Fusion of Personalized Federated Learning (PFL) with Differential Privacy (DP) Learning for Diagnosis of Arrhythmia Disease
This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports collaborative training in decentralized healthcare...
Saved in:
Published in | PloS one Vol. 20; no. 7; p. e0327108 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.01.2025
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0327108 |
Cover
Loading…
Abstract | This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports collaborative training in decentralized healthcare institutions without exposing sensitive patient information. By employing gated recurrent units (GRUs) for temporal sequence modeling along with feature fusion techniques and local differential privacy enforcement, FLPMDP ensures robust classification performance with data confidentiality. The architecture is evaluated on four experimental setups and demonstrates significant performance gain over centralized and federated baseline models. An empirical experiment on a large ECG dataset of 10,646 recordings indicates that the FLPMDP approach achieves an average accuracy of 93.71%. The FLPMDP approach yields F1-scores of 0.98, 0.93, 0.88, and 0.89 for sinus bradycardia (SB), atrial fibrillation (AFIB), supraventricular tachycardia (GSVT), and sinus rhythm (SR), respectively. Additionally, FLPMDP recorded a specificity up to 0.98, with a Kappa score of 0.8971 and a Matthews Correlation Coefficient of 0.9042, indicating high diagnostic accuracy and model strength. Comparative analysis against state-of-the-art methods—such as CNN, ResNet, and attention-based RNNs—indicate that FLPMDP consistently outperforms current models in accuracy, sensitivity, and robustness when facing non-IID data conditions. In the context of this research, federated learning is highly pertinent to modern healthcare, enabling secure and collaborative model training across institutions while complying with data privacy. The proposed FLPMDP framework offers a scalable and privacy-compliant solution for real-time arrhythmia detection, marking a step forward in deploying trustworthy artificial intelligence for decentralized medical diagnostics. |
---|---|
AbstractList | This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports collaborative training in decentralized healthcare institutions without exposing sensitive patient information. By employing gated recurrent units (GRUs) for temporal sequence modeling along with feature fusion techniques and local differential privacy enforcement, FLPMDP ensures robust classification performance with data confidentiality. The architecture is evaluated on four experimental setups and demonstrates significant performance gain over centralized and federated baseline models. An empirical experiment on a large ECG dataset of 10,646 recordings indicates that the FLPMDP approach achieves an average accuracy of 93.71%. The FLPMDP approach yields F1-scores of 0.98, 0.93, 0.88, and 0.89 for sinus bradycardia (SB), atrial fibrillation (AFIB), supraventricular tachycardia (GSVT), and sinus rhythm (SR), respectively. Additionally, FLPMDP recorded a specificity up to 0.98, with a Kappa score of 0.8971 and a Matthews Correlation Coefficient of 0.9042, indicating high diagnostic accuracy and model strength. Comparative analysis against state-of-the-art methods-such as CNN, ResNet, and attention-based RNNs-indicate that FLPMDP consistently outperforms current models in accuracy, sensitivity, and robustness when facing non-IID data conditions. In the context of this research, federated learning is highly pertinent to modern healthcare, enabling secure and collaborative model training across institutions while complying with data privacy. The proposed FLPMDP framework offers a scalable and privacy-compliant solution for real-time arrhythmia detection, marking a step forward in deploying trustworthy artificial intelligence for decentralized medical diagnostics. This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports collaborative training in decentralized healthcare institutions without exposing sensitive patient information. By employing gated recurrent units (GRUs) for temporal sequence modeling along with feature fusion techniques and local differential privacy enforcement, FLPMDP ensures robust classification performance with data confidentiality. The architecture is evaluated on four experimental setups and demonstrates significant performance gain over centralized and federated baseline models. An empirical experiment on a large ECG dataset of 10,646 recordings indicates that the FLPMDP approach achieves an average accuracy of 93.71%. The FLPMDP approach yields F1-scores of 0.98, 0.93, 0.88, and 0.89 for sinus bradycardia (SB), atrial fibrillation (AFIB), supraventricular tachycardia (GSVT), and sinus rhythm (SR), respectively. Additionally, FLPMDP recorded a specificity up to 0.98, with a Kappa score of 0.8971 and a Matthews Correlation Coefficient of 0.9042, indicating high diagnostic accuracy and model strength. Comparative analysis against state-of-the-art methods-such as CNN, ResNet, and attention-based RNNs-indicate that FLPMDP consistently outperforms current models in accuracy, sensitivity, and robustness when facing non-IID data conditions. In the context of this research, federated learning is highly pertinent to modern healthcare, enabling secure and collaborative model training across institutions while complying with data privacy. The proposed FLPMDP framework offers a scalable and privacy-compliant solution for real-time arrhythmia detection, marking a step forward in deploying trustworthy artificial intelligence for decentralized medical diagnostics.This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports collaborative training in decentralized healthcare institutions without exposing sensitive patient information. By employing gated recurrent units (GRUs) for temporal sequence modeling along with feature fusion techniques and local differential privacy enforcement, FLPMDP ensures robust classification performance with data confidentiality. The architecture is evaluated on four experimental setups and demonstrates significant performance gain over centralized and federated baseline models. An empirical experiment on a large ECG dataset of 10,646 recordings indicates that the FLPMDP approach achieves an average accuracy of 93.71%. The FLPMDP approach yields F1-scores of 0.98, 0.93, 0.88, and 0.89 for sinus bradycardia (SB), atrial fibrillation (AFIB), supraventricular tachycardia (GSVT), and sinus rhythm (SR), respectively. Additionally, FLPMDP recorded a specificity up to 0.98, with a Kappa score of 0.8971 and a Matthews Correlation Coefficient of 0.9042, indicating high diagnostic accuracy and model strength. Comparative analysis against state-of-the-art methods-such as CNN, ResNet, and attention-based RNNs-indicate that FLPMDP consistently outperforms current models in accuracy, sensitivity, and robustness when facing non-IID data conditions. In the context of this research, federated learning is highly pertinent to modern healthcare, enabling secure and collaborative model training across institutions while complying with data privacy. The proposed FLPMDP framework offers a scalable and privacy-compliant solution for real-time arrhythmia detection, marking a step forward in deploying trustworthy artificial intelligence for decentralized medical diagnostics. |
Author | Sohaib, Sarmad Shafi, Muhammad Bokhari, Syed Mohsin |
Author_xml | – sequence: 1 givenname: Syed Mohsin surname: Bokhari fullname: Bokhari, Syed Mohsin – sequence: 2 givenname: Sarmad surname: Sohaib fullname: Sohaib, Sarmad – sequence: 3 givenname: Muhammad orcidid: 0000-0002-8430-206X surname: Shafi fullname: Shafi, Muhammad |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40644412$$D View this record in MEDLINE/PubMed |
BookMark | eNptkltvEzEQhS1URC_wDxCsxEv6kODbXvJYtYRWitQ8wLM1a48TR5t1sHeLAn8eL9m2CPXJo_GnM8eec05OWt8iIe8ZnTFRss9b34cWmtk-tWdU8JLR6hU5Y3PBpwWn4uSf-pScx7ilNBdVUbwhp5IWUkrGz8jvRR-dbzNvsxWG6JOi-4UmW6DBAF2qlgihde06m6wWy8vsp-s22Y2zFgO2nYMmWwX3APqQTW5Wl8-09SFhsG59dHGQvwphc-g2OwepHxEiviWvLTQR343nBfm--PLt-na6vP96d321nGrJeTe1ZVWZnNaM2bpEyIuikhQ4Cl2B1pKWhRW5QD28qNSC12UuqDa5MdIyVnJxQT4edfeNj2r8t6gE53NZ8UQn4u5IGA9btQ9uB-GgPDj1t-HDWkHonG5Q4TyZAQNMV0zWdrBmWMVBQ12ni2HaZJwW_I8eY6d2LmpsGmjR98exeVrFvEzop__Ql819GKm-3qF5sve4xATII6CDjzGgfUIYVUNWHmXVkBU1ZkX8AahIsq4 |
Cites_doi | 10.1007/978-3-642-24797-2_4 10.1109/HealthCom60970.2024.10880809 10.3389/fneur.2020.00375 10.1038/s41591-018-0268-3 10.1109/72.279181 10.3115/v1/D14-1179 10.1038/s41598-021-97118-5 10.1016/S0140-6736(19)31721-0 10.1038/s41591-018-0307-0 10.1038/s41467-023-39472-8 10.1109/TCYB.2021.3121312 10.1109/JIOT.2020.2991416 10.1016/j.measurement.2020.108245 10.1016/j.compbiomed.2015.03.005 10.1145/3298981 10.1109/TSP.2017.2690524 10.1093/ehjci/jeab213 10.1109/ICCC51575.2020.9344971 10.1145/3338501.3357370 10.1038/s41467-019-10933-3 10.1007/s13239-021-00527-w 10.1080/01621459.1979.10481038 10.1049/htl2.12045 10.1109/JPROC.2020.3004555 10.22489/CinC.2020.112 10.1137/040616024 10.4258/hir.2023.29.2.132 10.3390/e25030485 10.1016/j.ins.2017.06.027 10.1186/s12911-024-02464-9 10.1161/CIRCULATIONAHA.108.821306 10.1109/IS3C.2014.175 10.1080/01621459.1988.10478639 10.1109/RBME.2020.2976507 10.1109/ACCESS.2025.3528253 10.1016/j.jelectrocard.2016.07.033 10.1186/1471-2458-14-1144 |
ContentType | Journal Article |
Copyright | Copyright: © 2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: 2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 DOA |
DOI | 10.1371/journal.pone.0327108 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest MSED ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1932-6203 |
ExternalDocumentID | 3229482753 oai_doaj_org_article_e98d5ada1c814bf88d5d182acabbd5a2 40644412 10_1371_journal_pone_0327108 |
Genre | Journal Article |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ M48 NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO |
ID | FETCH-LOGICAL-c422t-f788d50b11fb7ea566840a2e3c8acc4076f353ec44417c32b7530cd5dd4f11723 |
IEDL.DBID | 8C1 |
ISSN | 1932-6203 |
IngestDate | Wed Sep 03 00:56:13 EDT 2025 Wed Aug 27 00:48:02 EDT 2025 Sat Jul 12 17:30:31 EDT 2025 Sat Aug 23 12:50:03 EDT 2025 Tue Jul 15 01:30:41 EDT 2025 Wed Jul 16 16:48:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Copyright: © 2025 Bokhari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-f788d50b11fb7ea566840a2e3c8acc4076f353ec44417c32b7530cd5dd4f11723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8430-206X |
OpenAccessLink | https://www.proquest.com/docview/3229482753?pq-origsite=%requestingapplication% |
PMID | 40644412 |
PQID | 3229482753 |
PQPubID | 1436336 |
ParticipantIDs | plos_journals_3229482753 doaj_primary_oai_doaj_org_article_e98d5ada1c814bf88d5d182acabbd5a2 proquest_miscellaneous_3229500597 proquest_journals_3229482753 pubmed_primary_40644412 crossref_primary_10_1371_journal_pone_0327108 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2025 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | pone.0327108.ref022 M Chen (pone.0327108.ref044) 2023; 70 S Asgari (pone.0327108.ref009) 2015; 60 Q Yang (pone.0327108.ref024) 2019; 10 Y Gao (pone.0327108.ref018) 2020; 11 pone.0327108.ref002 Y Bengio (pone.0327108.ref029) 1994; 5 F Zhuang (pone.0327108.ref042) 2021; 109 pone.0327108.ref025 E Anter (pone.0327108.ref003) 2009; 119 WG van Panhuis (pone.0327108.ref015) 2014; 14 W Zheng (pone.0327108.ref020) 2022; 52 AY Hannun (pone.0327108.ref011) 2019; 25 N Rehman (pone.0327108.ref017) 2010; 466 D Qiu (pone.0327108.ref005) 2021; 12 R Hu (pone.0327108.ref033) 2020; 7 SM Bokhari (pone.0327108.ref031) 2021; 167 WS Cleveland (pone.0327108.ref027) 1988; 83 UR Acharya (pone.0327108.ref036) 2017; 415 A Kennedy (pone.0327108.ref007) 2016; 49 A Rizwan (pone.0327108.ref006) 2021; 14 J He (pone.0327108.ref014) 2019; 25 A Buades (pone.0327108.ref028) 2005; 4 ND Sidiropoulos (pone.0327108.ref019) 2017; 65 S Aziz (pone.0327108.ref035) 2021; 11 J Lai (pone.0327108.ref041) 2023; 14 pone.0327108.ref012 pone.0327108.ref034 J Sun (pone.0327108.ref021) 2023; 10 pone.0327108.ref032 World Health Organization (pone.0327108.ref001) 2020 pone.0327108.ref037 J Kim (pone.0327108.ref040) 2024; 24 pone.0327108.ref013 WS Cleveland (pone.0327108.ref026) 1979; 74 J Zhang (pone.0327108.ref043) 2023; 22 J Sun (pone.0327108.ref039) 2023; 10 H Yoo (pone.0327108.ref038) 2023; 29 M Spartera (pone.0327108.ref004) 2021; 23 A Gupta (pone.0327108.ref045) 2024; 28 X Shen (pone.0327108.ref023) 2023; 25 ZI Attia (pone.0327108.ref010) 2019; 394 A Graves (pone.0327108.ref030) 2012 L Rocher (pone.0327108.ref016) 2019; 10 B Zhu (pone.0327108.ref008) 2013; 2013 |
References_xml | – start-page: 37 volume-title: Supervised sequence labelling with recurrent neural networks year: 2012 ident: pone.0327108.ref030 article-title: Long short-term memory doi: 10.1007/978-3-642-24797-2_4 – ident: pone.0327108.ref037 doi: 10.1109/HealthCom60970.2024.10880809 – volume: 11 start-page: 375 year: 2020 ident: pone.0327108.ref018 article-title: Deep convolutional neural network-based Epileptic Electroencephalogram (EEG) signal classification publication-title: Front Neurol doi: 10.3389/fneur.2020.00375 – volume: 25 start-page: 65 issue: 1 year: 2019 ident: pone.0327108.ref011 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nat Med doi: 10.1038/s41591-018-0268-3 – volume: 5 start-page: 157 issue: 2 year: 1994 ident: pone.0327108.ref029 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans Neural Netw doi: 10.1109/72.279181 – ident: pone.0327108.ref032 doi: 10.3115/v1/D14-1179 – volume: 11 start-page: 18738 issue: 1 year: 2021 ident: pone.0327108.ref035 article-title: ECG-based machine-learning algorithms for heartbeat classification publication-title: Sci Rep doi: 10.1038/s41598-021-97118-5 – volume: 394 start-page: 861 issue: 10201 year: 2019 ident: pone.0327108.ref010 article-title: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction publication-title: Lancet doi: 10.1016/S0140-6736(19)31721-0 – volume: 25 start-page: 30 issue: 1 year: 2019 ident: pone.0327108.ref014 article-title: The practical implementation of artificial intelligence technologies in medicine publication-title: Nat Med doi: 10.1038/s41591-018-0307-0 – volume: 14 start-page: 3741 issue: 1 year: 2023 ident: pone.0327108.ref041 article-title: Practical intelligent diagnostic algorithm for wearable 12-lead ECG via self-supervised learning on large-scale dataset publication-title: Nat Commun doi: 10.1038/s41467-023-39472-8 – volume: 52 start-page: 13902 issue: 12 year: 2022 ident: pone.0327108.ref020 article-title: An accurate GRU-based power time-series prediction approach with selective state updating and stochastic optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2021.3121312 – volume: 7 start-page: 9530 issue: 10 year: 2020 ident: pone.0327108.ref033 article-title: Personalized federated learning with differential privacy publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2991416 – volume: 167 start-page: 108245 year: 2021 ident: pone.0327108.ref031 article-title: DGRU based human activity recognition using channel state information publication-title: Measurement doi: 10.1016/j.measurement.2020.108245 – volume: 60 start-page: 132 year: 2015 ident: pone.0327108.ref009 article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.03.005 – volume: 10 start-page: 1 issue: 2 year: 2019 ident: pone.0327108.ref024 article-title: Federated machine learning: concept and applications publication-title: ACM Trans Intell Syst Technol doi: 10.1145/3298981 – volume: 65 start-page: 3551 issue: 13 year: 2017 ident: pone.0327108.ref019 article-title: Tensor decomposition for signal processing and machine learning publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2017.2690524 – volume: 23 start-page: 115 issue: 1 year: 2021 ident: pone.0327108.ref004 article-title: The impact of atrial fibrillation and stroke risk factors on left atrial blood flow characteristics publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jeab213 – ident: pone.0327108.ref013 doi: 10.1109/ICCC51575.2020.9344971 – ident: pone.0327108.ref022 doi: 10.1145/3338501.3357370 – volume: 70 start-page: 1587 issue: 6 year: 2023 ident: pone.0327108.ref044 article-title: Contextual deep learning for ECG-based diagnosis using patient-specific data streams publication-title: IEEE Trans Biomed Eng – volume: 10 start-page: 1 issue: 1 year: 2019 ident: pone.0327108.ref016 article-title: Estimating the success of re-identifications in incomplete datasets using generative models publication-title: Nat Commun doi: 10.1038/s41467-019-10933-3 – volume: 12 start-page: 361 issue: 3 year: 2021 ident: pone.0327108.ref005 article-title: Left atrial remodeling mechanisms associated with atrial fibrillation publication-title: Cardiovasc Eng Technol doi: 10.1007/s13239-021-00527-w – volume: 74 start-page: 829 issue: 368 year: 1979 ident: pone.0327108.ref026 article-title: Robust locally weighted regression and smoothing scatterplots publication-title: J Am Stat Assoc doi: 10.1080/01621459.1979.10481038 – volume: 10 start-page: 53 issue: 3 year: 2023 ident: pone.0327108.ref021 article-title: Automatic cardiac arrhythmias classification using CNN and attention-based RNN network publication-title: Healthc Technol Lett doi: 10.1049/htl2.12045 – volume: 109 start-page: 43 issue: 1 year: 2021 ident: pone.0327108.ref042 article-title: A comprehensive survey on transfer learning publication-title: Proc IEEE doi: 10.1109/JPROC.2020.3004555 – ident: pone.0327108.ref034 doi: 10.22489/CinC.2020.112 – volume: 4 start-page: 490 issue: 2 year: 2005 ident: pone.0327108.ref028 article-title: A review of image denoising algorithms, with a new one publication-title: Multiscale Model Simul doi: 10.1137/040616024 – volume: 29 start-page: 132 issue: 2 year: 2023 ident: pone.0327108.ref038 article-title: Standardized database of 12-lead electrocardiograms with a common standard for the promotion of cardiovascular research: KURIAS-ECG publication-title: Healthc Inf Res doi: 10.4258/hir.2023.29.2.132 – volume: 22 start-page: 1912 issue: 4 year: 2023 ident: pone.0327108.ref043 article-title: Context-aware federated learning for healthcare monitoring using wearable devices publication-title: IEEE Trans Mobile Comput – volume: 25 start-page: 485 issue: 3 year: 2023 ident: pone.0327108.ref023 article-title: PLDP-FL: federated learning with personalized local differential privacy publication-title: Entropy (Basel) doi: 10.3390/e25030485 – volume: 415 start-page: 190 year: 2017 ident: pone.0327108.ref036 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf Sci doi: 10.1016/j.ins.2017.06.027 – volume: 2013 start-page: 453402 year: 2013 ident: pone.0327108.ref008 article-title: A novel automatic detection system for ECG arrhythmias using maximum margin clustering with immune evolutionary algorithm publication-title: Comput Math Methods Med – volume: 24 start-page: 67 issue: 1 year: 2024 ident: pone.0327108.ref040 article-title: Continual learning framework for a multicenter study with an application to electrocardiogram publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-024-02464-9 – volume: 119 start-page: 2516 issue: 18 year: 2009 ident: pone.0327108.ref003 article-title: Atrial fibrillation and heart failure: treatment considerations for a dual epidemic publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.821306 – ident: pone.0327108.ref025 – volume: 10 start-page: 53 issue: 3 year: 2023 ident: pone.0327108.ref039 article-title: Automatic cardiac arrhythmias classification using CNN and attention-based RNN network publication-title: Healthc Technol Lett doi: 10.1049/htl2.12045 – ident: pone.0327108.ref012 doi: 10.1109/IS3C.2014.175 – volume-title: World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals year: 2020 ident: pone.0327108.ref001 – volume: 83 start-page: 596 issue: 403 year: 1988 ident: pone.0327108.ref027 article-title: Locally weighted regression: an approach to regression analysis by local fitting publication-title: J Am Stat Assoc doi: 10.1080/01621459.1988.10478639 – volume: 28 start-page: 33 issue: 1 year: 2024 ident: pone.0327108.ref045 article-title: Enhancing arrhythmia detection with contextual federated learning: a multi-institutional study publication-title: IEEE J Biomed Health Inf – volume: 14 start-page: 219 year: 2021 ident: pone.0327108.ref006 article-title: A review on the state of the art in atrial fibrillation detection enabled by machine learning publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2020.2976507 – volume: 466 start-page: 1291 issue: 2117 year: 2010 ident: pone.0327108.ref017 article-title: Multivariate empirical mode decomposition publication-title: Proc Roy SocA – ident: pone.0327108.ref002 doi: 10.1109/ACCESS.2025.3528253 – volume: 49 start-page: 871 issue: 6 year: 2016 ident: pone.0327108.ref007 article-title: Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2016.07.033 – volume: 14 start-page: 1144 year: 2014 ident: pone.0327108.ref015 article-title: A systematic review of barriers to data sharing in public health publication-title: BMC Public Health doi: 10.1186/1471-2458-14-1144 |
SSID | ssj0053866 |
Score | 2.465277 |
Snippet | This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for... |
SourceID | plos doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | e0327108 |
SubjectTerms | Accuracy Algorithms Arrhythmia Arrhythmias, Cardiac - diagnosis Artificial intelligence Bradycardia Cardiac arrhythmia Classification Collaboration Comparative analysis Correlation coefficient Correlation coefficients Customization Data integrity Datasets Deep learning Disease EKG Electrocardiography Electrocardiography - methods Federated Learning Health care Heart Humans Learning Machine Learning Mortality Physiology Privacy Real time Signal processing Sinuses Tachycardia Training Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJy6oQOmGUuRKPewewia242SPC0uEKkB7AIlb5FfKSnQX7QMJ-POdcZwFpFa9cExsJdY8PN_48Q0hPzLBcptrPKpjWCwc17EumI6lMlZoyRLjt2Iur-T5jfh5m92-KfWFZ8IaeuBGcH03KGymrEpNkQpdF_BkARMro7SGBj_7Qsxrk6lmDgYvljJclON52g96OX6YTd1xwhmE1eJdIPJ8_chvej9b_Btr-phTfiLbASzSYTPIHbLhprtkJ7jjgnYDZ3Rvj7yUK1z2orOajlt4_ewsLZErAuCkpYFI9RftjsuLHsX1VzoK1VHAy-_peD55VOaJdkfj3mtvwLTQzR_Hmyzw88P5_O5pefd7ouC939z5TG7Ks-vT8zjUVYiNYGwZ1zlKMdFpWuvcKQB0kOUp5rgplDGQ4cmaZ9wZgeXJDGcaUprEgNytqFMAPHyfbE5Bkh1ChXW2TjQonA1EnUnlUmkSbVihU0iUZETiVsjVQ0OfUfk9tBzSjkaIFSqlCkqJyAlqYt0Xya_9CzCJKphE9T-TiEgH9dj-YFHBpDVAutOMR-Sw1e3fm7-vm8HNcO9ETd1s1fTJ8KZuHpEvjU2sBwmYCEXFDj5i8F_JFsMSw36V55BsLucr9w1wz1IfeRP_AzW-Aio priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VcuGCKK8GCjISh91DVonjPPaAUKFEFaJoD6zUW-RX2pW2m5LsVl3488w4ziKklqs9dpIZT-Ybjz0D8D4VPDe5oqM6mofCJipUBVdhJrURKuORdqGYs-_Z6Vx8PU_P92Co2eoZ2N3p2lE9qXm7nNz-3H5Ehf_gqjbk8TBoct2s7CRKOBrN4gE8RNuUUzGHM7GLK6B2Z5m_QHffyH8MlMvjT3lPl013PwZ1tqh8Ao89iGTHvdQPYM-unsKBV9OOjXwu6fEz-F1uaDuMNTWbDbD7lzWspBwSCDMN8wlWL9hoVn4bM9qXZSe-agpq_5LN2sWN1Fs2OpmN_1Ij1kUyd0xv0dH0x217uV1fXi0ktrugz3OYl19-fD4Nfb2FUAvO12GN7rBJIxXHtcqtRKCH3p_kNtGF1Bo9v6xO0sRqQWXLdMIVujqRNqkxoo4RCCUvYH-FnDwEJow1daRwIfCpqNNM2jjTkdK8UDE6UFkA4cDk6rpPq1G52FqO7kjPxIqEUnmhBPCJJLGjpaTYrqFpLyqvY5Wd4utLI2NdxELV9DEG3SeppVLYwQM4JDkOD-gq_JlNKQ1qmgRwNMj27u53u25UP4qpyJVtNj1NSjd48wBe9mti95KIlYhV_NX_J38NjzgVFXb7Okewv2439g0inbV66xbvHxxN_YI priority: 102 providerName: Scholars Portal |
Title | Fusion of Personalized Federated Learning (PFL) with Differential Privacy (DP) Learning for Diagnosis of Arrhythmia Disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40644412 https://www.proquest.com/docview/3229482753 https://www.proquest.com/docview/3229500597 https://doaj.org/article/e98d5ada1c814bf88d5d182acabbd5a2 http://dx.doi.org/10.1371/journal.pone.0327108 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9sIFUV4NlJWROOwe0iaO8-gJ9RUqRKsIUWlvkV9pVyqbJdlFKvx5ZrzOVkjAJQfbymPGY38z43wD8D4VPDe5oqM6mofCJipUBVdhJrURKuORdqmYy6vs4lp8mqZTH3Dr_bHKYU10C7VpNcXID3HiHRFlZZp8WHwPqWoUZVd9CY0t2IlxDSbu_OJ0c8QDbTnL_O9ySR4feu0cLNq5PYgSjptr8cd25Fj7ieX0ru3_jTjdzlM-hSceMrLjtY534ZGdP4Ndb5Q9G3vm6Mlz-FWuKPjF2oZVA8j-aQ0riTECQaVhnk71ho2r8vOEURSWnfkaKWjrd6zqZj-kvmfjs2ryMBqRLQ5zh_JmPd3-uOtu75e332YS212K5wVcl-dfTy9CX10h1ILzZdig82vSSMVxo3IrEdahrye5TXQhtUY_L2uSNLFaUJEynXCFoo-0SY0RTYywJ3kJ23OU5B4wYaxpIoVqRx01aSZtnOlIaV6oGN2lLIBwEHK9WJNo1C6TlqPzsRZiTUqpvVICOCFNbMYSBbZraLub2ltUbY_w9aWRsS5ioRr6GIPOktRSKezgAeyRHocH9PXDDApgf9Dt37vfbbrR2CiDIue2Xa3HpPS_bh7Aq_Wc2LwkIiMSFX_9_5u_gcecSgi7KM4-bC-7lX2LuGapRrCVT_ORm8J0LT-OYOfk_Kr6MnKRArxeiuI3v2n8rg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcClorwaWsBIIO0e0ia28-gBodIl2tJttYdW6i34lXalstkmu6CF_8RvZMZJtkICbr3Glu3MfB7Pw54h5G0kWGIShVd1NPOF5cpXKVN-LLURKmaBdqGYk9N4eC4-X0QXa-RX9xYGr1V2MtEJalNq9JHvAfD2MWVlxD_MbnysGoXR1a6ERgOLY7v8DiZb_f5oAPx9x1j26exw6LdVBXwtGJv7BRh9JgpUGBYqsRLUGbBxJLNcp1JrsG_igkfcaoHFuTRnCqYMtImMEUUIxz2Hce-R-4LzBHP1p4erKyUgO-K4fZ7Hk3CvRcPurJza3YAzOMzTP44_VyUAs6pel_W_NVx30mWPyEarotKDBlObZM1OH5PNVgjUtNdmqu4_IT-zBTrbaFnQcafU_7CGZpihApRYQ9v0rZe0N85GfYpeXzpoa7KAbLmm42ryTeol7Q3G_dveoElDN3cJcFLj8AdVdbWcX32dSPjuQkpPyfmd0P0ZWZ8CJbcIFcaaIlAAM8BEEcXShrEOlGapCsE8iz3id0TOZ03SjtxF7hIwdhoi5siUvGWKRz4iJ1Z9MeW2-1BWl3m7g3O7D8uXRoY6DYUq8GcMGGdSS6WggXlkC_nYTVDnt4j1yE7H2783v1k1w-bGiI2c2nLR9InwfXDikecNJlaLBE0MScVe_H_w1-TB8OxklI-OTo-3yUOG5YudB2mHrM-rhX0JOtVcvXJApuTLXe-c3z5GM7s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAXRHk1UMBIIO0e0k3svHpAqLBELS1VDlTaW_Ar7UplsyS7rRb-Gb-OGcfZCgm49RpbTjLzzctjzxDyOo5YqlOJR3UU8yPDpS8zJv1EKB3JhAXKpmI-nyQHp9GnSTzZIL_6uzB4rLLXiVZR61rhHvkIgLeHJStjPqrcsYhinL-bf_exgxRmWvt2Gh1EjszqCsK39u3hGHj9hrH845cPB77rMOCriLGFX0EAqONAhmElUyPAtYF4RzDDVSaUglgnqXjMjYqwUZfiTMLrA6VjraMqBNPPYd1b5HbKwWyCLKWTdbAHeiRJ3FU9noYjh4zdeT0zuwFnYNizP0yh7RiAFVYv6vbf3q61evl9cs-5q3S_w9cW2TCzB2TLKYSWDlzV6uFD8jNf4sYbrSta9A7-D6NpjtUqwKHV1JVyPaODIj8eUtwBpmPXnwX0zAUtmumlUCs6GBfD69ngVcM0eyBw2uLy-01zvlqcf5sKeG7TS4_I6Y3Q_THZnAEltwmNtNFVIAFygI8qToQJExVIxTIZQqiWeMTviVzOuwIepc3ipRD4dEQskSmlY4pH3iMn1nOx_LZ9UDdnpZPm0uzB5wstQpWFkazwZzQEakIJKWGAeWQb-di_oC2v0euRnZ63fx9-tR4GQcfsjZiZetnNifGucOqRJx0m1h8JXhmSij39_-IvyR2QmfL48OToGbnLsJOx3UzaIZuLZmmeg3u1kC8sjin5etOC8xu6cjgd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+Personalized+Federated+Learning+%28PFL%29+with+Differential+Privacy+%28DP%29+Learning+for+Diagnosis+of+Arrhythmia+Disease&rft.jtitle=PloS+one&rft.au=Syed+Mohsin+Bokhari&rft.au=Sohaib%2C+Sarmad&rft.au=Shafi%2C+Muhammad&rft.date=2025-01-01&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=7&rft.spage=e0327108&rft_id=info:doi/10.1371%2Fjournal.pone.0327108&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |