Ion Migration and Space‐Charge Zones in Metal Halide Perovskites Through Short‐Circuit Transient Current and Numerical Simulations
The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices t...
Saved in:
Published in | Advanced electronic materials Vol. 10; no. 11 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.11.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices to satisfy industrial requirements. Because dark current establishes the detectability limit, current evolution, and eventual growth may mask photocurrent signals produced by incoming X‐ray photons. Relevant information for detector assessment is ion‐related parameters such as ion concentration, ion mobility, and ionic space‐charge zones that are eventually built near the outer contacts upon detector biasing. A combined experimental (simple measurement of dark current transients) and 1D numerical simulation method is followed here using single‐crystal and microcrystalline millimeter‐thick methylammonium‐lead bromide that allows extracting ion mobility within the range of µion ≈ 10−7 cm2 V−1 s−1, while ion concentration values approximate Nion ≈ 1015 cm−3, depending on the perovskite crystallinity.
Dark current establishes the detectability limit in X‐ray perovskite‐based detectors. Ion migration induces current drift masking incoming photon‐produced photocurrent signals. Upon biasing, ionic accumulation and depletion space‐charge zones build up near the contacts modulating electronic carrier injection. Relevant parameters for the assessment of X‐ray detectors are accessible by a simple measurement of dark current transients and device simulation tools. |
---|---|
AbstractList | The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices to satisfy industrial requirements. Because dark current establishes the detectability limit, current evolution, and eventual growth may mask photocurrent signals produced by incoming X‐ray photons. Relevant information for detector assessment is ion‐related parameters such as ion concentration, ion mobility, and ionic space‐charge zones that are eventually built near the outer contacts upon detector biasing. A combined experimental (simple measurement of dark current transients) and 1D numerical simulation method is followed here using single‐crystal and microcrystalline millimeter‐thick methylammonium‐lead bromide that allows extracting ion mobility within the range of µ$_{ion}$ ≈ 10$^{−7}$ cm$^2$ V$^{−1}$ s$^{−1}$ , while ion concentration values approximate N$_{ion}$ ≈ 10$^{15}$ cm$^{−3}$ , depending on the perovskite crystallinity. The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices to satisfy industrial requirements. Because dark current establishes the detectability limit, current evolution, and eventual growth may mask photocurrent signals produced by incoming X‐ray photons. Relevant information for detector assessment is ion‐related parameters such as ion concentration, ion mobility, and ionic space‐charge zones that are eventually built near the outer contacts upon detector biasing. A combined experimental (simple measurement of dark current transients) and 1D numerical simulation method is followed here using single‐crystal and microcrystalline millimeter‐thick methylammonium‐lead bromide that allows extracting ion mobility within the range of µ ion ≈ 10 −7 cm 2 V −1 s −1 , while ion concentration values approximate N ion ≈ 10 15 cm −3 , depending on the perovskite crystallinity. The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices to satisfy industrial requirements. Because dark current establishes the detectability limit, current evolution, and eventual growth may mask photocurrent signals produced by incoming X‐ray photons. Relevant information for detector assessment is ion‐related parameters such as ion concentration, ion mobility, and ionic space‐charge zones that are eventually built near the outer contacts upon detector biasing. A combined experimental (simple measurement of dark current transients) and 1D numerical simulation method is followed here using single‐crystal and microcrystalline millimeter‐thick methylammonium‐lead bromide that allows extracting ion mobility within the range of µion ≈ 10−7 cm2 V−1 s−1, while ion concentration values approximate Nion ≈ 1015 cm−3, depending on the perovskite crystallinity. Dark current establishes the detectability limit in X‐ray perovskite‐based detectors. Ion migration induces current drift masking incoming photon‐produced photocurrent signals. Upon biasing, ionic accumulation and depletion space‐charge zones build up near the contacts modulating electronic carrier injection. Relevant parameters for the assessment of X‐ray detectors are accessible by a simple measurement of dark current transients and device simulation tools. Abstract The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices to satisfy industrial requirements. Because dark current establishes the detectability limit, current evolution, and eventual growth may mask photocurrent signals produced by incoming X‐ray photons. Relevant information for detector assessment is ion‐related parameters such as ion concentration, ion mobility, and ionic space‐charge zones that are eventually built near the outer contacts upon detector biasing. A combined experimental (simple measurement of dark current transients) and 1D numerical simulation method is followed here using single‐crystal and microcrystalline millimeter‐thick methylammonium‐lead bromide that allows extracting ion mobility within the range of µion ≈ 10−7 cm2 V−1 s−1, while ion concentration values approximate Nion ≈ 1015 cm−3, depending on the perovskite crystallinity. |
Author | Lédée, Ferdinand Guillén, Javier Mayén Lemercier, Thibault García‐Batlle, Marisé Garcia‐Belmonte, Germà Almora, Osbel Zaccaro, Julien Marsal, Lluis F. Alvarez, Agustin O. Verilhac, Jean‐Marie Gros‐Daillon, Eric |
Author_xml | – sequence: 1 givenname: Agustin O. orcidid: 0000-0002-0920-5390 surname: Alvarez fullname: Alvarez, Agustin O. organization: AMOLF – sequence: 2 givenname: Marisé orcidid: 0000-0002-9142-2430 surname: García‐Batlle fullname: García‐Batlle, Marisé organization: University of North Carolina at Chapel Hill – sequence: 3 givenname: Ferdinand orcidid: 0000-0001-9949-0529 surname: Lédée fullname: Lédée, Ferdinand organization: Leti – sequence: 4 givenname: Eric orcidid: 0000-0002-4196-7854 surname: Gros‐Daillon fullname: Gros‐Daillon, Eric organization: Leti – sequence: 5 givenname: Javier Mayén orcidid: 0000-0002-2732-3809 surname: Guillén fullname: Guillén, Javier Mayén organization: Leti – sequence: 6 givenname: Jean‐Marie orcidid: 0000-0001-7527-8814 surname: Verilhac fullname: Verilhac, Jean‐Marie organization: Liten – sequence: 7 givenname: Thibault orcidid: 0000-0001-5541-6378 surname: Lemercier fullname: Lemercier, Thibault organization: Institut Néel – sequence: 8 givenname: Julien orcidid: 0000-0002-8150-3827 surname: Zaccaro fullname: Zaccaro, Julien organization: Institut Néel – sequence: 9 givenname: Lluis F. orcidid: 0000-0002-5976-1408 surname: Marsal fullname: Marsal, Lluis F. organization: Universitat Rovira i Virgili – sequence: 10 givenname: Osbel orcidid: 0000-0002-2523-0203 surname: Almora fullname: Almora, Osbel organization: Universitat Rovira i Virgili – sequence: 11 givenname: Germà orcidid: 0000-0002-0172-6175 surname: Garcia‐Belmonte fullname: Garcia‐Belmonte, Germà email: garciag@uji.es organization: Universitat Jaume I |
BackLink | https://hal.science/hal-04619767$$DView record in HAL |
BookMark | eNqFUU1vEzEQXaEiUUqvnPfKIcFf610fo6iQSClUSpAQF2tij7Mum3Xl3W3VGyfO_EZ-Cd4EVaUS6mmex-9Dmvc6O2lDi1n2lpIpJYS9B2z2U0aYSA9BX2SnjCo1oZJ8PXmEX2XnXXdNCKGl5KLgp9nPZWjzS7-L0PuEoLX5-gYM_v7xa15D3GH-LQV1uU8s7KHJF9B4i_kVxnDbffd9-tvUMQy7Ol_XIfaj0Ecz-D7fRGg7j22fz4cYxznafxr2GL1JVmu_H5pDbvcme-mg6fD87zzLvny42MwXk9Xnj8v5bDUxgnE6UYJWtixRVrwSCq2RTknCwErjgKtt4ZyhzJZguSQCpXMomRKuUNwWXCE_y5ZHXxvgWt9Ev4d4rwN4fViEuNMQe28a1KLiUhRObg21CattZQ3jprLIJLoKkte7o1cNzT9Wi9lKjzsiJFWlLG9p4k6PXBND10V0DwJK9FigHgvUDwUmgXgiML4_3KqP4Jv_y_hRducbvH8mRM8uVpcVp_wPduS0fA |
CitedBy_id | crossref_primary_10_1021_acsanm_5c00290 crossref_primary_10_1021_acsenergylett_4c02446 crossref_primary_10_1109_LED_2024_3470127 crossref_primary_10_1016_j_solener_2024_113187 |
Cites_doi | 10.1021/acs.jpclett.2c00804 10.1016/j.matt.2020.04.017 10.1038/s41928-021-00644-3 10.1021/acs.jpclett.1c00554 10.1063/1.5132754 10.1063/1.4966127 10.1002/aelm.202000485 10.1063/5.0011713 10.1021/acs.jpclett.7b01740 10.1063/5.0170580 10.1021/acsphyschemau.3c00002 10.1021/acsenergylett.3c01429 10.1021/acs.chemmater.3c02678 10.1103/PhysRevApplied.18.044056 10.1002/aenm.202002614 10.1038/nphoton.2016.41 10.1016/j.joule.2019.10.003 10.1021/acsami.1c06046 10.1039/D3CP01182H 10.1021/acsenergylett.1c02578 10.1007/s10825-021-01827-z 10.1039/C8EE01447G 10.1021/acsenergylett.2c00031 10.1021/acs.jpclett.0c01822 10.1002/admt.202100908 10.1038/s41467-021-25648-7 10.1021/acs.jpclett.3c02394 10.1002/adfm.202303523 10.1002/adpr.202200136 10.1002/pssr.202200336 10.1016/j.physe.2017.07.018 10.1103/PhysRevE.70.021506 10.1038/s41467-023-36313-6 10.1002/anie.201500014 10.1002/eom2.12064 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 24P AAYXX CITATION 1XC VOOES DOA |
DOI | 10.1002/aelm.202400241 |
DatabaseName | Wiley Online Library Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_483645f6bc1d4839b8dc23c8de26ef8a oai_HAL_hal_04619767v1 10_1002_aelm_202400241 AELM831 |
Genre | article |
GrantInformation_xml | – fundername: Agencia Estatal de Investigación funderid: Juan de la Cierva 2021 – fundername: Horizon 2020 Framework Programme funderid: 871336 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAFWJ AAYXX ABJNI ADMLS AFPKN CITATION M~E 1XC VOOES AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c4231-9418d77e683849edc6f9602ad6cfa39b5ffc12d7ad3604e6ffe6294f593d539e3 |
IEDL.DBID | DOA |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 01:35:44 EDT 2025 Fri May 23 06:27:00 EDT 2025 Tue Jul 01 00:35:26 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Jan 22 17:12:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Attribution Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4231-9418d77e683849edc6f9602ad6cfa39b5ffc12d7ad3604e6ffe6294f593d539e3 |
ORCID | 0000-0002-0172-6175 0000-0002-4196-7854 0000-0002-5976-1408 0000-0002-2523-0203 0000-0002-2732-3809 0000-0001-5541-6378 0000-0002-8150-3827 0000-0002-9142-2430 0000-0002-0920-5390 0000-0001-9949-0529 0000-0001-7527-8814 |
OpenAccessLink | https://doaj.org/article/483645f6bc1d4839b8dc23c8de26ef8a |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_483645f6bc1d4839b8dc23c8de26ef8a hal_primary_oai_HAL_hal_04619767v1 crossref_primary_10_1002_aelm_202400241 crossref_citationtrail_10_1002_aelm_202400241 wiley_primary_10_1002_aelm_202400241_AELM831 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2024 |
Publisher | Wiley Wiley-VCH |
Publisher_xml | – name: Wiley – name: Wiley-VCH |
References | 2023; 10 2017; 8 2021; 4 2023; 14 2023; 33 2016; 109 2023; 8 2015; 54 2016; 10 2022; 21 2020; 11 2023; 3 2024; 36 2021; 13 2017; 94 2020; 6 2020; 4 2020; 3 2023; 25 2021; 12 2020; 2 2004; 70 2021; 11 2022; 3 2020; 152 2022; 7 2023; 134 2022; 13 2020; 117 2018; 11 2022; 16 2022; 18 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 Wu Y. (e_1_2_9_7_1) 2023; 10 e_1_2_9_29_1 |
References_xml | – volume: 3 start-page: 180 year: 2020 publication-title: Matter. – volume: 3 year: 2022 publication-title: Adv. Photonics Res. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2022 publication-title: Adv. Mater. Technol. – volume: 70 year: 2004 publication-title: Phys. Rev. E – volume: 11 start-page: 7127 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 21 start-page: 960 year: 2022 publication-title: J. Comput. Electron. – volume: 94 start-page: 118 year: 2017 publication-title: Phys. E – volume: 10 start-page: 333 year: 2016 publication-title: Nat. Photonics – volume: 3 start-page: 386 year: 2023 publication-title: ACS Phys. Chem. Au – volume: 13 start-page: 3824 year: 2022 publication-title: J. Phys. Chem. Lett. – volume: 18 year: 2022 publication-title: Phys. Rev. Appl. – volume: 54 start-page: 7905 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 109 year: 2020 publication-title: Joule – volume: 134 year: 2023 publication-title: J. Appl. Phys. – volume: 14 start-page: 9943 year: 2023 publication-title: J. Phys. Chem. Lett. – volume: 109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 626 year: 2023 publication-title: Nat. Commun. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2404 year: 2018 publication-title: Energy Environ. Sci. – volume: 12 start-page: 5169 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 10 year: 2023 publication-title: Avd. Sci. – volume: 7 start-page: 946 year: 2022 publication-title: ACS Energy Lett. – volume: 8 start-page: 4371 year: 2023 publication-title: ACS Energy Lett. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 25 year: 2023 publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 681 year: 2021 publication-title: Nat. Electron. – volume: 16 year: 2022 publication-title: Phys. Status Solidi RRL – volume: 117 year: 2020 publication-title: Appl. Phys. Lett. – volume: 2 year: 2020 publication-title: EcoMat – volume: 152 year: 2020 publication-title: J. Chem. Phys. – volume: 7 start-page: 1066 year: 2022 publication-title: ACS Energy Lett. – volume: 12 start-page: 5258 year: 2021 publication-title: Nat. Commun. – volume: 8 start-page: 4113 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 36 start-page: 2334 year: 2024 publication-title: Chem. Mater. – ident: e_1_2_9_32_1 doi: 10.1021/acs.jpclett.2c00804 – ident: e_1_2_9_5_1 doi: 10.1016/j.matt.2020.04.017 – ident: e_1_2_9_2_1 doi: 10.1038/s41928-021-00644-3 – ident: e_1_2_9_20_1 doi: 10.1021/acs.jpclett.1c00554 – ident: e_1_2_9_33_1 doi: 10.1063/1.5132754 – ident: e_1_2_9_34_1 doi: 10.1063/1.4966127 – ident: e_1_2_9_16_1 doi: 10.1002/aelm.202000485 – ident: e_1_2_9_35_1 doi: 10.1063/5.0011713 – ident: e_1_2_9_36_1 doi: 10.1021/acs.jpclett.7b01740 – volume: 10 year: 2023 ident: e_1_2_9_7_1 publication-title: Avd. Sci. – ident: e_1_2_9_28_1 doi: 10.1063/5.0170580 – ident: e_1_2_9_27_1 doi: 10.1021/acsphyschemau.3c00002 – ident: e_1_2_9_13_1 doi: 10.1021/acsenergylett.3c01429 – ident: e_1_2_9_21_1 doi: 10.1021/acs.chemmater.3c02678 – ident: e_1_2_9_25_1 doi: 10.1103/PhysRevApplied.18.044056 – ident: e_1_2_9_23_1 doi: 10.1002/aenm.202002614 – ident: e_1_2_9_1_1 doi: 10.1038/nphoton.2016.41 – ident: e_1_2_9_22_1 doi: 10.1016/j.joule.2019.10.003 – ident: e_1_2_9_17_1 doi: 10.1021/acsami.1c06046 – ident: e_1_2_9_30_1 doi: 10.1039/D3CP01182H – ident: e_1_2_9_6_1 doi: 10.1021/acsenergylett.1c02578 – ident: e_1_2_9_14_1 doi: 10.1007/s10825-021-01827-z – ident: e_1_2_9_19_1 doi: 10.1039/C8EE01447G – ident: e_1_2_9_4_1 doi: 10.1021/acsenergylett.2c00031 – ident: e_1_2_9_15_1 doi: 10.1021/acs.jpclett.0c01822 – ident: e_1_2_9_26_1 doi: 10.1002/admt.202100908 – ident: e_1_2_9_8_1 doi: 10.1038/s41467-021-25648-7 – ident: e_1_2_9_29_1 doi: 10.1021/acs.jpclett.3c02394 – ident: e_1_2_9_3_1 doi: 10.1002/adfm.202303523 – ident: e_1_2_9_9_1 doi: 10.1002/adpr.202200136 – ident: e_1_2_9_12_1 doi: 10.1002/pssr.202200336 – ident: e_1_2_9_24_1 doi: 10.1016/j.physe.2017.07.018 – ident: e_1_2_9_31_1 doi: 10.1103/PhysRevE.70.021506 – ident: e_1_2_9_10_1 doi: 10.1038/s41467-023-36313-6 – ident: e_1_2_9_18_1 doi: 10.1002/anie.201500014 – ident: e_1_2_9_11_1 doi: 10.1002/eom2.12064 |
SSID | ssj0001763453 |
Score | 2.336852 |
Snippet | The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray detectors... The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ ‐ray detectors... The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ ‐ray detectors... Abstract The inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray... |
SourceID | doaj hal crossref wiley |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
SubjectTerms | charge carrier mobility Chemical Sciences Condensed Matter drift‐diffusion simulations ionic conductivity Material chemistry Materials Science metal halide perovskites Physics x‐ray detectors |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEG4kXryIouL6ohHBi0Nm-jXdx1USVsmGwCaweBn6uRlYd2UfOXvKOb_RX2JVz2STPYh4G5qamqFqaurrR31FyAehXdDcxcJKXWILs6ow0rpCSu090r2YzHgzPlWjC_FtKqf3qvg7fojdghtGRv5fY4Bbtz68Iw21cY6V5HgGkmHl-kOsr8VDfUyc3a2yQPiITEUJkWmKSpXTW-bGkh3uq9jLTJnAH_LNJR6PvA9bc945fkIe94CRDjsPPyUP4uIZuf66XNBxO-vcR-0i0AlMfuPvXze4fz6L9Dty8NMWpCLAazoCuB0iPYur5dUaF2zX9Lzr0EMnl4DA8cZ25bfthubshVWStOduyupPt93WzpxO2h99y6_1c3JxfHT-ZVT0HRUKD7AJ3CAqHeo6Ks21MDF4lWAGw2xQPllunEzJVyzUNnBViqhSiooZkaThQXIT-QtysID3f0moZ6ClTA5MaoUO2tmKYXKrZTAhln5AiltrNr6nG8euF_OmI0pmDVq_2Vl_QD7u5H92RBt_lfyMztlJIUF2HliuZk0fb43QuL-alPNVgGvjdPCMex0iUzFpOyDvwbV7OkbDkwbHkIIeQFp9BU_6lD3_jxdqhkcnY82rV_8n_po8wrGusPENOdistvEtIJyNe5c_4j85lPVi priority: 102 providerName: Wiley-Blackwell |
Title | Ion Migration and Space‐Charge Zones in Metal Halide Perovskites Through Short‐Circuit Transient Current and Numerical Simulations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400241 https://hal.science/hal-04619767 https://doaj.org/article/483645f6bc1d4839b8dc23c8de26ef8a |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZJTrmUlLZ0-wiiFHKpia2X5eO2JGxLNgQ2gdCLsaVRYthswj5y7qnn_sb-ks5IzrI5lFxyM2I8FjNj5hs9vmHss7Ktt7KFrNE2pxZmRVbpps20ts4R3UsVGW_Gp2Z0oX5c6suNVl90JizRAyfDHSpLG2XBtK7w-Fy11jshnfUgDAQboRHmvI1iKq6u4G-jtHxgaczFYQNTunhORyaFKh5loUjWj7nlmo5CbkLUmGOO99iLHhzyYZrUS7YFs1fs9_fbGR93V8lVHCt_PsFCF_7--kN75VfAfxLfPu9QChBK8xFCaw_8DOa39wtanF3w89SNh0-uEW3Ti93crbolj5mKbkTynqcpqj9dpW2cKZ90N317r8VrdnF8dP5tlPXdEzKHEAlNrgrryxKMlVZV4J0JWK2IxhsXGrSjDsEVwpeNlyZXYEIAIyoVdCW9lhXIN2xnhvN_y7gTqCUPbWHyRllv26YQlMhK7SsPuRuw7MGateupxanDxbROpMiiJuvXa-sP2MFa_i6RavxX8is5Zy1FZNhxAEOk7kOkfipEBuwTuvaRjtHwpKYxoptHQFbe45e-RM8_MaF6eHQytrJ49xwTe892SXG62viB7SznK_iIGGfZ7rNtoc72Y1D_A-NN-yk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQ7gEuCASIsjwshMSFaBMnduxjQbvKQlshtUWrvUR-diOVFvWxZ06c-Y38EmactEsPCHGLkoljeTyZz2PPN4S8KaRxMjc-0VymWMIsSxTXJuFcWot0Lyoy3gxHopoWHy_57jQh5sK0_BD7gBtaRvxfo4FjQPr0ljVU-zmmkuMhSIap68cIbWBiH_e_TK-mt4EWsKAislGCcaokE-nljrwxZaeHjRw4p8jhDy7nGk9I_olco-s5f0Dud5iR9lslPyR3_OIR-XGxXNBhM2s1SPXC0TGsf_2v7z9xC33m6RXS8NMGpDwgbFoB4naefvar5c0aY7ZrOmmL9NDxNYBwfLFZ2W2zodGBYaIk7eibYvOjbbu7M6fj5mtX9Wv9mEzPzyYfqqQrqpBYQE6giSKTriy9kLkslHdWBFjEMO2EDTpXhodgM-ZK7XKRFl6E4AVTReAqdzxXPn9CjhbQ_6eEWgatpMHAkOpCOml0xtC_ldwp51PbI8luNGvbMY5j4Yt53XIlsxpHv96Pfo-83ct_a7k2_ir5HpWzl0KO7HhjuZrVncnVhcQt1iCMzRxcKyOdZbmVzjPhg9Q98hpUe9BG1R_UeA9Z6AGnlTfwpXdR8__oUN0_Gwxlnj37P_FX5G41GQ7qwcXo0wm5h8_bPMfn5Giz2voXAHg25mU3pX8DRjj6nQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hVEJcUBEgQmlZISQuWLXXu-vdY1oapZBEldKgqBdrvY_UUkiqPHrmxJnf2F_CjO2mzQEhbtZ6vF7NeDzfPuYbQj5yVTiVFj4yQsVYwiyJtDBFJISyFuledMV4MxjK3ph_nYjJoyz-mh9iu-CGnlH9r9HBb1w4fiANNX6GmeR4BpJh5vqegNAUt8he5_v4avywzgIOxCsySvBNHSUyntxzN8bseLeTndhUUfhDxLnGA5KPgWsVebr75HkDGWmntvEL8sTPX5Jf54s5HZTT2oDUzB0dwfTX3_38jTvoU0-vkIWfliDlAWDTHgBu5-mFXy5uV7hku6KXdY0eOroGDI4Plku7Kde0il-YJ0kb9qaq--Gm3tyZ0VH5oyn6tXpFxt2zy9Ne1NRUiCwAJzAET5TLMi9Vqrj2zsoAcxhmnLTBpLoQIdiEucy4VMbcyxC8ZJoHoVMnUu3T16Q1h_G_IdQy6CUOBajUcOVUYRKG4S0TTjsf2zaJ7rWZ24ZwHOtezPKaKpnlqP18q_02-bSVv6mpNv4qeYLG2UohRXbVsFhO88bjcq5whzXIwiYOrnWhnGWpVc4z6YMybfIBTLvTR6_Tz7ENSegBpmW38KbPleX_MaC8c9YfqDR5-3_i78nTiy_dvH8-_HZAnuHtOsvxHWmtlxt_CHBnXRw1X_Qfogz5vQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ion+Migration+and+Space%E2%80%90Charge+Zones+in+Metal+Halide+Perovskites+Through+Short%E2%80%90Circuit+Transient+Current+and+Numerical+Simulations&rft.jtitle=Advanced+electronic+materials&rft.au=Agustin+O.+Alvarez&rft.au=Maris%C3%A9+Garc%C3%ADa%E2%80%90Batlle&rft.au=Ferdinand+L%C3%A9d%C3%A9e&rft.au=Eric+Gros%E2%80%90Daillon&rft.date=2024-11-01&rft.pub=Wiley-VCH&rft.eissn=2199-160X&rft.volume=10&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400241&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_483645f6bc1d4839b8dc23c8de26ef8a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |