Unveiling singlet oxygen spin trapping in catalytic oxidation processes using in situ kinetic EPR analysis

Singlet oxygen ( 1 O 2 ) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1 O 2 detection. However, it is often limited to ti...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 120; no. 30; p. e2305706120
Main Authors Wu, Jing-Hang, Chen, Fei, Yang, Tian-Hao, Yu, Han-Qing
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 25.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Singlet oxygen ( 1 O 2 ) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1 O 2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1 O 2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1 O 2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1 O 2 -driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1 O 2 detection techniques, and provide insights into the reaction mechanisms in 1 O 2 -dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes.
AbstractList Singlet oxygen ( 1 O 2 ) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1 O 2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1 O 2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1 O 2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1 O 2 -driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1 O 2 detection techniques, and provide insights into the reaction mechanisms in 1 O 2 -dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes.
Singlet oxygen (1O2) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1O2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1O2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1O2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1O2-driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1O2 detection techniques, and provide insights into the reaction mechanisms in 1O2-dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes.
1 O 2 is a vital species for the selective oxidations of chemicals. However, detecting its production and understanding the underlying mechanisms in complex systems remains challenging. The spin-trapping method based on EPR (electron paramagnetic resonance) analysis has emerged as an indispensable tool for identifying the generation of 1 O 2 . Here, we applied EPR analysis to track the fates of 1 O 2 in catalytic oxidation processes, offering time-dependent profiles of trapping products. These detailed examinations can unveil the molecular mechanism of direct 2,2,6,6-tetramethylpiperidine oxidation and mitigate the risk of false positives. This study paves the way for exploring 1 O 2 generation in aqueous solutions and catalytic oxidations governed by other oxidative species and also offers thorough clarification from the mechanism of spin-trapping to its application scenarios. Singlet oxygen ( 1 O 2 ) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1 O 2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1 O 2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1 O 2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1 O 2 -driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1 O 2 detection techniques, and provide insights into the reaction mechanisms in 1 O 2 -dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes.
Singlet oxygen ( O ) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for O detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the O trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of O in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate O -driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D O detection techniques, and provide insights into the reaction mechanisms in O -dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes.
Singlet oxygen (1O2) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1O2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1O2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1O2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1O2-driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1O2 detection techniques, and provide insights into the reaction mechanisms in 1O2-dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes.Singlet oxygen (1O2) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1O2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1O2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1O2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1O2-driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1O2 detection techniques, and provide insights into the reaction mechanisms in 1O2-dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes.
Author Wu, Jing-Hang
Chen, Fei
Yang, Tian-Hao
Yu, Han-Qing
Author_xml – sequence: 1
  givenname: Jing-Hang
  orcidid: 0000-0002-8087-8440
  surname: Wu
  fullname: Wu, Jing-Hang
  organization: Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
– sequence: 2
  givenname: Fei
  orcidid: 0000-0002-9116-6406
  surname: Chen
  fullname: Chen, Fei
  organization: Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
– sequence: 3
  givenname: Tian-Hao
  surname: Yang
  fullname: Yang, Tian-Hao
  organization: Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
– sequence: 4
  givenname: Han-Qing
  orcidid: 0000-0001-5247-6244
  surname: Yu
  fullname: Yu, Han-Qing
  organization: Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37459516$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS1URLeFMzcUiQuXtOOvxD4hVBWoVAmE6NlynNnFS9YOsVOx_z0O3RaoxMXj0fze04zeCTkKMSAhLymcUWj5-RhsOmMcZAsNZfCErChoWjdCwxFZAbC2VoKJY3KS0hYAtFTwjBzzVkgtabMi25twi37wYVOl8gyYq_hzv8FQpdGHKk92HJdh-Tub7bDP3hXC9zb7GKpxig5TwlTN6YAln-fquw-4kJefv1Q2FFny6Tl5urZDwheHekpu3l9-vfhYX3_6cHXx7rp2grFcr6V2UgMCA1gD9raTKCxq6hioprRdy5tO2ZZSq5F2qrelaaCXnXJNr_gpeXvnO87dDnuHoVwxmHHyOzvtTbTe_DsJ_pvZxFtDgbes0bw4vDk4TPHHjCmbnU8Oh8EGjHMyTHHNJGdMF_T1I3Qb56lcvFCCCyGVpoV69fdKD7vc51CA8zvATTGlCdcPCAWzJG2WpM2fpItCPlI4n3-HUm7yw391vwCWnrAT
CitedBy_id crossref_primary_10_1002_adfm_202422197
crossref_primary_10_1016_j_apcatb_2025_125175
crossref_primary_10_1016_j_jre_2024_06_018
crossref_primary_10_1021_acs_est_4c02816
crossref_primary_10_1002_advs_202307151
crossref_primary_10_1093_pnasnexus_pgae330
crossref_primary_10_1016_j_jwpe_2025_107141
crossref_primary_10_1016_j_cej_2024_156042
crossref_primary_10_1002_advs_202410405
crossref_primary_10_1002_anie_202423157
crossref_primary_10_1007_s10853_024_10354_8
crossref_primary_10_1016_j_jcis_2024_09_104
crossref_primary_10_1016_j_seppur_2023_126122
crossref_primary_10_1016_j_cej_2024_153698
crossref_primary_10_1016_j_cej_2024_157814
crossref_primary_10_1021_acs_est_3c09316
crossref_primary_10_1021_acs_est_4c10363
crossref_primary_10_1016_j_apcatb_2024_124202
crossref_primary_10_1038_s41598_024_62564_4
crossref_primary_10_1021_acs_estlett_4c00155
crossref_primary_10_1002_anie_202318924
crossref_primary_10_1016_j_watres_2023_120614
crossref_primary_10_1039_D4CS00338A
crossref_primary_10_1016_j_xcrp_2024_102170
crossref_primary_10_1016_j_seppur_2024_128573
crossref_primary_10_1016_j_seppur_2024_129662
crossref_primary_10_1016_j_jhazmat_2024_134214
crossref_primary_10_1016_j_apcatb_2024_124431
crossref_primary_10_1016_j_jhazmat_2023_132538
crossref_primary_10_1016_j_watres_2024_122007
crossref_primary_10_1002_ange_202318924
crossref_primary_10_1016_j_cej_2024_149129
crossref_primary_10_1021_acsestengg_4c00403
crossref_primary_10_1016_j_cej_2024_149724
crossref_primary_10_1016_j_jece_2024_113526
crossref_primary_10_1016_j_scitotenv_2024_173042
crossref_primary_10_1021_acs_est_3c05694
crossref_primary_10_1021_acs_est_4c06725
crossref_primary_10_1016_j_apcatb_2023_123616
crossref_primary_10_1038_s41467_024_53289_z
crossref_primary_10_1002_adma_202308469
crossref_primary_10_1016_j_seppur_2023_126147
crossref_primary_10_1073_pnas_2403544121
crossref_primary_10_1016_j_cej_2025_161296
crossref_primary_10_1021_acs_est_4c11311
crossref_primary_10_1021_acscatal_3c03303
crossref_primary_10_1093_pnasnexus_pgae040
crossref_primary_10_1007_s11783_025_1944_4
crossref_primary_10_1016_j_cej_2024_150447
crossref_primary_10_1016_j_jclepro_2024_143485
crossref_primary_10_1002_ange_202423157
crossref_primary_10_1016_j_apcatb_2024_124807
crossref_primary_10_1021_acs_est_3c10361
crossref_primary_10_1021_acs_joc_3c02718
crossref_primary_10_1039_D4NR02819H
crossref_primary_10_1016_j_seppur_2024_131007
crossref_primary_10_1016_j_cej_2024_156573
crossref_primary_10_1016_j_jhazmat_2025_137606
crossref_primary_10_1016_j_apcatb_2024_124854
crossref_primary_10_1016_j_cej_2024_156698
crossref_primary_10_1007_s11783_024_1894_2
crossref_primary_10_1016_j_seppur_2024_129564
crossref_primary_10_1039_D4EE03065F
crossref_primary_10_1360_SSC_2024_0183
crossref_primary_10_1021_acssuschemeng_4c09055
crossref_primary_10_1021_acsnano_4c18558
crossref_primary_10_1038_s41467_024_55168_z
crossref_primary_10_1002_aic_18569
Cites_doi 10.1038/s41467-020-20071-w
10.1021/acs.jpclett.9b02911
10.1021/jp300012t
10.1016/j.watres.2020.116799
10.1021/acs.est.8b00735
10.1039/c1ob05475a
10.1038/s41467-021-21598-2
10.1021/jacs.2c07450
10.1021/acs.est.9b07082
10.1021/acs.est.9b07246
10.1016/j.watres.2019.115143
10.1016/j.bbapap.2019.140334
10.1021/jacs.2c03444
10.1021/acs.accounts.0c00344
10.1021/acs.chemrev.1c00139
10.1021/acs.chemrev.5b00726
10.1021/acs.est.5b03595
10.1021/acs.chemrev.8b00554
10.1039/D2GC00457G
10.1038/nenergy.2017.56
10.1016/j.chemosphere.2011.04.051
10.1016/j.jphotochem.2022.114161
10.1007/s11356-019-04763-5
10.1016/j.freeradbiomed.2021.12.303
10.1016/B978-0-12-821859-4.00010-6
10.1016/j.coche.2022.100854
10.1021/jacs.2c05507
10.1016/j.ccr.2020.213641
10.1038/s41467-020-17852-8
10.1016/j.watres.2018.10.087
10.1021/acs.chemrev.0c00781
10.1021/la100980x
10.1021/acscatal.9b01723
10.1039/c0cc00547a
10.1039/c9pp00481e
10.1126/science.aac9895
10.1021/acs.est.1c05374
10.1021/acs.est.1c02042
10.1021/acssensors.0c00377
10.1111/j.1751-1097.1987.tb05381.x
10.1021/acs.est.0c04410
10.1039/D0EE01114B
10.1021/acs.est.1c08883
10.1021/acs.jpclett.0c03327
10.1016/S0040-4039(01)84259-3
10.1021/acs.est.0c07274
10.3390/molecules22010181
10.1073/pnas.1819382116
10.1021/acs.chemrev.7b00161
10.1039/C7SC03161K
10.1039/D1EE01788H
10.1073/pnas.2119492119
10.1021/ja3073462
10.1073/pnas.2114729118
10.1021/ja01577a031
10.1016/j.cattod.2022.12.006
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jul 25, 2023
Copyright © 2023 the Author(s). Published by PNAS. 2023
Copyright_xml – notice: Copyright National Academy of Sciences Jul 25, 2023
– notice: Copyright © 2023 the Author(s). Published by PNAS. 2023
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2305706120
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Virology and AIDS Abstracts

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID PMC10372693
37459516
10_1073_pnas_2305706120
Genre Journal Article
GrantInformation_xml – fundername: MOST | National Natural Science Foundation of China (NSFC)
  grantid: 52192684
– fundername: MOST | National Natural Science Foundation of China (NSFC)
  grantid: 51821006
– fundername: ;
  grantid: 51821006
– fundername: ;
  grantid: 52192684
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
JENOY
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c422t-f59c590e0200f0edab5e4ae91c2086dabb736b8a711a9e1b8da8a760d5b8c6d83
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:35:45 EDT 2025
Thu Jul 10 18:03:23 EDT 2025
Wed Aug 13 07:38:38 EDT 2025
Wed Feb 19 02:05:04 EST 2025
Thu Apr 24 22:55:33 EDT 2025
Tue Jul 01 01:03:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords kinetic study
electron paramagnetic resonance
singlet oxygen
catalytic oxidation processes
direct TEMP oxidation
Language English
License This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c422t-f59c590e0200f0edab5e4ae91c2086dabb736b8a711a9e1b8da8a760d5b8c6d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Alexis Bell, University of California, Berkeley, CA; received April 8, 2023; accepted June 12, 2023
ORCID 0000-0001-5247-6244
0000-0002-8087-8440
0000-0002-9116-6406
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10372693
PMID 37459516
PQID 2843445891
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10372693
proquest_miscellaneous_2839253229
proquest_journals_2843445891
pubmed_primary_37459516
crossref_primary_10_1073_pnas_2305706120
crossref_citationtrail_10_1073_pnas_2305706120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-25
PublicationDateYYYYMMDD 2023-07-25
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2023
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_7_2
  doi: 10.1038/s41467-020-20071-w
– ident: e_1_3_4_51_2
  doi: 10.1021/acs.jpclett.9b02911
– ident: e_1_3_4_48_2
  doi: 10.1021/jp300012t
– ident: e_1_3_4_6_2
  doi: 10.1016/j.watres.2020.116799
– ident: e_1_3_4_27_2
  doi: 10.1021/acs.est.8b00735
– ident: e_1_3_4_28_2
  doi: 10.1039/c1ob05475a
– ident: e_1_3_4_56_2
  doi: 10.1038/s41467-021-21598-2
– ident: e_1_3_4_5_2
  doi: 10.1021/jacs.2c07450
– ident: e_1_3_4_11_2
  doi: 10.1021/acs.est.9b07082
– ident: e_1_3_4_16_2
  doi: 10.1021/acs.est.9b07246
– ident: e_1_3_4_42_2
  doi: 10.1016/j.watres.2019.115143
– ident: e_1_3_4_52_2
  doi: 10.1016/j.bbapap.2019.140334
– ident: e_1_3_4_1_2
  doi: 10.1021/jacs.2c03444
– ident: e_1_3_4_40_2
  doi: 10.1021/acs.accounts.0c00344
– ident: e_1_3_4_35_2
  doi: 10.1021/acs.chemrev.1c00139
– ident: e_1_3_4_15_2
  doi: 10.1021/acs.chemrev.5b00726
– ident: e_1_3_4_29_2
  doi: 10.1021/acs.est.5b03595
– ident: e_1_3_4_14_2
  doi: 10.1021/acs.chemrev.8b00554
– ident: e_1_3_4_38_2
  doi: 10.1039/D2GC00457G
– ident: e_1_3_4_22_2
  doi: 10.1038/nenergy.2017.56
– ident: e_1_3_4_17_2
  doi: 10.1016/j.chemosphere.2011.04.051
– ident: e_1_3_4_46_2
  doi: 10.1016/j.jphotochem.2022.114161
– ident: e_1_3_4_25_2
  doi: 10.1007/s11356-019-04763-5
– ident: e_1_3_4_24_2
  doi: 10.1016/j.freeradbiomed.2021.12.303
– ident: e_1_3_4_53_2
  doi: 10.1016/B978-0-12-821859-4.00010-6
– ident: e_1_3_4_31_2
  doi: 10.1016/j.coche.2022.100854
– ident: e_1_3_4_26_2
  doi: 10.1021/jacs.2c05507
– ident: e_1_3_4_18_2
  doi: 10.1016/j.ccr.2020.213641
– ident: e_1_3_4_54_2
  doi: 10.1038/s41467-020-17852-8
– ident: e_1_3_4_45_2
  doi: 10.1016/j.watres.2018.10.087
– ident: e_1_3_4_3_2
  doi: 10.1021/acs.chemrev.0c00781
– ident: e_1_3_4_50_2
  doi: 10.1021/la100980x
– ident: e_1_3_4_47_2
  doi: 10.1021/acscatal.9b01723
– ident: e_1_3_4_37_2
  doi: 10.1039/c0cc00547a
– ident: e_1_3_4_49_2
  doi: 10.1039/c9pp00481e
– ident: e_1_3_4_39_2
  doi: 10.1126/science.aac9895
– ident: e_1_3_4_10_2
  doi: 10.1021/acs.est.1c05374
– ident: e_1_3_4_13_2
  doi: 10.1021/acs.est.1c02042
– ident: e_1_3_4_19_2
  doi: 10.1021/acssensors.0c00377
– ident: e_1_3_4_44_2
  doi: 10.1111/j.1751-1097.1987.tb05381.x
– ident: e_1_3_4_36_2
  doi: 10.1021/acs.est.0c04410
– ident: e_1_3_4_2_2
  doi: 10.1039/D0EE01114B
– ident: e_1_3_4_30_2
  doi: 10.1021/acs.est.1c08883
– ident: e_1_3_4_23_2
  doi: 10.1021/acs.jpclett.0c03327
– ident: e_1_3_4_12_2
  doi: 10.1016/S0040-4039(01)84259-3
– ident: e_1_3_4_9_2
  doi: 10.1021/acs.est.0c07274
– ident: e_1_3_4_20_2
  doi: 10.3390/molecules22010181
– ident: e_1_3_4_8_2
  doi: 10.1073/pnas.1819382116
– ident: e_1_3_4_21_2
  doi: 10.1021/acs.chemrev.7b00161
– ident: e_1_3_4_41_2
  doi: 10.1039/C7SC03161K
– ident: e_1_3_4_55_2
  doi: 10.1039/D1EE01788H
– ident: e_1_3_4_33_2
  doi: 10.1073/pnas.2119492119
– ident: e_1_3_4_43_2
  doi: 10.1021/ja3073462
– ident: e_1_3_4_4_2
  doi: 10.1073/pnas.2114729118
– ident: e_1_3_4_32_2
  doi: 10.1021/ja01577a031
– ident: e_1_3_4_34_2
  doi: 10.1016/j.cattod.2022.12.006
SSID ssj0009580
Score 2.6363456
Snippet Singlet oxygen ( 1 O 2 ) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The...
Singlet oxygen ( O ) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping...
Singlet oxygen (1O2) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping...
1 O 2 is a vital species for the selective oxidations of chemicals. However, detecting its production and understanding the underlying mechanisms in complex...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2305706120
SubjectTerms Catalytic oxidation
Chemical synthesis
Decontamination
Electron paramagnetic resonance
Electron spin
Electron spin resonance
Molecular modelling
Oxidation
Physical Sciences
Reaction mechanisms
Singlet oxygen
Trapping
Water purification
Title Unveiling singlet oxygen spin trapping in catalytic oxidation processes using in situ kinetic EPR analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/37459516
https://www.proquest.com/docview/2843445891
https://www.proquest.com/docview/2839253229
https://pubmed.ncbi.nlm.nih.gov/PMC10372693
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMa6FgYzEw1DkksSOnTxOaFOFRFVQK_ZW2YkjAiitlgZt_A_-L8ex417GpMFLlMuJ0_R8ORf7XBB6QxPNyyylJAYRSZhKM6LysiCUJirM80JFhUlw_jjh4zn7cJ6cDwa_t6KW2rUa5b_-mlfyP1yFc8BXkyX7D5z1g8IJ2Af-whY4DNtb8Xhe_9RVl09uPH7gQLC8vALqoFmZ8MULuVq5lJVulubKFGddXla2jVKwsjkCugnaxpE11boNvoPhaShPp58D6WqWbNuwU6_zmj7CYNJPKZ5sElSc1GgCEkwnm3bHX9oOOHA3GUunNrvwAiv_znTlBZGbyp4BgoF26c93I8DN5FOvd920RUzNfKhNcfZpBKAemU2gHmkrfcF4IZzZ_qFePMfhFg7tIs41uQ-CyjQrrmVjItsTYQy3cKPi-mX9Pc3n4xG7lXhBF2aAxWaAO-huDN5H3Mn77VrOqc1scm_QV4wS9N3eL9g1dq55MPuBuFuWzewBuu9cEnxi8XWIBrp-iA579uFjV5n87SP0zQMOO8BhCzhsAId7wGHY94DDHnDYAw53gDNkBnDYAQ4D4HAPuMdofnY6ez8mrlkHyVkcr0mZZHmShRrcj7AMdSFVopnUWZTH4DXDoRKUq1SKKJKZjlRaSDjgYZGoNOdFSp-gg3pZ62cI56XKUi10yJVgcUSVCEsuSh6KTEih1BCN-n91kbtK9qahyo_FDXwcomN_w8oWcbmZ9Khn08J96XA5ZZQx039ziF77yyCHzeKarPWyNTTgaSSgHrMhemq56p9FBUvAk-FDlO7w2xOYGu-7V-rqa1fr3aTxxjyjz2__Ci_Qvc0Hd4QO1hetfgmW81q96nD8B1n6xzU
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+singlet+oxygen+spin+trapping+in+catalytic+oxidation+processes+using+in+situ+kinetic+EPR+analysis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wu%2C+Jing-Hang&rft.au=Chen%2C+Fei&rft.au=Yang%2C+Tian-Hao&rft.au=Yu%2C+Han-Qing&rft.date=2023-07-25&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=120&rft.issue=30&rft_id=info:doi/10.1073%2Fpnas.2305706120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2305706120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon