Fusion of Personalized Federated Learning (PFL) with Differential Privacy (DP) Learning for Diagnosis of Arrhythmia Disease

This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports collaborative training in decentralized healthcare...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 7; p. e0327108
Main Authors Bokhari, Syed Mohsin, Sohaib, Sarmad, Shafi, Muhammad
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.01.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0327108

Cover

Loading…
Abstract This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports collaborative training in decentralized healthcare institutions without exposing sensitive patient information. By employing gated recurrent units (GRUs) for temporal sequence modeling along with feature fusion techniques and local differential privacy enforcement, FLPMDP ensures robust classification performance with data confidentiality. The architecture is evaluated on four experimental setups and demonstrates significant performance gain over centralized and federated baseline models. An empirical experiment on a large ECG dataset of 10,646 recordings indicates that the FLPMDP approach achieves an average accuracy of 93.71%. The FLPMDP approach yields F1-scores of 0.98, 0.93, 0.88, and 0.89 for sinus bradycardia (SB), atrial fibrillation (AFIB), supraventricular tachycardia (GSVT), and sinus rhythm (SR), respectively. Additionally, FLPMDP recorded a specificity up to 0.98, with a Kappa score of 0.8971 and a Matthews Correlation Coefficient of 0.9042, indicating high diagnostic accuracy and model strength. Comparative analysis against state-of-the-art methods—such as CNN, ResNet, and attention-based RNNs—indicate that FLPMDP consistently outperforms current models in accuracy, sensitivity, and robustness when facing non-IID data conditions. In the context of this research, federated learning is highly pertinent to modern healthcare, enabling secure and collaborative model training across institutions while complying with data privacy. The proposed FLPMDP framework offers a scalable and privacy-compliant solution for real-time arrhythmia detection, marking a step forward in deploying trustworthy artificial intelligence for decentralized medical diagnostics.
AbstractList This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports collaborative training in decentralized healthcare institutions without exposing sensitive patient information. By employing gated recurrent units (GRUs) for temporal sequence modeling along with feature fusion techniques and local differential privacy enforcement, FLPMDP ensures robust classification performance with data confidentiality. The architecture is evaluated on four experimental setups and demonstrates significant performance gain over centralized and federated baseline models. An empirical experiment on a large ECG dataset of 10,646 recordings indicates that the FLPMDP approach achieves an average accuracy of 93.71%. The FLPMDP approach yields F1-scores of 0.98, 0.93, 0.88, and 0.89 for sinus bradycardia (SB), atrial fibrillation (AFIB), supraventricular tachycardia (GSVT), and sinus rhythm (SR), respectively. Additionally, FLPMDP recorded a specificity up to 0.98, with a Kappa score of 0.8971 and a Matthews Correlation Coefficient of 0.9042, indicating high diagnostic accuracy and model strength. Comparative analysis against state-of-the-art methods-such as CNN, ResNet, and attention-based RNNs-indicate that FLPMDP consistently outperforms current models in accuracy, sensitivity, and robustness when facing non-IID data conditions. In the context of this research, federated learning is highly pertinent to modern healthcare, enabling secure and collaborative model training across institutions while complying with data privacy. The proposed FLPMDP framework offers a scalable and privacy-compliant solution for real-time arrhythmia detection, marking a step forward in deploying trustworthy artificial intelligence for decentralized medical diagnostics.
This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports collaborative training in decentralized healthcare institutions without exposing sensitive patient information. By employing gated recurrent units (GRUs) for temporal sequence modeling along with feature fusion techniques and local differential privacy enforcement, FLPMDP ensures robust classification performance with data confidentiality. The architecture is evaluated on four experimental setups and demonstrates significant performance gain over centralized and federated baseline models. An empirical experiment on a large ECG dataset of 10,646 recordings indicates that the FLPMDP approach achieves an average accuracy of 93.71%. The FLPMDP approach yields F1-scores of 0.98, 0.93, 0.88, and 0.89 for sinus bradycardia (SB), atrial fibrillation (AFIB), supraventricular tachycardia (GSVT), and sinus rhythm (SR), respectively. Additionally, FLPMDP recorded a specificity up to 0.98, with a Kappa score of 0.8971 and a Matthews Correlation Coefficient of 0.9042, indicating high diagnostic accuracy and model strength. Comparative analysis against state-of-the-art methods-such as CNN, ResNet, and attention-based RNNs-indicate that FLPMDP consistently outperforms current models in accuracy, sensitivity, and robustness when facing non-IID data conditions. In the context of this research, federated learning is highly pertinent to modern healthcare, enabling secure and collaborative model training across institutions while complying with data privacy. The proposed FLPMDP framework offers a scalable and privacy-compliant solution for real-time arrhythmia detection, marking a step forward in deploying trustworthy artificial intelligence for decentralized medical diagnostics.This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports collaborative training in decentralized healthcare institutions without exposing sensitive patient information. By employing gated recurrent units (GRUs) for temporal sequence modeling along with feature fusion techniques and local differential privacy enforcement, FLPMDP ensures robust classification performance with data confidentiality. The architecture is evaluated on four experimental setups and demonstrates significant performance gain over centralized and federated baseline models. An empirical experiment on a large ECG dataset of 10,646 recordings indicates that the FLPMDP approach achieves an average accuracy of 93.71%. The FLPMDP approach yields F1-scores of 0.98, 0.93, 0.88, and 0.89 for sinus bradycardia (SB), atrial fibrillation (AFIB), supraventricular tachycardia (GSVT), and sinus rhythm (SR), respectively. Additionally, FLPMDP recorded a specificity up to 0.98, with a Kappa score of 0.8971 and a Matthews Correlation Coefficient of 0.9042, indicating high diagnostic accuracy and model strength. Comparative analysis against state-of-the-art methods-such as CNN, ResNet, and attention-based RNNs-indicate that FLPMDP consistently outperforms current models in accuracy, sensitivity, and robustness when facing non-IID data conditions. In the context of this research, federated learning is highly pertinent to modern healthcare, enabling secure and collaborative model training across institutions while complying with data privacy. The proposed FLPMDP framework offers a scalable and privacy-compliant solution for real-time arrhythmia detection, marking a step forward in deploying trustworthy artificial intelligence for decentralized medical diagnostics.
Author Sohaib, Sarmad
Shafi, Muhammad
Bokhari, Syed Mohsin
Author_xml – sequence: 1
  givenname: Syed Mohsin
  surname: Bokhari
  fullname: Bokhari, Syed Mohsin
– sequence: 2
  givenname: Sarmad
  surname: Sohaib
  fullname: Sohaib, Sarmad
– sequence: 3
  givenname: Muhammad
  orcidid: 0000-0002-8430-206X
  surname: Shafi
  fullname: Shafi, Muhammad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40644412$$D View this record in MEDLINE/PubMed
BookMark eNptkltvEzEQhS1URC_wDxCsxEv6kODbXvJYtYRWitQ8wLM1a48TR5t1sHeLAn8eL9m2CPXJo_GnM8eec05OWt8iIe8ZnTFRss9b34cWmtk-tWdU8JLR6hU5Y3PBpwWn4uSf-pScx7ilNBdVUbwhp5IWUkrGz8jvRR-dbzNvsxWG6JOi-4UmW6DBAF2qlgihde06m6wWy8vsp-s22Y2zFgO2nYMmWwX3APqQTW5Wl8-09SFhsG59dHGQvwphc-g2OwepHxEiviWvLTQR343nBfm--PLt-na6vP96d321nGrJeTe1ZVWZnNaM2bpEyIuikhQ4Cl2B1pKWhRW5QD28qNSC12UuqDa5MdIyVnJxQT4edfeNj2r8t6gE53NZ8UQn4u5IGA9btQ9uB-GgPDj1t-HDWkHonG5Q4TyZAQNMV0zWdrBmWMVBQ12ni2HaZJwW_I8eY6d2LmpsGmjR98exeVrFvEzop__Ql819GKm-3qF5sve4xATII6CDjzGgfUIYVUNWHmXVkBU1ZkX8AahIsq4
Cites_doi 10.1007/978-3-642-24797-2_4
10.1109/HealthCom60970.2024.10880809
10.3389/fneur.2020.00375
10.1038/s41591-018-0268-3
10.1109/72.279181
10.3115/v1/D14-1179
10.1038/s41598-021-97118-5
10.1016/S0140-6736(19)31721-0
10.1038/s41591-018-0307-0
10.1038/s41467-023-39472-8
10.1109/TCYB.2021.3121312
10.1109/JIOT.2020.2991416
10.1016/j.measurement.2020.108245
10.1016/j.compbiomed.2015.03.005
10.1145/3298981
10.1109/TSP.2017.2690524
10.1093/ehjci/jeab213
10.1109/ICCC51575.2020.9344971
10.1145/3338501.3357370
10.1038/s41467-019-10933-3
10.1007/s13239-021-00527-w
10.1080/01621459.1979.10481038
10.1049/htl2.12045
10.1109/JPROC.2020.3004555
10.22489/CinC.2020.112
10.1137/040616024
10.4258/hir.2023.29.2.132
10.3390/e25030485
10.1016/j.ins.2017.06.027
10.1186/s12911-024-02464-9
10.1161/CIRCULATIONAHA.108.821306
10.1109/IS3C.2014.175
10.1080/01621459.1988.10478639
10.1109/RBME.2020.2976507
10.1109/ACCESS.2025.3528253
10.1016/j.jelectrocard.2016.07.033
10.1186/1471-2458-14-1144
ContentType Journal Article
Copyright Copyright: © 2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0327108
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest MSED
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3229482753
oai_doaj_org_article_e98d5ada1c814bf88d5d182acabbd5a2
40644412
10_1371_journal_pone_0327108
Genre Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
M48
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c422t-f788d50b11fb7ea566840a2e3c8acc4076f353ec44417c32b7530cd5dd4f11723
IEDL.DBID 8C1
ISSN 1932-6203
IngestDate Wed Sep 03 00:56:13 EDT 2025
Wed Aug 27 00:48:02 EDT 2025
Sat Jul 12 17:30:31 EDT 2025
Sat Aug 23 12:50:03 EDT 2025
Tue Jul 15 01:30:41 EDT 2025
Wed Jul 16 16:48:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Copyright: © 2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-f788d50b11fb7ea566840a2e3c8acc4076f353ec44417c32b7530cd5dd4f11723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8430-206X
OpenAccessLink https://www.proquest.com/docview/3229482753?pq-origsite=%requestingapplication%
PMID 40644412
PQID 3229482753
PQPubID 1436336
ParticipantIDs plos_journals_3229482753
doaj_primary_oai_doaj_org_article_e98d5ada1c814bf88d5d182acabbd5a2
proquest_miscellaneous_3229500597
proquest_journals_3229482753
pubmed_primary_40644412
crossref_primary_10_1371_journal_pone_0327108
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0327108.ref022
M Chen (pone.0327108.ref044) 2023; 70
S Asgari (pone.0327108.ref009) 2015; 60
Q Yang (pone.0327108.ref024) 2019; 10
Y Gao (pone.0327108.ref018) 2020; 11
pone.0327108.ref002
Y Bengio (pone.0327108.ref029) 1994; 5
F Zhuang (pone.0327108.ref042) 2021; 109
pone.0327108.ref025
E Anter (pone.0327108.ref003) 2009; 119
WG van Panhuis (pone.0327108.ref015) 2014; 14
W Zheng (pone.0327108.ref020) 2022; 52
AY Hannun (pone.0327108.ref011) 2019; 25
N Rehman (pone.0327108.ref017) 2010; 466
D Qiu (pone.0327108.ref005) 2021; 12
R Hu (pone.0327108.ref033) 2020; 7
SM Bokhari (pone.0327108.ref031) 2021; 167
WS Cleveland (pone.0327108.ref027) 1988; 83
UR Acharya (pone.0327108.ref036) 2017; 415
A Kennedy (pone.0327108.ref007) 2016; 49
A Rizwan (pone.0327108.ref006) 2021; 14
J He (pone.0327108.ref014) 2019; 25
A Buades (pone.0327108.ref028) 2005; 4
ND Sidiropoulos (pone.0327108.ref019) 2017; 65
S Aziz (pone.0327108.ref035) 2021; 11
J Lai (pone.0327108.ref041) 2023; 14
pone.0327108.ref012
pone.0327108.ref034
J Sun (pone.0327108.ref021) 2023; 10
pone.0327108.ref032
World Health Organization (pone.0327108.ref001) 2020
pone.0327108.ref037
J Kim (pone.0327108.ref040) 2024; 24
pone.0327108.ref013
WS Cleveland (pone.0327108.ref026) 1979; 74
J Zhang (pone.0327108.ref043) 2023; 22
J Sun (pone.0327108.ref039) 2023; 10
H Yoo (pone.0327108.ref038) 2023; 29
M Spartera (pone.0327108.ref004) 2021; 23
A Gupta (pone.0327108.ref045) 2024; 28
X Shen (pone.0327108.ref023) 2023; 25
ZI Attia (pone.0327108.ref010) 2019; 394
A Graves (pone.0327108.ref030) 2012
L Rocher (pone.0327108.ref016) 2019; 10
B Zhu (pone.0327108.ref008) 2013; 2013
References_xml – start-page: 37
  volume-title: Supervised sequence labelling with recurrent neural networks
  year: 2012
  ident: pone.0327108.ref030
  article-title: Long short-term memory
  doi: 10.1007/978-3-642-24797-2_4
– ident: pone.0327108.ref037
  doi: 10.1109/HealthCom60970.2024.10880809
– volume: 11
  start-page: 375
  year: 2020
  ident: pone.0327108.ref018
  article-title: Deep convolutional neural network-based Epileptic Electroencephalogram (EEG) signal classification
  publication-title: Front Neurol
  doi: 10.3389/fneur.2020.00375
– volume: 25
  start-page: 65
  issue: 1
  year: 2019
  ident: pone.0327108.ref011
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0268-3
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: pone.0327108.ref029
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.279181
– ident: pone.0327108.ref032
  doi: 10.3115/v1/D14-1179
– volume: 11
  start-page: 18738
  issue: 1
  year: 2021
  ident: pone.0327108.ref035
  article-title: ECG-based machine-learning algorithms for heartbeat classification
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-97118-5
– volume: 394
  start-page: 861
  issue: 10201
  year: 2019
  ident: pone.0327108.ref010
  article-title: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)31721-0
– volume: 25
  start-page: 30
  issue: 1
  year: 2019
  ident: pone.0327108.ref014
  article-title: The practical implementation of artificial intelligence technologies in medicine
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0307-0
– volume: 14
  start-page: 3741
  issue: 1
  year: 2023
  ident: pone.0327108.ref041
  article-title: Practical intelligent diagnostic algorithm for wearable 12-lead ECG via self-supervised learning on large-scale dataset
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-39472-8
– volume: 52
  start-page: 13902
  issue: 12
  year: 2022
  ident: pone.0327108.ref020
  article-title: An accurate GRU-based power time-series prediction approach with selective state updating and stochastic optimization
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2021.3121312
– volume: 7
  start-page: 9530
  issue: 10
  year: 2020
  ident: pone.0327108.ref033
  article-title: Personalized federated learning with differential privacy
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2991416
– volume: 167
  start-page: 108245
  year: 2021
  ident: pone.0327108.ref031
  article-title: DGRU based human activity recognition using channel state information
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108245
– volume: 60
  start-page: 132
  year: 2015
  ident: pone.0327108.ref009
  article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.03.005
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  ident: pone.0327108.ref024
  article-title: Federated machine learning: concept and applications
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/3298981
– volume: 65
  start-page: 3551
  issue: 13
  year: 2017
  ident: pone.0327108.ref019
  article-title: Tensor decomposition for signal processing and machine learning
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2017.2690524
– volume: 23
  start-page: 115
  issue: 1
  year: 2021
  ident: pone.0327108.ref004
  article-title: The impact of atrial fibrillation and stroke risk factors on left atrial blood flow characteristics
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jeab213
– ident: pone.0327108.ref013
  doi: 10.1109/ICCC51575.2020.9344971
– ident: pone.0327108.ref022
  doi: 10.1145/3338501.3357370
– volume: 70
  start-page: 1587
  issue: 6
  year: 2023
  ident: pone.0327108.ref044
  article-title: Contextual deep learning for ECG-based diagnosis using patient-specific data streams
  publication-title: IEEE Trans Biomed Eng
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: pone.0327108.ref016
  article-title: Estimating the success of re-identifications in incomplete datasets using generative models
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10933-3
– volume: 12
  start-page: 361
  issue: 3
  year: 2021
  ident: pone.0327108.ref005
  article-title: Left atrial remodeling mechanisms associated with atrial fibrillation
  publication-title: Cardiovasc Eng Technol
  doi: 10.1007/s13239-021-00527-w
– volume: 74
  start-page: 829
  issue: 368
  year: 1979
  ident: pone.0327108.ref026
  article-title: Robust locally weighted regression and smoothing scatterplots
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1979.10481038
– volume: 10
  start-page: 53
  issue: 3
  year: 2023
  ident: pone.0327108.ref021
  article-title: Automatic cardiac arrhythmias classification using CNN and attention-based RNN network
  publication-title: Healthc Technol Lett
  doi: 10.1049/htl2.12045
– volume: 109
  start-page: 43
  issue: 1
  year: 2021
  ident: pone.0327108.ref042
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2020.3004555
– ident: pone.0327108.ref034
  doi: 10.22489/CinC.2020.112
– volume: 4
  start-page: 490
  issue: 2
  year: 2005
  ident: pone.0327108.ref028
  article-title: A review of image denoising algorithms, with a new one
  publication-title: Multiscale Model Simul
  doi: 10.1137/040616024
– volume: 29
  start-page: 132
  issue: 2
  year: 2023
  ident: pone.0327108.ref038
  article-title: Standardized database of 12-lead electrocardiograms with a common standard for the promotion of cardiovascular research: KURIAS-ECG
  publication-title: Healthc Inf Res
  doi: 10.4258/hir.2023.29.2.132
– volume: 22
  start-page: 1912
  issue: 4
  year: 2023
  ident: pone.0327108.ref043
  article-title: Context-aware federated learning for healthcare monitoring using wearable devices
  publication-title: IEEE Trans Mobile Comput
– volume: 25
  start-page: 485
  issue: 3
  year: 2023
  ident: pone.0327108.ref023
  article-title: PLDP-FL: federated learning with personalized local differential privacy
  publication-title: Entropy (Basel)
  doi: 10.3390/e25030485
– volume: 415
  start-page: 190
  year: 2017
  ident: pone.0327108.ref036
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.06.027
– volume: 2013
  start-page: 453402
  year: 2013
  ident: pone.0327108.ref008
  article-title: A novel automatic detection system for ECG arrhythmias using maximum margin clustering with immune evolutionary algorithm
  publication-title: Comput Math Methods Med
– volume: 24
  start-page: 67
  issue: 1
  year: 2024
  ident: pone.0327108.ref040
  article-title: Continual learning framework for a multicenter study with an application to electrocardiogram
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-024-02464-9
– volume: 119
  start-page: 2516
  issue: 18
  year: 2009
  ident: pone.0327108.ref003
  article-title: Atrial fibrillation and heart failure: treatment considerations for a dual epidemic
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.821306
– ident: pone.0327108.ref025
– volume: 10
  start-page: 53
  issue: 3
  year: 2023
  ident: pone.0327108.ref039
  article-title: Automatic cardiac arrhythmias classification using CNN and attention-based RNN network
  publication-title: Healthc Technol Lett
  doi: 10.1049/htl2.12045
– ident: pone.0327108.ref012
  doi: 10.1109/IS3C.2014.175
– volume-title: World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals
  year: 2020
  ident: pone.0327108.ref001
– volume: 83
  start-page: 596
  issue: 403
  year: 1988
  ident: pone.0327108.ref027
  article-title: Locally weighted regression: an approach to regression analysis by local fitting
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1988.10478639
– volume: 28
  start-page: 33
  issue: 1
  year: 2024
  ident: pone.0327108.ref045
  article-title: Enhancing arrhythmia detection with contextual federated learning: a multi-institutional study
  publication-title: IEEE J Biomed Health Inf
– volume: 14
  start-page: 219
  year: 2021
  ident: pone.0327108.ref006
  article-title: A review on the state of the art in atrial fibrillation detection enabled by machine learning
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2020.2976507
– volume: 466
  start-page: 1291
  issue: 2117
  year: 2010
  ident: pone.0327108.ref017
  article-title: Multivariate empirical mode decomposition
  publication-title: Proc Roy SocA
– ident: pone.0327108.ref002
  doi: 10.1109/ACCESS.2025.3528253
– volume: 49
  start-page: 871
  issue: 6
  year: 2016
  ident: pone.0327108.ref007
  article-title: Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2016.07.033
– volume: 14
  start-page: 1144
  year: 2014
  ident: pone.0327108.ref015
  article-title: A systematic review of barriers to data sharing in public health
  publication-title: BMC Public Health
  doi: 10.1186/1471-2458-14-1144
SSID ssj0053866
Score 2.465277
Snippet This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for...
SourceID plos
doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e0327108
SubjectTerms Accuracy
Algorithms
Arrhythmia
Arrhythmias, Cardiac - diagnosis
Artificial intelligence
Bradycardia
Cardiac arrhythmia
Classification
Collaboration
Comparative analysis
Correlation coefficient
Correlation coefficients
Customization
Data integrity
Datasets
Deep learning
Disease
EKG
Electrocardiography
Electrocardiography - methods
Federated Learning
Health care
Heart
Humans
Learning
Machine Learning
Mortality
Physiology
Privacy
Real time
Signal processing
Sinuses
Tachycardia
Training
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJy6oQOmGUuRKPewewia242SPC0uEKkB7AIlb5FfKSnQX7QMJ-POdcZwFpFa9cExsJdY8PN_48Q0hPzLBcptrPKpjWCwc17EumI6lMlZoyRLjt2Iur-T5jfh5m92-KfWFZ8IaeuBGcH03KGymrEpNkQpdF_BkARMro7SGBj_7Qsxrk6lmDgYvljJclON52g96OX6YTd1xwhmE1eJdIPJ8_chvej9b_Btr-phTfiLbASzSYTPIHbLhprtkJ7jjgnYDZ3Rvj7yUK1z2orOajlt4_ewsLZErAuCkpYFI9RftjsuLHsX1VzoK1VHAy-_peD55VOaJdkfj3mtvwLTQzR_Hmyzw88P5_O5pefd7ouC939z5TG7Ks-vT8zjUVYiNYGwZ1zlKMdFpWuvcKQB0kOUp5rgplDGQ4cmaZ9wZgeXJDGcaUprEgNytqFMAPHyfbE5Bkh1ChXW2TjQonA1EnUnlUmkSbVihU0iUZETiVsjVQ0OfUfk9tBzSjkaIFSqlCkqJyAlqYt0Xya_9CzCJKphE9T-TiEgH9dj-YFHBpDVAutOMR-Sw1e3fm7-vm8HNcO9ETd1s1fTJ8KZuHpEvjU2sBwmYCEXFDj5i8F_JFsMSw36V55BsLucr9w1wz1IfeRP_AzW-Aio
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VcuGCKK8GCjISh91DVonjPPaAUKFEFaJoD6zUW-RX2pW2m5LsVl3488w4ziKklqs9dpIZT-Ybjz0D8D4VPDe5oqM6mofCJipUBVdhJrURKuORdqGYs-_Z6Vx8PU_P92Co2eoZ2N3p2lE9qXm7nNz-3H5Ehf_gqjbk8TBoct2s7CRKOBrN4gE8RNuUUzGHM7GLK6B2Z5m_QHffyH8MlMvjT3lPl013PwZ1tqh8Ao89iGTHvdQPYM-unsKBV9OOjXwu6fEz-F1uaDuMNTWbDbD7lzWspBwSCDMN8wlWL9hoVn4bM9qXZSe-agpq_5LN2sWN1Fs2OpmN_1Ij1kUyd0xv0dH0x217uV1fXi0ktrugz3OYl19-fD4Nfb2FUAvO12GN7rBJIxXHtcqtRKCH3p_kNtGF1Bo9v6xO0sRqQWXLdMIVujqRNqkxoo4RCCUvYH-FnDwEJow1daRwIfCpqNNM2jjTkdK8UDE6UFkA4cDk6rpPq1G52FqO7kjPxIqEUnmhBPCJJLGjpaTYrqFpLyqvY5Wd4utLI2NdxELV9DEG3SeppVLYwQM4JDkOD-gq_JlNKQ1qmgRwNMj27u53u25UP4qpyJVtNj1NSjd48wBe9mti95KIlYhV_NX_J38NjzgVFXb7Okewv2439g0inbV66xbvHxxN_YI
  priority: 102
  providerName: Scholars Portal
Title Fusion of Personalized Federated Learning (PFL) with Differential Privacy (DP) Learning for Diagnosis of Arrhythmia Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/40644412
https://www.proquest.com/docview/3229482753
https://www.proquest.com/docview/3229500597
https://doaj.org/article/e98d5ada1c814bf88d5d182acabbd5a2
http://dx.doi.org/10.1371/journal.pone.0327108
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9sIFUV4NlJWROOwe0iaO8-gJ9RUqRKsIUWlvkV9pVyqbJdlFKvx5ZrzOVkjAJQfbymPGY38z43wD8D4VPDe5oqM6mofCJipUBVdhJrURKuORdqmYy6vs4lp8mqZTH3Dr_bHKYU10C7VpNcXID3HiHRFlZZp8WHwPqWoUZVd9CY0t2IlxDSbu_OJ0c8QDbTnL_O9ySR4feu0cLNq5PYgSjptr8cd25Fj7ieX0ru3_jTjdzlM-hSceMrLjtY534ZGdP4Ndb5Q9G3vm6Mlz-FWuKPjF2oZVA8j-aQ0riTECQaVhnk71ho2r8vOEURSWnfkaKWjrd6zqZj-kvmfjs2ryMBqRLQ5zh_JmPd3-uOtu75e332YS212K5wVcl-dfTy9CX10h1ILzZdig82vSSMVxo3IrEdahrye5TXQhtUY_L2uSNLFaUJEynXCFoo-0SY0RTYywJ3kJ23OU5B4wYaxpIoVqRx01aSZtnOlIaV6oGN2lLIBwEHK9WJNo1C6TlqPzsRZiTUqpvVICOCFNbMYSBbZraLub2ltUbY_w9aWRsS5ioRr6GIPOktRSKezgAeyRHocH9PXDDApgf9Dt37vfbbrR2CiDIue2Xa3HpPS_bh7Aq_Wc2LwkIiMSFX_9_5u_gcecSgi7KM4-bC-7lX2LuGapRrCVT_ORm8J0LT-OYOfk_Kr6MnKRArxeiuI3v2n8rg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcClorwaWsBIIO0e0ia28-gBodIl2tJttYdW6i34lXalstkmu6CF_8RvZMZJtkICbr3Glu3MfB7Pw54h5G0kWGIShVd1NPOF5cpXKVN-LLURKmaBdqGYk9N4eC4-X0QXa-RX9xYGr1V2MtEJalNq9JHvAfD2MWVlxD_MbnysGoXR1a6ERgOLY7v8DiZb_f5oAPx9x1j26exw6LdVBXwtGJv7BRh9JgpUGBYqsRLUGbBxJLNcp1JrsG_igkfcaoHFuTRnCqYMtImMEUUIxz2Hce-R-4LzBHP1p4erKyUgO-K4fZ7Hk3CvRcPurJza3YAzOMzTP44_VyUAs6pel_W_NVx30mWPyEarotKDBlObZM1OH5PNVgjUtNdmqu4_IT-zBTrbaFnQcafU_7CGZpihApRYQ9v0rZe0N85GfYpeXzpoa7KAbLmm42ryTeol7Q3G_dveoElDN3cJcFLj8AdVdbWcX32dSPjuQkpPyfmd0P0ZWZ8CJbcIFcaaIlAAM8BEEcXShrEOlGapCsE8iz3id0TOZ03SjtxF7hIwdhoi5siUvGWKRz4iJ1Z9MeW2-1BWl3m7g3O7D8uXRoY6DYUq8GcMGGdSS6WggXlkC_nYTVDnt4j1yE7H2783v1k1w-bGiI2c2nLR9InwfXDikecNJlaLBE0MScVe_H_w1-TB8OxklI-OTo-3yUOG5YudB2mHrM-rhX0JOtVcvXJApuTLXe-c3z5GM7s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAXRHk1UMBIIO0e0k3svHpAqLBELS1VDlTaW_Ar7UplsyS7rRb-Gb-OGcfZCgm49RpbTjLzzctjzxDyOo5YqlOJR3UU8yPDpS8zJv1EKB3JhAXKpmI-nyQHp9GnSTzZIL_6uzB4rLLXiVZR61rhHvkIgLeHJStjPqrcsYhinL-bf_exgxRmWvt2Gh1EjszqCsK39u3hGHj9hrH845cPB77rMOCriLGFX0EAqONAhmElUyPAtYF4RzDDVSaUglgnqXjMjYqwUZfiTMLrA6VjraMqBNPPYd1b5HbKwWyCLKWTdbAHeiRJ3FU9noYjh4zdeT0zuwFnYNizP0yh7RiAFVYv6vbf3q61evl9cs-5q3S_w9cW2TCzB2TLKYSWDlzV6uFD8jNf4sYbrSta9A7-D6NpjtUqwKHV1JVyPaODIj8eUtwBpmPXnwX0zAUtmumlUCs6GBfD69ngVcM0eyBw2uLy-01zvlqcf5sKeG7TS4_I6Y3Q_THZnAEltwmNtNFVIAFygI8qToQJExVIxTIZQqiWeMTviVzOuwIepc3ipRD4dEQskSmlY4pH3iMn1nOx_LZ9UDdnpZPm0uzB5wstQpWFkazwZzQEakIJKWGAeWQb-di_oC2v0euRnZ63fx9-tR4GQcfsjZiZetnNifGucOqRJx0m1h8JXhmSij39_-IvyR2QmfL48OToGbnLsJOx3UzaIZuLZmmeg3u1kC8sjin5etOC8xu6cjgd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+Personalized+Federated+Learning+%28PFL%29+with+Differential+Privacy+%28DP%29+Learning+for+Diagnosis+of+Arrhythmia+Disease&rft.jtitle=PloS+one&rft.au=Syed+Mohsin+Bokhari&rft.au=Sohaib%2C+Sarmad&rft.au=Shafi%2C+Muhammad&rft.date=2025-01-01&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=7&rft.spage=e0327108&rft_id=info:doi/10.1371%2Fjournal.pone.0327108&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon