Ion Migration and Space‐Charge Zones in Metal Halide Perovskites Through Short‐Circuit Transient Current and Numerical Simulations

The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices t...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 10; no. 11
Main Authors Alvarez, Agustin O., García‐Batlle, Marisé, Lédée, Ferdinand, Gros‐Daillon, Eric, Guillén, Javier Mayén, Verilhac, Jean‐Marie, Lemercier, Thibault, Zaccaro, Julien, Marsal, Lluis F., Almora, Osbel, Garcia‐Belmonte, Germà
Format Journal Article
LanguageEnglish
Published Wiley 01.11.2024
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices to satisfy industrial requirements. Because dark current establishes the detectability limit, current evolution, and eventual growth may mask photocurrent signals produced by incoming X‐ray photons. Relevant information for detector assessment is ion‐related parameters such as ion concentration, ion mobility, and ionic space‐charge zones that are eventually built near the outer contacts upon detector biasing. A combined experimental (simple measurement of dark current transients) and 1D numerical simulation method is followed here using single‐crystal and microcrystalline millimeter‐thick methylammonium‐lead bromide that allows extracting ion mobility within the range of µion  ≈ 10−7 cm2 V−1 s−1, while ion concentration values approximate Nion ≈ 1015 cm−3, depending on the perovskite crystallinity. Dark current establishes the detectability limit in X‐ray perovskite‐based detectors. Ion migration induces current drift masking incoming photon‐produced photocurrent signals. Upon biasing, ionic accumulation and depletion space‐charge zones build up near the contacts modulating electronic carrier injection. Relevant parameters for the assessment of X‐ray detectors are accessible by a simple measurement of dark current transients and device simulation tools.
AbstractList The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices to satisfy industrial requirements. Because dark current establishes the detectability limit, current evolution, and eventual growth may mask photocurrent signals produced by incoming X‐ray photons. Relevant information for detector assessment is ion‐related parameters such as ion concentration, ion mobility, and ionic space‐charge zones that are eventually built near the outer contacts upon detector biasing. A combined experimental (simple measurement of dark current transients) and 1D numerical simulation method is followed here using single‐crystal and microcrystalline millimeter‐thick methylammonium‐lead bromide that allows extracting ion mobility within the range of µ$_{ion}$ ≈ 10$^{−7}$ cm$^2$ V$^{−1}$ s$^{−1}$ , while ion concentration values approximate N$_{ion}$ ≈ 10$^{15}$ cm$^{−3}$ , depending on the perovskite crystallinity.
The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices to satisfy industrial requirements. Because dark current establishes the detectability limit, current evolution, and eventual growth may mask photocurrent signals produced by incoming X‐ray photons. Relevant information for detector assessment is ion‐related parameters such as ion concentration, ion mobility, and ionic space‐charge zones that are eventually built near the outer contacts upon detector biasing. A combined experimental (simple measurement of dark current transients) and 1D numerical simulation method is followed here using single‐crystal and microcrystalline millimeter‐thick methylammonium‐lead bromide that allows extracting ion mobility within the range of µ ion   ≈ 10 −7 cm 2 V −1 s −1 , while ion concentration values approximate N ion ≈ 10 15 cm −3 , depending on the perovskite crystallinity.
The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices to satisfy industrial requirements. Because dark current establishes the detectability limit, current evolution, and eventual growth may mask photocurrent signals produced by incoming X‐ray photons. Relevant information for detector assessment is ion‐related parameters such as ion concentration, ion mobility, and ionic space‐charge zones that are eventually built near the outer contacts upon detector biasing. A combined experimental (simple measurement of dark current transients) and 1D numerical simulation method is followed here using single‐crystal and microcrystalline millimeter‐thick methylammonium‐lead bromide that allows extracting ion mobility within the range of µion  ≈ 10−7 cm2 V−1 s−1, while ion concentration values approximate Nion ≈ 1015 cm−3, depending on the perovskite crystallinity. Dark current establishes the detectability limit in X‐ray perovskite‐based detectors. Ion migration induces current drift masking incoming photon‐produced photocurrent signals. Upon biasing, ionic accumulation and depletion space‐charge zones build up near the contacts modulating electronic carrier injection. Relevant parameters for the assessment of X‐ray detectors are accessible by a simple measurement of dark current transients and device simulation tools.
Abstract The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices to satisfy industrial requirements. Because dark current establishes the detectability limit, current evolution, and eventual growth may mask photocurrent signals produced by incoming X‐ray photons. Relevant information for detector assessment is ion‐related parameters such as ion concentration, ion mobility, and ionic space‐charge zones that are eventually built near the outer contacts upon detector biasing. A combined experimental (simple measurement of dark current transients) and 1D numerical simulation method is followed here using single‐crystal and microcrystalline millimeter‐thick methylammonium‐lead bromide that allows extracting ion mobility within the range of µion  ≈ 10−7 cm2 V−1 s−1, while ion concentration values approximate Nion ≈ 1015 cm−3, depending on the perovskite crystallinity.
Author Lédée, Ferdinand
Guillén, Javier Mayén
Lemercier, Thibault
García‐Batlle, Marisé
Garcia‐Belmonte, Germà
Almora, Osbel
Zaccaro, Julien
Marsal, Lluis F.
Alvarez, Agustin O.
Verilhac, Jean‐Marie
Gros‐Daillon, Eric
Author_xml – sequence: 1
  givenname: Agustin O.
  orcidid: 0000-0002-0920-5390
  surname: Alvarez
  fullname: Alvarez, Agustin O.
  organization: AMOLF
– sequence: 2
  givenname: Marisé
  orcidid: 0000-0002-9142-2430
  surname: García‐Batlle
  fullname: García‐Batlle, Marisé
  organization: University of North Carolina at Chapel Hill
– sequence: 3
  givenname: Ferdinand
  orcidid: 0000-0001-9949-0529
  surname: Lédée
  fullname: Lédée, Ferdinand
  organization: Leti
– sequence: 4
  givenname: Eric
  orcidid: 0000-0002-4196-7854
  surname: Gros‐Daillon
  fullname: Gros‐Daillon, Eric
  organization: Leti
– sequence: 5
  givenname: Javier Mayén
  orcidid: 0000-0002-2732-3809
  surname: Guillén
  fullname: Guillén, Javier Mayén
  organization: Leti
– sequence: 6
  givenname: Jean‐Marie
  orcidid: 0000-0001-7527-8814
  surname: Verilhac
  fullname: Verilhac, Jean‐Marie
  organization: Liten
– sequence: 7
  givenname: Thibault
  orcidid: 0000-0001-5541-6378
  surname: Lemercier
  fullname: Lemercier, Thibault
  organization: Institut Néel
– sequence: 8
  givenname: Julien
  orcidid: 0000-0002-8150-3827
  surname: Zaccaro
  fullname: Zaccaro, Julien
  organization: Institut Néel
– sequence: 9
  givenname: Lluis F.
  orcidid: 0000-0002-5976-1408
  surname: Marsal
  fullname: Marsal, Lluis F.
  organization: Universitat Rovira i Virgili
– sequence: 10
  givenname: Osbel
  orcidid: 0000-0002-2523-0203
  surname: Almora
  fullname: Almora, Osbel
  organization: Universitat Rovira i Virgili
– sequence: 11
  givenname: Germà
  orcidid: 0000-0002-0172-6175
  surname: Garcia‐Belmonte
  fullname: Garcia‐Belmonte, Germà
  email: garciag@uji.es
  organization: Universitat Jaume I
BackLink https://hal.science/hal-04619767$$DView record in HAL
BookMark eNqFUU1vEzEQXaEiUUqvnPfKIcFf610fo6iQSClUSpAQF2tij7Mum3Xl3W3VGyfO_EZ-Cd4EVaUS6mmex-9Dmvc6O2lDi1n2lpIpJYS9B2z2U0aYSA9BX2SnjCo1oZJ8PXmEX2XnXXdNCKGl5KLgp9nPZWjzS7-L0PuEoLX5-gYM_v7xa15D3GH-LQV1uU8s7KHJF9B4i_kVxnDbffd9-tvUMQy7Ol_XIfaj0Ecz-D7fRGg7j22fz4cYxznafxr2GL1JVmu_H5pDbvcme-mg6fD87zzLvny42MwXk9Xnj8v5bDUxgnE6UYJWtixRVrwSCq2RTknCwErjgKtt4ZyhzJZguSQCpXMomRKuUNwWXCE_y5ZHXxvgWt9Ev4d4rwN4fViEuNMQe28a1KLiUhRObg21CattZQ3jprLIJLoKkte7o1cNzT9Wi9lKjzsiJFWlLG9p4k6PXBND10V0DwJK9FigHgvUDwUmgXgiML4_3KqP4Jv_y_hRducbvH8mRM8uVpcVp_wPduS0fA
CitedBy_id crossref_primary_10_1021_acsanm_5c00290
crossref_primary_10_1021_acsenergylett_4c02446
crossref_primary_10_1109_LED_2024_3470127
crossref_primary_10_1016_j_solener_2024_113187
Cites_doi 10.1021/acs.jpclett.2c00804
10.1016/j.matt.2020.04.017
10.1038/s41928-021-00644-3
10.1021/acs.jpclett.1c00554
10.1063/1.5132754
10.1063/1.4966127
10.1002/aelm.202000485
10.1063/5.0011713
10.1021/acs.jpclett.7b01740
10.1063/5.0170580
10.1021/acsphyschemau.3c00002
10.1021/acsenergylett.3c01429
10.1021/acs.chemmater.3c02678
10.1103/PhysRevApplied.18.044056
10.1002/aenm.202002614
10.1038/nphoton.2016.41
10.1016/j.joule.2019.10.003
10.1021/acsami.1c06046
10.1039/D3CP01182H
10.1021/acsenergylett.1c02578
10.1007/s10825-021-01827-z
10.1039/C8EE01447G
10.1021/acsenergylett.2c00031
10.1021/acs.jpclett.0c01822
10.1002/admt.202100908
10.1038/s41467-021-25648-7
10.1021/acs.jpclett.3c02394
10.1002/adfm.202303523
10.1002/adpr.202200136
10.1002/pssr.202200336
10.1016/j.physe.2017.07.018
10.1103/PhysRevE.70.021506
10.1038/s41467-023-36313-6
10.1002/anie.201500014
10.1002/eom2.12064
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.1002/aelm.202400241
DatabaseName Wiley Online Library Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_483645f6bc1d4839b8dc23c8de26ef8a
oai_HAL_hal_04619767v1
10_1002_aelm_202400241
AELM831
Genre article
GrantInformation_xml – fundername: Agencia Estatal de Investigación
  funderid: Juan de la Cierva 2021
– fundername: Horizon 2020 Framework Programme
  funderid: 871336
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAFWJ
AAYXX
ABJNI
ADMLS
AFPKN
CITATION
M~E
1XC
VOOES
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4231-9418d77e683849edc6f9602ad6cfa39b5ffc12d7ad3604e6ffe6294f593d539e3
IEDL.DBID DOA
ISSN 2199-160X
IngestDate Wed Aug 27 01:35:44 EDT 2025
Fri May 23 06:27:00 EDT 2025
Tue Jul 01 00:35:26 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Jan 22 17:12:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4231-9418d77e683849edc6f9602ad6cfa39b5ffc12d7ad3604e6ffe6294f593d539e3
ORCID 0000-0002-0172-6175
0000-0002-4196-7854
0000-0002-5976-1408
0000-0002-2523-0203
0000-0002-2732-3809
0000-0001-5541-6378
0000-0002-8150-3827
0000-0002-9142-2430
0000-0002-0920-5390
0000-0001-9949-0529
0000-0001-7527-8814
OpenAccessLink https://doaj.org/article/483645f6bc1d4839b8dc23c8de26ef8a
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_483645f6bc1d4839b8dc23c8de26ef8a
hal_primary_oai_HAL_hal_04619767v1
crossref_primary_10_1002_aelm_202400241
crossref_citationtrail_10_1002_aelm_202400241
wiley_primary_10_1002_aelm_202400241_AELM831
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Advanced electronic materials
PublicationYear 2024
Publisher Wiley
Wiley-VCH
Publisher_xml – name: Wiley
– name: Wiley-VCH
References 2023; 10
2017; 8
2021; 4
2023; 14
2023; 33
2016; 109
2023; 8
2015; 54
2016; 10
2022; 21
2020; 11
2023; 3
2024; 36
2021; 13
2017; 94
2020; 6
2020; 4
2020; 3
2023; 25
2021; 12
2020; 2
2004; 70
2021; 11
2022; 3
2020; 152
2022; 7
2023; 134
2022; 13
2020; 117
2018; 11
2022; 16
2022; 18
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Wu Y. (e_1_2_9_7_1) 2023; 10
e_1_2_9_29_1
References_xml – volume: 3
  start-page: 180
  year: 2020
  publication-title: Matter.
– volume: 3
  year: 2022
  publication-title: Adv. Photonics Res.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2022
  publication-title: Adv. Mater. Technol.
– volume: 70
  year: 2004
  publication-title: Phys. Rev. E
– volume: 11
  start-page: 7127
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 21
  start-page: 960
  year: 2022
  publication-title: J. Comput. Electron.
– volume: 94
  start-page: 118
  year: 2017
  publication-title: Phys. E
– volume: 10
  start-page: 333
  year: 2016
  publication-title: Nat. Photonics
– volume: 3
  start-page: 386
  year: 2023
  publication-title: ACS Phys. Chem. Au
– volume: 13
  start-page: 3824
  year: 2022
  publication-title: J. Phys. Chem. Lett.
– volume: 18
  year: 2022
  publication-title: Phys. Rev. Appl.
– volume: 54
  start-page: 7905
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 109
  year: 2020
  publication-title: Joule
– volume: 134
  year: 2023
  publication-title: J. Appl. Phys.
– volume: 14
  start-page: 9943
  year: 2023
  publication-title: J. Phys. Chem. Lett.
– volume: 109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 626
  year: 2023
  publication-title: Nat. Commun.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2404
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 5169
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 10
  year: 2023
  publication-title: Avd. Sci.
– volume: 7
  start-page: 946
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 4371
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 25
  year: 2023
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 681
  year: 2021
  publication-title: Nat. Electron.
– volume: 16
  year: 2022
  publication-title: Phys. Status Solidi RRL
– volume: 117
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 2
  year: 2020
  publication-title: EcoMat
– volume: 152
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 1066
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 5258
  year: 2021
  publication-title: Nat. Commun.
– volume: 8
  start-page: 4113
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 36
  start-page: 2334
  year: 2024
  publication-title: Chem. Mater.
– ident: e_1_2_9_32_1
  doi: 10.1021/acs.jpclett.2c00804
– ident: e_1_2_9_5_1
  doi: 10.1016/j.matt.2020.04.017
– ident: e_1_2_9_2_1
  doi: 10.1038/s41928-021-00644-3
– ident: e_1_2_9_20_1
  doi: 10.1021/acs.jpclett.1c00554
– ident: e_1_2_9_33_1
  doi: 10.1063/1.5132754
– ident: e_1_2_9_34_1
  doi: 10.1063/1.4966127
– ident: e_1_2_9_16_1
  doi: 10.1002/aelm.202000485
– ident: e_1_2_9_35_1
  doi: 10.1063/5.0011713
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.jpclett.7b01740
– volume: 10
  year: 2023
  ident: e_1_2_9_7_1
  publication-title: Avd. Sci.
– ident: e_1_2_9_28_1
  doi: 10.1063/5.0170580
– ident: e_1_2_9_27_1
  doi: 10.1021/acsphyschemau.3c00002
– ident: e_1_2_9_13_1
  doi: 10.1021/acsenergylett.3c01429
– ident: e_1_2_9_21_1
  doi: 10.1021/acs.chemmater.3c02678
– ident: e_1_2_9_25_1
  doi: 10.1103/PhysRevApplied.18.044056
– ident: e_1_2_9_23_1
  doi: 10.1002/aenm.202002614
– ident: e_1_2_9_1_1
  doi: 10.1038/nphoton.2016.41
– ident: e_1_2_9_22_1
  doi: 10.1016/j.joule.2019.10.003
– ident: e_1_2_9_17_1
  doi: 10.1021/acsami.1c06046
– ident: e_1_2_9_30_1
  doi: 10.1039/D3CP01182H
– ident: e_1_2_9_6_1
  doi: 10.1021/acsenergylett.1c02578
– ident: e_1_2_9_14_1
  doi: 10.1007/s10825-021-01827-z
– ident: e_1_2_9_19_1
  doi: 10.1039/C8EE01447G
– ident: e_1_2_9_4_1
  doi: 10.1021/acsenergylett.2c00031
– ident: e_1_2_9_15_1
  doi: 10.1021/acs.jpclett.0c01822
– ident: e_1_2_9_26_1
  doi: 10.1002/admt.202100908
– ident: e_1_2_9_8_1
  doi: 10.1038/s41467-021-25648-7
– ident: e_1_2_9_29_1
  doi: 10.1021/acs.jpclett.3c02394
– ident: e_1_2_9_3_1
  doi: 10.1002/adfm.202303523
– ident: e_1_2_9_9_1
  doi: 10.1002/adpr.202200136
– ident: e_1_2_9_12_1
  doi: 10.1002/pssr.202200336
– ident: e_1_2_9_24_1
  doi: 10.1016/j.physe.2017.07.018
– ident: e_1_2_9_31_1
  doi: 10.1103/PhysRevE.70.021506
– ident: e_1_2_9_10_1
  doi: 10.1038/s41467-023-36313-6
– ident: e_1_2_9_18_1
  doi: 10.1002/anie.201500014
– ident: e_1_2_9_11_1
  doi: 10.1002/eom2.12064
SSID ssj0001763453
Score 2.336852
Snippet The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray detectors...
The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ ‐ray detectors...
The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ ‐ray detectors...
Abstract The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray...
SourceID doaj
hal
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms charge carrier mobility
Chemical Sciences
Condensed Matter
drift‐diffusion simulations
ionic conductivity
Material chemistry
Materials Science
metal halide perovskites
Physics
x‐ray detectors
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEG4kXryIouL6ohHBi0Nm-jXdx1USVsmGwCaweBn6uRlYd2UfOXvKOb_RX2JVz2STPYh4G5qamqFqaurrR31FyAehXdDcxcJKXWILs6ow0rpCSu090r2YzHgzPlWjC_FtKqf3qvg7fojdghtGRv5fY4Bbtz68Iw21cY6V5HgGkmHl-kOsr8VDfUyc3a2yQPiITEUJkWmKSpXTW-bGkh3uq9jLTJnAH_LNJR6PvA9bc945fkIe94CRDjsPPyUP4uIZuf66XNBxO-vcR-0i0AlMfuPvXze4fz6L9Dty8NMWpCLAazoCuB0iPYur5dUaF2zX9Lzr0EMnl4DA8cZ25bfthubshVWStOduyupPt93WzpxO2h99y6_1c3JxfHT-ZVT0HRUKD7AJ3CAqHeo6Ks21MDF4lWAGw2xQPllunEzJVyzUNnBViqhSiooZkaThQXIT-QtysID3f0moZ6ClTA5MaoUO2tmKYXKrZTAhln5AiltrNr6nG8euF_OmI0pmDVq_2Vl_QD7u5H92RBt_lfyMztlJIUF2HliuZk0fb43QuL-alPNVgGvjdPCMex0iUzFpOyDvwbV7OkbDkwbHkIIeQFp9BU_6lD3_jxdqhkcnY82rV_8n_po8wrGusPENOdistvEtIJyNe5c_4j85lPVi
  priority: 102
  providerName: Wiley-Blackwell
Title Ion Migration and Space‐Charge Zones in Metal Halide Perovskites Through Short‐Circuit Transient Current and Numerical Simulations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400241
https://hal.science/hal-04619767
https://doaj.org/article/483645f6bc1d4839b8dc23c8de26ef8a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZJTrmUlLZ0-wiiFHKpia2X5eO2JGxLNgQ2gdCLsaVRYthswj5y7qnn_sb-ks5IzrI5lFxyM2I8FjNj5hs9vmHss7Ktt7KFrNE2pxZmRVbpps20ts4R3UsVGW_Gp2Z0oX5c6suNVl90JizRAyfDHSpLG2XBtK7w-Fy11jshnfUgDAQboRHmvI1iKq6u4G-jtHxgaczFYQNTunhORyaFKh5loUjWj7nlmo5CbkLUmGOO99iLHhzyYZrUS7YFs1fs9_fbGR93V8lVHCt_PsFCF_7--kN75VfAfxLfPu9QChBK8xFCaw_8DOa39wtanF3w89SNh0-uEW3Ti93crbolj5mKbkTynqcpqj9dpW2cKZ90N317r8VrdnF8dP5tlPXdEzKHEAlNrgrryxKMlVZV4J0JWK2IxhsXGrSjDsEVwpeNlyZXYEIAIyoVdCW9lhXIN2xnhvN_y7gTqCUPbWHyRllv26YQlMhK7SsPuRuw7MGateupxanDxbROpMiiJuvXa-sP2MFa_i6RavxX8is5Zy1FZNhxAEOk7kOkfipEBuwTuvaRjtHwpKYxoptHQFbe45e-RM8_MaF6eHQytrJ49xwTe892SXG62viB7SznK_iIGGfZ7rNtoc72Y1D_A-NN-yk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQ7gEuCASIsjwshMSFaBMnduxjQbvKQlshtUWrvUR-diOVFvWxZ06c-Y38EmactEsPCHGLkoljeTyZz2PPN4S8KaRxMjc-0VymWMIsSxTXJuFcWot0Lyoy3gxHopoWHy_57jQh5sK0_BD7gBtaRvxfo4FjQPr0ljVU-zmmkuMhSIap68cIbWBiH_e_TK-mt4EWsKAislGCcaokE-nljrwxZaeHjRw4p8jhDy7nGk9I_olco-s5f0Dud5iR9lslPyR3_OIR-XGxXNBhM2s1SPXC0TGsf_2v7z9xC33m6RXS8NMGpDwgbFoB4naefvar5c0aY7ZrOmmL9NDxNYBwfLFZ2W2zodGBYaIk7eibYvOjbbu7M6fj5mtX9Wv9mEzPzyYfqqQrqpBYQE6giSKTriy9kLkslHdWBFjEMO2EDTpXhodgM-ZK7XKRFl6E4AVTReAqdzxXPn9CjhbQ_6eEWgatpMHAkOpCOml0xtC_ldwp51PbI8luNGvbMY5j4Yt53XIlsxpHv96Pfo-83ct_a7k2_ir5HpWzl0KO7HhjuZrVncnVhcQt1iCMzRxcKyOdZbmVzjPhg9Q98hpUe9BG1R_UeA9Z6AGnlTfwpXdR8__oUN0_Gwxlnj37P_FX5G41GQ7qwcXo0wm5h8_bPMfn5Giz2voXAHg25mU3pX8DRjj6nQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hVEJcUBEgQmlZISQuWLXXu-vdY1oapZBEldKgqBdrvY_UUkiqPHrmxJnf2F_CjO2mzQEhbtZ6vF7NeDzfPuYbQj5yVTiVFj4yQsVYwiyJtDBFJISyFuledMV4MxjK3ph_nYjJoyz-mh9iu-CGnlH9r9HBb1w4fiANNX6GmeR4BpJh5vqegNAUt8he5_v4avywzgIOxCsySvBNHSUyntxzN8bseLeTndhUUfhDxLnGA5KPgWsVebr75HkDGWmntvEL8sTPX5Jf54s5HZTT2oDUzB0dwfTX3_38jTvoU0-vkIWfliDlAWDTHgBu5-mFXy5uV7hku6KXdY0eOroGDI4Plku7Kde0il-YJ0kb9qaq--Gm3tyZ0VH5oyn6tXpFxt2zy9Ne1NRUiCwAJzAET5TLMi9Vqrj2zsoAcxhmnLTBpLoQIdiEucy4VMbcyxC8ZJoHoVMnUu3T16Q1h_G_IdQy6CUOBajUcOVUYRKG4S0TTjsf2zaJ7rWZ24ZwHOtezPKaKpnlqP18q_02-bSVv6mpNv4qeYLG2UohRXbVsFhO88bjcq5whzXIwiYOrnWhnGWpVc4z6YMybfIBTLvTR6_Tz7ENSegBpmW38KbPleX_MaC8c9YfqDR5-3_i78nTiy_dvH8-_HZAnuHtOsvxHWmtlxt_CHBnXRw1X_Qfogz5vQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ion+Migration+and+Space%E2%80%90Charge+Zones+in+Metal+Halide+Perovskites+Through+Short%E2%80%90Circuit+Transient+Current+and+Numerical+Simulations&rft.jtitle=Advanced+electronic+materials&rft.au=Agustin+O.+Alvarez&rft.au=Maris%C3%A9+Garc%C3%ADa%E2%80%90Batlle&rft.au=Ferdinand+L%C3%A9d%C3%A9e&rft.au=Eric+Gros%E2%80%90Daillon&rft.date=2024-11-01&rft.pub=Wiley-VCH&rft.eissn=2199-160X&rft.volume=10&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400241&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_483645f6bc1d4839b8dc23c8de26ef8a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon