Rapid Lithium Diffusion in Order@Disorder Pathways for Fast‐Charging Graphite Anodes
The use of graphite anode renders practical lithium‐ion batteries for effective energy storage. However, graphite anode is the bottleneck to achieve the fast charging of a battery, ascribed to its low operating potential and corresponding incidental lithium plating. Herein the principle of a thin na...
Saved in:
Published in | Small structures Vol. 1; no. 1 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of graphite anode renders practical lithium‐ion batteries for effective energy storage. However, graphite anode is the bottleneck to achieve the fast charging of a battery, ascribed to its low operating potential and corresponding incidental lithium plating. Herein the principle of a thin nanoscale layer on the graphite surface to improve charging capability is investigated by applying a three‐electrode device to precisely record the working behavior. The Li+ diffusion rate is significantly improved by coating a nanoscale turbostratic carbon layer, in which abundant active sites and additional fast Li+ diffusion pathways at the basal‐plane side of graphite sheets render small polarization in a working battery. This fresh understanding enriches the fundamental insights into enhancing the rate performance and facilitating the practical applications of graphite in fast‐charging batteries.
The turbostratic carbon layer on the graphite anode affords abundant active sites and fast diffusion pathways to accelerate the transportation of Li ions in a working battery. This renders a reduced polarization and significantly improved rate performance. |
---|---|
AbstractList | The use of graphite anode renders practical lithium‐ion batteries for effective energy storage. However, graphite anode is the bottleneck to achieve the fast charging of a battery, ascribed to its low operating potential and corresponding incidental lithium plating. Herein the principle of a thin nanoscale layer on the graphite surface to improve charging capability is investigated by applying a three‐electrode device to precisely record the working behavior. The Li+ diffusion rate is significantly improved by coating a nanoscale turbostratic carbon layer, in which abundant active sites and additional fast Li+ diffusion pathways at the basal‐plane side of graphite sheets render small polarization in a working battery. This fresh understanding enriches the fundamental insights into enhancing the rate performance and facilitating the practical applications of graphite in fast‐charging batteries. The use of graphite anode renders practical lithium‐ion batteries for effective energy storage. However, graphite anode is the bottleneck to achieve the fast charging of a battery, ascribed to its low operating potential and corresponding incidental lithium plating. Herein the principle of a thin nanoscale layer on the graphite surface to improve charging capability is investigated by applying a three‐electrode device to precisely record the working behavior. The Li+ diffusion rate is significantly improved by coating a nanoscale turbostratic carbon layer, in which abundant active sites and additional fast Li+ diffusion pathways at the basal‐plane side of graphite sheets render small polarization in a working battery. This fresh understanding enriches the fundamental insights into enhancing the rate performance and facilitating the practical applications of graphite in fast‐charging batteries. The turbostratic carbon layer on the graphite anode affords abundant active sites and fast diffusion pathways to accelerate the transportation of Li ions in a working battery. This renders a reduced polarization and significantly improved rate performance. |
Author | Yao, Yu-Xing Xu, Rui Jiang, Li-Li Zhang, Qiang Xu, Lei Cai, Wenlong Huang, Jia-Qi Yan, Chong |
Author_xml | – sequence: 1 givenname: Wenlong surname: Cai fullname: Cai, Wenlong organization: Tsinghua University – sequence: 2 givenname: Chong surname: Yan fullname: Yan, Chong organization: Beijing Institute of Technology – sequence: 3 givenname: Yu-Xing surname: Yao fullname: Yao, Yu-Xing organization: Tsinghua University – sequence: 4 givenname: Lei surname: Xu fullname: Xu, Lei organization: Beijing Institute of Technology – sequence: 5 givenname: Rui surname: Xu fullname: Xu, Rui organization: Beijing Institute of Technology – sequence: 6 givenname: Li-Li surname: Jiang fullname: Jiang, Li-Li organization: Jilin Institute of Chemical Technology – sequence: 7 givenname: Jia-Qi surname: Huang fullname: Huang, Jia-Qi organization: Beijing Institute of Technology – sequence: 8 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkM1Kw0AURgdRsNZuXQ-4Tp2ZZPKzs7S2CoVKW90Ok8lNM6VN4syE0p2P4DP6JKZUVATxbu63-M69cC7QaVmVgNAVJX1KCLux1pk-I4y0Q8kJ6rAwjr2AhOz0Rz5HPWvXbYVxSqMk6qDnuax1hqfaFbrZ4pHO88bqqsS6xDOTgbkdaVsdAn6UrtjJvcV5ZfBYWvf--jYspFnpcoUnRtaFdoAHZZWBvURnudxY6H3uLnoa3y2H9950NnkYDqaeCphPvERx8HkIIeNxQlTOMh7mLIbUT8OME6UCAOBKyjBjTGZBmlJJFYXIh4j5ceB30fXxbm2qlwasE-uqMWX7UjBOEhaTmPK21T-2lKmsNZCL2uitNHtBiTjoEwd94ktfCwS_AKWddK0XZ6Te_I0lR2ynN7D_54lYLJbzb_YDjmiIbw |
CitedBy_id | crossref_primary_10_1002_smll_202103679 crossref_primary_10_1016_j_jechem_2022_04_005 crossref_primary_10_1002_smll_202401675 crossref_primary_10_1039_D3CC03967F crossref_primary_10_1002_adma_202202892 crossref_primary_10_1002_ente_202200472 crossref_primary_10_1002_anie_202214828 crossref_primary_10_1039_D2NJ00394E crossref_primary_10_1063_5_0178707 crossref_primary_10_1002_eem2_12334 crossref_primary_10_1039_D2CP04032H crossref_primary_10_1016_j_jallcom_2022_164717 crossref_primary_10_1021_acsomega_1c05076 crossref_primary_10_1002_anie_202302285 crossref_primary_10_1002_adma_202005501 crossref_primary_10_1002_ange_202205697 crossref_primary_10_1016_S1872_5805_22_60573_0 crossref_primary_10_1016_j_nanoen_2024_110108 crossref_primary_10_1016_j_carbon_2022_05_023 crossref_primary_10_1002_aenm_202102263 crossref_primary_10_1002_aenm_202200403 crossref_primary_10_1016_j_ces_2024_120302 crossref_primary_10_1016_j_jpowsour_2021_230341 crossref_primary_10_1002_ange_202306963 crossref_primary_10_1016_j_jcis_2024_07_101 crossref_primary_10_1002_anie_202303888 crossref_primary_10_1007_s12598_021_01887_x crossref_primary_10_1002_smtd_202200255 crossref_primary_10_1002_batt_202300515 crossref_primary_10_1002_aenm_202304502 crossref_primary_10_1002_adma_202107415 crossref_primary_10_1002_cnma_202400637 crossref_primary_10_1016_j_carbon_2022_03_022 crossref_primary_10_1021_acs_nanolett_3c05151 crossref_primary_10_1007_s42864_023_00231_3 crossref_primary_10_1149_1945_7111_ad27b4 crossref_primary_10_1016_j_nxener_2024_100115 crossref_primary_10_1002_adma_202414117 crossref_primary_10_1016_j_nanoen_2023_109020 crossref_primary_10_1002_adma_202106353 crossref_primary_10_1002_adma_202110337 crossref_primary_10_1002_adfm_202108449 crossref_primary_10_1016_j_jpowsour_2021_230275 crossref_primary_10_1039_D1SE01152A crossref_primary_10_1002_elan_202400318 crossref_primary_10_1016_j_cej_2021_131963 crossref_primary_10_1016_j_nanoen_2021_106510 crossref_primary_10_1039_D1EE02205A crossref_primary_10_1039_D2CC01927B crossref_primary_10_1002_smll_202006366 crossref_primary_10_1021_acsanm_4c05756 crossref_primary_10_1002_ange_202214828 crossref_primary_10_1039_D4TA05871B crossref_primary_10_1021_acsami_2c21638 crossref_primary_10_1016_j_jechem_2024_01_009 crossref_primary_10_1039_D3EE02213G crossref_primary_10_1002_smll_202207093 crossref_primary_10_1002_adfm_202200796 crossref_primary_10_1002_ange_202102593 crossref_primary_10_1002_eem2_12509 crossref_primary_10_1002_nano_202000079 crossref_primary_10_1149_1945_7111_ac2a7f crossref_primary_10_1002_adma_202416266 crossref_primary_10_1016_j_jallcom_2024_175871 crossref_primary_10_1021_acsami_2c05293 crossref_primary_10_1007_s11426_022_1486_1 crossref_primary_10_1021_acssuschemeng_4c03551 crossref_primary_10_1016_j_cej_2023_147765 crossref_primary_10_1016_j_jechem_2021_10_036 crossref_primary_10_26599_CF_2024_9200017 crossref_primary_10_1016_j_cej_2024_156080 crossref_primary_10_1021_acsnano_4c13561 crossref_primary_10_1021_acssuschemeng_1c05374 crossref_primary_10_1002_adfm_202417124 crossref_primary_10_34133_energymatadv_0113 crossref_primary_10_1007_s42823_023_00669_y crossref_primary_10_3390_batteries9120578 crossref_primary_10_1016_j_jechem_2022_05_010 crossref_primary_10_1002_ange_202303888 crossref_primary_10_1002_wcms_1621 crossref_primary_10_1016_j_etran_2021_100145 crossref_primary_10_1039_D2TA09612A crossref_primary_10_1002_anie_202102593 crossref_primary_10_1002_anie_202306963 crossref_primary_10_1007_s40820_021_00758_5 crossref_primary_10_1002_adfm_202201430 crossref_primary_10_3390_nano12152668 crossref_primary_10_1002_adma_202405751 crossref_primary_10_1002_idm2_12105 crossref_primary_10_1002_smll_202404879 crossref_primary_10_1016_j_materresbull_2020_111077 crossref_primary_10_1016_j_cej_2023_143677 crossref_primary_10_1016_j_jcis_2023_02_020 crossref_primary_10_1002_adfm_202316715 crossref_primary_10_1016_j_jechem_2021_08_050 crossref_primary_10_1021_acsami_1c16532 crossref_primary_10_1016_j_jpowsour_2023_233022 crossref_primary_10_1186_s11671_024_04087_5 crossref_primary_10_1021_acsami_2c02169 crossref_primary_10_1039_D4RA01560F crossref_primary_10_1016_j_jmst_2022_10_075 crossref_primary_10_1021_acsenergylett_4c01244 crossref_primary_10_3390_electrochem4040031 crossref_primary_10_1016_j_jpowsour_2021_230021 crossref_primary_10_1002_aenm_202101126 crossref_primary_10_1002_sus2_37 crossref_primary_10_1039_D1TA07660D crossref_primary_10_1002_ange_202302285 crossref_primary_10_1016_j_jpowsour_2023_232965 crossref_primary_10_1002_smll_202300256 crossref_primary_10_1007_s11426_024_2265_9 crossref_primary_10_1016_j_jechem_2021_11_019 crossref_primary_10_1039_D3TA07337H crossref_primary_10_1002_smll_202310201 crossref_primary_10_1002_adfm_202102540 crossref_primary_10_1002_smtd_202401974 crossref_primary_10_1039_D4CC00110A crossref_primary_10_1002_anie_202205697 crossref_primary_10_1002_adma_202401482 crossref_primary_10_1016_j_jechem_2021_10_016 crossref_primary_10_1002_smll_202107460 crossref_primary_10_1016_j_jcis_2023_10_005 crossref_primary_10_1002_adfm_202401515 crossref_primary_10_1007_s12274_022_5244_z crossref_primary_10_3390_batteries10030109 crossref_primary_10_1002_adma_202100855 crossref_primary_10_1002_smll_202005639 crossref_primary_10_1039_D4EB00011K crossref_primary_10_1002_adfm_202204687 crossref_primary_10_1016_j_est_2023_109524 crossref_primary_10_1002_smll_202301574 crossref_primary_10_1002_sstr_202200071 crossref_primary_10_1021_acsnano_2c07049 crossref_primary_10_1021_acsaem_1c03803 crossref_primary_10_1002_advs_202308589 crossref_primary_10_1039_D1CC03417K crossref_primary_10_1016_j_ensm_2022_11_023 crossref_primary_10_1021_acssuschemeng_2c03375 crossref_primary_10_1016_j_carbon_2022_11_032 crossref_primary_10_1016_j_jechem_2021_10_007 crossref_primary_10_1021_acsomega_2c02764 crossref_primary_10_1021_acsaem_1c03259 crossref_primary_10_1016_j_cej_2022_138049 crossref_primary_10_1016_j_jpowsour_2021_230363 crossref_primary_10_1002_tcr_202200171 crossref_primary_10_1007_s12598_021_01886_y crossref_primary_10_1002_adma_202106704 crossref_primary_10_1007_s40820_023_01183_6 |
Cites_doi | 10.1038/nature07877 10.1016/j.carbon.2015.07.030 10.1073/pnas.1807115115 10.1007/s10800-008-9761-6 10.1016/j.jpowsour.2019.03.077 10.1039/b316702j 10.1016/j.jechem.2019.11.024 10.1038/s41467-017-00973-y 10.1016/j.nanoen.2019.103903 10.1002/anie.201908874 10.1021/ja412807w 10.1016/j.electacta.2014.02.008 10.1149/1.1392512 10.1149/1.1391556 10.1038/nature07853 10.1016/j.joule.2019.09.021 10.1149/2.0451514jes 10.1038/ncomms7362 10.1002/anie.201914768 10.1016/j.jpowsour.2018.10.002 10.1016/j.jpowsour.2017.11.038 10.1016/j.jpowsour.2012.07.044 10.1039/C4CC09825K 10.1021/acsenergylett.9b01926 10.1039/C1CC14764A 10.1016/j.jpowsour.2016.05.094 10.1016/j.electacta.2018.01.058 10.1002/adma.201403880 10.1016/S0378-7753(00)00601-7 10.1016/j.jechem.2017.09.014 10.1002/aenm.201904152 10.1016/j.electacta.2007.09.058 10.1002/ente.201900273 10.1039/C6RA19482F 10.1016/j.jpowsour.2019.03.027 10.1002/ente.201801078 10.1021/jp068691u 10.1002/smll.201805389 10.1016/j.jpowsour.2015.03.036 10.1016/j.jechem.2020.02.052 10.1021/jz100188d 10.1021/nl034376x 10.1016/S1452-3981(23)13343-8 10.1016/j.ensm.2019.12.020 10.1021/acsenergylett.9b01236 10.1039/c2jm31015e 10.1039/C8QI00173A |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/sstr.202000010 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2688-4062 |
EndPage | n/a |
ExternalDocumentID | 10_1002_sstr_202000010 SSTR202000010 |
Genre | article |
GrantInformation_xml | – fundername: Education Department of Jilin Province funderid: JJKH20180549KJ – fundername: Tsinghua University Initiative Scientific Research Program, Department of Science and Technology of Jilin Province funderid: 20180520014JH – fundername: Science and Technology Innovative Development Program of Jilin City funderid: 201831737 – fundername: National Natural Science Foundation of China funderid: 21776019; 21825501; U1801257 – fundername: National Key Research and Development Program funderid: 2016YFA0202500; 2016YFA0200102 |
GroupedDBID | 0R~ 1OC 24P 33P 34L AAHHS ABCUV ABDBF ACCFJ ACCMX ACCZN ACPOU ACXQS ADKYN ADZMN AEEZP AEQDE AFWVQ AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU DCZOG EBS GROUPED_DOAJ LATKE LEEKS OK1 SUPJJ AAFWJ AAYXX ABJNI AFPKN CITATION M~E 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c4230-9c5e356e625890cf2d56f28eb3b6d50cc4eee5caa6d22ad4bb1a1c1e73e723843 |
ISSN | 2688-4062 |
IngestDate | Fri Jul 25 06:29:51 EDT 2025 Thu Apr 24 22:51:15 EDT 2025 Tue Jul 01 01:54:48 EDT 2025 Wed Jan 22 16:31:51 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4230-9c5e356e625890cf2d56f28eb3b6d50cc4eee5caa6d22ad4bb1a1c1e73e723843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3929-1541 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sstr.202000010 |
PQID | 2509280815 |
PQPubID | 5014762 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2509280815 crossref_primary_10_1002_sstr_202000010 crossref_citationtrail_10_1002_sstr_202000010 wiley_primary_10_1002_sstr_202000010_SSTR202000010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small structures |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2019; 7 2017; 8 2001; 94 2019; 4 2019; 3 2019 2014 2015 2018 2019; 424 127 6 263 15 2012 2018 2019 2020 2020; 22 115 4 59 47 2019; 58 2016 2015; 324 284 2008 2012 2019; 53 48 7 2019; 422 1999; 146 2015 1999; 162 146 2020; 10 2014; 136 2018; 27 2015 2009 2004; 94 39 14 2009; 458 2016; 6 2015 2012 2020; 51 219 49 2010 2018; 1 376 2018; 5 2019; 64 2007; 111 2020; 28 2003; 3 2018 2015; 406 27 2012; 7 e_1_2_6_10_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_12_2 e_1_2_6_13_1 e_1_2_6_13_2 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_11_2 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_17_1 e_1_2_6_16_3 e_1_2_6_18_1 e_1_2_6_13_3 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_20_2 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_8_5 e_1_2_6_8_2 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_8_4 e_1_2_6_8_3 e_1_2_6_2_4 e_1_2_6_4_2 e_1_2_6_5_1 e_1_2_6_2_3 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_2_5 e_1_2_6_4_3 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_2_2 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_25_2 e_1_2_6_26_1 |
References_xml | – volume: 64 start-page: 103903 year: 2019 publication-title: Nano Energy – volume: 4 start-page: 1902 year: 2019 publication-title: ACS Energy Lett. – volume: 58 start-page: 15235 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 1463 year: 2018 publication-title: Inorg. Chem. Front. – volume: 28 start-page: 401 year: 2020 publication-title: Energy Storage Mater. – volume: 1 376 start-page: 1176 91 year: 2010 2018 end-page: 1180 publication-title: J. Phys. Chem. Lett. J. Power Sources – volume: 458 start-page: 746 year: 2009 publication-title: Nature – volume: 8 start-page: 812 year: 2017 publication-title: Nat. Commun. – volume: 27 start-page: 167 year: 2018 publication-title: J. Energy Chem. – volume: 94 start-page: 68 year: 2001 publication-title: J. Power Sources – volume: 3 start-page: 3002 year: 2019 publication-title: Joule – volume: 51 219 49 start-page: 8429 188 335 year: 2015 2012 2020 publication-title: Chem. Commun. J. Power Sources J. Energy Chem. – volume: 458 start-page: 190 year: 2009 publication-title: Nature – volume: 424 127 6 263 15 start-page: 150 39 6362 237 e1805389 year: 2019 2014 2015 2018 2019 publication-title: J. Power Sources Electrochim. Acta Nat. Commun. Electrochim. Acta Small – volume: 7 start-page: 345 year: 2012 publication-title: Int. J. Electrochem. Sci. – volume: 3 start-page: 1437 year: 2003 publication-title: Nano Lett. – volume: 94 39 14 start-page: 432 1081 1754 year: 2015 2009 2004 publication-title: Carbon J. Appl. Electrochem. J. Mater. Chem. – volume: 324 284 start-page: 475 258 year: 2016 2015 publication-title: J. Power Sources J. Power Sources – volume: 422 start-page: 18 year: 2019 publication-title: J. Power Sources – volume: 7 start-page: 1900273 year: 2019 publication-title: Energy Technol. – volume: 146 start-page: 8 year: 1999 publication-title: J. Electrochem. Soc. – volume: 6 start-page: 88683 year: 2016 publication-title: RSC Adv. – volume: 22 115 4 59 47 start-page: 12745 7266 2529 2 128 year: 2012 2018 2019 2020 2020 publication-title: J. Mater. Chem. Proc. Natl. Acad. Sci. USA ACS Energy Lett. Angew. Chem., Int. Ed. J. Energy Chem. – volume: 111 start-page: 7411 year: 2007 publication-title: J. Phys. Chem. C – volume: 10 start-page: 1904152 year: 2020 publication-title: Adv. Energy Mater. – volume: 162 146 start-page: A2646 3543 year: 2015 1999 publication-title: J. Electrochem. Soc. J. Electrochem. Soc. – volume: 136 start-page: 5039 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 406 27 start-page: 63 130 year: 2018 2015 publication-title: J. Power Sources Adv. Mater. – volume: 53 48 7 start-page: 2376 1201 1801078 year: 2008 2012 2019 publication-title: Electrochim. Acta Chem. Commun. Energy Technol. – ident: e_1_2_6_24_1 doi: 10.1038/nature07877 – ident: e_1_2_6_16_1 doi: 10.1016/j.carbon.2015.07.030 – ident: e_1_2_6_2_2 doi: 10.1073/pnas.1807115115 – ident: e_1_2_6_16_2 doi: 10.1007/s10800-008-9761-6 – ident: e_1_2_6_8_1 doi: 10.1016/j.jpowsour.2019.03.077 – ident: e_1_2_6_16_3 doi: 10.1039/b316702j – ident: e_1_2_6_2_5 doi: 10.1016/j.jechem.2019.11.024 – ident: e_1_2_6_5_1 doi: 10.1038/s41467-017-00973-y – ident: e_1_2_6_7_1 doi: 10.1016/j.nanoen.2019.103903 – ident: e_1_2_6_14_1 doi: 10.1002/anie.201908874 – ident: e_1_2_6_9_1 doi: 10.1021/ja412807w – ident: e_1_2_6_8_2 doi: 10.1016/j.electacta.2014.02.008 – ident: e_1_2_6_20_2 doi: 10.1149/1.1392512 – ident: e_1_2_6_29_1 doi: 10.1149/1.1391556 – ident: e_1_2_6_30_1 doi: 10.1038/nature07853 – ident: e_1_2_6_3_1 doi: 10.1016/j.joule.2019.09.021 – ident: e_1_2_6_20_1 doi: 10.1149/2.0451514jes – ident: e_1_2_6_8_3 doi: 10.1038/ncomms7362 – ident: e_1_2_6_2_4 doi: 10.1002/anie.201914768 – ident: e_1_2_6_12_1 doi: 10.1016/j.jpowsour.2018.10.002 – ident: e_1_2_6_25_2 doi: 10.1016/j.jpowsour.2017.11.038 – ident: e_1_2_6_4_2 doi: 10.1016/j.jpowsour.2012.07.044 – ident: e_1_2_6_4_1 doi: 10.1039/C4CC09825K – ident: e_1_2_6_2_3 doi: 10.1021/acsenergylett.9b01926 – ident: e_1_2_6_13_2 doi: 10.1039/C1CC14764A – ident: e_1_2_6_11_1 doi: 10.1016/j.jpowsour.2016.05.094 – ident: e_1_2_6_8_4 doi: 10.1016/j.electacta.2018.01.058 – ident: e_1_2_6_12_2 doi: 10.1002/adma.201403880 – ident: e_1_2_6_19_1 doi: 10.1016/S0378-7753(00)00601-7 – ident: e_1_2_6_18_1 doi: 10.1016/j.jechem.2017.09.014 – ident: e_1_2_6_22_1 doi: 10.1002/aenm.201904152 – ident: e_1_2_6_13_1 doi: 10.1016/j.electacta.2007.09.058 – ident: e_1_2_6_21_1 doi: 10.1002/ente.201900273 – ident: e_1_2_6_6_1 doi: 10.1039/C6RA19482F – ident: e_1_2_6_10_1 doi: 10.1016/j.jpowsour.2019.03.027 – ident: e_1_2_6_13_3 doi: 10.1002/ente.201801078 – ident: e_1_2_6_23_1 doi: 10.1021/jp068691u – ident: e_1_2_6_8_5 doi: 10.1002/smll.201805389 – ident: e_1_2_6_11_2 doi: 10.1016/j.jpowsour.2015.03.036 – ident: e_1_2_6_4_3 doi: 10.1016/j.jechem.2020.02.052 – ident: e_1_2_6_25_1 doi: 10.1021/jz100188d – ident: e_1_2_6_15_1 doi: 10.1021/nl034376x – ident: e_1_2_6_27_1 doi: 10.1016/S1452-3981(23)13343-8 – ident: e_1_2_6_17_1 doi: 10.1016/j.ensm.2019.12.020 – ident: e_1_2_6_28_1 doi: 10.1021/acsenergylett.9b01236 – ident: e_1_2_6_2_1 doi: 10.1039/c2jm31015e – ident: e_1_2_6_26_1 doi: 10.1039/C8QI00173A |
SSID | ssj0002511797 |
Score | 2.5545883 |
Snippet | The use of graphite anode renders practical lithium‐ion batteries for effective energy storage. However, graphite anode is the bottleneck to achieve the fast... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anode effect Charging Diffusion coating Diffusion layers Diffusion rate Electrode polarization Energy storage fast charging Graphite graphite anodes Lithium-ion batteries lithium-ion diffusion porous carbon layers Storage batteries three-electrode measurements |
Title | Rapid Lithium Diffusion in Order@Disorder Pathways for Fast‐Charging Graphite Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsstr.202000010 https://www.proquest.com/docview/2509280815 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHOCCeIqFgnwAcahSEsfxbm5UK6oKqSB1t7CcIttxaKQ2u2I3QnBA_AR-I7-EGT-SbllE4RIlVt7zeTwzHn9DyFMYVEycKxapvFQRN0xHEkYt6O5CjaokqXSFoYHDN-LgmL-eZbOensCuLlmpXf1147qS_5EqtIFccZXsP0i2uyk0wD7IF7YgYdheSsZHclGXyHtxUrdnoL2qql363MW3SKn5jMeBXRO5-E8-yy-WfmFnXy5XXZoDzrh_dHEoucBZhZ29Zl763EJvt07OcArbkc22n_q8w7GrZv3eNKdzPwaiCpF-Kn-tzQZlP7TRrO5bZ60NDJj6fPQBXM2Qx-aVFBMgEzAKnEY1G9qClr0Ipt90t-OCXcKn7OKT0PqM-1EqzMxfGLy6lEJHv8wKvL7orr9KrjHwH1ABHn7rg2_oVw1t4Z3uXQOhZ8xerL_CusHSeyHnfRlrjExvkZvei6B7DhK3yRXT3CHXx6F4313yzkKDemjQDhq0bqiFxssADBqAQQEYFIHx8_uPAAkaIEEdJO6R4_1X0_FB5EtoRBrs5DjKdWbSTBjwckd5rCtWZqJiI6NSJcos1pobYzItpSgZkyVXKpGJTswwNViNjqf3yVYzb8wDQnmKhWmyUslKc6mEHHLkJtRG8kTyVAxIFP5ToT2_PJY5OS02i2ZAnnfnLxyzyh_P3A6_vfC9b1mA6Z4zLBuTDQizovjLXYrJZHrUHT289NMfkRs98LfJFvQ08xgM0ZV6YkH1C0JAhKs |
linkProvider | ISSN International Centre |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUQHcqCeIpCAQ9ITFETx3GbjapQCrSA-kCIJbIdR0SCUJFUiI1P4Bv5EnzzKh0QEmMix8P1vbnHJ845CB3ppqJMVxBDuL4wqCLS4Lpr6XJnohVYViADoAYG16w3oZf3TnGaEP6FyfQhSsINKiN9X0OBAyHdmKuGxnECgp4kJaj1rr0C0EYndqV9N3mYlEQLYOhmarJCmM4K3cBIId5oksbiJIvNaY44f-LWtPF019BqjhhxO1vidbSkog1U7RRGbZvobsinoY_7YfIYzp7xaRgEM-DAcBjhG1DWPCkkNvGtxntv_D3GGqriLo-Tr49P-OAOTkX4HLSrNQLF7ejFV_EWmnTPxp2ekdslGFJjItNwpaNshym9o2m5pgyI77CAtPRuWTDfMaWkSilHcs58QrhPhbC4JS3VtBU4j1F7Gy1HL5HaQZjaYELi-IIHknLBeJOCDp1UnFqc2qyGjCJOnsy1xMHS4snLVJCJB3H1yrjW0HE5fpqpaPw6sl6E3curKfY0THMJWIQ4NUTSpfhjFm80Gg_Lq93_PHSIqr3xoO_1L66v9tAK3M_O8NXRcvI6U_saiyTiIM-2b5mt1yA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFBVlAm03JemDTvOoFoWuzNiypBnvOiSZpm06HeZF6EboSQyJM8QeSnb5hHxjviS6fk2yKIUubWQtrnR9zr2Wz0HokwcVGyaKBCoxKqCW6EB61PLpztXARZHTDloDP8f8ZEG_n7GzR3_xV_oQbcMNMqN8X0OCr4zrbURD87wAPU9S9qd90b7FPDSFHbQ1XC5-L9o-C1DofumxQrjfFB6_SKPdGJLe00meYtOGcD6mrSXujLbRq5ow4mG1wjvomc1eoxeHjU_bG7ScylVq8GlanKfrS3yUOreGFhhOM_wLhDW_NAqbeOLp3h95k2PPVPFI5sX97R18bwejIvwVpKs9AcXD7MrY_C1ajI7nhydB7ZYQaE-JwiDRzMaMW1_QDJJQO2IYd2Tgi2XFDQu1ptZapqXkhhBpqFKRjHRk-7EF4zEav0Od7Cqz7xGmMXiQMKOk01QqLvsUZOi0lTSSNOZdFDRxErqWEgdHiwtRiSATAXEVbVy76HM7flWJaPx15F4TdlEnUy48S0sIOISwLiLlUvxjFjGbzaft1Yf_eegjej45GonTb-Mfu-gl3K5O8O2hTnG9tvueiRTqoN5sD0xw1kA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Lithium+Diffusion+in+Order%40Disorder+Pathways+for+Fast%E2%80%90Charging+Graphite+Anodes&rft.jtitle=Small+structures&rft.au=Cai%2C+Wenlong&rft.au=Yan%2C+Chong&rft.au=Yao%2C+Yu-Xing&rft.au=Xu%2C+Lei&rft.date=2020-10-01&rft.issn=2688-4062&rft.eissn=2688-4062&rft.volume=1&rft.issue=1&rft_id=info:doi/10.1002%2Fsstr.202000010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sstr_202000010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4062&client=summon |