Unveiling singlet oxygen spin trapping in catalytic oxidation processes using in situ kinetic EPR analysis
Singlet oxygen ( 1 O 2 ) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1 O 2 detection. However, it is often limited to ti...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 120; no. 30; p. e2305706120 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
25.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Singlet oxygen (
1
O
2
) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for
1
O
2
detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the
1
O
2
trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of
1
O
2
in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate
1
O
2
-driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D
1
O
2
detection techniques, and provide insights into the reaction mechanisms in
1
O
2
-dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes. |
---|---|
AbstractList | Singlet oxygen (
1
O
2
) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for
1
O
2
detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the
1
O
2
trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of
1
O
2
in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate
1
O
2
-driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D
1
O
2
detection techniques, and provide insights into the reaction mechanisms in
1
O
2
-dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes. Singlet oxygen (1O2) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1O2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1O2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1O2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1O2-driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1O2 detection techniques, and provide insights into the reaction mechanisms in 1O2-dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes. 1 O 2 is a vital species for the selective oxidations of chemicals. However, detecting its production and understanding the underlying mechanisms in complex systems remains challenging. The spin-trapping method based on EPR (electron paramagnetic resonance) analysis has emerged as an indispensable tool for identifying the generation of 1 O 2 . Here, we applied EPR analysis to track the fates of 1 O 2 in catalytic oxidation processes, offering time-dependent profiles of trapping products. These detailed examinations can unveil the molecular mechanism of direct 2,2,6,6-tetramethylpiperidine oxidation and mitigate the risk of false positives. This study paves the way for exploring 1 O 2 generation in aqueous solutions and catalytic oxidations governed by other oxidative species and also offers thorough clarification from the mechanism of spin-trapping to its application scenarios. Singlet oxygen ( 1 O 2 ) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1 O 2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1 O 2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1 O 2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1 O 2 -driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1 O 2 detection techniques, and provide insights into the reaction mechanisms in 1 O 2 -dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes. Singlet oxygen ( O ) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for O detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the O trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of O in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate O -driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D O detection techniques, and provide insights into the reaction mechanisms in O -dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes. Singlet oxygen (1O2) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1O2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1O2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1O2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1O2-driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1O2 detection techniques, and provide insights into the reaction mechanisms in 1O2-dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes.Singlet oxygen (1O2) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1O2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1O2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1O2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1O2-driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1O2 detection techniques, and provide insights into the reaction mechanisms in 1O2-dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes. |
Author | Wu, Jing-Hang Chen, Fei Yang, Tian-Hao Yu, Han-Qing |
Author_xml | – sequence: 1 givenname: Jing-Hang orcidid: 0000-0002-8087-8440 surname: Wu fullname: Wu, Jing-Hang organization: Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China – sequence: 2 givenname: Fei orcidid: 0000-0002-9116-6406 surname: Chen fullname: Chen, Fei organization: Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China – sequence: 3 givenname: Tian-Hao surname: Yang fullname: Yang, Tian-Hao organization: Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China – sequence: 4 givenname: Han-Qing orcidid: 0000-0001-5247-6244 surname: Yu fullname: Yu, Han-Qing organization: Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37459516$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v1DAQxS1URLeFMzcUiQuXtOOvxD4hVBWoVAmE6NlynNnFS9YOsVOx_z0O3RaoxMXj0fze04zeCTkKMSAhLymcUWj5-RhsOmMcZAsNZfCErChoWjdCwxFZAbC2VoKJY3KS0hYAtFTwjBzzVkgtabMi25twi37wYVOl8gyYq_hzv8FQpdGHKk92HJdh-Tub7bDP3hXC9zb7GKpxig5TwlTN6YAln-fquw-4kJefv1Q2FFny6Tl5urZDwheHekpu3l9-vfhYX3_6cHXx7rp2grFcr6V2UgMCA1gD9raTKCxq6hioprRdy5tO2ZZSq5F2qrelaaCXnXJNr_gpeXvnO87dDnuHoVwxmHHyOzvtTbTe_DsJ_pvZxFtDgbes0bw4vDk4TPHHjCmbnU8Oh8EGjHMyTHHNJGdMF_T1I3Qb56lcvFCCCyGVpoV69fdKD7vc51CA8zvATTGlCdcPCAWzJG2WpM2fpItCPlI4n3-HUm7yw391vwCWnrAT |
CitedBy_id | crossref_primary_10_1002_adfm_202422197 crossref_primary_10_1016_j_apcatb_2025_125175 crossref_primary_10_1016_j_jre_2024_06_018 crossref_primary_10_1021_acs_est_4c02816 crossref_primary_10_1002_advs_202307151 crossref_primary_10_1093_pnasnexus_pgae330 crossref_primary_10_1016_j_jwpe_2025_107141 crossref_primary_10_1016_j_cej_2024_156042 crossref_primary_10_1002_advs_202410405 crossref_primary_10_1002_anie_202423157 crossref_primary_10_1007_s10853_024_10354_8 crossref_primary_10_1016_j_jcis_2024_09_104 crossref_primary_10_1016_j_seppur_2023_126122 crossref_primary_10_1016_j_cej_2024_153698 crossref_primary_10_1016_j_cej_2024_157814 crossref_primary_10_1021_acs_est_3c09316 crossref_primary_10_1021_acs_est_4c10363 crossref_primary_10_1016_j_apcatb_2024_124202 crossref_primary_10_1038_s41598_024_62564_4 crossref_primary_10_1021_acs_estlett_4c00155 crossref_primary_10_1002_anie_202318924 crossref_primary_10_1016_j_watres_2023_120614 crossref_primary_10_1039_D4CS00338A crossref_primary_10_1016_j_xcrp_2024_102170 crossref_primary_10_1016_j_seppur_2024_128573 crossref_primary_10_1016_j_seppur_2024_129662 crossref_primary_10_1016_j_jhazmat_2024_134214 crossref_primary_10_1016_j_apcatb_2024_124431 crossref_primary_10_1016_j_jhazmat_2023_132538 crossref_primary_10_1016_j_watres_2024_122007 crossref_primary_10_1002_ange_202318924 crossref_primary_10_1016_j_cej_2024_149129 crossref_primary_10_1021_acsestengg_4c00403 crossref_primary_10_1016_j_cej_2024_149724 crossref_primary_10_1016_j_jece_2024_113526 crossref_primary_10_1016_j_scitotenv_2024_173042 crossref_primary_10_1021_acs_est_3c05694 crossref_primary_10_1021_acs_est_4c06725 crossref_primary_10_1016_j_apcatb_2023_123616 crossref_primary_10_1038_s41467_024_53289_z crossref_primary_10_1002_adma_202308469 crossref_primary_10_1016_j_seppur_2023_126147 crossref_primary_10_1073_pnas_2403544121 crossref_primary_10_1016_j_cej_2025_161296 crossref_primary_10_1021_acs_est_4c11311 crossref_primary_10_1021_acscatal_3c03303 crossref_primary_10_1093_pnasnexus_pgae040 crossref_primary_10_1007_s11783_025_1944_4 crossref_primary_10_1016_j_cej_2024_150447 crossref_primary_10_1016_j_jclepro_2024_143485 crossref_primary_10_1002_ange_202423157 crossref_primary_10_1016_j_apcatb_2024_124807 crossref_primary_10_1021_acs_est_3c10361 crossref_primary_10_1021_acs_joc_3c02718 crossref_primary_10_1039_D4NR02819H crossref_primary_10_1016_j_seppur_2024_131007 crossref_primary_10_1016_j_cej_2024_156573 crossref_primary_10_1016_j_jhazmat_2025_137606 crossref_primary_10_1016_j_apcatb_2024_124854 crossref_primary_10_1016_j_cej_2024_156698 crossref_primary_10_1007_s11783_024_1894_2 crossref_primary_10_1016_j_seppur_2024_129564 crossref_primary_10_1039_D4EE03065F crossref_primary_10_1360_SSC_2024_0183 crossref_primary_10_1021_acssuschemeng_4c09055 crossref_primary_10_1021_acsnano_4c18558 crossref_primary_10_1038_s41467_024_55168_z crossref_primary_10_1002_aic_18569 |
Cites_doi | 10.1038/s41467-020-20071-w 10.1021/acs.jpclett.9b02911 10.1021/jp300012t 10.1016/j.watres.2020.116799 10.1021/acs.est.8b00735 10.1039/c1ob05475a 10.1038/s41467-021-21598-2 10.1021/jacs.2c07450 10.1021/acs.est.9b07082 10.1021/acs.est.9b07246 10.1016/j.watres.2019.115143 10.1016/j.bbapap.2019.140334 10.1021/jacs.2c03444 10.1021/acs.accounts.0c00344 10.1021/acs.chemrev.1c00139 10.1021/acs.chemrev.5b00726 10.1021/acs.est.5b03595 10.1021/acs.chemrev.8b00554 10.1039/D2GC00457G 10.1038/nenergy.2017.56 10.1016/j.chemosphere.2011.04.051 10.1016/j.jphotochem.2022.114161 10.1007/s11356-019-04763-5 10.1016/j.freeradbiomed.2021.12.303 10.1016/B978-0-12-821859-4.00010-6 10.1016/j.coche.2022.100854 10.1021/jacs.2c05507 10.1016/j.ccr.2020.213641 10.1038/s41467-020-17852-8 10.1016/j.watres.2018.10.087 10.1021/acs.chemrev.0c00781 10.1021/la100980x 10.1021/acscatal.9b01723 10.1039/c0cc00547a 10.1039/c9pp00481e 10.1126/science.aac9895 10.1021/acs.est.1c05374 10.1021/acs.est.1c02042 10.1021/acssensors.0c00377 10.1111/j.1751-1097.1987.tb05381.x 10.1021/acs.est.0c04410 10.1039/D0EE01114B 10.1021/acs.est.1c08883 10.1021/acs.jpclett.0c03327 10.1016/S0040-4039(01)84259-3 10.1021/acs.est.0c07274 10.3390/molecules22010181 10.1073/pnas.1819382116 10.1021/acs.chemrev.7b00161 10.1039/C7SC03161K 10.1039/D1EE01788H 10.1073/pnas.2119492119 10.1021/ja3073462 10.1073/pnas.2114729118 10.1021/ja01577a031 10.1016/j.cattod.2022.12.006 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jul 25, 2023 Copyright © 2023 the Author(s). Published by PNAS. 2023 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jul 25, 2023 – notice: Copyright © 2023 the Author(s). Published by PNAS. 2023 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2305706120 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | PMC10372693 37459516 10_1073_pnas_2305706120 |
Genre | Journal Article |
GrantInformation_xml | – fundername: MOST | National Natural Science Foundation of China (NSFC) grantid: 52192684 – fundername: MOST | National Natural Science Foundation of China (NSFC) grantid: 51821006 – fundername: ; grantid: 51821006 – fundername: ; grantid: 52192684 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 JENOY M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c422t-f59c590e0200f0edab5e4ae91c2086dabb736b8a711a9e1b8da8a760d5b8c6d83 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:35:45 EDT 2025 Thu Jul 10 18:03:23 EDT 2025 Wed Aug 13 07:38:38 EDT 2025 Wed Feb 19 02:05:04 EST 2025 Thu Apr 24 22:55:33 EDT 2025 Tue Jul 01 01:03:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | kinetic study electron paramagnetic resonance singlet oxygen catalytic oxidation processes direct TEMP oxidation |
Language | English |
License | This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c422t-f59c590e0200f0edab5e4ae91c2086dabb736b8a711a9e1b8da8a760d5b8c6d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Alexis Bell, University of California, Berkeley, CA; received April 8, 2023; accepted June 12, 2023 |
ORCID | 0000-0001-5247-6244 0000-0002-8087-8440 0000-0002-9116-6406 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10372693 |
PMID | 37459516 |
PQID | 2843445891 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10372693 proquest_miscellaneous_2839253229 proquest_journals_2843445891 pubmed_primary_37459516 crossref_primary_10_1073_pnas_2305706120 crossref_citationtrail_10_1073_pnas_2305706120 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-25 |
PublicationDateYYYYMMDD | 2023-07-25 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2023 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_7_2 doi: 10.1038/s41467-020-20071-w – ident: e_1_3_4_51_2 doi: 10.1021/acs.jpclett.9b02911 – ident: e_1_3_4_48_2 doi: 10.1021/jp300012t – ident: e_1_3_4_6_2 doi: 10.1016/j.watres.2020.116799 – ident: e_1_3_4_27_2 doi: 10.1021/acs.est.8b00735 – ident: e_1_3_4_28_2 doi: 10.1039/c1ob05475a – ident: e_1_3_4_56_2 doi: 10.1038/s41467-021-21598-2 – ident: e_1_3_4_5_2 doi: 10.1021/jacs.2c07450 – ident: e_1_3_4_11_2 doi: 10.1021/acs.est.9b07082 – ident: e_1_3_4_16_2 doi: 10.1021/acs.est.9b07246 – ident: e_1_3_4_42_2 doi: 10.1016/j.watres.2019.115143 – ident: e_1_3_4_52_2 doi: 10.1016/j.bbapap.2019.140334 – ident: e_1_3_4_1_2 doi: 10.1021/jacs.2c03444 – ident: e_1_3_4_40_2 doi: 10.1021/acs.accounts.0c00344 – ident: e_1_3_4_35_2 doi: 10.1021/acs.chemrev.1c00139 – ident: e_1_3_4_15_2 doi: 10.1021/acs.chemrev.5b00726 – ident: e_1_3_4_29_2 doi: 10.1021/acs.est.5b03595 – ident: e_1_3_4_14_2 doi: 10.1021/acs.chemrev.8b00554 – ident: e_1_3_4_38_2 doi: 10.1039/D2GC00457G – ident: e_1_3_4_22_2 doi: 10.1038/nenergy.2017.56 – ident: e_1_3_4_17_2 doi: 10.1016/j.chemosphere.2011.04.051 – ident: e_1_3_4_46_2 doi: 10.1016/j.jphotochem.2022.114161 – ident: e_1_3_4_25_2 doi: 10.1007/s11356-019-04763-5 – ident: e_1_3_4_24_2 doi: 10.1016/j.freeradbiomed.2021.12.303 – ident: e_1_3_4_53_2 doi: 10.1016/B978-0-12-821859-4.00010-6 – ident: e_1_3_4_31_2 doi: 10.1016/j.coche.2022.100854 – ident: e_1_3_4_26_2 doi: 10.1021/jacs.2c05507 – ident: e_1_3_4_18_2 doi: 10.1016/j.ccr.2020.213641 – ident: e_1_3_4_54_2 doi: 10.1038/s41467-020-17852-8 – ident: e_1_3_4_45_2 doi: 10.1016/j.watres.2018.10.087 – ident: e_1_3_4_3_2 doi: 10.1021/acs.chemrev.0c00781 – ident: e_1_3_4_50_2 doi: 10.1021/la100980x – ident: e_1_3_4_47_2 doi: 10.1021/acscatal.9b01723 – ident: e_1_3_4_37_2 doi: 10.1039/c0cc00547a – ident: e_1_3_4_49_2 doi: 10.1039/c9pp00481e – ident: e_1_3_4_39_2 doi: 10.1126/science.aac9895 – ident: e_1_3_4_10_2 doi: 10.1021/acs.est.1c05374 – ident: e_1_3_4_13_2 doi: 10.1021/acs.est.1c02042 – ident: e_1_3_4_19_2 doi: 10.1021/acssensors.0c00377 – ident: e_1_3_4_44_2 doi: 10.1111/j.1751-1097.1987.tb05381.x – ident: e_1_3_4_36_2 doi: 10.1021/acs.est.0c04410 – ident: e_1_3_4_2_2 doi: 10.1039/D0EE01114B – ident: e_1_3_4_30_2 doi: 10.1021/acs.est.1c08883 – ident: e_1_3_4_23_2 doi: 10.1021/acs.jpclett.0c03327 – ident: e_1_3_4_12_2 doi: 10.1016/S0040-4039(01)84259-3 – ident: e_1_3_4_9_2 doi: 10.1021/acs.est.0c07274 – ident: e_1_3_4_20_2 doi: 10.3390/molecules22010181 – ident: e_1_3_4_8_2 doi: 10.1073/pnas.1819382116 – ident: e_1_3_4_21_2 doi: 10.1021/acs.chemrev.7b00161 – ident: e_1_3_4_41_2 doi: 10.1039/C7SC03161K – ident: e_1_3_4_55_2 doi: 10.1039/D1EE01788H – ident: e_1_3_4_33_2 doi: 10.1073/pnas.2119492119 – ident: e_1_3_4_43_2 doi: 10.1021/ja3073462 – ident: e_1_3_4_4_2 doi: 10.1073/pnas.2114729118 – ident: e_1_3_4_32_2 doi: 10.1021/ja01577a031 – ident: e_1_3_4_34_2 doi: 10.1016/j.cattod.2022.12.006 |
SSID | ssj0009580 |
Score | 2.6363456 |
Snippet | Singlet oxygen (
1
O
2
) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The... Singlet oxygen ( O ) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping... Singlet oxygen (1O2) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping... 1 O 2 is a vital species for the selective oxidations of chemicals. However, detecting its production and understanding the underlying mechanisms in complex... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2305706120 |
SubjectTerms | Catalytic oxidation Chemical synthesis Decontamination Electron paramagnetic resonance Electron spin Electron spin resonance Molecular modelling Oxidation Physical Sciences Reaction mechanisms Singlet oxygen Trapping Water purification |
Title | Unveiling singlet oxygen spin trapping in catalytic oxidation processes using in situ kinetic EPR analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37459516 https://www.proquest.com/docview/2843445891 https://www.proquest.com/docview/2839253229 https://pubmed.ncbi.nlm.nih.gov/PMC10372693 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMa6FgYzEw1DkksSOnTxOaFOFRFVQK_ZW2YkjAiitlgZt_A_-L8ex417GpMFLlMuJ0_R8ORf7XBB6QxPNyyylJAYRSZhKM6LysiCUJirM80JFhUlw_jjh4zn7cJ6cDwa_t6KW2rUa5b_-mlfyP1yFc8BXkyX7D5z1g8IJ2Af-whY4DNtb8Xhe_9RVl09uPH7gQLC8vALqoFmZ8MULuVq5lJVulubKFGddXla2jVKwsjkCugnaxpE11boNvoPhaShPp58D6WqWbNuwU6_zmj7CYNJPKZ5sElSc1GgCEkwnm3bHX9oOOHA3GUunNrvwAiv_znTlBZGbyp4BgoF26c93I8DN5FOvd920RUzNfKhNcfZpBKAemU2gHmkrfcF4IZzZ_qFePMfhFg7tIs41uQ-CyjQrrmVjItsTYQy3cKPi-mX9Pc3n4xG7lXhBF2aAxWaAO-huDN5H3Mn77VrOqc1scm_QV4wS9N3eL9g1dq55MPuBuFuWzewBuu9cEnxi8XWIBrp-iA579uFjV5n87SP0zQMOO8BhCzhsAId7wGHY94DDHnDYAw53gDNkBnDYAQ4D4HAPuMdofnY6ez8mrlkHyVkcr0mZZHmShRrcj7AMdSFVopnUWZTH4DXDoRKUq1SKKJKZjlRaSDjgYZGoNOdFSp-gg3pZ62cI56XKUi10yJVgcUSVCEsuSh6KTEih1BCN-n91kbtK9qahyo_FDXwcomN_w8oWcbmZ9Khn08J96XA5ZZQx039ziF77yyCHzeKarPWyNTTgaSSgHrMhemq56p9FBUvAk-FDlO7w2xOYGu-7V-rqa1fr3aTxxjyjz2__Ci_Qvc0Hd4QO1hetfgmW81q96nD8B1n6xzU |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+singlet+oxygen+spin+trapping+in+catalytic+oxidation+processes+using+in+situ+kinetic+EPR+analysis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wu%2C+Jing-Hang&rft.au=Chen%2C+Fei&rft.au=Yang%2C+Tian-Hao&rft.au=Yu%2C+Han-Qing&rft.date=2023-07-25&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=120&rft.issue=30&rft_id=info:doi/10.1073%2Fpnas.2305706120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2305706120 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |