Radiomics strategy for glioma grading using texture features from multiparametric MRI
Background Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays. Purpose/Hypothesis To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the gradi...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 48; no. 6; pp. 1518 - 1528 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays.
Purpose/Hypothesis
To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps.
Study Type
Retrospective; radiomics.
Population
A total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively.
Field Strength/Sequence
3.0T MRI/T1‐weighted images before and after contrast‐enhanced, T2‐weighted, multi‐b‐value diffusion‐weighted and 3D arterial spin labeling images.
Assessment
After multiparametric MRI preprocessing, high‐throughput features were derived from patients' volumes of interests (VOIs). The support vector machine‐based recursive feature elimination was adopted to find the optimal features for low‐grade glioma (LGG) vs. high‐grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency.
Statistical Tests
Student's t‐test or a chi‐square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist.
Results
Patients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI.
Data Conclusion
Texture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision‐making for patients with varied glioma grades.
Level of Evidence: 3
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2018;48:1518–1528 |
---|---|
AbstractList | BackgroundAccurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays.Purpose/HypothesisTo verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps.Study TypeRetrospective; radiomics.PopulationA total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively.Field Strength/Sequence3.0T MRI/T1‐weighted images before and after contrast‐enhanced, T2‐weighted, multi‐b‐value diffusion‐weighted and 3D arterial spin labeling images.AssessmentAfter multiparametric MRI preprocessing, high‐throughput features were derived from patients' volumes of interests (VOIs). The support vector machine‐based recursive feature elimination was adopted to find the optimal features for low‐grade glioma (LGG) vs. high‐grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency.Statistical TestsStudent's t‐test or a chi‐square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist.ResultsPatients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI.Data ConclusionTexture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision‐making for patients with varied glioma grades.Level of Evidence: 3Technical Efficacy: Stage 2J. Magn. Reson. Imaging 2018;48:1518–1528 Background Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays. Purpose/Hypothesis To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps. Study Type Retrospective; radiomics. Population A total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively. Field Strength/Sequence 3.0T MRI/T1‐weighted images before and after contrast‐enhanced, T2‐weighted, multi‐b‐value diffusion‐weighted and 3D arterial spin labeling images. Assessment After multiparametric MRI preprocessing, high‐throughput features were derived from patients' volumes of interests (VOIs). The support vector machine‐based recursive feature elimination was adopted to find the optimal features for low‐grade glioma (LGG) vs. high‐grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency. Statistical Tests Student's t‐test or a chi‐square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist. Results Patients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI. Data Conclusion Texture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision‐making for patients with varied glioma grades. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1518–1528 Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays. To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps. Retrospective; radiomics. A total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively. 3.0T MRI/T -weighted images before and after contrast-enhanced, T -weighted, multi-b-value diffusion-weighted and 3D arterial spin labeling images. After multiparametric MRI preprocessing, high-throughput features were derived from patients' volumes of interests (VOIs). The support vector machine-based recursive feature elimination was adopted to find the optimal features for low-grade glioma (LGG) vs. high-grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency. Student's t-test or a chi-square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist. Patients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI. Texture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision-making for patients with varied glioma grades. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1518-1528. Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays.BACKGROUNDAccurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays.To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps.PURPOSE/HYPOTHESISTo verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps.Retrospective; radiomics.STUDY TYPERetrospective; radiomics.A total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively.POPULATIONA total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively.3.0T MRI/T1 -weighted images before and after contrast-enhanced, T2 -weighted, multi-b-value diffusion-weighted and 3D arterial spin labeling images.FIELD STRENGTH/SEQUENCE3.0T MRI/T1 -weighted images before and after contrast-enhanced, T2 -weighted, multi-b-value diffusion-weighted and 3D arterial spin labeling images.After multiparametric MRI preprocessing, high-throughput features were derived from patients' volumes of interests (VOIs). The support vector machine-based recursive feature elimination was adopted to find the optimal features for low-grade glioma (LGG) vs. high-grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency.ASSESSMENTAfter multiparametric MRI preprocessing, high-throughput features were derived from patients' volumes of interests (VOIs). The support vector machine-based recursive feature elimination was adopted to find the optimal features for low-grade glioma (LGG) vs. high-grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency.Student's t-test or a chi-square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist.STATISTICAL TESTSStudent's t-test or a chi-square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist.Patients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI.RESULTSPatients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI.Texture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision-making for patients with varied glioma grades.DATA CONCLUSIONTexture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision-making for patients with varied glioma grades.3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1518-1528.LEVEL OF EVIDENCE3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1518-1528. |
Author | Zhang, Xin Sun, Qian Tian, Qiang Liu, Zhi‐Cheng Cui, Guang‐Bin Hu, Yu‐Chuan Wang, Wen Zhang, Xi Han, Yu Hu, Bo Yang, Yang Yan, Lin‐Feng Zhang, Jin Xu, Jie Chen, Ping Nan, Hai‐Yan Xiao, Gang Yu, Ying Tian, Shuai Sun, Ying‐Zhi |
Author_xml | – sequence: 1 givenname: Qiang surname: Tian fullname: Tian, Qiang organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 2 givenname: Lin‐Feng surname: Yan fullname: Yan, Lin‐Feng organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 3 givenname: Xi orcidid: 0000-0003-0032-6636 surname: Zhang fullname: Zhang, Xi organization: Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 4 givenname: Xin surname: Zhang fullname: Zhang, Xin organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 5 givenname: Yu‐Chuan surname: Hu fullname: Hu, Yu‐Chuan organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 6 givenname: Yu surname: Han fullname: Han, Yu organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 7 givenname: Zhi‐Cheng surname: Liu fullname: Liu, Zhi‐Cheng organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 8 givenname: Hai‐Yan surname: Nan fullname: Nan, Hai‐Yan organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 9 givenname: Qian surname: Sun fullname: Sun, Qian organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 10 givenname: Ying‐Zhi surname: Sun fullname: Sun, Ying‐Zhi organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 11 givenname: Yang surname: Yang fullname: Yang, Yang organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 12 givenname: Ying surname: Yu fullname: Yu, Ying organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 13 givenname: Jin surname: Zhang fullname: Zhang, Jin organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 14 givenname: Bo surname: Hu fullname: Hu, Bo organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 15 givenname: Gang surname: Xiao fullname: Xiao, Gang organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 16 givenname: Ping surname: Chen fullname: Chen, Ping organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 17 givenname: Shuai surname: Tian fullname: Tian, Shuai organization: Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 18 givenname: Jie surname: Xu fullname: Xu, Jie organization: Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 19 givenname: Wen surname: Wang fullname: Wang, Wen email: cgbtd@126.com organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) – sequence: 20 givenname: Guang‐Bin surname: Cui fullname: Cui, Guang‐Bin email: wangwen@fmmu.edu.cn organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29573085$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLJTEQhYM4jK_Z-AOGgBsR2qk8Ot29FPE1OAyIrkO6u3LJpbtzJ0mj99-b69WNyGyqQvKdonLOAdmd_ISEHDM4ZwD813IM7pwrYLBD9lnJecHLWu3mM5SiYDVUe-QgxiUANI0sv5M93pSVgLrcJ08Ppnd-dF2kMQWTcLGm1ge6GPKtoYuQn6cFneOmJnxJc0Bq0Wx6pDb4kY7zkNzKBDNiCq6jfx7ujsg3a4aIP977IXm6vnq8vC3u_97cXV7cF53kAopKcN7wWrY9oBS2UVKhMcirVqpWqLa3khnWl1K2VgnsLe9qY_pcRVuqphOH5HQ7dxX8vxlj0qOLHQ6DmdDPUXPIv-c1CJXRk0_o0s9hyttpzkQlM9dApn6-U3M7Yq9XwY0mrPWHYRmALdAFH2NAqzuXTHJ-yu65QTPQm0z0JhP9lkmWnH2SfEz9EmZb-NkNuP4PqX9nn7eaV2g9nFg |
CitedBy_id | crossref_primary_10_1002_ima_22490 crossref_primary_10_1038_s41598_020_62658_9 crossref_primary_10_3389_fnins_2020_611075 crossref_primary_10_3389_fonc_2023_1134109 crossref_primary_10_3390_ijerph18178895 crossref_primary_10_1007_s00432_023_05001_9 crossref_primary_10_3389_fonc_2021_616740 crossref_primary_10_4103_neurol_india_NI_213_20 crossref_primary_10_1016_j_ejrad_2024_111509 crossref_primary_10_1016_j_crad_2022_08_138 crossref_primary_10_3390_jcm11133802 crossref_primary_10_3390_cancers14112623 crossref_primary_10_1002_jmri_26265 crossref_primary_10_1186_s12880_020_00545_5 crossref_primary_10_3389_fonc_2021_660509 crossref_primary_10_1186_s13244_021_01102_6 crossref_primary_10_1155_2022_1955512 crossref_primary_10_1016_j_crad_2024_01_021 crossref_primary_10_3390_cancers14143401 crossref_primary_10_32628_CSEIT195233 crossref_primary_10_1080_14796694_2024_2397327 crossref_primary_10_1002_jmri_27105 crossref_primary_10_1038_s41598_019_55922_0 crossref_primary_10_3389_fonc_2023_1194120 crossref_primary_10_3389_fneur_2024_1439598 crossref_primary_10_3390_diagnostics13152604 crossref_primary_10_3390_jimaging7020034 crossref_primary_10_3389_fmed_2021_748144 crossref_primary_10_3389_fonc_2020_00071 crossref_primary_10_1097_MD_0000000000037288 crossref_primary_10_3389_fmicb_2022_823324 crossref_primary_10_1007_s00330_019_06176_x crossref_primary_10_3389_fonc_2020_00592 crossref_primary_10_1016_j_compbiomed_2023_107332 crossref_primary_10_1155_2022_3252574 crossref_primary_10_3389_fonc_2022_969907 crossref_primary_10_1371_journal_pone_0227703 crossref_primary_10_3389_fonc_2021_639062 crossref_primary_10_3390_jpm13060920 crossref_primary_10_3390_curroncol30030203 crossref_primary_10_1016_j_ejrad_2022_110639 crossref_primary_10_1007_s10585_022_10160_z crossref_primary_10_37349_etat_2023_00151 crossref_primary_10_1109_ACCESS_2024_3370238 crossref_primary_10_3389_fonc_2022_893103 crossref_primary_10_3390_cancers14071778 crossref_primary_10_1109_ACCESS_2020_3000895 crossref_primary_10_2214_AJR_19_22593 crossref_primary_10_1155_2020_5042356 crossref_primary_10_3174_ajnr_A6882 crossref_primary_10_1093_noajnl_vdaa148 crossref_primary_10_1007_s11831_021_09572_z crossref_primary_10_1093_noajnl_vdae225 crossref_primary_10_1016_j_future_2020_04_038 crossref_primary_10_3390_cancers14133264 crossref_primary_10_1088_1361_6560_ac6fab crossref_primary_10_1093_braincomms_fcac141 crossref_primary_10_1097_RCT_0000000000001180 crossref_primary_10_3174_ajnr_A7297 crossref_primary_10_3390_cancers15030965 crossref_primary_10_1016_j_ejmp_2019_03_014 crossref_primary_10_31083_j_jin2305100 crossref_primary_10_1007_s00330_019_06548_3 crossref_primary_10_3892_mi_2024_164 crossref_primary_10_1016_j_jocn_2021_04_043 crossref_primary_10_1159_000515597 crossref_primary_10_1097_RCT_0000000000001201 crossref_primary_10_3389_fneur_2023_1171167 crossref_primary_10_5812_iranjradiol_109181 crossref_primary_10_1016_j_tranon_2023_101864 crossref_primary_10_1038_s41598_024_66653_2 crossref_primary_10_1016_j_crad_2019_07_011 crossref_primary_10_3390_app10186296 crossref_primary_10_1016_j_bspc_2023_104876 crossref_primary_10_1186_s42492_024_00180_9 crossref_primary_10_1016_j_media_2024_103435 crossref_primary_10_1002_jmri_29146 crossref_primary_10_3389_fnins_2024_1440756 crossref_primary_10_1007_s00259_019_04602_2 crossref_primary_10_1007_s11547_023_01590_0 crossref_primary_10_1109_ACCESS_2019_2910849 crossref_primary_10_3389_fonc_2019_00768 crossref_primary_10_1007_s00066_020_01626_8 crossref_primary_10_3389_fonc_2021_684996 crossref_primary_10_3892_ol_2023_14023 crossref_primary_10_1038_s41598_021_82467_y crossref_primary_10_1016_j_ejrad_2019_108647 crossref_primary_10_1002_mp_15936 crossref_primary_10_1007_s00371_021_02077_7 crossref_primary_10_3390_brainsci13060912 crossref_primary_10_1007_s00330_021_08361_3 crossref_primary_10_1007_s00330_018_5802_7 crossref_primary_10_1007_s10278_020_00322_4 crossref_primary_10_3390_cancers14153771 crossref_primary_10_1186_s12883_020_1613_y crossref_primary_10_18705_2311_4495_2022_9_2_70_80 crossref_primary_10_1016_j_bbcan_2023_188913 crossref_primary_10_1007_s11042_023_17139_2 crossref_primary_10_1007_s00330_019_06080_4 crossref_primary_10_1016_j_clineuro_2019_105565 crossref_primary_10_1097_RCT_0000000000001344 crossref_primary_10_1007_s40336_022_00507_7 crossref_primary_10_3390_cancers13195010 crossref_primary_10_1016_j_ymeth_2020_06_003 crossref_primary_10_1002_mp_15648 crossref_primary_10_1016_j_nicl_2022_103034 crossref_primary_10_1016_j_praneu_2023_10_005 crossref_primary_10_1109_ACCESS_2024_3360223 crossref_primary_10_1007_s11060_021_03933_1 crossref_primary_10_3389_fonc_2022_856231 crossref_primary_10_1016_j_wneu_2023_04_096 crossref_primary_10_3348_kjr_2020_0254 crossref_primary_10_1016_j_acra_2020_06_016 crossref_primary_10_3389_fonc_2020_606741 crossref_primary_10_3174_ajnr_A6075 crossref_primary_10_1038_s41416_021_01387_w crossref_primary_10_1111_vru_13242 crossref_primary_10_1007_s13538_021_00912_9 crossref_primary_10_1109_JBHI_2021_3095476 crossref_primary_10_1016_j_diii_2020_12_001 crossref_primary_10_1155_2022_7315665 crossref_primary_10_1142_S0219467821400131 crossref_primary_10_1007_s12032_021_01500_2 crossref_primary_10_1097_MD_0000000000014768 crossref_primary_10_1053_j_sult_2022_02_005 crossref_primary_10_1002_nbm_4114 crossref_primary_10_1093_neuros_nyab124 crossref_primary_10_1016_j_cmpb_2022_107165 crossref_primary_10_1002_jmri_28663 crossref_primary_10_3233_JIFS_210263 crossref_primary_10_1016_j_infrared_2025_105809 crossref_primary_10_3390_cancers13092261 crossref_primary_10_1109_ACCESS_2019_2928975 crossref_primary_10_1016_j_compmedimag_2019_101675 crossref_primary_10_3389_fendo_2019_00403 crossref_primary_10_1016_j_bspc_2024_106001 crossref_primary_10_1109_ACCESS_2018_2889151 crossref_primary_10_1186_s43055_025_01443_y crossref_primary_10_3389_fonc_2019_01371 crossref_primary_10_1016_j_nicl_2020_102437 crossref_primary_10_3934_mbe_2021080 crossref_primary_10_1007_s00330_021_08444_1 crossref_primary_10_1111_jcmm_15145 crossref_primary_10_3389_fonc_2023_1168995 crossref_primary_10_3390_cancers13112568 crossref_primary_10_1155_2020_2127062 crossref_primary_10_3390_jcm10071411 crossref_primary_10_1186_s12885_019_6504_5 crossref_primary_10_3390_cancers13112681 crossref_primary_10_1186_s40644_024_00682_y crossref_primary_10_1016_j_acra_2024_09_021 crossref_primary_10_1016_j_crad_2019_12_008 |
Cites_doi | 10.1109/ICDM.2011.33 10.1148/radiology.161.2.3763909 10.1002/jmri.25669 10.1007/s11548-014-0991-2 10.1093/neuonc/3.3.193 10.5405/jmbe.1183 10.1016/j.drudis.2015.02.011 10.1007/s00401-015-1432-1 10.1118/1.4894812 10.1007/s11060-015-1908-9 10.1007/s00401-015-1409-0 10.1200/JCO.2015.65.9128 10.1145/1961189.1961199 10.1038/srep07208 10.1016/j.ejca.2011.11.036 10.1186/s12880-017-0183-y 10.1186/1470-7330-14-20 10.1007/s00401-016-1545-1 10.1200/JCO.2005.05.2399 10.1162/153244303322753706 10.1073/pnas.1505935112 10.1109/TSMC.1973.4309314 10.1016/j.ejrad.2016.01.013 10.1002/jmri.25191 10.1148/radiol.11110686 10.1002/mrm.10581 10.1148/radiol.2015151169 10.1148/radiol.2015142173 10.1371/journal.pone.0108335 10.6004/jnccn.2015.0148 10.1007/s00401-007-0243-4 10.1007/s00234-015-1500-1 10.7763/IJMLC.2013.V3.307 10.1613/jair.953 10.1016/j.ejrad.2010.07.017 10.1155/2015/234245 10.1148/radiol.14132040 |
ContentType | Journal Article |
Copyright | 2018 International Society for Magnetic Resonance in Medicine 2018 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2018 International Society for Magnetic Resonance in Medicine – notice: 2018 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.26010 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 1528 |
ExternalDocumentID | 29573085 10_1002_jmri_26010 JMRI26010 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Innovation and Development Foundation of Tangdu Hospital funderid: 2016LCYJ001 – fundername: Science and Technology Development of Shaanxi Province funderid: 2014JZ2‐007 – fundername: Natural Science Foundation of Shaanxi Province funderid: 2008K13‐04 – fundername: National key research and development program of China funderid: 2016YFC0107105 – fundername: Young Seeding Talent Foundation of Tangdu Hospital – fundername: Natural Science Foundation of Shaanxi Province grantid: 2008K13-04 – fundername: Innovation and Development Foundation of Tangdu Hospital grantid: 2016LCYJ001 – fundername: Science and Technology Development of Shaanxi Province grantid: 2014JZ2-007 – fundername: National key research and development program of China grantid: 2016YFC0107105 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4230-73229284bd0e43f9646eaae27b46b36bdf41a1d544bf63edf2c8aad2c83b569c3 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 03:54:17 EDT 2025 Fri Jul 25 12:14:53 EDT 2025 Thu Apr 03 06:57:19 EDT 2025 Tue Jul 01 03:56:39 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Wed Jan 22 16:20:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | multiparametric MRI glioma grading radiomics texture feature SVM |
Language | English |
License | 2018 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4230-73229284bd0e43f9646eaae27b46b36bdf41a1d544bf63edf2c8aad2c83b569c3 |
Notes | The first three authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0032-6636 |
PMID | 29573085 |
PQID | 2137480290 |
PQPubID | 1006400 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2018028036 proquest_journals_2137480290 pubmed_primary_29573085 crossref_citationtrail_10_1002_jmri_26010 crossref_primary_10_1002_jmri_26010 wiley_primary_10_1002_jmri_26010_JMRI26010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 13 2015; 57 2013; 3 2012 2011 2011; 80 2015; 125 1973 1995 2014; 272 2015; 129 2014; 41 2003; 50 2011; 16 2016; 34 2007; 114 2000; 18 2014; 4 2013; 33 2006; 24 2017; 17 2015; 20 1986; 161 2015; 112 2015; 2015 2016; 278 2003; 3 2016; 85 2014; 14 2017 2001; 3 2012; 48 2014; 9 2011; 261 2016; 131 2016; 44 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 Zhang X (e_1_2_6_29_1) 2017 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 Andrew AM (e_1_2_6_27_1) 2000 e_1_2_6_28_1 e_1_2_6_26_1 |
References_xml | – year: 2011 – year: 2017 article-title: Optimizing a machine learning based glioma grading system using multi‐parametric MRI histogram and texture features publication-title: Oncotarget – volume: 161 start-page: 401 year: 1986 article-title: MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders publication-title: Radiology – volume: 129 start-page: 829 year: 2015 end-page: 848 article-title: Glioblastoma: Pathology, molecular mechanisms and markers publication-title: Acta Neuropathol – year: 2017 article-title: Radiomics assessment of bladder cancer grade using texture features from diffusion‐weighted imaging publication-title: J Magn Reson Imaging – volume: 9 start-page: 1021 year: 2014 end-page: 1031 article-title: Volumetric texture features from higher‐order images for diagnosis of colon lesions via CT colonography publication-title: Int J Comput Assist Radiol Surg – volume: 33 issue: 1 year: 2013 article-title: Classification of small lesions in breast MRI: Evaluating the role of dynamically extracted texture features through feature selection publication-title: J Med Biol Eng – volume: 3 start-page: 193 year: 2001 end-page: 200 article-title: Limitations of stereotactic biopsy in the initial management of gliomas publication-title: Neuro Oncol – volume: 14 start-page: 20 year: 2014 article-title: The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: A review and future perspectives publication-title: Cancer Imaging – volume: 17 start-page: 10 year: 2017 article-title: Combination of IVIM‐DWI and 3D‐ASL for differentiating true progression from pseudoprogression of glioblastoma multiforme after concurrent chemoradiotherapy: Study protocol of a prospective diagnostic trial publication-title: BMC Med Imaging – volume: 2015 start-page: 234245 year: 2015 article-title: Comparison of intravoxel incoherent motion diffusion‐weighted MR imaging and arterial spin labeling MR imaging in gliomas publication-title: Biomed Res Int – volume: 48 start-page: 441 year: 2012 end-page: 446 article-title: Radiomics: Extracting more information from medical images using advanced feature analysis publication-title: Eur J Cancer – volume: 3 start-page: 1357 year: 2003 end-page: 1370 article-title: Variable selection using SVM based criteria publication-title: J Mach Learn Res – volume: 80 start-page: 462 year: 2011 end-page: 470 article-title: Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas publication-title: Eur J Radiol – volume: 125 start-page: 457 year: 2015 end-page: 479 article-title: The role of imaging in the management of adults with diffuse low grade glioma: A systematic review and evidence‐based clinical practice guideline publication-title: J Neurooncol – volume: 85 start-page: 824 year: 2016 end-page: 829 article-title: Diagnostic performance of texture analysis on MRI in grading cerebral gliomas publication-title: Eur J Radiol – volume: 278 start-page: 496 year: 2016 article-title: Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion‐weighted MR imaging and diffusion kurtosis MR imaging publication-title: Radiology – volume: 16 start-page: 321 year: 2011 end-page: 357 article-title: SMOTE: Synthetic minority over‐sampling technique publication-title: J Artif Intell Res – volume: 18 start-page: 687 year: 2000 end-page: 689 – volume: 24 start-page: 1236 year: 2006 end-page: 1245 article-title: Diffusely infiltrative low‐grade gliomas in adults publication-title: J Clin Oncol – volume: 9 start-page: e108335 year: 2014 article-title: Glioma: Application of whole‐tumor texture analysis of diffusion‐weighted imaging for the evaluation of tumor heterogeneity publication-title: PLoS One – volume: 114 start-page: 97 year: 2007 end-page: 109 article-title: The 2007 WHO classification of tumours of the central nervous system publication-title: Acta Neuropathol – year: 2012 – volume: 50 start-page: 727 year: 2003 end-page: 734 article-title: Characterization of continuously distributed cortical water diffusion rates with a stretched‐exponential model publication-title: Magn Reson Med – volume: 272 start-page: 494 year: 2014 end-page: 503 article-title: Data‐driven grading of brain gliomas: A multiparametric MR imaging study publication-title: Radiology – volume: 41 start-page: 101903 year: 2014 article-title: ADC texture—an imaging biomarker for high‐grade glioma? publication-title: Med Phys – start-page: 610 year: 1973 end-page: 621 article-title: Textural features for image classification publication-title: IEEE Trans Syst Man Cybernet – volume: 131 start-page: 803 year: 2016 end-page: 820 article-title: The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary publication-title: Acta Neuropathol – volume: 20 start-page: 899 year: 2015 end-page: 905 article-title: Toward an effective strategy in glioblastoma treatment. Part I: Resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide publication-title: Drug Discov Today – volume: 57 start-page: 441 year: 2015 end-page: 467 article-title: State‐of‐the‐art MRI techniques in neuroradiology: Principles, pitfalls, and clinical applications publication-title: Neuroradiology – volume: 278 start-page: 563 year: 2016 end-page: 577 article-title: Radiomics: Images are more than pictures, they are data publication-title: Radiology – volume: 13 start-page: 1191 year: 2015 end-page: 202 article-title: Central Nervous System Cancers, Version 1. 2015 publication-title: J Natl Compr Cancer Netw – volume: 3 start-page: 224 year: 2013 article-title: Addressing the class imbalance problem in medical datasets publication-title: Int J Mach Learn Comput – year: 1995 – volume: 44 start-page: 620 year: 2016 end-page: 632 article-title: Intravoxel incoherent motion diffusion‐weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion publication-title: J Magn Reson Imaging – volume: 261 start-page: 882 year: 2011 article-title: Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard‐ or high‐b‐value diffusion‐weighted MR imaging—correlation with tumor grade publication-title: Radiology – volume: 4 start-page: 7208 year: 2014 article-title: Intravoxel incoherent motion diffusion‐weighted MR imaging of gliomas: Efficacy in preoperative grading publication-title: Sci Rep – volume: 34 start-page: 2157 year: 2016 end-page: 2164 article-title: Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer publication-title: J Clin Oncol – volume: 112 start-page: E6265 year: 2015 end-page: 6273 article-title: Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images publication-title: Proc Natl Acad Sci U S A – volume: 129 start-page: 679 year: 2015 end-page: 693 article-title: Molecular classification of diffuse cerebral WHO Grade II/III gliomas using genome‐ and transcriptome‐wide profiling improves stratification of prognostically distinct patient groups publication-title: Acta Neuropathol – ident: e_1_2_6_41_1 doi: 10.1109/ICDM.2011.33 – ident: e_1_2_6_30_1 doi: 10.1148/radiology.161.2.3763909 – ident: e_1_2_6_21_1 doi: 10.1002/jmri.25669 – ident: e_1_2_6_32_1 doi: 10.1007/s11548-014-0991-2 – ident: e_1_2_6_7_1 doi: 10.1093/neuonc/3.3.193 – ident: e_1_2_6_22_1 doi: 10.5405/jmbe.1183 – ident: e_1_2_6_6_1 doi: 10.1016/j.drudis.2015.02.011 – ident: e_1_2_6_37_1 – ident: e_1_2_6_39_1 doi: 10.1007/s00401-015-1432-1 – ident: e_1_2_6_25_1 doi: 10.1118/1.4894812 – start-page: 687 volume-title: An introduction to support vector machines and other kernel‐based learning methods year: 2000 ident: e_1_2_6_27_1 – ident: e_1_2_6_10_1 doi: 10.1007/s11060-015-1908-9 – ident: e_1_2_6_40_1 doi: 10.1007/s00401-015-1409-0 – ident: e_1_2_6_20_1 doi: 10.1200/JCO.2015.65.9128 – ident: e_1_2_6_38_1 doi: 10.1145/1961189.1961199 – ident: e_1_2_6_14_1 doi: 10.1038/srep07208 – ident: e_1_2_6_17_1 doi: 10.1016/j.ejca.2011.11.036 – ident: e_1_2_6_28_1 doi: 10.1186/s12880-017-0183-y – ident: e_1_2_6_12_1 doi: 10.1186/1470-7330-14-20 – ident: e_1_2_6_3_1 doi: 10.1007/s00401-016-1545-1 – ident: e_1_2_6_5_1 doi: 10.1200/JCO.2005.05.2399 – ident: e_1_2_6_36_1 doi: 10.1162/153244303322753706 – ident: e_1_2_6_19_1 doi: 10.1073/pnas.1505935112 – ident: e_1_2_6_26_1 doi: 10.1109/TSMC.1973.4309314 – ident: e_1_2_6_9_1 doi: 10.1016/j.ejrad.2016.01.013 – ident: e_1_2_6_13_1 doi: 10.1002/jmri.25191 – ident: e_1_2_6_33_1 doi: 10.1148/radiol.11110686 – year: 2017 ident: e_1_2_6_29_1 article-title: Optimizing a machine learning based glioma grading system using multi‐parametric MRI histogram and texture features publication-title: Oncotarget – ident: e_1_2_6_31_1 doi: 10.1002/mrm.10581 – ident: e_1_2_6_18_1 doi: 10.1148/radiol.2015151169 – ident: e_1_2_6_16_1 doi: 10.1148/radiol.2015142173 – ident: e_1_2_6_24_1 doi: 10.1371/journal.pone.0108335 – ident: e_1_2_6_4_1 doi: 10.6004/jnccn.2015.0148 – ident: e_1_2_6_2_1 doi: 10.1007/s00401-007-0243-4 – ident: e_1_2_6_8_1 doi: 10.1007/s00234-015-1500-1 – ident: e_1_2_6_34_1 doi: 10.7763/IJMLC.2013.V3.307 – ident: e_1_2_6_35_1 doi: 10.1613/jair.953 – ident: e_1_2_6_11_1 doi: 10.1016/j.ejrad.2010.07.017 – ident: e_1_2_6_15_1 doi: 10.1155/2015/234245 – ident: e_1_2_6_23_1 doi: 10.1148/radiol.14132040 |
SSID | ssj0009945 |
Score | 2.605273 |
Snippet | Background
Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays.... Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays. To verify... BackgroundAccurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification... Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1518 |
SubjectTerms | Classification Data processing Decision making Evaluation Feature extraction Field strength Glioma glioma grading Histograms Image contrast Image enhancement Magnetic resonance imaging Medical imaging multiparametric MRI Parameters Patients Population (statistical) Population studies Radiomics Spin labeling Statistical analysis Statistical tests Support vector machines SVM Texture texture feature |
Title | Radiomics strategy for glioma grading using texture features from multiparametric MRI |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26010 https://www.ncbi.nlm.nih.gov/pubmed/29573085 https://www.proquest.com/docview/2137480290 https://www.proquest.com/docview/2018028036 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH6UHsYubdf1R7q2aKyXFpzYlqxY0MsYK10gO4QFcilGsqSQ_khLnBzWv756kuPQdRTaizHWM5YlPb3P1qfvAZwIqhOqrY1kLGTElOxGSlMd8dLFQkszlhiv9vmbXw5Zb5SN1uB8uRcm6EM0P9zQM_x8jQ4uVdVZiYZe380mbRTEwg92JGshIhqstKOE8BmKHX6gUZLH3UabNO2sbn0ejV5AzOeI1Yeci024WlY2ME1u2ou5apeP_-g4vvdttmCjxqLkexg8n2DNTLfhQ79ebf8Mw4HUE9y1XJEqiNj-JQ7jkvGtuyrJeOb59wSp82OCDJLFzBBrvFRoRXDjCgl8RYkMMEwFQPqDXzswvPj558dlVKdhiEqHteKo63xeuCimdGwYtYIzbqQ0aVcxrihX2rJEJjpjTFlOjbZpmUup3ZGqjIuS7sL69H5q9oEwJkweZ8rkOmespLnUSSZtrrhAwkvZgtNldxRlrVGOqTJui6CunBbYToVvpxZ8a2wfgjLHf60Ol71a1N5ZFWmCojtxKlzx16bY-RUulsipuV84G1Q2w9RdvAV7YTQ0j0lF5ibGPGvBme_TV55f9FzD-rODtxh_gY9YgcCbOYT1-Wxhjhz6matjP8qfAMtvALg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQSMCFfSmrEVxASklix42PCIHKUg4VlbhFdmxXZSmoaQ_w9XjskIpFSHCJongiJ7bHM7bfvEHogBMVEWVMIEIuAipFI5CKqIDl1hYaktBIO7bPG9bs0Mu75K7E5kAsjOeHqDbcQDPcfA0KDhvSx2PW0PunQa8OjFh2xT4FKb3diqo9Zo_i3OUoth4ECaI0bFTspPHx-N3P9uibk_nZZ3VG53zeZ1YtHFchYE0e6qOhrOdvX5gc__0_C2iudEfxiR8_i2hC95fQdKs8cF9GnbZQPQhcLnDheWxfsXVzcffRPhW4O3AQfAzo-S4GEMlooLHRji20wBC7gj1kUQAIDLIB4Fb7YgV1zs9uT5tBmYkhyK27FQYNq_bcGjKpQk2J4YwyLYSOG5IySZhUhkYiUgml0jCilYnzVAhlr0QmjOdkFU32n_t6HWFKuU7DROpUpZTmJBUqSoRJJeOAeclr6PCjP7K8pCmHbBmPmSdYjjNop8y1Uw3tV7IvnpzjR6mtj27NSgUtsjgC3p0w5rZ4ryq2qgXnJaKvn0dWBsjNIHsXq6E1PxyqamKe2LkxTWroyHXqL_Vnl7Zh3d3GX4R30UzztnWdXV_cXG2iWfgYD6PZQpPDwUhvW2doKHfckH8HyoIE0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB9EQXyxtrZ6atsU-1Jhz91NNpeAL6X28Bs5PPClLMkmOax6yn08tH-9mWRvD9tSaF-WZTNLsslMZrL55TcAHyU1GTXOJSqVKmFadRJtqEl45X2howXLbGD7vOBHfXZyXVwvwMHsLEzkh2h-uKFlhPkaDfzRuP05aej3-9FNGwmx_IJ9ifFUoE4f9ubkUVKGFMU-gKBJJtJOQ06a78_ffe6Ofosxn4eswed0X8C3WWsj1OS2PZ3odvXzFyLH__2cNVitg1HyOWrPS1iww1ewfF5vt69Dv6fMDR5bHpNxZLH9QXyQSwZ3_qkig1EA4BPEzg8IQkimI0ucDVyhY4InV0gELCqEgGEuAHLeO34N_e7Xqy9HSZ2HIal8sJUmHW_00rsxbVLLqJOccauUzTuacU25No5lKjMFY9pxao3LK6GU8VeqCy4r-gYWhw9DuwmEMWlFWmgrjGCsokKZrFBOaC4R8VK14NNsOMqqJinHXBl3ZaRXzkvspzL0Uwt2G9nHSM3xR6md2aiWtXmOyzxD1p00l774Q1PsDQt3S9TQPky9DFKbYe4u3oKNqA1NNbks_MwoihbshTH9S_3lie_YcLf1L8LvYfnysFueHV-cbsMKtiViaHZgcTKa2rc-Eprod0HhnwDZTQOL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics+strategy+for+glioma+grading+using+texture+features+from+multiparametric+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Tian%2C+Qiang&rft.au=Yan%2C+Lin-Feng&rft.au=Zhang%2C+Xi&rft.au=Zhang%2C+Xin&rft.date=2018-12-01&rft.eissn=1522-2586&rft.volume=48&rft.issue=6&rft.spage=1518&rft_id=info:doi/10.1002%2Fjmri.26010&rft_id=info%3Apmid%2F29573085&rft.externalDocID=29573085 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |