Ligand‐Binding Mediated Gradual Ionic Transport in Nanopores

Selective binding of metal ions to their receptors at the cell membranes is essential for immune reactions, signaling, and opening/closing of the ion channels. Such ligand‐binding‐based pore activities inspire scientists to build metal‐ion‐responsive mesoporous films that can interact with metal ion...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 10; no. 8
Main Authors Varol, H. Samet, Förster, Claire, Andrieu‐Brunsen, Annette
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.03.2023
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selective binding of metal ions to their receptors at the cell membranes is essential for immune reactions, signaling, and opening/closing of the ion channels. Such ligand‐binding‐based pore activities inspire scientists to build metal‐ion‐responsive mesoporous films that can interact with metal ions to tune the ionic nanopore transport. However, to apply these mesoporous films in novel sensing and separation applications, their ligand‐binding‐triggered ionic pore transport needs to be understood fundamentally toward programming the transport of both anions and cations simultaneously and gradually. Herein, it is shown how Ca2+ ion concentration and attachment to the different chemistry silica nanopores tunes finely the nanopore transport of both anions and cations, especially for phosphate‐containing polyelectrolyte (PMEP) functionalized mesopores. This biased ligand binding can gradually regulate the transport of anions and cations, whereas pores without polymers can gradually regulate only the anionic transport. Last, pore polymer functionality related to Ca2+ ion binding also diverts the pores’ adsorption/desorption (reversibility) response. Almost fully reversible Ca2+ binding is observed in non‐functional pores and non‐reversible Ca2+ binding at the PMEP‐modified pores. It is also demonstrated that non/functional pores, even at sub‐µm concentrations, bind only divalent Ca2+ ions, but they are not selective to trivalent Al3+ ions. The possibility of using Ca2+ ion concentration‐dependent ligand‐binding strategy to control the transport of both anions and cations simultaneously and gradually in multipore mesoporous films, is shown. At high pH, the transport of anions (purple) and cations (green) is finely tuned by changing the amount of Ca2+ ions absorbed in silica mesopores (grey) functionalized by phosphate‐bearing polyelectrolytes (curved blue lines).
AbstractList Abstract Selective binding of metal ions to their receptors at the cell membranes is essential for immune reactions, signaling, and opening/closing of the ion channels. Such ligand‐binding‐based pore activities inspire scientists to build metal‐ion‐responsive mesoporous films that can interact with metal ions to tune the ionic nanopore transport. However, to apply these mesoporous films in novel sensing and separation applications, their ligand‐binding‐triggered ionic pore transport needs to be understood fundamentally toward programming the transport of both anions and cations simultaneously and gradually. Herein, it is shown how Ca 2+ ion concentration and attachment to the different chemistry silica nanopores tunes finely the nanopore transport of both anions and cations, especially for phosphate‐containing polyelectrolyte (PMEP) functionalized mesopores. This biased ligand binding can gradually regulate the transport of anions and cations, whereas pores without polymers can gradually regulate only the anionic transport. Last, pore polymer functionality related to Ca 2+ ion binding also diverts the pores’ adsorption/desorption (reversibility) response. Almost fully reversible Ca 2+ binding is observed in non‐functional pores and non‐reversible Ca 2+ binding at the PMEP‐modified pores. It is also demonstrated that non/functional pores, even at sub‐µ m concentrations, bind only divalent Ca 2+ ions, but they are not selective to trivalent Al 3+ ions.
Abstract Selective binding of metal ions to their receptors at the cell membranes is essential for immune reactions, signaling, and opening/closing of the ion channels. Such ligand‐binding‐based pore activities inspire scientists to build metal‐ion‐responsive mesoporous films that can interact with metal ions to tune the ionic nanopore transport. However, to apply these mesoporous films in novel sensing and separation applications, their ligand‐binding‐triggered ionic pore transport needs to be understood fundamentally toward programming the transport of both anions and cations simultaneously and gradually. Herein, it is shown how Ca2+ ion concentration and attachment to the different chemistry silica nanopores tunes finely the nanopore transport of both anions and cations, especially for phosphate‐containing polyelectrolyte (PMEP) functionalized mesopores. This biased ligand binding can gradually regulate the transport of anions and cations, whereas pores without polymers can gradually regulate only the anionic transport. Last, pore polymer functionality related to Ca2+ ion binding also diverts the pores’ adsorption/desorption (reversibility) response. Almost fully reversible Ca2+ binding is observed in non‐functional pores and non‐reversible Ca2+ binding at the PMEP‐modified pores. It is also demonstrated that non/functional pores, even at sub‐µm concentrations, bind only divalent Ca2+ ions, but they are not selective to trivalent Al3+ ions.
Selective binding of metal ions to their receptors at the cell membranes is essential for immune reactions, signaling, and opening/closing of the ion channels. Such ligand‐binding‐based pore activities inspire scientists to build metal‐ion‐responsive mesoporous films that can interact with metal ions to tune the ionic nanopore transport. However, to apply these mesoporous films in novel sensing and separation applications, their ligand‐binding‐triggered ionic pore transport needs to be understood fundamentally toward programming the transport of both anions and cations simultaneously and gradually. Herein, it is shown how Ca2+ ion concentration and attachment to the different chemistry silica nanopores tunes finely the nanopore transport of both anions and cations, especially for phosphate‐containing polyelectrolyte (PMEP) functionalized mesopores. This biased ligand binding can gradually regulate the transport of anions and cations, whereas pores without polymers can gradually regulate only the anionic transport. Last, pore polymer functionality related to Ca2+ ion binding also diverts the pores’ adsorption/desorption (reversibility) response. Almost fully reversible Ca2+ binding is observed in non‐functional pores and non‐reversible Ca2+ binding at the PMEP‐modified pores. It is also demonstrated that non/functional pores, even at sub‐µm concentrations, bind only divalent Ca2+ ions, but they are not selective to trivalent Al3+ ions. The possibility of using Ca2+ ion concentration‐dependent ligand‐binding strategy to control the transport of both anions and cations simultaneously and gradually in multipore mesoporous films, is shown. At high pH, the transport of anions (purple) and cations (green) is finely tuned by changing the amount of Ca2+ ions absorbed in silica mesopores (grey) functionalized by phosphate‐bearing polyelectrolytes (curved blue lines).
Selective binding of metal ions to their receptors at the cell membranes is essential for immune reactions, signaling, and opening/closing of the ion channels. Such ligand‐binding‐based pore activities inspire scientists to build metal‐ion‐responsive mesoporous films that can interact with metal ions to tune the ionic nanopore transport. However, to apply these mesoporous films in novel sensing and separation applications, their ligand‐binding‐triggered ionic pore transport needs to be understood fundamentally toward programming the transport of both anions and cations simultaneously and gradually. Herein, it is shown how Ca2+ ion concentration and attachment to the different chemistry silica nanopores tunes finely the nanopore transport of both anions and cations, especially for phosphate‐containing polyelectrolyte (PMEP) functionalized mesopores. This biased ligand binding can gradually regulate the transport of anions and cations, whereas pores without polymers can gradually regulate only the anionic transport. Last, pore polymer functionality related to Ca2+ ion binding also diverts the pores’ adsorption/desorption (reversibility) response. Almost fully reversible Ca2+ binding is observed in non‐functional pores and non‐reversible Ca2+ binding at the PMEP‐modified pores. It is also demonstrated that non/functional pores, even at sub‐µm concentrations, bind only divalent Ca2+ ions, but they are not selective to trivalent Al3+ ions.
Author Förster, Claire
Andrieu‐Brunsen, Annette
Varol, H. Samet
Author_xml – sequence: 1
  givenname: H. Samet
  orcidid: 0000-0001-8245-2243
  surname: Varol
  fullname: Varol, H. Samet
  organization: Technische Universität Darmstadt
– sequence: 2
  givenname: Claire
  surname: Förster
  fullname: Förster, Claire
  organization: Technische Universität Darmstadt
– sequence: 3
  givenname: Annette
  orcidid: 0000-0002-3850-3047
  surname: Andrieu‐Brunsen
  fullname: Andrieu‐Brunsen, Annette
  email: annette.andrieu-brunsen@tu-darmstadt.de
  organization: Technische Universität Darmstadt
BookMark eNqFkEFPAjEQhRuDiYhcPW_iGZy2u9vuxQRRkQT0gudmtu2SEmixCzHc_An-Rn-Jixj05qkvzffezLxz0vLBW0IuKfQpALtGs3J9BowBLYCdkDajRd4TPIPWH31GunW9AABKGWWSt8nNxM3Rm8_3j1vnjfPzZGqNw401ySii2eIyGQfvdDKL6Ot1iJvE-eQJfWi0rS_IaYXL2nZ_3g55ebifDR97k-fReDiY9HTKOOsVlGcCZClFQYXlGWN7IQG51NZKCVZXpkGNZmCFFjKtwPAybU5BzmTGO2R8yDUBF2od3QrjTgV06vsjxLnCuHF6aZUQNAcQGVKm08qg5GUp8ywrbVkImmKTdXXIWsfwurX1Ri3CNvpmfcWEzEUuOKcN1T9QOoa6jrY6TqWg9pWrfeXqWHljKA6GN7e0u39oNbibjn-9X6KGhII
CitedBy_id crossref_primary_10_1021_acs_chemmater_3c01890
Cites_doi 10.1016/j.mtadv.2019.100047
10.1016/j.mattod.2014.10.020
10.1021/cm5037953
10.1038/s41427-019-0148-4
10.1039/D2CC01164F
10.1016/j.electacta.2015.07.084
10.1016/S0006-3495(95)79881-2
10.1021/jacs.9b12530
10.1038/nnano.2016.43
10.1002/smtd.202000366
10.1021/la200501h
10.1016/j.neuron.2021.02.007
10.1021/acs.langmuir.7b00529
10.1016/j.jcis.2019.09.093
10.1021/nn303669g
10.1002/smll.201902710
10.1002/admi.201901914
10.1021/jp5027515
10.1371/journal.pone.0185518
10.1039/C8CP02028K
10.1021/la050981z
10.1021/acs.langmuir.9b00910
10.1002/admt.202000765
10.1021/la061170d
10.1039/C5TC04054J
10.1016/j.jhazmat.2012.07.010
10.3390/polym9100539
10.1021/acs.langmuir.0c00245
10.1021/acs.jpcc.1c07512
10.1021/nl901403u
10.1002/adfm.201302304
10.1021/la204854r
10.1021/ja8086104
10.1021/cm503748d
10.3390/polym12102282
10.1016/j.memsci.2018.06.032
10.1002/admi.202000470
10.1016/j.micromeso.2019.03.009
10.1021/acs.jchemed.7b00361
10.1038/s41565-020-0713-6
10.1039/C6SC04255D
10.1002/admi.202000419
10.1073/pnas.2022198118
10.1039/D1CC03058B
10.1021/acs.jpcc.5b11788
10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
ContentType Journal Article
Copyright 2023 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOA
DOI 10.1002/admi.202201902
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Free Content
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef


Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID oai_doaj_org_article_77160075a12c4fda83bb8655beb9714a
10_1002_admi_202201902
ADMI202201902
Genre article
GrantInformation_xml – fundername: European Research Council
– fundername: Technische Universität Darmstadt (TU‐Darmstadt)
  funderid: Materials Science Department
– fundername: ERC:
– fundername: (ERC)
  funderid: 803758
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AIACR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BENPR
BGLVJ
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7S
MEWTI
MY~
M~E
O9-
P2W
PDBOC
PTHSS
R.K
ROL
WBKPD
WIN
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
AIURR
BFHJK
CITATION
EJD
SUPJJ
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4232-9135708b87917e3522791780a38cee880ecfdc42dc20e7c784f0d3b4902a32853
IEDL.DBID DOA
ISSN 2196-7350
IngestDate Tue Oct 22 15:07:36 EDT 2024
Thu Oct 10 21:53:16 EDT 2024
Thu Sep 12 17:39:39 EDT 2024
Sat Aug 24 01:11:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4232-9135708b87917e3522791780a38cee880ecfdc42dc20e7c784f0d3b4902a32853
ORCID 0000-0002-3850-3047
0000-0001-8245-2243
OpenAccessLink https://doaj.org/article/77160075a12c4fda83bb8655beb9714a
PQID 2786767331
PQPubID 2034582
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_77160075a12c4fda83bb8655beb9714a
proquest_journals_2786767331
crossref_primary_10_1002_admi_202201902
wiley_primary_10_1002_admi_202201902_ADMI202201902
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2014; 118
2021; 109
2021; 6
2017; 8
2015; 18
2019; 11
2020; 142
2020; 560
2021; 125
2019; 35
2018; 563
2019; 15
2020; 15
2014; 24
2020; 36
2005; 21
2020; 12
2009; 131
2018; 20
2019; 282
2017; 9
2016; 120
2016; 11
2016; 4
2021; 57
2020; 7
2020; 5
2020; 4
2015; 27
2012; 233
1995; 69
2006; 22
2017; 12
2021; 118
2015; 176
2022; 58
2009; 9
1999; 11
2012; 28
2018; 95
2012; 6
2018; 34
2011; 27
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 58
  start-page: 5188
  year: 2022
  publication-title: Chem. Commun.
– volume: 24
  start-page: 1591
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 109
  start-page: 1302
  year: 2021
  publication-title: Neuron
– volume: 27
  start-page: 808
  year: 2015
  publication-title: Chem. Mater.
– volume: 233
  start-page: 177
  year: 2012
  publication-title: J. Hazard. Mater.
– volume: 11
  start-page: 46
  year: 2019
  publication-title: NPG Asia Mater.
– volume: 4
  start-page: 4067
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 9247
  year: 2012
  publication-title: ACS Nano
– volume: 36
  start-page: 4015
  year: 2020
  publication-title: Langmuir
– volume: 12
  year: 2017
  publication-title: PLoS One
– volume: 57
  start-page: 7914
  year: 2021
  publication-title: Chem. Commun.
– volume: 22
  year: 2006
  publication-title: Langmuir
– volume: 11
  start-page: 639
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 27
  start-page: 1971
  year: 2015
  publication-title: Chem. Mater.
– volume: 9
  start-page: 2788
  year: 2009
  publication-title: Nano Lett.
– volume: 20
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 21
  year: 2005
  publication-title: Langmuir
– volume: 27
  start-page: 4328
  year: 2011
  publication-title: Langmuir
– volume: 15
  year: 2019
  publication-title: Small
– volume: 6
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 18
  start-page: 131
  year: 2015
  publication-title: Mater. Today
– volume: 11
  start-page: 579
  year: 1999
  publication-title: Adv. Mater.
– volume: 95
  start-page: 197
  year: 2018
  publication-title: J. Chem. Educ.
– volume: 28
  start-page: 3583
  year: 2012
  publication-title: Langmuir
– volume: 120
  start-page: 4789
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 176
  start-page: 1313
  year: 2015
  publication-title: Electrochim. Acta
– volume: 34
  start-page: 807
  year: 2018
  publication-title: Langmuir
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 12
  start-page: 2282
  year: 2020
  publication-title: Polymers
– volume: 9
  start-page: 539
  year: 2017
  publication-title: Polymers
– volume: 69
  start-page: 120
  year: 1995
  publication-title: Biophys. J.
– volume: 131
  start-page: 2070
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2020
  publication-title: Adv. Mater. Interfaces
– volume: 142
  start-page: 6093
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 560
  start-page: 369
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 15
  start-page: 426
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 890
  year: 2017
  publication-title: Chem. Sci.
– volume: 35
  start-page: 8038
  year: 2019
  publication-title: Langmuir
– volume: 282
  start-page: 29
  year: 2019
  publication-title: Microporous Mesoporous Mater.
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 563
  start-page: 633
  year: 2018
  publication-title: J. Membr. Sci.
– volume: 5
  year: 2020
  publication-title: Mater. Today Adv.
– ident: e_1_2_8_13_1
  doi: 10.1016/j.mtadv.2019.100047
– ident: e_1_2_8_26_1
  doi: 10.1016/j.mattod.2014.10.020
– ident: e_1_2_8_23_1
  doi: 10.1021/cm5037953
– ident: e_1_2_8_2_1
  doi: 10.1038/s41427-019-0148-4
– ident: e_1_2_8_12_1
  doi: 10.1039/D2CC01164F
– ident: e_1_2_8_41_1
  doi: 10.1016/j.electacta.2015.07.084
– ident: e_1_2_8_3_1
  doi: 10.1016/S0006-3495(95)79881-2
– ident: e_1_2_8_38_1
  doi: 10.1021/jacs.9b12530
– ident: e_1_2_8_46_1
  doi: 10.1038/nnano.2016.43
– ident: e_1_2_8_18_1
  doi: 10.1002/smtd.202000366
– ident: e_1_2_8_45_1
  doi: 10.1021/la200501h
– ident: e_1_2_8_4_1
  doi: 10.1016/j.neuron.2021.02.007
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.langmuir.7b00529
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jcis.2019.09.093
– ident: e_1_2_8_5_1
  doi: 10.1021/nn303669g
– ident: e_1_2_8_7_1
  doi: 10.1002/smll.201902710
– ident: e_1_2_8_19_1
  doi: 10.1002/admi.201901914
– ident: e_1_2_8_43_1
  doi: 10.1021/jp5027515
– ident: e_1_2_8_1_1
  doi: 10.1371/journal.pone.0185518
– ident: e_1_2_8_27_1
  doi: 10.1039/C8CP02028K
– ident: e_1_2_8_44_1
  doi: 10.1021/la050981z
– ident: e_1_2_8_33_1
  doi: 10.1021/acs.langmuir.9b00910
– ident: e_1_2_8_10_1
  doi: 10.1002/admt.202000765
– ident: e_1_2_8_14_1
  doi: 10.1021/la061170d
– ident: e_1_2_8_42_1
  doi: 10.1039/C5TC04054J
– ident: e_1_2_8_40_1
  doi: 10.1016/j.jhazmat.2012.07.010
– ident: e_1_2_8_29_1
  doi: 10.3390/polym9100539
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.langmuir.0c00245
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.jpcc.1c07512
– ident: e_1_2_8_16_1
  doi: 10.1021/nl901403u
– ident: e_1_2_8_17_1
  doi: 10.1002/adfm.201302304
– ident: e_1_2_8_6_1
  doi: 10.1021/la204854r
– ident: e_1_2_8_15_1
  doi: 10.1021/ja8086104
– ident: e_1_2_8_30_1
  doi: 10.1021/cm503748d
– ident: e_1_2_8_25_1
  doi: 10.3390/polym12102282
– ident: e_1_2_8_39_1
  doi: 10.1016/j.memsci.2018.06.032
– ident: e_1_2_8_20_1
  doi: 10.1002/admi.202000470
– ident: e_1_2_8_31_1
  doi: 10.1016/j.micromeso.2019.03.009
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.jchemed.7b00361
– ident: e_1_2_8_9_1
  doi: 10.1038/s41565-020-0713-6
– ident: e_1_2_8_22_1
  doi: 10.1039/C6SC04255D
– ident: e_1_2_8_24_1
  doi: 10.1002/admi.202000419
– ident: e_1_2_8_8_1
  doi: 10.1073/pnas.2022198118
– ident: e_1_2_8_11_1
  doi: 10.1039/D1CC03058B
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.jpcc.5b11788
– ident: e_1_2_8_28_1
  doi: 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
SSID ssj0001121283
Score 2.333014
Snippet Selective binding of metal ions to their receptors at the cell membranes is essential for immune reactions, signaling, and opening/closing of the ion channels....
Abstract Selective binding of metal ions to their receptors at the cell membranes is essential for immune reactions, signaling, and opening/closing of the ion...
Abstract Selective binding of metal ions to their receptors at the cell membranes is essential for immune reactions, signaling, and opening/closing of the ion...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms Aluminum
Anions
calcium binding
Calcium ions
Cationic polymerization
Cell membranes
Ion channels
Ion concentration
ion transport
Ions
Ligands
mesoporous silica thin films
Metal ions
Polyelectrolytes
Selective binding
sensing
SummonAdditionalLinks – databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJ64vehA8FdskbdKL4PpaxRUPLuwtJGkqPdiV7Xr3J_gb_SXOpN3qngRvaUlLO5OZ-SbJfCHkhKVMF2ksw5wlacg1M2FmIUspnHXM8jgTvm5t-JgORvx-nIx_VfE3_BDdhBtahvfXaODa1Gc_pKE6fy0hv6MUq6HBCa8AtpE4ril_-pllicE1ey5OsMw0FCyJ5syNET1bfMVCZPIE_guo8zd29cHnZoOst6gxuGjUvEmWXLVFVv3uTVtvk_OH8kVX-dfHZ7_0VSrB0J_A4fLgdqqx2iq4QwrcoKMyD8oqAMc6gbard8jo5vr5chC2ByOEFtdVcbU8EZE0UkCy5RBCYUNGmkmIeWCRzhY5dM1B6k5YIXkR5cxw-EnNKAToXbJcTSq3RwKXJDbNrOCFdlyDOk0CKSuFtJBlLitEj5zOhaLeGv4L1TAdU4XiU534eqSPMut6IW-1vzGZvqjWDJSA9AxRio6p5UWuJTMGS2ONMzAquO6Rw7nEVWtMtaJCIq0cY3GPUK-FPz5FXVwN77qr_f88dEDW8GD5ZrfZIVmeTd_dEcCPmTn2I-wbUY_OXQ
  priority: 102
  providerName: Wiley-Blackwell
Title Ligand‐Binding Mediated Gradual Ionic Transport in Nanopores
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202201902
https://www.proquest.com/docview/2786767331
https://doaj.org/article/77160075a12c4fda83bb8655beb9714a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFH5RjIkX48-IItnBxNMCa7u1u5iAgmCEECMJt6btOsNBMIB3_wT_Rv8SXzsgcPLirVuapfve2ve9te97ADc0oSpPIhFmNE5CpqgOU4NRSm6NpYZFKfd5a71-0hmyp1E82ij15c6EFfLABXA1joTe-TUVEcPyTAmqtUum1Fbjc1hBjaJ4I5jyf1ciXJIFXak01klNZe9jDAcJccnTZMsLebH-LYa5yVO9o2kfweGSIQaNYmTHsGMnJ7DvT2qa-SncPY_fMPr_-fpujn1GStDz1TZsFjzOlMusCrpO7jZYy5YH40mAi-gU23Z-BsN26_W-Ey6LIITG7aG6nfGY14UWHAMr6-iSa4i6ogL9G84-a_IMu2aIsOWGC5bXM6oZvqSiBJ3xOZQm04m9gMDGsUlSw1muLFNoOh1jeEoQPpraNOdluF2BIj8KrQtZqBoT6eCTa_jK0HSYrXs5jWp_Ay0nl5aTf1muDJUV4nI5ceaScOEk5CiNykC8Ff4Yimw89Lrrq8v_GNgVHLii8sVJswqUFrNPe43UY6GrsEvYoAp7zVZ_8FL139wvLJLTxw
link.rule.ids 315,786,790,870,2115,11589,27955,27956,33777,46085,46509,50847,50956
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQCMGCeIryzIDEFDWxnThZkHiVFhrEABKbZTtOlYEUtbDzE_iN_BLunCbQCYnNiZwoufM9ffeZkBMWM1XEYeLnLIp9rpj2UwNRSmGNZYaHqXB9a9l93H_it89RU02IvTA1PkSbcEPJcPoaBRwT0t0f1FCVv5QQ4FGK7dCghZc4osEhuDN_-EmzhKCbHRgniGbsCxYFDXRjQLvzr5gzTQ7Bf87t_O28OuvTWydrM7fRO6_5vEEWbLVJll35pplukbNhOVJV_vXxeVG6NhUvc0dw2Ny7mShst_IGiIHrtVjmXll5oFnHMLbTbfLUu3687PuzkxF8gxuruF0eiSDRiYBoy6IPhYMkUCwBowciaU2Rw9QcyG6FEQkvgpxpDj-pGAULvUMWq3Fld4lno8jEqRG8UJYr4KeOIGalEBey1KaF6JDThijytQbAkDXUMZVIPtmSr0MukGbtLASudjfGk5GcyYEUEJ-hm6JCaniRq4Rpjb2x2mpYFlx1yEFDcTmTpqmkIkFcOcbCDqGOC398ijy_ygbt1d5_HjomK_3HbCiHg_u7fbKKp8zXpWcHZPFt8m4PwRd500dutX0Dgv_RxQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQCMSCeIryzIDEFDWxnThZkFqgUGhRB5DYLL-COpCiFnZ-Ar-RX8Kd04Z2QmJzIidK7nx339m-z4ScsZSpIo2z0LIkDbliOswNZCmFM44ZHufC1631H9LbJ373nDzPVfFX_BD1hBtahvfXaOBvtmj-koYq-zqE_I5SrIYGJ7zCU4APyO3MB7-zLDG4Zs_FCZaZhoIl0Yy5MaLNxVcsRCZP4L-AOuexqw8-nU2yMUWNQatS8xZZcuU2WfW7N81kh1z0hi-qtN-fX-2hr1IJ-v4EDmeDm7HCaqugixS4QU1lHgzLABzrCNpuskueOtePl7fh9GCE0OC6Kq6WJyLKdCYg2XIIobCRRYplEPPAIp0pLHS1IHUnjMh4EVmmOfykYhQC9B5ZLkel2yeBSxKT5kbwQjmuQJ06gZSVQlrIcpcXokHOZ0KRbxX_hayYjqlE8clafA3SRpnVvZC32t8YjV_k1AykgPQMUYqKqeGFVRnTGktjtdMwKrhqkKOZxOXUmCaSigxp5RiLG4R6LfzxKbJ11e_WVwf_eeiUrA2uOrLXfbg_JOt4xny18eyILL-PP9wxIJF3feIH2w9SbNDu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ligand%E2%80%90Binding+Mediated+Gradual+Ionic+Transport+in+Nanopores&rft.jtitle=Advanced+materials+interfaces&rft.au=Varol%2C+H.+Samet&rft.au=F%C3%B6rster%2C+Claire&rft.au=Andrieu%E2%80%90Brunsen%2C+Annette&rft.date=2023-03-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=10&rft.issue=8&rft_id=info:doi/10.1002%2Fadmi.202201902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_202201902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon