Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs
The origin of ferromagnetism in the prototype ferromagnetic semiconductor GaMnAs is controversial because of an insufficient understanding of its band structure and Fermi level position. This is a major issue for further development of this material for future semiconductor spintronics. Here, using...
Saved in:
Published in | Nature physics Vol. 7; no. 4; pp. 342 - 347 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2011
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1745-2473 1745-2481 |
DOI | 10.1038/nphys1905 |
Cover
Abstract | The origin of ferromagnetism in the prototype ferromagnetic semiconductor GaMnAs is controversial because of an insufficient understanding of its band structure and Fermi level position. This is a major issue for further development of this material for future semiconductor spintronics. Here, using a unique method combining a precise etching technique and resonant tunnelling spectroscopy, applied to a variety of surface GaMnAs layers, we can elucidate the universal valence-band (VB) picture of GaMnAs. We find that the VB structure of GaAs is almost perfectly maintained and does not merge with the impurity band for any of the GaMnAs samples, with Mn concentrations ranging from 6 to 15%, that we examined. Furthermore, the exchange splitting of the VB is found to be very small (only several millielectronvolts), even in GaMnAs with a high Curie temperature (154 K). Our findings shed light on the precise mechanism behind ferromagnetism in GaMnAs; a subject that has been debated for more than a decade.
The magnetic properties of GaMnAs could be useful in the development of spintronic devices. Yet the precise origin of these properties has been hotly debated. Resonant-tunnelling spectra obtained from GaMnAs devices of superlative quality could finally resolve this issue. |
---|---|
AbstractList | The origin of ferromagnetism in the prototype ferromagnetic semiconductor GaMnAs is controversial because of an insufficient understanding of its band structure and Fermi level position. This is a major issue for further development of this material for future semiconductor spintronics. Here, using a unique method combining a precise etching technique and resonant tunnelling spectroscopy, applied to a variety of surface GaMnAs layers, we can elucidate the universal valence-band (VB) picture of GaMnAs. We find that the VB structure of GaAs is almost perfectly maintained and does not merge with the impurity band for any of the GaMnAs samples, with Mn concentrations ranging from 6 to 15%, that we examined. Furthermore, the exchange splitting of the VB is found to be very small (only several millielectronvolts), even in GaMnAs with a high Curie temperature (154K). Our findings shed light on the precise mechanism behind ferromagnetism in GaMnAs; a subject that has been debated for more than a decade. The origin of ferromagnetism in the prototype ferromagnetic semiconductor GaMnAs is controversial because of an insufficient understanding of its band structure and Fermi level position. This is a major issue for further development of this material for future semiconductor spintronics. Here, using a unique method combining a precise etching technique and resonant tunnelling spectroscopy, applied to a variety of surface GaMnAs layers, we can elucidate the universal valence-band (VB) picture of GaMnAs. We find that the VB structure of GaAs is almost perfectly maintained and does not merge with the impurity band for any of the GaMnAs samples, with Mn concentrations ranging from 6 to 15%, that we examined. Furthermore, the exchange splitting of the VB is found to be very small (only several millielectronvolts), even in GaMnAs with a high Curie temperature (154 K). Our findings shed light on the precise mechanism behind ferromagnetism in GaMnAs; a subject that has been debated for more than a decade. [PUBLICATION ABSTRACT] The origin of ferromagnetism in the prototype ferromagnetic semiconductor GaMnAs is controversial because of an insufficient understanding of its band structure and Fermi level position. This is a major issue for further development of this material for future semiconductor spintronics. Here, using a unique method combining a precise etching technique and resonant tunnelling spectroscopy, applied to a variety of surface GaMnAs layers, we can elucidate the universal valence-band (VB) picture of GaMnAs. We find that the VB structure of GaAs is almost perfectly maintained and does not merge with the impurity band for any of the GaMnAs samples, with Mn concentrations ranging from 6 to 15%, that we examined. Furthermore, the exchange splitting of the VB is found to be very small (only several millielectronvolts), even in GaMnAs with a high Curie temperature (154 K). Our findings shed light on the precise mechanism behind ferromagnetism in GaMnAs; a subject that has been debated for more than a decade. The magnetic properties of GaMnAs could be useful in the development of spintronic devices. Yet the precise origin of these properties has been hotly debated. Resonant-tunnelling spectra obtained from GaMnAs devices of superlative quality could finally resolve this issue. |
Author | Ohya, Shinobu Tanaka, Masaaki Takata, Kenta |
Author_xml | – sequence: 1 givenname: Shinobu surname: Ohya fullname: Ohya, Shinobu email: ohya@cryst.t.u-tokyo.ac.jp organization: Department of Electrical Engineering and Information Systems, The University of Tokyo – sequence: 2 givenname: Kenta surname: Takata fullname: Takata, Kenta organization: Department of Electrical Engineering and Information Systems, The University of Tokyo – sequence: 3 givenname: Masaaki surname: Tanaka fullname: Tanaka, Masaaki email: masaaki@ee.t.u-tokyo.ac.jp organization: Department of Electrical Engineering and Information Systems, The University of Tokyo |
BookMark | eNp90c9LwzAUB_AgE9ymB_-D4sUfUJc0TZoex9CpTL3ouaTpy9bRJTNJhf33dkwmTPGUd_i8Ly_vDVDPWAMInRN8SzAVI7NebDzJMTtCfZKlLE5SQXr7OqMnaOD9EuM04YT20dMLSNdsoi4mXsm5gVCr6FM2YBREpTRVZHUUFhBpcM7uhYdVraypWhWsi6by2Yz9KTrWsvFw9v0O0fv93dvkIZ69Th8n41ms0iQJcaU4LoEpQWQpBRMSOIFcEsK1LjXRWFAt0yzL04omSgmAUjPBpS4rzBlP6BBd7nLXzn604EOxqr2CppEGbOsLIXCGiaCsk1f_SsIzQhlJ2Db04oAubetM949CsJx3m0txh0Y7pJz13oEuVB1kqK0JTtZNQXCxPUKxP0LXcX3QsXb1SrrNn_ZmZ31nzBzczwi_8RfQsZmD |
CitedBy_id | crossref_primary_10_1021_nl402229r crossref_primary_10_3367_UFNe_2018_11_038486 crossref_primary_10_1109_TMAG_2023_3284538 crossref_primary_10_1541_ieejjournal_139_679 crossref_primary_10_7567_APEX_11_033003 crossref_primary_10_1039_C5RA18564E crossref_primary_10_1103_PhysRevB_84_165309 crossref_primary_10_1103_PhysRevLett_111_097201 crossref_primary_10_1063_1_5020725 crossref_primary_10_1007_s10948_012_1433_4 crossref_primary_10_7567_JJAP_57_090301 crossref_primary_10_1021_nl302318f crossref_primary_10_1134_S0020168519010187 crossref_primary_10_35848_1882_0786_ac5221 crossref_primary_10_1103_PhysRevB_105_134511 crossref_primary_10_1186_1556_276X_7_592 crossref_primary_10_1103_PhysRevB_102_245112 crossref_primary_10_1063_1_3692591 crossref_primary_10_1103_PhysRevB_85_033202 crossref_primary_10_1103_RevModPhys_86_187 crossref_primary_10_1088_0022_3727_46_50_505313 crossref_primary_10_1038_nmat3250 crossref_primary_10_1063_1_4869576 crossref_primary_10_1103_PhysRevB_94_241115 crossref_primary_10_7567_1882_0786_ab25c8 crossref_primary_10_1103_PhysRevB_84_054414 crossref_primary_10_1063_1_4716471 crossref_primary_10_1103_PhysRevLett_112_107203 crossref_primary_10_7567_JJAP_53_04EM05 crossref_primary_10_1140_epjb_e2012_30785_6 crossref_primary_10_1016_j_jcrysgro_2012_11_035 crossref_primary_10_1063_1_4772630 crossref_primary_10_1103_PhysRevB_83_245210 crossref_primary_10_1134_S0020168516020175 crossref_primary_10_1088_1402_4896_ac8959 crossref_primary_10_1063_1_4816133 crossref_primary_10_1103_PhysRevB_92_144403 crossref_primary_10_1007_s11664_016_4590_6 crossref_primary_10_1103_PhysRevB_97_115201 crossref_primary_10_1103_PhysRevB_89_121301 crossref_primary_10_1063_5_0079245 crossref_primary_10_1088_1361_648X_aaa9a7 crossref_primary_10_1080_08940886_2014_889550 crossref_primary_10_1103_PhysRevB_89_205204 crossref_primary_10_1038_nphys1971 crossref_primary_10_1103_PhysRevB_103_014441 crossref_primary_10_1039_c1jm12383a crossref_primary_10_1063_1_4906562 crossref_primary_10_1038_ncomms12013 crossref_primary_10_1038_nphoton_2013_76 crossref_primary_10_1016_j_jmmm_2022_169518 crossref_primary_10_1134_S1028335815110087 crossref_primary_10_1103_PhysRevB_85_155306 crossref_primary_10_1103_PhysRevB_86_155427 crossref_primary_10_4028_www_scientific_net_DDF_331_235 crossref_primary_10_1063_1_4841075 crossref_primary_10_1107_S1600577513019085 crossref_primary_10_1063_1_4804578 crossref_primary_10_1103_PhysRevB_95_075203 crossref_primary_10_1103_PhysRevMaterials_3_084417 crossref_primary_10_1103_PhysRevB_94_075205 crossref_primary_10_1063_1_4932537 crossref_primary_10_1109_TMAG_2023_3287730 crossref_primary_10_1103_PhysRevB_85_195317 crossref_primary_10_1103_PhysRevLett_107_187203 crossref_primary_10_1063_1_4840136 crossref_primary_10_1038_s41467_019_10553_x crossref_primary_10_1103_PhysRevB_93_035203 crossref_primary_10_1103_PhysRevB_103_094432 crossref_primary_10_1038_nmat3450 crossref_primary_10_1088_1367_2630_aa5a42 crossref_primary_10_1063_1_4922218 crossref_primary_10_1063_1_4829746 crossref_primary_10_1088_0022_3727_47_35_355001 crossref_primary_10_1038_ncomms15387 crossref_primary_10_1103_PhysRevB_96_205415 crossref_primary_10_1103_PhysRevB_87_205314 crossref_primary_10_1063_1_4891996 crossref_primary_10_1088_0268_1242_30_4_043001 crossref_primary_10_1038_s41598_023_43702_w crossref_primary_10_1063_1_3652765 crossref_primary_10_1007_s10825_012_0401_3 crossref_primary_10_1007_s11433_012_4803_9 crossref_primary_10_1063_1_5083175 crossref_primary_10_1103_PhysRevB_108_165110 crossref_primary_10_1088_0268_1242_27_1_015018 crossref_primary_10_1103_PhysRevB_93_094423 crossref_primary_10_1103_PhysRevB_93_241303 crossref_primary_10_1038_ncomms13810 crossref_primary_10_1103_PhysRevB_90_245310 crossref_primary_10_1016_j_elspec_2019_06_009 crossref_primary_10_1103_PhysRevB_92_224407 crossref_primary_10_1038_s41928_020_00500_w crossref_primary_10_7567_APEX_11_063005 crossref_primary_10_1103_PhysRevB_86_195315 crossref_primary_10_1016_j_mseb_2023_116349 crossref_primary_10_1038_nmat3317 crossref_primary_10_1063_1_5131566 crossref_primary_10_1103_PhysRevB_86_094418 crossref_primary_10_1103_PhysRevB_87_121301 crossref_primary_10_1063_5_0031605 crossref_primary_10_1103_PhysRevB_84_121202 crossref_primary_10_1103_PhysRevB_86_165302 crossref_primary_10_35848_1347_4065_abcadc crossref_primary_10_1088_0022_3727_45_21_215301 crossref_primary_10_1063_5_0157124 crossref_primary_10_1007_s11433_012_4959_3 crossref_primary_10_1088_0022_3727_49_16_165104 crossref_primary_10_1063_1_3668087 crossref_primary_10_1063_1_4704154 |
Cites_doi | 10.1103/PhysRevB.76.161201 10.1103/PhysRevLett.92.037201 10.1103/PhysRevB.75.155328 10.1103/PhysRevB.69.115211 10.1103/RevModPhys.82.1633 10.1103/PhysRevLett.103.087203 10.1103/PhysRevLett.81.3002 10.1103/PhysRevLett.93.216602 10.1038/nature07318 10.1103/PhysRevB.63.195205 10.1063/1.2841703 10.1126/science.287.5455.1019 10.1063/1.2831367 10.1103/PhysRevLett.104.167204 10.1103/PhysRevLett.97.056803 10.1103/PhysRevLett.94.137401 10.1103/PhysRevLett.100.067204 10.1038/nmat2185 10.1103/PhysRevB.72.165204 10.1038/nphys1455 10.1038/nphys1362 10.1103/PhysRevB.58.R4211 10.1126/science.1183640 10.1103/PhysRevLett.89.107205 10.1063/1.121835 10.1103/PhysRevB.78.075201 10.1038/35050040 10.1063/1.2713176 10.1103/PhysRevLett.97.087208 10.1103/PhysRevB.81.045208 10.1103/PhysRevB.76.125206 10.1103/PhysRevB.65.193312 10.1103/PhysRevLett.99.127203 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2011 Copyright Nature Publishing Group Apr 2011 |
Copyright_xml | – notice: Springer Nature Limited 2011 – notice: Copyright Nature Publishing Group Apr 2011 |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1038/nphys1905 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Technology Research Database ProQuest Central Student Technology Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 347 |
ExternalDocumentID | 2308851561 10_1038_nphys1905 |
Genre | Feature |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ACMFV ACSTC AEZWR AFANA AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c422t-dc60be5c81aba858ae61e9a116ffbf1f083fa47794d32cc8eebf586afbd065623 |
IEDL.DBID | 8FG |
ISSN | 1745-2473 |
IngestDate | Fri Sep 05 09:27:05 EDT 2025 Fri Sep 05 11:41:00 EDT 2025 Sat Aug 23 13:21:49 EDT 2025 Tue Jul 01 03:48:12 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 Fri Feb 21 02:38:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-dc60be5c81aba858ae61e9a116ffbf1f083fa47794d32cc8eebf586afbd065623 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PQID | 859624740 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_880701835 proquest_miscellaneous_1671351252 proquest_journals_859624740 crossref_citationtrail_10_1038_nphys1905 crossref_primary_10_1038_nphys1905 springer_journals_10_1038_nphys1905 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-04-01 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nature Phys |
PublicationYear | 2011 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Edmonds (CR24) 2004; 92 Saito, Yamamoto, Yuasa, Ando (CR33) 2008; 103 Richardella (CR21) 2010; 327 Neumaier (CR12) 2009; 103 Ohya, Hai, Mizuno, Tanaka (CR22) 2007; 75 Elsen (CR29) 2007; 99 Ohno (CR1) 2000; 408 Jungwirth (CR8) 2007; 76 Ando, Saito, Agarwal, Debnath, Zayets (CR17) 2008; 100 Dietl, Ohno, Matsukura (CR10) 2001; 63 Chiba (CR4) 2008; 455 Stolichnov (CR2) 2008; 7 Watanabe, Okabayashi, Toyao, Yamaguchi, Yoshino (CR6) 2008; 92 Burch (CR15) 2006; 97 Ohno (CR28) 1998; 73 Dietl, Ohno, Matsukura, Cibert, Ferrand (CR9) 2000; 287 Sato (CR30) 2010; 82 Wagner, Neumaier, Reinwald, Wegscheider, Weiss (CR26) 2006; 97 Chernyshov (CR7) 2010; 5 Ohya, Ohno, Tanaka (CR25) 2007; 90 Petukhov, Chantis, Demchenko (CR27) 2002; 89 Rokhinson (CR18) 2007; 76 Mahadevan, Zunger (CR31) 2004; 69 Alberi (CR19) 2008; 78 Ohya, Muneta, Hai, Tanaka (CR23) 2010; 104 Hirakawa, Katsumoto, Hayashi, Hashimoto, Iye (CR14) 2002; 65 Chiba, Sato, Kita, Matsukura, Ohno (CR5) 2004; 93 Sawicki (CR3) 2009; 6 Nishitani (CR13) 2010; 81 Okabayashi (CR32) 1998; 58 Jungwirth (CR11) 2005; 72 Sapega, Moreno, Ramsteiner, Däweritz, Ploog (CR16) 2005; 94 Akai (CR20) 1998; 81 S Ohya (BFnphys1905_CR25) 2007; 90 T Dietl (BFnphys1905_CR10) 2001; 63 K Alberi (BFnphys1905_CR19) 2008; 78 T Dietl (BFnphys1905_CR9) 2000; 287 KS Burch (BFnphys1905_CR15) 2006; 97 A Chernyshov (BFnphys1905_CR7) 2010; 5 D Neumaier (BFnphys1905_CR12) 2009; 103 Y Nishitani (BFnphys1905_CR13) 2010; 81 J Okabayashi (BFnphys1905_CR32) 1998; 58 M Sawicki (BFnphys1905_CR3) 2009; 6 K Sato (BFnphys1905_CR30) 2010; 82 K Hirakawa (BFnphys1905_CR14) 2002; 65 H Akai (BFnphys1905_CR20) 1998; 81 D Chiba (BFnphys1905_CR5) 2004; 93 H Saito (BFnphys1905_CR33) 2008; 103 M Watanabe (BFnphys1905_CR6) 2008; 92 I Stolichnov (BFnphys1905_CR2) 2008; 7 P Mahadevan (BFnphys1905_CR31) 2004; 69 KW Edmonds (BFnphys1905_CR24) 2004; 92 A Richardella (BFnphys1905_CR21) 2010; 327 VF Sapega (BFnphys1905_CR16) 2005; 94 LP Rokhinson (BFnphys1905_CR18) 2007; 76 M Elsen (BFnphys1905_CR29) 2007; 99 S Ohya (BFnphys1905_CR23) 2010; 104 T Jungwirth (BFnphys1905_CR8) 2007; 76 T Jungwirth (BFnphys1905_CR11) 2005; 72 AG Petukhov (BFnphys1905_CR27) 2002; 89 S Ohya (BFnphys1905_CR22) 2007; 75 D Chiba (BFnphys1905_CR4) 2008; 455 H Ohno (BFnphys1905_CR1) 2000; 408 K Ando (BFnphys1905_CR17) 2008; 100 K Wagner (BFnphys1905_CR26) 2006; 97 H Ohno (BFnphys1905_CR28) 1998; 73 |
References_xml | – volume: 76 start-page: 161201(R) year: 2007 ident: CR18 article-title: Weak localization in Ga Mn As: Evidence of impurity band transport publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.161201 – volume: 92 start-page: 037201 year: 2004 ident: CR24 article-title: Mn interstitial diffusion in (Ga, Mn)As publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.037201 – volume: 75 start-page: 155328 year: 2007 ident: CR22 article-title: Quantum-size effect and tunneling magnetoresistance in ferromagnetic-semiconductor quantum heterostructures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.155328 – volume: 69 start-page: 115211 year: 2004 ident: CR31 article-title: First-principles investigation of the assumptions underlying model-Hamiltonian approaches to ferromagnetism of 3 impurities in III–V semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.115211 – volume: 82 start-page: 1633 year: 2010 end-page: 1690 ident: CR30 article-title: First-principles theory of dilute magnetic semiconductors publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.1633 – volume: 103 start-page: 087203 year: 2009 ident: CR12 article-title: All-electrical measurement of the density of states in (Ga, Mn)As publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.087203 – volume: 81 start-page: 3002 year: 1998 end-page: 3005 ident: CR20 article-title: Ferromagnetism and its stability in the diluted magnetic semiconductor (In, Mn)As publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.3002 – volume: 93 start-page: 216602 year: 2004 ident: CR5 article-title: Current–driven magnetization reversal in a ferromagnetic semiconductor (Ga, Mn)As/GaAs/(Ga, Mn)As tunnel junction publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.216602 – volume: 455 start-page: 515 year: 2008 end-page: 518 ident: CR4 article-title: Magnetization vector manipulation by electric fields publication-title: Nature doi: 10.1038/nature07318 – volume: 63 start-page: 195205 year: 2001 ident: CR10 article-title: Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.195205 – volume: 92 start-page: 082506 year: 2008 ident: CR6 article-title: Current-driven magnetization reversal at extremely low threshold current density in (Ga, Mn)As-based double-barrier magnetic tunnel junctions publication-title: Appl. Phys. Lett. doi: 10.1063/1.2841703 – volume: 287 start-page: 1019 year: 2000 end-page: 1022 ident: CR9 article-title: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors publication-title: Science doi: 10.1126/science.287.5455.1019 – volume: 103 start-page: 07D127 year: 2008 ident: CR33 article-title: Tunneling spectroscopy in Fe/ZnSe/Ga Mn As magnetic tunnel diodes publication-title: J. Appl. Phys. doi: 10.1063/1.2831367 – volume: 104 start-page: 167204 year: 2010 ident: CR23 article-title: Valence-band structure of ferromagnetic-semiconductor GaMnAs studied by spin-dependent resonant tunneling spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.167204 – volume: 97 start-page: 056803 year: 2006 ident: CR26 article-title: Dephasing in (Ga, Mn)As nanowires and rings publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.056803 – volume: 94 start-page: 137401 year: 2005 ident: CR16 article-title: Polarization of valence band holes in the (Ga, Mn)As diluted magnetic semiconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.137401 – volume: 100 start-page: 067204 year: 2008 ident: CR17 article-title: Origin of the anomalous magnetic circular dichroism spectral shape in ferromagnetic Ga Mn As: Impurity bands inside the band gap publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.067204 – volume: 7 start-page: 464 year: 2008 end-page: 467 ident: CR2 article-title: Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As publication-title: Nature Mater. doi: 10.1038/nmat2185 – volume: 72 start-page: 165204 year: 2005 ident: CR11 article-title: Prospects for high temperature ferromagnetism in (Ga, Mn)As semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.165204 – volume: 6 start-page: 22 year: 2009 end-page: 25 ident: CR3 article-title: Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As publication-title: Nature Phys. doi: 10.1038/nphys1455 – volume: 5 start-page: 656 year: 2010 end-page: 659 ident: CR7 article-title: Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field publication-title: Nature Phys. doi: 10.1038/nphys1362 – volume: 58 start-page: R4211 year: 1998 end-page: R4214 ident: CR32 article-title: Core-level photoemission study of Ga Mn As publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.R4211 – volume: 327 start-page: 665 year: 2010 end-page: 669 ident: CR21 article-title: Visualizing critical correlations near the metal-insulator transition in Ga Mn As publication-title: Science doi: 10.1126/science.1183640 – volume: 89 start-page: 107205 year: 2002 ident: CR27 article-title: Resonant enhancement of tunneling magnetoresistance in double-barrier magnetic heterostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.107205 – volume: 73 start-page: 363 year: 1998 end-page: 365 ident: CR28 article-title: Spontaneous splitting of ferromagnetic (Ga, Mn)As valence band observed by resonant tunneling spectroscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.121835 – volume: 78 start-page: 075201 year: 2008 ident: CR19 article-title: Formation of Mn-derived impurity band in III-Mn-V alloys by valence band anticrossing publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.075201 – volume: 408 start-page: 944 year: 2000 end-page: 946 ident: CR1 article-title: Electric-field control of ferromagnetism publication-title: Nature doi: 10.1038/35050040 – volume: 90 start-page: 112503 year: 2007 ident: CR25 article-title: Magneto-optical and magnetotransport properties of heavily Mn-doped GaMnAs publication-title: Appl. Phys. Lett. doi: 10.1063/1.2713176 – volume: 97 start-page: 087208 year: 2006 ident: CR15 article-title: Impurity band conduction in a high temperature ferromagnetic semiconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.087208 – volume: 81 start-page: 045208 year: 2010 ident: CR13 article-title: Curie temperature versus hole concentration in field-effect structures of Ga Mn As publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.045208 – volume: 76 start-page: 125206 year: 2007 ident: CR8 article-title: Character of states near the Fermi level in (Ga, Mn)As: Impurity to valence band crossover publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.125206 – volume: 65 start-page: 193312 year: 2002 ident: CR14 article-title: Double-exchange-like interaction in Ga Mn As investigated by infrared absorption spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.193312 – volume: 99 start-page: 127203 year: 2007 ident: CR29 article-title: Spin-polarized tunneling as a probe of the electronic properties of Ga Mn As heterostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.127203 – volume: 63 start-page: 195205 year: 2001 ident: BFnphys1905_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.195205 – volume: 78 start-page: 075201 year: 2008 ident: BFnphys1905_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.075201 – volume: 93 start-page: 216602 year: 2004 ident: BFnphys1905_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.216602 – volume: 92 start-page: 082506 year: 2008 ident: BFnphys1905_CR6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2841703 – volume: 327 start-page: 665 year: 2010 ident: BFnphys1905_CR21 publication-title: Science doi: 10.1126/science.1183640 – volume: 75 start-page: 155328 year: 2007 ident: BFnphys1905_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.155328 – volume: 97 start-page: 087208 year: 2006 ident: BFnphys1905_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.087208 – volume: 72 start-page: 165204 year: 2005 ident: BFnphys1905_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.165204 – volume: 58 start-page: R4211 year: 1998 ident: BFnphys1905_CR32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.R4211 – volume: 99 start-page: 127203 year: 2007 ident: BFnphys1905_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.127203 – volume: 103 start-page: 087203 year: 2009 ident: BFnphys1905_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.087203 – volume: 455 start-page: 515 year: 2008 ident: BFnphys1905_CR4 publication-title: Nature doi: 10.1038/nature07318 – volume: 65 start-page: 193312 year: 2002 ident: BFnphys1905_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.193312 – volume: 76 start-page: 125206 year: 2007 ident: BFnphys1905_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.125206 – volume: 94 start-page: 137401 year: 2005 ident: BFnphys1905_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.137401 – volume: 92 start-page: 037201 year: 2004 ident: BFnphys1905_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.037201 – volume: 408 start-page: 944 year: 2000 ident: BFnphys1905_CR1 publication-title: Nature doi: 10.1038/35050040 – volume: 90 start-page: 112503 year: 2007 ident: BFnphys1905_CR25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2713176 – volume: 287 start-page: 1019 year: 2000 ident: BFnphys1905_CR9 publication-title: Science doi: 10.1126/science.287.5455.1019 – volume: 104 start-page: 167204 year: 2010 ident: BFnphys1905_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.167204 – volume: 73 start-page: 363 year: 1998 ident: BFnphys1905_CR28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.121835 – volume: 81 start-page: 3002 year: 1998 ident: BFnphys1905_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.3002 – volume: 81 start-page: 045208 year: 2010 ident: BFnphys1905_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.045208 – volume: 82 start-page: 1633 year: 2010 ident: BFnphys1905_CR30 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.1633 – volume: 97 start-page: 056803 year: 2006 ident: BFnphys1905_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.056803 – volume: 89 start-page: 107205 year: 2002 ident: BFnphys1905_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.107205 – volume: 76 start-page: 161201(R) year: 2007 ident: BFnphys1905_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.161201 – volume: 69 start-page: 115211 year: 2004 ident: BFnphys1905_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.115211 – volume: 103 start-page: 07D127 year: 2008 ident: BFnphys1905_CR33 publication-title: J. Appl. Phys. doi: 10.1063/1.2831367 – volume: 7 start-page: 464 year: 2008 ident: BFnphys1905_CR2 publication-title: Nature Mater. doi: 10.1038/nmat2185 – volume: 5 start-page: 656 year: 2010 ident: BFnphys1905_CR7 publication-title: Nature Phys. doi: 10.1038/nphys1362 – volume: 100 start-page: 067204 year: 2008 ident: BFnphys1905_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.067204 – volume: 6 start-page: 22 year: 2009 ident: BFnphys1905_CR3 publication-title: Nature Phys. doi: 10.1038/nphys1455 |
SSID | ssj0042613 |
Score | 2.3827522 |
Snippet | The origin of ferromagnetism in the prototype ferromagnetic semiconductor GaMnAs is controversial because of an insufficient understanding of its band... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 342 |
SubjectTerms | Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Etching Fermi level Fermi surfaces Ferromagnetism Gallium arsenide Gallium arsenides Magnetic fields Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Prototypes Semiconductors Sheds Spectroscopy Theoretical |
Title | Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs |
URI | https://link.springer.com/article/10.1038/nphys1905 https://www.proquest.com/docview/859624740 https://www.proquest.com/docview/1671351252 https://www.proquest.com/docview/880701835 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB1BERIXxCrKUpnlwCUizmpOqAUCqtQKISpxi7xygaQ05f8ZZ6tYTznEUazxeOaNZzwP4EzpWDCOkWqkQuYEOrJE7p5w0FWYkBnPFSXX4Wgc3U-C4XP4XNfmFHVZZWMTS0OtcmnPyC-YpYkJ4sC9mr47ljTKJldrBo1lWKHoaKyas-SuMcQ2OPCr-5Chg5_6TWMhn11k9twAfWH41R0tMOa3tGjpbZINWK9hIulX67oJSzrbgtWyXFMW2zAca9uYmGDs7rzxl8zeRCSoM3abEsEzRXJDENoRo2ezvB1R2Er4PLMtXvMZueOjrF_swCS5fbq-d2pWBEcGnjd3lIxcoUPJKBechYyjfPUlpzQyRhhqEFMZHsS4z5TvScm0Fij1iBuhEG4g2tmFDs5O7wGhAY0VY0ZQhWFioJnLZMQ5oj4htWKyC-eNcFJZtwy3zBWvaZm69lnayrELJ-3QadUn47dBB42E03qrFGm7sF04bt-ijtvEBc90_lGkNCqJBL3Q6wL5YwzaodhF-4Q_OW3WbvGTH1PZ_3cqB7BWnR3bCp1D6MxnH_oIwcdc9EoV68FKf3AzSPA5uB0_PH4CC8zelg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC1FEyG4IFYxhKXZJC5W7Ha73RwQCpAwWWaEUCLlZnrlkrTDeCLER_GPVHmLWG85uySXqqtr6VoewHPnS6M0ZqrSFSoRXhKQOzcJuopQqMBT02IdzhdydiT2jovjNfgxzMJQW-VgE1tD7WpLb-SbimBiRCnSN2dfEwKNouLqgKDRacW-__4NM7bm9e57PN4XnO9sH76bJT2oQGIF56vEWZkaX1iVaaNVoTSy51_pLJMhmJAFDEmCFiWqqcu5tcp7g0xLHYxDby1pzwFa_HVBA60TWH-7vfj4aTD9lI7k3QRmkSCz-bDKKFebkV4q0PsWvzrAi6j2t0Js6992bsD1PjBlW50m3YQ1H2_BlbZB1Da3YW_haRUyi3VMTvWXSLOPDLWUDAMzOjpWB4bBJAt-uaxHioZ67-tIS2XrJfug53GruQNHlyKyuzBB7vw9YJnISqdUMJnDxFR4lSortcY401jvlJ3Cy0E4le2XlBNWxknVFstzVY1ynMLTkfSs28zxN6KNQcJVfzmbalSlKTwZv-KtolKJjr4-b6pMttCFvOBTYP-gQctXpmgR8SfPhrO7-MkfrNz_LyuP4erscH5QHewu9jfgWvdyTf1BD2CyWp77hxj6rMyjXuEYfL5sHf8Jqqwb9A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4QjMaLUdS4gtigJl4mO9Mz09McDCHC8pKNB0m4jf3koj3LzhLCT_PfWTUvoqA3zlNJ11R_XY-u6iqA99YVWiqMVIXNZZQ5QYPcuY7QVPhceh7rZtbhyVQcnGZHZ_nZEvzq38JQWWWvExtFbStDd-RjSWNisiKLx76rivi6O9meXUQ0QIoSrf00jRYhx-76CqO3-tPhLm71B84ne98-H0TdgIHIZJwvImtErF1uZKK0krlUyKrbUkkivNc-8eieeJUVCFmbcmOkcxp_QCivLVpuQT0PUPs_KNJii-I-OdnvjQAFJmn7FjOPkO20b2qUynGgOwu0w_mfpvDGv_0rJdtYuslTeNK5qGynxdQzWHJhBR42paKmfg5HU0dNkVmoQvRTnQd6BckQr6QimFbBssozdCuZd_N5NVDUVIVfBWovW83ZvjoJO_ULOL0Xgb2EZeTOvQKWZElhpfQ6sRiiZk7G0gil0OPUxllpRvCxF05punblNDXjR9mkzVNZDnIcweZAOmt7dNxFtNpLuOyOaV0OoBrBxvAVzxclTVRw1WVdJqIZYshzPgL2DxrUgUWMuhEXedfv3c0it1h5_V9W3sIjRHb55XB6vAqP2ytsKhRag-XF_NK9QR9oodcbtDH4ft_w_g2UER7E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nearly+non-magnetic+valence+band+of+the+ferromagnetic+semiconductor+GaMnAs&rft.jtitle=Nature+physics&rft.au=Ohya%2C+Shinobu&rft.au=Takata%2C+Kenta&rft.au=Tanaka%2C+Masaaki&rft.date=2011-04-01&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=7&rft.issue=4&rft.spage=342&rft.epage=347&rft_id=info:doi/10.1038%2Fnphys1905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nphys1905 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |