Radiomics strategy for glioma grading using texture features from multiparametric MRI

Background Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays. Purpose/Hypothesis To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the gradi...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 48; no. 6; pp. 1518 - 1528
Main Authors Tian, Qiang, Yan, Lin‐Feng, Zhang, Xi, Zhang, Xin, Hu, Yu‐Chuan, Han, Yu, Liu, Zhi‐Cheng, Nan, Hai‐Yan, Sun, Qian, Sun, Ying‐Zhi, Yang, Yang, Yu, Ying, Zhang, Jin, Hu, Bo, Xiao, Gang, Chen, Ping, Tian, Shuai, Xu, Jie, Wang, Wen, Cui, Guang‐Bin
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays. Purpose/Hypothesis To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps. Study Type Retrospective; radiomics. Population A total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively. Field Strength/Sequence 3.0T MRI/T1‐weighted images before and after contrast‐enhanced, T2‐weighted, multi‐b‐value diffusion‐weighted and 3D arterial spin labeling images. Assessment After multiparametric MRI preprocessing, high‐throughput features were derived from patients' volumes of interests (VOIs). The support vector machine‐based recursive feature elimination was adopted to find the optimal features for low‐grade glioma (LGG) vs. high‐grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency. Statistical Tests Student's t‐test or a chi‐square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist. Results Patients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI. Data Conclusion Texture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision‐making for patients with varied glioma grades. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1518–1528
AbstractList BackgroundAccurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays.Purpose/HypothesisTo verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps.Study TypeRetrospective; radiomics.PopulationA total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively.Field Strength/Sequence3.0T MRI/T1‐weighted images before and after contrast‐enhanced, T2‐weighted, multi‐b‐value diffusion‐weighted and 3D arterial spin labeling images.AssessmentAfter multiparametric MRI preprocessing, high‐throughput features were derived from patients' volumes of interests (VOIs). The support vector machine‐based recursive feature elimination was adopted to find the optimal features for low‐grade glioma (LGG) vs. high‐grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency.Statistical TestsStudent's t‐test or a chi‐square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist.ResultsPatients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI.Data ConclusionTexture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision‐making for patients with varied glioma grades.Level of Evidence: 3Technical Efficacy: Stage 2J. Magn. Reson. Imaging 2018;48:1518–1528
Background Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays. Purpose/Hypothesis To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps. Study Type Retrospective; radiomics. Population A total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively. Field Strength/Sequence 3.0T MRI/T1‐weighted images before and after contrast‐enhanced, T2‐weighted, multi‐b‐value diffusion‐weighted and 3D arterial spin labeling images. Assessment After multiparametric MRI preprocessing, high‐throughput features were derived from patients' volumes of interests (VOIs). The support vector machine‐based recursive feature elimination was adopted to find the optimal features for low‐grade glioma (LGG) vs. high‐grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency. Statistical Tests Student's t‐test or a chi‐square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist. Results Patients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI. Data Conclusion Texture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision‐making for patients with varied glioma grades. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1518–1528
Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays. To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps. Retrospective; radiomics. A total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively. 3.0T MRI/T -weighted images before and after contrast-enhanced, T -weighted, multi-b-value diffusion-weighted and 3D arterial spin labeling images. After multiparametric MRI preprocessing, high-throughput features were derived from patients' volumes of interests (VOIs). The support vector machine-based recursive feature elimination was adopted to find the optimal features for low-grade glioma (LGG) vs. high-grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency. Student's t-test or a chi-square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist. Patients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI. Texture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision-making for patients with varied glioma grades. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1518-1528.
Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays.BACKGROUNDAccurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays.To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps.PURPOSE/HYPOTHESISTo verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps.Retrospective; radiomics.STUDY TYPERetrospective; radiomics.A total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively.POPULATIONA total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively.3.0T MRI/T1 -weighted images before and after contrast-enhanced, T2 -weighted, multi-b-value diffusion-weighted and 3D arterial spin labeling images.FIELD STRENGTH/SEQUENCE3.0T MRI/T1 -weighted images before and after contrast-enhanced, T2 -weighted, multi-b-value diffusion-weighted and 3D arterial spin labeling images.After multiparametric MRI preprocessing, high-throughput features were derived from patients' volumes of interests (VOIs). The support vector machine-based recursive feature elimination was adopted to find the optimal features for low-grade glioma (LGG) vs. high-grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency.ASSESSMENTAfter multiparametric MRI preprocessing, high-throughput features were derived from patients' volumes of interests (VOIs). The support vector machine-based recursive feature elimination was adopted to find the optimal features for low-grade glioma (LGG) vs. high-grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency.Student's t-test or a chi-square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist.STATISTICAL TESTSStudent's t-test or a chi-square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist.Patients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI.RESULTSPatients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI.Texture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision-making for patients with varied glioma grades.DATA CONCLUSIONTexture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision-making for patients with varied glioma grades.3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1518-1528.LEVEL OF EVIDENCE3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1518-1528.
Author Zhang, Xin
Sun, Qian
Tian, Qiang
Liu, Zhi‐Cheng
Cui, Guang‐Bin
Hu, Yu‐Chuan
Wang, Wen
Zhang, Xi
Han, Yu
Hu, Bo
Yang, Yang
Yan, Lin‐Feng
Zhang, Jin
Xu, Jie
Chen, Ping
Nan, Hai‐Yan
Xiao, Gang
Yu, Ying
Tian, Shuai
Sun, Ying‐Zhi
Author_xml – sequence: 1
  givenname: Qiang
  surname: Tian
  fullname: Tian, Qiang
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 2
  givenname: Lin‐Feng
  surname: Yan
  fullname: Yan, Lin‐Feng
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 3
  givenname: Xi
  orcidid: 0000-0003-0032-6636
  surname: Zhang
  fullname: Zhang, Xi
  organization: Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 4
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 5
  givenname: Yu‐Chuan
  surname: Hu
  fullname: Hu, Yu‐Chuan
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 6
  givenname: Yu
  surname: Han
  fullname: Han, Yu
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 7
  givenname: Zhi‐Cheng
  surname: Liu
  fullname: Liu, Zhi‐Cheng
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 8
  givenname: Hai‐Yan
  surname: Nan
  fullname: Nan, Hai‐Yan
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 9
  givenname: Qian
  surname: Sun
  fullname: Sun, Qian
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 10
  givenname: Ying‐Zhi
  surname: Sun
  fullname: Sun, Ying‐Zhi
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 11
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 12
  givenname: Ying
  surname: Yu
  fullname: Yu, Ying
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 13
  givenname: Jin
  surname: Zhang
  fullname: Zhang, Jin
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 14
  givenname: Bo
  surname: Hu
  fullname: Hu, Bo
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 15
  givenname: Gang
  surname: Xiao
  fullname: Xiao, Gang
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 16
  givenname: Ping
  surname: Chen
  fullname: Chen, Ping
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 17
  givenname: Shuai
  surname: Tian
  fullname: Tian, Shuai
  organization: Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 18
  givenname: Jie
  surname: Xu
  fullname: Xu, Jie
  organization: Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 19
  givenname: Wen
  surname: Wang
  fullname: Wang, Wen
  email: cgbtd@126.com
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
– sequence: 20
  givenname: Guang‐Bin
  surname: Cui
  fullname: Cui, Guang‐Bin
  email: wangwen@fmmu.edu.cn
  organization: Tangdu Hospital, Military Medical University of PLA Airforce (Fourth Military Medical University)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29573085$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLJTEQhYM4jK_Z-AOGgBsR2qk8Ot29FPE1OAyIrkO6u3LJpbtzJ0mj99-b69WNyGyqQvKdonLOAdmd_ISEHDM4ZwD813IM7pwrYLBD9lnJecHLWu3mM5SiYDVUe-QgxiUANI0sv5M93pSVgLrcJ08Ppnd-dF2kMQWTcLGm1ge6GPKtoYuQn6cFneOmJnxJc0Bq0Wx6pDb4kY7zkNzKBDNiCq6jfx7ujsg3a4aIP977IXm6vnq8vC3u_97cXV7cF53kAopKcN7wWrY9oBS2UVKhMcirVqpWqLa3khnWl1K2VgnsLe9qY_pcRVuqphOH5HQ7dxX8vxlj0qOLHQ6DmdDPUXPIv-c1CJXRk0_o0s9hyttpzkQlM9dApn6-U3M7Yq9XwY0mrPWHYRmALdAFH2NAqzuXTHJ-yu65QTPQm0z0JhP9lkmWnH2SfEz9EmZb-NkNuP4PqX9nn7eaV2g9nFg
CitedBy_id crossref_primary_10_1002_ima_22490
crossref_primary_10_1038_s41598_020_62658_9
crossref_primary_10_3389_fnins_2020_611075
crossref_primary_10_3389_fonc_2023_1134109
crossref_primary_10_3390_ijerph18178895
crossref_primary_10_1007_s00432_023_05001_9
crossref_primary_10_3389_fonc_2021_616740
crossref_primary_10_4103_neurol_india_NI_213_20
crossref_primary_10_1016_j_ejrad_2024_111509
crossref_primary_10_1016_j_crad_2022_08_138
crossref_primary_10_3390_jcm11133802
crossref_primary_10_3390_cancers14112623
crossref_primary_10_1002_jmri_26265
crossref_primary_10_1186_s12880_020_00545_5
crossref_primary_10_3389_fonc_2021_660509
crossref_primary_10_1186_s13244_021_01102_6
crossref_primary_10_1155_2022_1955512
crossref_primary_10_1016_j_crad_2024_01_021
crossref_primary_10_3390_cancers14143401
crossref_primary_10_32628_CSEIT195233
crossref_primary_10_1080_14796694_2024_2397327
crossref_primary_10_1002_jmri_27105
crossref_primary_10_1038_s41598_019_55922_0
crossref_primary_10_3389_fonc_2023_1194120
crossref_primary_10_3389_fneur_2024_1439598
crossref_primary_10_3390_diagnostics13152604
crossref_primary_10_3390_jimaging7020034
crossref_primary_10_3389_fmed_2021_748144
crossref_primary_10_3389_fonc_2020_00071
crossref_primary_10_1097_MD_0000000000037288
crossref_primary_10_3389_fmicb_2022_823324
crossref_primary_10_1007_s00330_019_06176_x
crossref_primary_10_3389_fonc_2020_00592
crossref_primary_10_1016_j_compbiomed_2023_107332
crossref_primary_10_1155_2022_3252574
crossref_primary_10_3389_fonc_2022_969907
crossref_primary_10_1371_journal_pone_0227703
crossref_primary_10_3389_fonc_2021_639062
crossref_primary_10_3390_jpm13060920
crossref_primary_10_3390_curroncol30030203
crossref_primary_10_1016_j_ejrad_2022_110639
crossref_primary_10_1007_s10585_022_10160_z
crossref_primary_10_37349_etat_2023_00151
crossref_primary_10_1109_ACCESS_2024_3370238
crossref_primary_10_3389_fonc_2022_893103
crossref_primary_10_3390_cancers14071778
crossref_primary_10_1109_ACCESS_2020_3000895
crossref_primary_10_2214_AJR_19_22593
crossref_primary_10_1155_2020_5042356
crossref_primary_10_3174_ajnr_A6882
crossref_primary_10_1093_noajnl_vdaa148
crossref_primary_10_1007_s11831_021_09572_z
crossref_primary_10_1093_noajnl_vdae225
crossref_primary_10_1016_j_future_2020_04_038
crossref_primary_10_3390_cancers14133264
crossref_primary_10_1088_1361_6560_ac6fab
crossref_primary_10_1093_braincomms_fcac141
crossref_primary_10_1097_RCT_0000000000001180
crossref_primary_10_3174_ajnr_A7297
crossref_primary_10_3390_cancers15030965
crossref_primary_10_1016_j_ejmp_2019_03_014
crossref_primary_10_31083_j_jin2305100
crossref_primary_10_1007_s00330_019_06548_3
crossref_primary_10_3892_mi_2024_164
crossref_primary_10_1016_j_jocn_2021_04_043
crossref_primary_10_1159_000515597
crossref_primary_10_1097_RCT_0000000000001201
crossref_primary_10_3389_fneur_2023_1171167
crossref_primary_10_5812_iranjradiol_109181
crossref_primary_10_1016_j_tranon_2023_101864
crossref_primary_10_1038_s41598_024_66653_2
crossref_primary_10_1016_j_crad_2019_07_011
crossref_primary_10_3390_app10186296
crossref_primary_10_1016_j_bspc_2023_104876
crossref_primary_10_1186_s42492_024_00180_9
crossref_primary_10_1016_j_media_2024_103435
crossref_primary_10_1002_jmri_29146
crossref_primary_10_3389_fnins_2024_1440756
crossref_primary_10_1007_s00259_019_04602_2
crossref_primary_10_1007_s11547_023_01590_0
crossref_primary_10_1109_ACCESS_2019_2910849
crossref_primary_10_3389_fonc_2019_00768
crossref_primary_10_1007_s00066_020_01626_8
crossref_primary_10_3389_fonc_2021_684996
crossref_primary_10_3892_ol_2023_14023
crossref_primary_10_1038_s41598_021_82467_y
crossref_primary_10_1016_j_ejrad_2019_108647
crossref_primary_10_1002_mp_15936
crossref_primary_10_1007_s00371_021_02077_7
crossref_primary_10_3390_brainsci13060912
crossref_primary_10_1007_s00330_021_08361_3
crossref_primary_10_1007_s00330_018_5802_7
crossref_primary_10_1007_s10278_020_00322_4
crossref_primary_10_3390_cancers14153771
crossref_primary_10_1186_s12883_020_1613_y
crossref_primary_10_18705_2311_4495_2022_9_2_70_80
crossref_primary_10_1016_j_bbcan_2023_188913
crossref_primary_10_1007_s11042_023_17139_2
crossref_primary_10_1007_s00330_019_06080_4
crossref_primary_10_1016_j_clineuro_2019_105565
crossref_primary_10_1097_RCT_0000000000001344
crossref_primary_10_1007_s40336_022_00507_7
crossref_primary_10_3390_cancers13195010
crossref_primary_10_1016_j_ymeth_2020_06_003
crossref_primary_10_1002_mp_15648
crossref_primary_10_1016_j_nicl_2022_103034
crossref_primary_10_1016_j_praneu_2023_10_005
crossref_primary_10_1109_ACCESS_2024_3360223
crossref_primary_10_1007_s11060_021_03933_1
crossref_primary_10_3389_fonc_2022_856231
crossref_primary_10_1016_j_wneu_2023_04_096
crossref_primary_10_3348_kjr_2020_0254
crossref_primary_10_1016_j_acra_2020_06_016
crossref_primary_10_3389_fonc_2020_606741
crossref_primary_10_3174_ajnr_A6075
crossref_primary_10_1038_s41416_021_01387_w
crossref_primary_10_1111_vru_13242
crossref_primary_10_1007_s13538_021_00912_9
crossref_primary_10_1109_JBHI_2021_3095476
crossref_primary_10_1016_j_diii_2020_12_001
crossref_primary_10_1155_2022_7315665
crossref_primary_10_1142_S0219467821400131
crossref_primary_10_1007_s12032_021_01500_2
crossref_primary_10_1097_MD_0000000000014768
crossref_primary_10_1053_j_sult_2022_02_005
crossref_primary_10_1002_nbm_4114
crossref_primary_10_1093_neuros_nyab124
crossref_primary_10_1016_j_cmpb_2022_107165
crossref_primary_10_1002_jmri_28663
crossref_primary_10_3233_JIFS_210263
crossref_primary_10_1016_j_infrared_2025_105809
crossref_primary_10_3390_cancers13092261
crossref_primary_10_1109_ACCESS_2019_2928975
crossref_primary_10_1016_j_compmedimag_2019_101675
crossref_primary_10_3389_fendo_2019_00403
crossref_primary_10_1016_j_bspc_2024_106001
crossref_primary_10_1109_ACCESS_2018_2889151
crossref_primary_10_1186_s43055_025_01443_y
crossref_primary_10_3389_fonc_2019_01371
crossref_primary_10_1016_j_nicl_2020_102437
crossref_primary_10_3934_mbe_2021080
crossref_primary_10_1007_s00330_021_08444_1
crossref_primary_10_1111_jcmm_15145
crossref_primary_10_3389_fonc_2023_1168995
crossref_primary_10_3390_cancers13112568
crossref_primary_10_1155_2020_2127062
crossref_primary_10_3390_jcm10071411
crossref_primary_10_1186_s12885_019_6504_5
crossref_primary_10_3390_cancers13112681
crossref_primary_10_1186_s40644_024_00682_y
crossref_primary_10_1016_j_acra_2024_09_021
crossref_primary_10_1016_j_crad_2019_12_008
Cites_doi 10.1109/ICDM.2011.33
10.1148/radiology.161.2.3763909
10.1002/jmri.25669
10.1007/s11548-014-0991-2
10.1093/neuonc/3.3.193
10.5405/jmbe.1183
10.1016/j.drudis.2015.02.011
10.1007/s00401-015-1432-1
10.1118/1.4894812
10.1007/s11060-015-1908-9
10.1007/s00401-015-1409-0
10.1200/JCO.2015.65.9128
10.1145/1961189.1961199
10.1038/srep07208
10.1016/j.ejca.2011.11.036
10.1186/s12880-017-0183-y
10.1186/1470-7330-14-20
10.1007/s00401-016-1545-1
10.1200/JCO.2005.05.2399
10.1162/153244303322753706
10.1073/pnas.1505935112
10.1109/TSMC.1973.4309314
10.1016/j.ejrad.2016.01.013
10.1002/jmri.25191
10.1148/radiol.11110686
10.1002/mrm.10581
10.1148/radiol.2015151169
10.1148/radiol.2015142173
10.1371/journal.pone.0108335
10.6004/jnccn.2015.0148
10.1007/s00401-007-0243-4
10.1007/s00234-015-1500-1
10.7763/IJMLC.2013.V3.307
10.1613/jair.953
10.1016/j.ejrad.2010.07.017
10.1155/2015/234245
10.1148/radiol.14132040
ContentType Journal Article
Copyright 2018 International Society for Magnetic Resonance in Medicine
2018 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2018 International Society for Magnetic Resonance in Medicine
– notice: 2018 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.26010
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 1528
ExternalDocumentID 29573085
10_1002_jmri_26010
JMRI26010
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Innovation and Development Foundation of Tangdu Hospital
  funderid: 2016LCYJ001
– fundername: Science and Technology Development of Shaanxi Province
  funderid: 2014JZ2‐007
– fundername: Natural Science Foundation of Shaanxi Province
  funderid: 2008K13‐04
– fundername: National key research and development program of China
  funderid: 2016YFC0107105
– fundername: Young Seeding Talent Foundation of Tangdu Hospital
– fundername: Natural Science Foundation of Shaanxi Province
  grantid: 2008K13-04
– fundername: Innovation and Development Foundation of Tangdu Hospital
  grantid: 2016LCYJ001
– fundername: Science and Technology Development of Shaanxi Province
  grantid: 2014JZ2-007
– fundername: National key research and development program of China
  grantid: 2016YFC0107105
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4230-73229284bd0e43f9646eaae27b46b36bdf41a1d544bf63edf2c8aad2c83b569c3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 03:54:17 EDT 2025
Fri Jul 25 12:14:53 EDT 2025
Thu Apr 03 06:57:19 EDT 2025
Tue Jul 01 03:56:39 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Wed Jan 22 16:20:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords multiparametric MRI
glioma grading
radiomics
texture feature
SVM
Language English
License 2018 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4230-73229284bd0e43f9646eaae27b46b36bdf41a1d544bf63edf2c8aad2c83b569c3
Notes The first three authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0032-6636
PMID 29573085
PQID 2137480290
PQPubID 1006400
PageCount 11
ParticipantIDs proquest_miscellaneous_2018028036
proquest_journals_2137480290
pubmed_primary_29573085
crossref_citationtrail_10_1002_jmri_26010
crossref_primary_10_1002_jmri_26010
wiley_primary_10_1002_jmri_26010_JMRI26010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 13
2015; 57
2013; 3
2012
2011
2011; 80
2015; 125
1973
1995
2014; 272
2015; 129
2014; 41
2003; 50
2011; 16
2016; 34
2007; 114
2000; 18
2014; 4
2013; 33
2006; 24
2017; 17
2015; 20
1986; 161
2015; 112
2015; 2015
2016; 278
2003; 3
2016; 85
2014; 14
2017
2001; 3
2012; 48
2014; 9
2011; 261
2016; 131
2016; 44
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
Zhang X (e_1_2_6_29_1) 2017
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
Andrew AM (e_1_2_6_27_1) 2000
e_1_2_6_28_1
e_1_2_6_26_1
References_xml – year: 2011
– year: 2017
  article-title: Optimizing a machine learning based glioma grading system using multi‐parametric MRI histogram and texture features
  publication-title: Oncotarget
– volume: 161
  start-page: 401
  year: 1986
  article-title: MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders
  publication-title: Radiology
– volume: 129
  start-page: 829
  year: 2015
  end-page: 848
  article-title: Glioblastoma: Pathology, molecular mechanisms and markers
  publication-title: Acta Neuropathol
– year: 2017
  article-title: Radiomics assessment of bladder cancer grade using texture features from diffusion‐weighted imaging
  publication-title: J Magn Reson Imaging
– volume: 9
  start-page: 1021
  year: 2014
  end-page: 1031
  article-title: Volumetric texture features from higher‐order images for diagnosis of colon lesions via CT colonography
  publication-title: Int J Comput Assist Radiol Surg
– volume: 33
  issue: 1
  year: 2013
  article-title: Classification of small lesions in breast MRI: Evaluating the role of dynamically extracted texture features through feature selection
  publication-title: J Med Biol Eng
– volume: 3
  start-page: 193
  year: 2001
  end-page: 200
  article-title: Limitations of stereotactic biopsy in the initial management of gliomas
  publication-title: Neuro Oncol
– volume: 14
  start-page: 20
  year: 2014
  article-title: The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: A review and future perspectives
  publication-title: Cancer Imaging
– volume: 17
  start-page: 10
  year: 2017
  article-title: Combination of IVIM‐DWI and 3D‐ASL for differentiating true progression from pseudoprogression of glioblastoma multiforme after concurrent chemoradiotherapy: Study protocol of a prospective diagnostic trial
  publication-title: BMC Med Imaging
– volume: 2015
  start-page: 234245
  year: 2015
  article-title: Comparison of intravoxel incoherent motion diffusion‐weighted MR imaging and arterial spin labeling MR imaging in gliomas
  publication-title: Biomed Res Int
– volume: 48
  start-page: 441
  year: 2012
  end-page: 446
  article-title: Radiomics: Extracting more information from medical images using advanced feature analysis
  publication-title: Eur J Cancer
– volume: 3
  start-page: 1357
  year: 2003
  end-page: 1370
  article-title: Variable selection using SVM based criteria
  publication-title: J Mach Learn Res
– volume: 80
  start-page: 462
  year: 2011
  end-page: 470
  article-title: Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas
  publication-title: Eur J Radiol
– volume: 125
  start-page: 457
  year: 2015
  end-page: 479
  article-title: The role of imaging in the management of adults with diffuse low grade glioma: A systematic review and evidence‐based clinical practice guideline
  publication-title: J Neurooncol
– volume: 85
  start-page: 824
  year: 2016
  end-page: 829
  article-title: Diagnostic performance of texture analysis on MRI in grading cerebral gliomas
  publication-title: Eur J Radiol
– volume: 278
  start-page: 496
  year: 2016
  article-title: Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion‐weighted MR imaging and diffusion kurtosis MR imaging
  publication-title: Radiology
– volume: 16
  start-page: 321
  year: 2011
  end-page: 357
  article-title: SMOTE: Synthetic minority over‐sampling technique
  publication-title: J Artif Intell Res
– volume: 18
  start-page: 687
  year: 2000
  end-page: 689
– volume: 24
  start-page: 1236
  year: 2006
  end-page: 1245
  article-title: Diffusely infiltrative low‐grade gliomas in adults
  publication-title: J Clin Oncol
– volume: 9
  start-page: e108335
  year: 2014
  article-title: Glioma: Application of whole‐tumor texture analysis of diffusion‐weighted imaging for the evaluation of tumor heterogeneity
  publication-title: PLoS One
– volume: 114
  start-page: 97
  year: 2007
  end-page: 109
  article-title: The 2007 WHO classification of tumours of the central nervous system
  publication-title: Acta Neuropathol
– year: 2012
– volume: 50
  start-page: 727
  year: 2003
  end-page: 734
  article-title: Characterization of continuously distributed cortical water diffusion rates with a stretched‐exponential model
  publication-title: Magn Reson Med
– volume: 272
  start-page: 494
  year: 2014
  end-page: 503
  article-title: Data‐driven grading of brain gliomas: A multiparametric MR imaging study
  publication-title: Radiology
– volume: 41
  start-page: 101903
  year: 2014
  article-title: ADC texture—an imaging biomarker for high‐grade glioma?
  publication-title: Med Phys
– start-page: 610
  year: 1973
  end-page: 621
  article-title: Textural features for image classification
  publication-title: IEEE Trans Syst Man Cybernet
– volume: 131
  start-page: 803
  year: 2016
  end-page: 820
  article-title: The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary
  publication-title: Acta Neuropathol
– volume: 20
  start-page: 899
  year: 2015
  end-page: 905
  article-title: Toward an effective strategy in glioblastoma treatment. Part I: Resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide
  publication-title: Drug Discov Today
– volume: 57
  start-page: 441
  year: 2015
  end-page: 467
  article-title: State‐of‐the‐art MRI techniques in neuroradiology: Principles, pitfalls, and clinical applications
  publication-title: Neuroradiology
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  article-title: Radiomics: Images are more than pictures, they are data
  publication-title: Radiology
– volume: 13
  start-page: 1191
  year: 2015
  end-page: 202
  article-title: Central Nervous System Cancers, Version 1. 2015
  publication-title: J Natl Compr Cancer Netw
– volume: 3
  start-page: 224
  year: 2013
  article-title: Addressing the class imbalance problem in medical datasets
  publication-title: Int J Mach Learn Comput
– year: 1995
– volume: 44
  start-page: 620
  year: 2016
  end-page: 632
  article-title: Intravoxel incoherent motion diffusion‐weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion
  publication-title: J Magn Reson Imaging
– volume: 261
  start-page: 882
  year: 2011
  article-title: Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard‐ or high‐b‐value diffusion‐weighted MR imaging—correlation with tumor grade
  publication-title: Radiology
– volume: 4
  start-page: 7208
  year: 2014
  article-title: Intravoxel incoherent motion diffusion‐weighted MR imaging of gliomas: Efficacy in preoperative grading
  publication-title: Sci Rep
– volume: 34
  start-page: 2157
  year: 2016
  end-page: 2164
  article-title: Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer
  publication-title: J Clin Oncol
– volume: 112
  start-page: E6265
  year: 2015
  end-page: 6273
  article-title: Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images
  publication-title: Proc Natl Acad Sci U S A
– volume: 129
  start-page: 679
  year: 2015
  end-page: 693
  article-title: Molecular classification of diffuse cerebral WHO Grade II/III gliomas using genome‐ and transcriptome‐wide profiling improves stratification of prognostically distinct patient groups
  publication-title: Acta Neuropathol
– ident: e_1_2_6_41_1
  doi: 10.1109/ICDM.2011.33
– ident: e_1_2_6_30_1
  doi: 10.1148/radiology.161.2.3763909
– ident: e_1_2_6_21_1
  doi: 10.1002/jmri.25669
– ident: e_1_2_6_32_1
  doi: 10.1007/s11548-014-0991-2
– ident: e_1_2_6_7_1
  doi: 10.1093/neuonc/3.3.193
– ident: e_1_2_6_22_1
  doi: 10.5405/jmbe.1183
– ident: e_1_2_6_6_1
  doi: 10.1016/j.drudis.2015.02.011
– ident: e_1_2_6_37_1
– ident: e_1_2_6_39_1
  doi: 10.1007/s00401-015-1432-1
– ident: e_1_2_6_25_1
  doi: 10.1118/1.4894812
– start-page: 687
  volume-title: An introduction to support vector machines and other kernel‐based learning methods
  year: 2000
  ident: e_1_2_6_27_1
– ident: e_1_2_6_10_1
  doi: 10.1007/s11060-015-1908-9
– ident: e_1_2_6_40_1
  doi: 10.1007/s00401-015-1409-0
– ident: e_1_2_6_20_1
  doi: 10.1200/JCO.2015.65.9128
– ident: e_1_2_6_38_1
  doi: 10.1145/1961189.1961199
– ident: e_1_2_6_14_1
  doi: 10.1038/srep07208
– ident: e_1_2_6_17_1
  doi: 10.1016/j.ejca.2011.11.036
– ident: e_1_2_6_28_1
  doi: 10.1186/s12880-017-0183-y
– ident: e_1_2_6_12_1
  doi: 10.1186/1470-7330-14-20
– ident: e_1_2_6_3_1
  doi: 10.1007/s00401-016-1545-1
– ident: e_1_2_6_5_1
  doi: 10.1200/JCO.2005.05.2399
– ident: e_1_2_6_36_1
  doi: 10.1162/153244303322753706
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.1505935112
– ident: e_1_2_6_26_1
  doi: 10.1109/TSMC.1973.4309314
– ident: e_1_2_6_9_1
  doi: 10.1016/j.ejrad.2016.01.013
– ident: e_1_2_6_13_1
  doi: 10.1002/jmri.25191
– ident: e_1_2_6_33_1
  doi: 10.1148/radiol.11110686
– year: 2017
  ident: e_1_2_6_29_1
  article-title: Optimizing a machine learning based glioma grading system using multi‐parametric MRI histogram and texture features
  publication-title: Oncotarget
– ident: e_1_2_6_31_1
  doi: 10.1002/mrm.10581
– ident: e_1_2_6_18_1
  doi: 10.1148/radiol.2015151169
– ident: e_1_2_6_16_1
  doi: 10.1148/radiol.2015142173
– ident: e_1_2_6_24_1
  doi: 10.1371/journal.pone.0108335
– ident: e_1_2_6_4_1
  doi: 10.6004/jnccn.2015.0148
– ident: e_1_2_6_2_1
  doi: 10.1007/s00401-007-0243-4
– ident: e_1_2_6_8_1
  doi: 10.1007/s00234-015-1500-1
– ident: e_1_2_6_34_1
  doi: 10.7763/IJMLC.2013.V3.307
– ident: e_1_2_6_35_1
  doi: 10.1613/jair.953
– ident: e_1_2_6_11_1
  doi: 10.1016/j.ejrad.2010.07.017
– ident: e_1_2_6_15_1
  doi: 10.1155/2015/234245
– ident: e_1_2_6_23_1
  doi: 10.1148/radiol.14132040
SSID ssj0009945
Score 2.605273
Snippet Background Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays....
Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays. To verify...
BackgroundAccurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification...
Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1518
SubjectTerms Classification
Data processing
Decision making
Evaluation
Feature extraction
Field strength
Glioma
glioma grading
Histograms
Image contrast
Image enhancement
Magnetic resonance imaging
Medical imaging
multiparametric MRI
Parameters
Patients
Population (statistical)
Population studies
Radiomics
Spin labeling
Statistical analysis
Statistical tests
Support vector machines
SVM
Texture
texture feature
Title Radiomics strategy for glioma grading using texture features from multiparametric MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26010
https://www.ncbi.nlm.nih.gov/pubmed/29573085
https://www.proquest.com/docview/2137480290
https://www.proquest.com/docview/2018028036
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH6UHsYubdf1R7q2aKyXFpzYlqxY0MsYK10gO4QFcilGsqSQ_khLnBzWv756kuPQdRTaizHWM5YlPb3P1qfvAZwIqhOqrY1kLGTElOxGSlMd8dLFQkszlhiv9vmbXw5Zb5SN1uB8uRcm6EM0P9zQM_x8jQ4uVdVZiYZe380mbRTEwg92JGshIhqstKOE8BmKHX6gUZLH3UabNO2sbn0ejV5AzOeI1Yeci024WlY2ME1u2ou5apeP_-g4vvdttmCjxqLkexg8n2DNTLfhQ79ebf8Mw4HUE9y1XJEqiNj-JQ7jkvGtuyrJeOb59wSp82OCDJLFzBBrvFRoRXDjCgl8RYkMMEwFQPqDXzswvPj558dlVKdhiEqHteKo63xeuCimdGwYtYIzbqQ0aVcxrihX2rJEJjpjTFlOjbZpmUup3ZGqjIuS7sL69H5q9oEwJkweZ8rkOmespLnUSSZtrrhAwkvZgtNldxRlrVGOqTJui6CunBbYToVvpxZ8a2wfgjLHf60Ol71a1N5ZFWmCojtxKlzx16bY-RUulsipuV84G1Q2w9RdvAV7YTQ0j0lF5ibGPGvBme_TV55f9FzD-rODtxh_gY9YgcCbOYT1-Wxhjhz6matjP8qfAMtvALg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQSMCFfSmrEVxASklix42PCIHKUg4VlbhFdmxXZSmoaQ_w9XjskIpFSHCJongiJ7bHM7bfvEHogBMVEWVMIEIuAipFI5CKqIDl1hYaktBIO7bPG9bs0Mu75K7E5kAsjOeHqDbcQDPcfA0KDhvSx2PW0PunQa8OjFh2xT4FKb3diqo9Zo_i3OUoth4ECaI0bFTspPHx-N3P9uibk_nZZ3VG53zeZ1YtHFchYE0e6qOhrOdvX5gc__0_C2iudEfxiR8_i2hC95fQdKs8cF9GnbZQPQhcLnDheWxfsXVzcffRPhW4O3AQfAzo-S4GEMlooLHRji20wBC7gj1kUQAIDLIB4Fb7YgV1zs9uT5tBmYkhyK27FQYNq_bcGjKpQk2J4YwyLYSOG5IySZhUhkYiUgml0jCilYnzVAhlr0QmjOdkFU32n_t6HWFKuU7DROpUpZTmJBUqSoRJJeOAeclr6PCjP7K8pCmHbBmPmSdYjjNop8y1Uw3tV7IvnpzjR6mtj27NSgUtsjgC3p0w5rZ4ryq2qgXnJaKvn0dWBsjNIHsXq6E1PxyqamKe2LkxTWroyHXqL_Vnl7Zh3d3GX4R30UzztnWdXV_cXG2iWfgYD6PZQpPDwUhvW2doKHfckH8HyoIE0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB9EQXyxtrZ6atsU-1Jhz91NNpeAL6X28Bs5PPClLMkmOax6yn08tH-9mWRvD9tSaF-WZTNLsslMZrL55TcAHyU1GTXOJSqVKmFadRJtqEl45X2howXLbGD7vOBHfXZyXVwvwMHsLEzkh2h-uKFlhPkaDfzRuP05aej3-9FNGwmx_IJ9ifFUoE4f9ubkUVKGFMU-gKBJJtJOQ06a78_ffe6Ofosxn4eswed0X8C3WWsj1OS2PZ3odvXzFyLH__2cNVitg1HyOWrPS1iww1ewfF5vt69Dv6fMDR5bHpNxZLH9QXyQSwZ3_qkig1EA4BPEzg8IQkimI0ucDVyhY4InV0gELCqEgGEuAHLeO34N_e7Xqy9HSZ2HIal8sJUmHW_00rsxbVLLqJOccauUzTuacU25No5lKjMFY9pxao3LK6GU8VeqCy4r-gYWhw9DuwmEMWlFWmgrjGCsokKZrFBOaC4R8VK14NNsOMqqJinHXBl3ZaRXzkvspzL0Uwt2G9nHSM3xR6md2aiWtXmOyzxD1p00l774Q1PsDQt3S9TQPky9DFKbYe4u3oKNqA1NNbks_MwoihbshTH9S_3lie_YcLf1L8LvYfnysFueHV-cbsMKtiViaHZgcTKa2rc-Eprod0HhnwDZTQOL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics+strategy+for+glioma+grading+using+texture+features+from+multiparametric+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Tian%2C+Qiang&rft.au=Yan%2C+Lin-Feng&rft.au=Zhang%2C+Xi&rft.au=Zhang%2C+Xin&rft.date=2018-12-01&rft.eissn=1522-2586&rft.volume=48&rft.issue=6&rft.spage=1518&rft_id=info:doi/10.1002%2Fjmri.26010&rft_id=info%3Apmid%2F29573085&rft.externalDocID=29573085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon