Rapid Lithium Diffusion in Order@Disorder Pathways for Fast‐Charging Graphite Anodes

The use of graphite anode renders practical lithium‐ion batteries for effective energy storage. However, graphite anode is the bottleneck to achieve the fast charging of a battery, ascribed to its low operating potential and corresponding incidental lithium plating. Herein the principle of a thin na...

Full description

Saved in:
Bibliographic Details
Published inSmall structures Vol. 1; no. 1
Main Authors Cai, Wenlong, Yan, Chong, Yao, Yu-Xing, Xu, Lei, Xu, Rui, Jiang, Li-Li, Huang, Jia-Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of graphite anode renders practical lithium‐ion batteries for effective energy storage. However, graphite anode is the bottleneck to achieve the fast charging of a battery, ascribed to its low operating potential and corresponding incidental lithium plating. Herein the principle of a thin nanoscale layer on the graphite surface to improve charging capability is investigated by applying a three‐electrode device to precisely record the working behavior. The Li+ diffusion rate is significantly improved by coating a nanoscale turbostratic carbon layer, in which abundant active sites and additional fast Li+ diffusion pathways at the basal‐plane side of graphite sheets render small polarization in a working battery. This fresh understanding enriches the fundamental insights into enhancing the rate performance and facilitating the practical applications of graphite in fast‐charging batteries. The turbostratic carbon layer on the graphite anode affords abundant active sites and fast diffusion pathways to accelerate the transportation of Li ions in a working battery. This renders a reduced polarization and significantly improved rate performance.
AbstractList The use of graphite anode renders practical lithium‐ion batteries for effective energy storage. However, graphite anode is the bottleneck to achieve the fast charging of a battery, ascribed to its low operating potential and corresponding incidental lithium plating. Herein the principle of a thin nanoscale layer on the graphite surface to improve charging capability is investigated by applying a three‐electrode device to precisely record the working behavior. The Li+ diffusion rate is significantly improved by coating a nanoscale turbostratic carbon layer, in which abundant active sites and additional fast Li+ diffusion pathways at the basal‐plane side of graphite sheets render small polarization in a working battery. This fresh understanding enriches the fundamental insights into enhancing the rate performance and facilitating the practical applications of graphite in fast‐charging batteries.
The use of graphite anode renders practical lithium‐ion batteries for effective energy storage. However, graphite anode is the bottleneck to achieve the fast charging of a battery, ascribed to its low operating potential and corresponding incidental lithium plating. Herein the principle of a thin nanoscale layer on the graphite surface to improve charging capability is investigated by applying a three‐electrode device to precisely record the working behavior. The Li+ diffusion rate is significantly improved by coating a nanoscale turbostratic carbon layer, in which abundant active sites and additional fast Li+ diffusion pathways at the basal‐plane side of graphite sheets render small polarization in a working battery. This fresh understanding enriches the fundamental insights into enhancing the rate performance and facilitating the practical applications of graphite in fast‐charging batteries. The turbostratic carbon layer on the graphite anode affords abundant active sites and fast diffusion pathways to accelerate the transportation of Li ions in a working battery. This renders a reduced polarization and significantly improved rate performance.
Author Yao, Yu-Xing
Xu, Rui
Jiang, Li-Li
Zhang, Qiang
Xu, Lei
Cai, Wenlong
Huang, Jia-Qi
Yan, Chong
Author_xml – sequence: 1
  givenname: Wenlong
  surname: Cai
  fullname: Cai, Wenlong
  organization: Tsinghua University
– sequence: 2
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Yu-Xing
  surname: Yao
  fullname: Yao, Yu-Xing
  organization: Tsinghua University
– sequence: 4
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Li-Li
  surname: Jiang
  fullname: Jiang, Li-Li
  organization: Jilin Institute of Chemical Technology
– sequence: 7
  givenname: Jia-Qi
  surname: Huang
  fullname: Huang, Jia-Qi
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkM1Kw0AURgdRsNZuXQ-4Tp2ZZPKzs7S2CoVKW90Ok8lNM6VN4syE0p2P4DP6JKZUVATxbu63-M69cC7QaVmVgNAVJX1KCLux1pk-I4y0Q8kJ6rAwjr2AhOz0Rz5HPWvXbYVxSqMk6qDnuax1hqfaFbrZ4pHO88bqqsS6xDOTgbkdaVsdAn6UrtjJvcV5ZfBYWvf--jYspFnpcoUnRtaFdoAHZZWBvURnudxY6H3uLnoa3y2H9950NnkYDqaeCphPvERx8HkIIeNxQlTOMh7mLIbUT8OME6UCAOBKyjBjTGZBmlJJFYXIh4j5ceB30fXxbm2qlwasE-uqMWX7UjBOEhaTmPK21T-2lKmsNZCL2uitNHtBiTjoEwd94ktfCwS_AKWddK0XZ6Te_I0lR2ynN7D_54lYLJbzb_YDjmiIbw
CitedBy_id crossref_primary_10_1002_smll_202103679
crossref_primary_10_1016_j_jechem_2022_04_005
crossref_primary_10_1002_smll_202401675
crossref_primary_10_1039_D3CC03967F
crossref_primary_10_1002_adma_202202892
crossref_primary_10_1002_ente_202200472
crossref_primary_10_1002_anie_202214828
crossref_primary_10_1039_D2NJ00394E
crossref_primary_10_1063_5_0178707
crossref_primary_10_1002_eem2_12334
crossref_primary_10_1039_D2CP04032H
crossref_primary_10_1016_j_jallcom_2022_164717
crossref_primary_10_1021_acsomega_1c05076
crossref_primary_10_1002_anie_202302285
crossref_primary_10_1002_adma_202005501
crossref_primary_10_1002_ange_202205697
crossref_primary_10_1016_S1872_5805_22_60573_0
crossref_primary_10_1016_j_nanoen_2024_110108
crossref_primary_10_1016_j_carbon_2022_05_023
crossref_primary_10_1002_aenm_202102263
crossref_primary_10_1002_aenm_202200403
crossref_primary_10_1016_j_ces_2024_120302
crossref_primary_10_1016_j_jpowsour_2021_230341
crossref_primary_10_1002_ange_202306963
crossref_primary_10_1016_j_jcis_2024_07_101
crossref_primary_10_1002_anie_202303888
crossref_primary_10_1007_s12598_021_01887_x
crossref_primary_10_1002_smtd_202200255
crossref_primary_10_1002_batt_202300515
crossref_primary_10_1002_aenm_202304502
crossref_primary_10_1002_adma_202107415
crossref_primary_10_1002_cnma_202400637
crossref_primary_10_1016_j_carbon_2022_03_022
crossref_primary_10_1021_acs_nanolett_3c05151
crossref_primary_10_1007_s42864_023_00231_3
crossref_primary_10_1149_1945_7111_ad27b4
crossref_primary_10_1016_j_nxener_2024_100115
crossref_primary_10_1002_adma_202414117
crossref_primary_10_1016_j_nanoen_2023_109020
crossref_primary_10_1002_adma_202106353
crossref_primary_10_1002_adma_202110337
crossref_primary_10_1002_adfm_202108449
crossref_primary_10_1016_j_jpowsour_2021_230275
crossref_primary_10_1039_D1SE01152A
crossref_primary_10_1002_elan_202400318
crossref_primary_10_1016_j_cej_2021_131963
crossref_primary_10_1016_j_nanoen_2021_106510
crossref_primary_10_1039_D1EE02205A
crossref_primary_10_1039_D2CC01927B
crossref_primary_10_1002_smll_202006366
crossref_primary_10_1021_acsanm_4c05756
crossref_primary_10_1002_ange_202214828
crossref_primary_10_1039_D4TA05871B
crossref_primary_10_1021_acsami_2c21638
crossref_primary_10_1016_j_jechem_2024_01_009
crossref_primary_10_1039_D3EE02213G
crossref_primary_10_1002_smll_202207093
crossref_primary_10_1002_adfm_202200796
crossref_primary_10_1002_ange_202102593
crossref_primary_10_1002_eem2_12509
crossref_primary_10_1002_nano_202000079
crossref_primary_10_1149_1945_7111_ac2a7f
crossref_primary_10_1002_adma_202416266
crossref_primary_10_1016_j_jallcom_2024_175871
crossref_primary_10_1021_acsami_2c05293
crossref_primary_10_1007_s11426_022_1486_1
crossref_primary_10_1021_acssuschemeng_4c03551
crossref_primary_10_1016_j_cej_2023_147765
crossref_primary_10_1016_j_jechem_2021_10_036
crossref_primary_10_26599_CF_2024_9200017
crossref_primary_10_1016_j_cej_2024_156080
crossref_primary_10_1021_acsnano_4c13561
crossref_primary_10_1021_acssuschemeng_1c05374
crossref_primary_10_1002_adfm_202417124
crossref_primary_10_34133_energymatadv_0113
crossref_primary_10_1007_s42823_023_00669_y
crossref_primary_10_3390_batteries9120578
crossref_primary_10_1016_j_jechem_2022_05_010
crossref_primary_10_1002_ange_202303888
crossref_primary_10_1002_wcms_1621
crossref_primary_10_1016_j_etran_2021_100145
crossref_primary_10_1039_D2TA09612A
crossref_primary_10_1002_anie_202102593
crossref_primary_10_1002_anie_202306963
crossref_primary_10_1007_s40820_021_00758_5
crossref_primary_10_1002_adfm_202201430
crossref_primary_10_3390_nano12152668
crossref_primary_10_1002_adma_202405751
crossref_primary_10_1002_idm2_12105
crossref_primary_10_1002_smll_202404879
crossref_primary_10_1016_j_materresbull_2020_111077
crossref_primary_10_1016_j_cej_2023_143677
crossref_primary_10_1016_j_jcis_2023_02_020
crossref_primary_10_1002_adfm_202316715
crossref_primary_10_1016_j_jechem_2021_08_050
crossref_primary_10_1021_acsami_1c16532
crossref_primary_10_1016_j_jpowsour_2023_233022
crossref_primary_10_1186_s11671_024_04087_5
crossref_primary_10_1021_acsami_2c02169
crossref_primary_10_1039_D4RA01560F
crossref_primary_10_1016_j_jmst_2022_10_075
crossref_primary_10_1021_acsenergylett_4c01244
crossref_primary_10_3390_electrochem4040031
crossref_primary_10_1016_j_jpowsour_2021_230021
crossref_primary_10_1002_aenm_202101126
crossref_primary_10_1002_sus2_37
crossref_primary_10_1039_D1TA07660D
crossref_primary_10_1002_ange_202302285
crossref_primary_10_1016_j_jpowsour_2023_232965
crossref_primary_10_1002_smll_202300256
crossref_primary_10_1007_s11426_024_2265_9
crossref_primary_10_1016_j_jechem_2021_11_019
crossref_primary_10_1039_D3TA07337H
crossref_primary_10_1002_smll_202310201
crossref_primary_10_1002_adfm_202102540
crossref_primary_10_1002_smtd_202401974
crossref_primary_10_1039_D4CC00110A
crossref_primary_10_1002_anie_202205697
crossref_primary_10_1002_adma_202401482
crossref_primary_10_1016_j_jechem_2021_10_016
crossref_primary_10_1002_smll_202107460
crossref_primary_10_1016_j_jcis_2023_10_005
crossref_primary_10_1002_adfm_202401515
crossref_primary_10_1007_s12274_022_5244_z
crossref_primary_10_3390_batteries10030109
crossref_primary_10_1002_adma_202100855
crossref_primary_10_1002_smll_202005639
crossref_primary_10_1039_D4EB00011K
crossref_primary_10_1002_adfm_202204687
crossref_primary_10_1016_j_est_2023_109524
crossref_primary_10_1002_smll_202301574
crossref_primary_10_1002_sstr_202200071
crossref_primary_10_1021_acsnano_2c07049
crossref_primary_10_1021_acsaem_1c03803
crossref_primary_10_1002_advs_202308589
crossref_primary_10_1039_D1CC03417K
crossref_primary_10_1016_j_ensm_2022_11_023
crossref_primary_10_1021_acssuschemeng_2c03375
crossref_primary_10_1016_j_carbon_2022_11_032
crossref_primary_10_1016_j_jechem_2021_10_007
crossref_primary_10_1021_acsomega_2c02764
crossref_primary_10_1021_acsaem_1c03259
crossref_primary_10_1016_j_cej_2022_138049
crossref_primary_10_1016_j_jpowsour_2021_230363
crossref_primary_10_1002_tcr_202200171
crossref_primary_10_1007_s12598_021_01886_y
crossref_primary_10_1002_adma_202106704
crossref_primary_10_1007_s40820_023_01183_6
Cites_doi 10.1038/nature07877
10.1016/j.carbon.2015.07.030
10.1073/pnas.1807115115
10.1007/s10800-008-9761-6
10.1016/j.jpowsour.2019.03.077
10.1039/b316702j
10.1016/j.jechem.2019.11.024
10.1038/s41467-017-00973-y
10.1016/j.nanoen.2019.103903
10.1002/anie.201908874
10.1021/ja412807w
10.1016/j.electacta.2014.02.008
10.1149/1.1392512
10.1149/1.1391556
10.1038/nature07853
10.1016/j.joule.2019.09.021
10.1149/2.0451514jes
10.1038/ncomms7362
10.1002/anie.201914768
10.1016/j.jpowsour.2018.10.002
10.1016/j.jpowsour.2017.11.038
10.1016/j.jpowsour.2012.07.044
10.1039/C4CC09825K
10.1021/acsenergylett.9b01926
10.1039/C1CC14764A
10.1016/j.jpowsour.2016.05.094
10.1016/j.electacta.2018.01.058
10.1002/adma.201403880
10.1016/S0378-7753(00)00601-7
10.1016/j.jechem.2017.09.014
10.1002/aenm.201904152
10.1016/j.electacta.2007.09.058
10.1002/ente.201900273
10.1039/C6RA19482F
10.1016/j.jpowsour.2019.03.027
10.1002/ente.201801078
10.1021/jp068691u
10.1002/smll.201805389
10.1016/j.jpowsour.2015.03.036
10.1016/j.jechem.2020.02.052
10.1021/jz100188d
10.1021/nl034376x
10.1016/S1452-3981(23)13343-8
10.1016/j.ensm.2019.12.020
10.1021/acsenergylett.9b01236
10.1039/c2jm31015e
10.1039/C8QI00173A
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/sstr.202000010
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2688-4062
EndPage n/a
ExternalDocumentID 10_1002_sstr_202000010
SSTR202000010
Genre article
GrantInformation_xml – fundername: Education Department of Jilin Province
  funderid: JJKH20180549KJ
– fundername: Tsinghua University Initiative Scientific Research Program, Department of Science and Technology of Jilin Province
  funderid: 20180520014JH
– fundername: Science and Technology Innovative Development Program of Jilin City
  funderid: 201831737
– fundername: National Natural Science Foundation of China
  funderid: 21776019; 21825501; U1801257
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500; 2016YFA0200102
GroupedDBID 0R~
1OC
24P
33P
34L
AAHHS
ABCUV
ABDBF
ACCFJ
ACCMX
ACCZN
ACPOU
ACXQS
ADKYN
ADZMN
AEEZP
AEQDE
AFWVQ
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
DCZOG
EBS
GROUPED_DOAJ
LATKE
LEEKS
OK1
SUPJJ
AAFWJ
AAYXX
ABJNI
AFPKN
CITATION
M~E
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c4230-9c5e356e625890cf2d56f28eb3b6d50cc4eee5caa6d22ad4bb1a1c1e73e723843
ISSN 2688-4062
IngestDate Fri Jul 25 06:29:51 EDT 2025
Thu Apr 24 22:51:15 EDT 2025
Tue Jul 01 01:54:48 EDT 2025
Wed Jan 22 16:31:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4230-9c5e356e625890cf2d56f28eb3b6d50cc4eee5caa6d22ad4bb1a1c1e73e723843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3929-1541
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sstr.202000010
PQID 2509280815
PQPubID 5014762
PageCount 6
ParticipantIDs proquest_journals_2509280815
crossref_primary_10_1002_sstr_202000010
crossref_citationtrail_10_1002_sstr_202000010
wiley_primary_10_1002_sstr_202000010_SSTR202000010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small structures
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 7
2017; 8
2001; 94
2019; 4
2019; 3
2019 2014 2015 2018 2019; 424 127 6 263 15
2012 2018 2019 2020 2020; 22 115 4 59 47
2019; 58
2016 2015; 324 284
2008 2012 2019; 53 48 7
2019; 422
1999; 146
2015 1999; 162 146
2020; 10
2014; 136
2018; 27
2015 2009 2004; 94 39 14
2009; 458
2016; 6
2015 2012 2020; 51 219 49
2010 2018; 1 376
2018; 5
2019; 64
2007; 111
2020; 28
2003; 3
2018 2015; 406 27
2012; 7
e_1_2_6_10_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_12_2
e_1_2_6_13_1
e_1_2_6_13_2
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_11_2
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_17_1
e_1_2_6_16_3
e_1_2_6_18_1
e_1_2_6_13_3
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_20_2
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_8_5
e_1_2_6_8_2
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_8_4
e_1_2_6_8_3
e_1_2_6_2_4
e_1_2_6_4_2
e_1_2_6_5_1
e_1_2_6_2_3
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_2_5
e_1_2_6_4_3
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_2_2
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_25_2
e_1_2_6_26_1
References_xml – volume: 64
  start-page: 103903
  year: 2019
  publication-title: Nano Energy
– volume: 4
  start-page: 1902
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 58
  start-page: 15235
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 1463
  year: 2018
  publication-title: Inorg. Chem. Front.
– volume: 28
  start-page: 401
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 1 376
  start-page: 1176 91
  year: 2010 2018
  end-page: 1180
  publication-title: J. Phys. Chem. Lett. J. Power Sources
– volume: 458
  start-page: 746
  year: 2009
  publication-title: Nature
– volume: 8
  start-page: 812
  year: 2017
  publication-title: Nat. Commun.
– volume: 27
  start-page: 167
  year: 2018
  publication-title: J. Energy Chem.
– volume: 94
  start-page: 68
  year: 2001
  publication-title: J. Power Sources
– volume: 3
  start-page: 3002
  year: 2019
  publication-title: Joule
– volume: 51 219 49
  start-page: 8429 188 335
  year: 2015 2012 2020
  publication-title: Chem. Commun. J. Power Sources J. Energy Chem.
– volume: 458
  start-page: 190
  year: 2009
  publication-title: Nature
– volume: 424 127 6 263 15
  start-page: 150 39 6362 237 e1805389
  year: 2019 2014 2015 2018 2019
  publication-title: J. Power Sources Electrochim. Acta Nat. Commun. Electrochim. Acta Small
– volume: 7
  start-page: 345
  year: 2012
  publication-title: Int. J. Electrochem. Sci.
– volume: 3
  start-page: 1437
  year: 2003
  publication-title: Nano Lett.
– volume: 94 39 14
  start-page: 432 1081 1754
  year: 2015 2009 2004
  publication-title: Carbon J. Appl. Electrochem. J. Mater. Chem.
– volume: 324 284
  start-page: 475 258
  year: 2016 2015
  publication-title: J. Power Sources J. Power Sources
– volume: 422
  start-page: 18
  year: 2019
  publication-title: J. Power Sources
– volume: 7
  start-page: 1900273
  year: 2019
  publication-title: Energy Technol.
– volume: 146
  start-page: 8
  year: 1999
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 88683
  year: 2016
  publication-title: RSC Adv.
– volume: 22 115 4 59 47
  start-page: 12745 7266 2529 2 128
  year: 2012 2018 2019 2020 2020
  publication-title: J. Mater. Chem. Proc. Natl. Acad. Sci. USA ACS Energy Lett. Angew. Chem., Int. Ed. J. Energy Chem.
– volume: 111
  start-page: 7411
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 1904152
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 162 146
  start-page: A2646 3543
  year: 2015 1999
  publication-title: J. Electrochem. Soc. J. Electrochem. Soc.
– volume: 136
  start-page: 5039
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 406 27
  start-page: 63 130
  year: 2018 2015
  publication-title: J. Power Sources Adv. Mater.
– volume: 53 48 7
  start-page: 2376 1201 1801078
  year: 2008 2012 2019
  publication-title: Electrochim. Acta Chem. Commun. Energy Technol.
– ident: e_1_2_6_24_1
  doi: 10.1038/nature07877
– ident: e_1_2_6_16_1
  doi: 10.1016/j.carbon.2015.07.030
– ident: e_1_2_6_2_2
  doi: 10.1073/pnas.1807115115
– ident: e_1_2_6_16_2
  doi: 10.1007/s10800-008-9761-6
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jpowsour.2019.03.077
– ident: e_1_2_6_16_3
  doi: 10.1039/b316702j
– ident: e_1_2_6_2_5
  doi: 10.1016/j.jechem.2019.11.024
– ident: e_1_2_6_5_1
  doi: 10.1038/s41467-017-00973-y
– ident: e_1_2_6_7_1
  doi: 10.1016/j.nanoen.2019.103903
– ident: e_1_2_6_14_1
  doi: 10.1002/anie.201908874
– ident: e_1_2_6_9_1
  doi: 10.1021/ja412807w
– ident: e_1_2_6_8_2
  doi: 10.1016/j.electacta.2014.02.008
– ident: e_1_2_6_20_2
  doi: 10.1149/1.1392512
– ident: e_1_2_6_29_1
  doi: 10.1149/1.1391556
– ident: e_1_2_6_30_1
  doi: 10.1038/nature07853
– ident: e_1_2_6_3_1
  doi: 10.1016/j.joule.2019.09.021
– ident: e_1_2_6_20_1
  doi: 10.1149/2.0451514jes
– ident: e_1_2_6_8_3
  doi: 10.1038/ncomms7362
– ident: e_1_2_6_2_4
  doi: 10.1002/anie.201914768
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jpowsour.2018.10.002
– ident: e_1_2_6_25_2
  doi: 10.1016/j.jpowsour.2017.11.038
– ident: e_1_2_6_4_2
  doi: 10.1016/j.jpowsour.2012.07.044
– ident: e_1_2_6_4_1
  doi: 10.1039/C4CC09825K
– ident: e_1_2_6_2_3
  doi: 10.1021/acsenergylett.9b01926
– ident: e_1_2_6_13_2
  doi: 10.1039/C1CC14764A
– ident: e_1_2_6_11_1
  doi: 10.1016/j.jpowsour.2016.05.094
– ident: e_1_2_6_8_4
  doi: 10.1016/j.electacta.2018.01.058
– ident: e_1_2_6_12_2
  doi: 10.1002/adma.201403880
– ident: e_1_2_6_19_1
  doi: 10.1016/S0378-7753(00)00601-7
– ident: e_1_2_6_18_1
  doi: 10.1016/j.jechem.2017.09.014
– ident: e_1_2_6_22_1
  doi: 10.1002/aenm.201904152
– ident: e_1_2_6_13_1
  doi: 10.1016/j.electacta.2007.09.058
– ident: e_1_2_6_21_1
  doi: 10.1002/ente.201900273
– ident: e_1_2_6_6_1
  doi: 10.1039/C6RA19482F
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jpowsour.2019.03.027
– ident: e_1_2_6_13_3
  doi: 10.1002/ente.201801078
– ident: e_1_2_6_23_1
  doi: 10.1021/jp068691u
– ident: e_1_2_6_8_5
  doi: 10.1002/smll.201805389
– ident: e_1_2_6_11_2
  doi: 10.1016/j.jpowsour.2015.03.036
– ident: e_1_2_6_4_3
  doi: 10.1016/j.jechem.2020.02.052
– ident: e_1_2_6_25_1
  doi: 10.1021/jz100188d
– ident: e_1_2_6_15_1
  doi: 10.1021/nl034376x
– ident: e_1_2_6_27_1
  doi: 10.1016/S1452-3981(23)13343-8
– ident: e_1_2_6_17_1
  doi: 10.1016/j.ensm.2019.12.020
– ident: e_1_2_6_28_1
  doi: 10.1021/acsenergylett.9b01236
– ident: e_1_2_6_2_1
  doi: 10.1039/c2jm31015e
– ident: e_1_2_6_26_1
  doi: 10.1039/C8QI00173A
SSID ssj0002511797
Score 2.5545883
Snippet The use of graphite anode renders practical lithium‐ion batteries for effective energy storage. However, graphite anode is the bottleneck to achieve the fast...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anode effect
Charging
Diffusion coating
Diffusion layers
Diffusion rate
Electrode polarization
Energy storage
fast charging
Graphite
graphite anodes
Lithium-ion batteries
lithium-ion diffusion
porous carbon layers
Storage batteries
three-electrode measurements
Title Rapid Lithium Diffusion in Order@Disorder Pathways for Fast‐Charging Graphite Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsstr.202000010
https://www.proquest.com/docview/2509280815
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHOCCeIqFgnwAcahSEsfxbm5UK6oKqSB1t7CcIttxaKQ2u2I3QnBA_AR-I7-EGT-SbllE4RIlVt7zeTwzHn9DyFMYVEycKxapvFQRN0xHEkYt6O5CjaokqXSFoYHDN-LgmL-eZbOensCuLlmpXf1147qS_5EqtIFccZXsP0i2uyk0wD7IF7YgYdheSsZHclGXyHtxUrdnoL2qql363MW3SKn5jMeBXRO5-E8-yy-WfmFnXy5XXZoDzrh_dHEoucBZhZ29Zl763EJvt07OcArbkc22n_q8w7GrZv3eNKdzPwaiCpF-Kn-tzQZlP7TRrO5bZ60NDJj6fPQBXM2Qx-aVFBMgEzAKnEY1G9qClr0Ipt90t-OCXcKn7OKT0PqM-1EqzMxfGLy6lEJHv8wKvL7orr9KrjHwH1ABHn7rg2_oVw1t4Z3uXQOhZ8xerL_CusHSeyHnfRlrjExvkZvei6B7DhK3yRXT3CHXx6F4313yzkKDemjQDhq0bqiFxssADBqAQQEYFIHx8_uPAAkaIEEdJO6R4_1X0_FB5EtoRBrs5DjKdWbSTBjwckd5rCtWZqJiI6NSJcos1pobYzItpSgZkyVXKpGJTswwNViNjqf3yVYzb8wDQnmKhWmyUslKc6mEHHLkJtRG8kTyVAxIFP5ToT2_PJY5OS02i2ZAnnfnLxyzyh_P3A6_vfC9b1mA6Z4zLBuTDQizovjLXYrJZHrUHT289NMfkRs98LfJFvQ08xgM0ZV6YkH1C0JAhKs
linkProvider ISSN International Centre
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUQHcqCeIpCAQ9ITFETx3GbjapQCrSA-kCIJbIdR0SCUJFUiI1P4Bv5EnzzKh0QEmMix8P1vbnHJ845CB3ppqJMVxBDuL4wqCLS4Lpr6XJnohVYViADoAYG16w3oZf3TnGaEP6FyfQhSsINKiN9X0OBAyHdmKuGxnECgp4kJaj1rr0C0EYndqV9N3mYlEQLYOhmarJCmM4K3cBIId5oksbiJIvNaY44f-LWtPF019BqjhhxO1vidbSkog1U7RRGbZvobsinoY_7YfIYzp7xaRgEM-DAcBjhG1DWPCkkNvGtxntv_D3GGqriLo-Tr49P-OAOTkX4HLSrNQLF7ejFV_EWmnTPxp2ekdslGFJjItNwpaNshym9o2m5pgyI77CAtPRuWTDfMaWkSilHcs58QrhPhbC4JS3VtBU4j1F7Gy1HL5HaQZjaYELi-IIHknLBeJOCDp1UnFqc2qyGjCJOnsy1xMHS4snLVJCJB3H1yrjW0HE5fpqpaPw6sl6E3curKfY0THMJWIQ4NUTSpfhjFm80Gg_Lq93_PHSIqr3xoO_1L66v9tAK3M_O8NXRcvI6U_saiyTiIM-2b5mt1yA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFBVlAm03JemDTvOoFoWuzNiypBnvOiSZpm06HeZF6EboSQyJM8QeSnb5hHxjviS6fk2yKIUubWQtrnR9zr2Wz0HokwcVGyaKBCoxKqCW6EB61PLpztXARZHTDloDP8f8ZEG_n7GzR3_xV_oQbcMNMqN8X0OCr4zrbURD87wAPU9S9qd90b7FPDSFHbQ1XC5-L9o-C1DofumxQrjfFB6_SKPdGJLe00meYtOGcD6mrSXujLbRq5ow4mG1wjvomc1eoxeHjU_bG7ScylVq8GlanKfrS3yUOreGFhhOM_wLhDW_NAqbeOLp3h95k2PPVPFI5sX97R18bwejIvwVpKs9AcXD7MrY_C1ajI7nhydB7ZYQaE-JwiDRzMaMW1_QDJJQO2IYd2Tgi2XFDQu1ptZapqXkhhBpqFKRjHRk-7EF4zEav0Od7Cqz7xGmMXiQMKOk01QqLvsUZOi0lTSSNOZdFDRxErqWEgdHiwtRiSATAXEVbVy76HM7flWJaPx15F4TdlEnUy48S0sIOISwLiLlUvxjFjGbzaft1Yf_eegjej45GonTb-Mfu-gl3K5O8O2hTnG9tvueiRTqoN5sD0xw1kA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Lithium+Diffusion+in+Order%40Disorder+Pathways+for+Fast%E2%80%90Charging+Graphite+Anodes&rft.jtitle=Small+structures&rft.au=Cai%2C+Wenlong&rft.au=Yan%2C+Chong&rft.au=Yao%2C+Yu-Xing&rft.au=Xu%2C+Lei&rft.date=2020-10-01&rft.issn=2688-4062&rft.eissn=2688-4062&rft.volume=1&rft.issue=1&rft_id=info:doi/10.1002%2Fsstr.202000010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sstr_202000010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4062&client=summon