.1021/jacs.2c01503
– ident: e_1_2_10_81_1
  doi: 10.1016/j.joule.2022.02.001
– ident: e_1_2_10_109_1
  doi: 10.1038/s41467-020-19062-8
– ident: e_1_2_10_133_1
  doi: 10.1002/smll.202201347
– ident: e_1_2_10_56_1
  doi: 10.1126/science.abp8873
– ident: e_1_2_10_59_1
  doi: 10.1039/D1EE02897A
– ident: e_1_2_10_132_1
  doi: 10.1016/j.ceramint.2022.03.264
– ident: e_1_2_10_157_1
  doi: 10.1002/aenm.202201243
– ident: e_1_2_10_73_1
  doi: 10.1021/acsenergylett.1c02431
– ident: e_1_2_10_104_1
  doi: 10.1002/aenm.202200821
– ident: e_1_2_10_8_1
  doi: 10.1002/aenm.201902573
– ident: e_1_2_10_82_1
  doi: 10.1002/adma.202101733
– ident: e_1_2_10_83_1
  doi: 10.1002/adfm.202107827
– ident: e_1_2_10_85_1
  doi: 10.1038/s41565-021-01011-1
– ident: e_1_2_10_41_1
  doi: 10.1038/s41560-022-01045-2
– ident: e_1_2_10_140_1
  doi: 10.1002/adfm.202111760
– ident: e_1_2_10_135_1
  doi: 10.1016/j.cap.2022.06.012
– ident: e_1_2_10_36_1
  doi: 10.1038/s41586-021-04372-8
– ident: e_1_2_10_124_1
  doi: 10.1021/acsaem.1c04085
– ident: e_1_2_10_112_1
  doi: 10.1002/aenm.201602117
– ident: e_1_2_10_78_1
  doi: 10.1039/D1SE01777B
– ident: e_1_2_10_17_1
  doi: 10.1126/science.abh1885
– ident: e_1_2_10_38_1
  doi: 10.1021/acsenergylett.2c01556
– ident: e_1_2_10_70_1
  doi: 10.1002/adfm.202109321
– ident: e_1_2_10_147_1
  doi: 10.1002/aenm.202102397
– ident: e_1_2_10_96_1
  doi: 10.1038/nchem.1861
– ident: e_1_2_10_113_1
  doi: 10.1002/pip.2352
– ident: e_1_2_10_127_1
  doi: 10.1007/s11426-022-1242-9
– ident: e_1_2_10_155_1
  doi: 10.1002/adom.201400103
– ident: e_1_2_10_61_1
  doi: 10.1016/j.cej.2022.137416
– ident: e_1_2_10_62_1
  doi: 10.1021/acsenergylett.1c02645
– ident: e_1_2_10_71_1
  doi: 10.1016/j.cej.2022.135181
– ident: e_1_2_10_54_1
  doi: 10.1002/adma.202106118
– ident: e_1_2_10_97_1
  doi: 10.1021/acsami.2c04507
– ident: e_1_2_10_51_1
  doi: 10.1021/acsenergylett.2c00776
– ident: e_1_2_10_53_1
  doi: 10.1007/s40820-022-00842-4
– ident: e_1_2_10_80_1
  doi: 10.1002/adfm.202108614
SSID ssj0000491033
Score 2.6469502
SecondaryResourceType review_article
Snippet Following the 2nd release of the “Emerging PV reports,” the best achievements in the performance of emerging photovoltaic devices in diverse emerging...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms bandgap energy
Circuits
emerging photovoltaics
Energy conversion efficiency
flexible photovoltaics
Parameters
Photovoltaic cells
photovoltaic device operational stability
semitransparent solar cells
Solar cells
Stability tests
tandem solar cells
transparent solar cells
Title Device Performance of Emerging Photovoltaic Materials (Version 3)
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203313
https://www.proquest.com/docview/2761193198
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kvehB_MRqlT0I6iE0-5nkGGxLEVsKWugtbDa7KEgiNv5_d5I0bQ8ieAxs9jC7b-Yx7LyH0C0RyvIgEJ5R3Hrc0NBLmWCe5iRUxFJNdPVAdiYnC_60FMutKf5aH6JtuAEyqnwNAFfparARDVUmh0lySn3GwLa2C_O1oJ5P-bztsjj-S_zKT94xG-5Jd3_Xyo0-HexusVuZNnRzm7RWVWd8hA4buojj-nyP0Z7JT9DBlojgKYqHBtCO55sRAFxYDN0mMCDC87eiLFwSKtW7xlNV1lcO3zedMsweztBiPHp9nHiNMYILIQXvtTCLmMsOjDKHmgzGWR3MsjRNQf1PSuFquKY0spE7oUgLQ33DeBbY0FLFrGLnqJMXublAWBhhhTQpDwlws0iR1DEAJTXNtHEFtIe8dVAS3aiGg3nFR1LrHdMEgpi0Qeyhu3b9Z62X8evK_jrGSYObVUIDSRylJFHYQ7SK-x-7JPFoNm2_Lv_z0xXaBw_5qq8i-6hTfn2ba8c0yvSmukw3qBsPp88vP6WPySg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2iB_UgfmK1ag6CeljaTD5291i0pWpbemjB25LNJihIK7r-fzO72217EMHjQjaHSd7MY8i8R8g1k9qJMJSB1cIFwkIUpFzywAgWaebAMFM8kB2p_lQ8vcjFa0KchSn1IeqGGyKjyNcIcGxIt5aqodrOcJQcoM05-tZuCQUhYhPEuG6zeALM2oWhvKc2IlD-Ai-kG9vQWt9ivTQt-eYqay3KTm-f7FV8kXbKAz4gG3Z2SHZXVASPSOfBItzpeDkDQOeOYrsJHYjo-HWez30WyvWboUOdl3eO3latMsrvjsm0153c94PKGcHHENB8Lcpi7tMDB-5hk-E8q8dZlqYpyv8pJX0RNwCxi_0RxUZaaFsustBFDjR3mp-Qzdl8Zk8JlVY6qWwqIobkLNYs9RRAKwOZsb6CNkiwCEpiKtlwdK94T0rBY0gwiEkdxAa5qdd_lIIZv65sLmKcVMD5SiBUzHNKFkcNAkXc_9gl6XRHw_rr7D8_XZHt_mQ4SAaPo-dzsoOG8kWTRTXJZv75bS887cjTy-Ji_QBCossA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yQfQg_sTp1BwE9VC2_Gx7HG5j_tjowcFuIU0TFKQdWv9_k7TrtoMIHgtpDi_53vt47fs-AG4Qk4aGIQu0pCagGkdBShgJFEWRRAYrpPwPslM-ntGnOZuvTfFX-hBNw80hw-drB_BFZror0VCpczdJjnGPEGdbu-2_-DltZ5o0XRbLf1HP-8lbZkMDbu_vUrmxh7ubW2xWphXdXCetvuqMDsB-TRdhvzrfQ7Cl8yOwtyYieAz6A-3QDpPVCAAsDHTdJmdABJO3oixsEirlu4ITWVZXDt7VnTJI7k_AbDR8fRgHtTGCDSF23mtRFhObHQgmFjWZG2e1MMvSNHXqf5wzW8MVxrGJ7QnFimnc04RmoYkMlsRIcgpaeZHrMwCZZoZxndIIOW4WS5RaBiC5wpnStoC2QbAMilC1argzr_gQld4xFi6IogliG9w26xeVXsavKzvLGIsaN18ChxxZSoniqA2wj_sfu4j-cDppns7_89I12EkGI_HyOH2-ALvOTt63WHgHtMrPb31pSUeZXvl79QM4Gsoy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Device+Performance+of+Emerging+Photovoltaic+Materials+%28Version+3%29&rft.jtitle=Advanced+energy+materials&rft.au=Almora%2C+Osbel&rft.au=Baran%2C+Derya&rft.au=Bazan%2C+Guillermo+C.&rft.au=Cabrera%2C+Carlos+I.&rft.date=2023-01-06&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1002%2Faenm.202203313&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202203313
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon