Numerical and functional response of phagotrophic aquatic protists: the ideal experiment—and why we cannot get it

Protists are paramount for biogeochemical cycling in every aquatic ecosystem due to their vast population sizes and physiological versatility. Numerical response (NR) and functional response (FR) experiments are cornerstones of trait-based functional ecology and are increasingly studied experimental...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 16; p. 1559802
Main Author Weisse, Thomas
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 10.06.2025
Subjects
Online AccessGet full text
ISSN1664-302X
1664-302X
DOI10.3389/fmicb.2025.1559802

Cover

Loading…
Abstract Protists are paramount for biogeochemical cycling in every aquatic ecosystem due to their vast population sizes and physiological versatility. Numerical response (NR) and functional response (FR) experiments are cornerstones of trait-based functional ecology and are increasingly studied experimentally with phagotrophic aquatic protists. Such experiments provide estimates of protist growth, production and consumption rates in relation to biotic (food supply) and abiotic variables (e.g., temperature, pH, and salinity) that can be used in mathematical models of ecosystem dynamics. Until now, NR and FR experiments lack standardization and are subject to potential pitfalls that received little attention in the literature. It is a common misconception that an experimental investigation of a phagotrophic protist’s growth and ingestion rates represents a single experiment with replication. I demonstrate that a typical NR or FR experiment consists of a series of individual experiments in which not only the experimental target variable (food, i.e., prey abundance or biomass) changes but also other factors (physiological conditions of prey and predator, nutrient levels, unwanted contaminants) vary that may affect the experimental outcome. Standardizing all variables affecting a series of NR and FR experiments is virtually impossible. I further explain why FR experiments are more prone to experimental bias than NR experiments. Since it is principally impossible to perform an “ideal” NR or FR experiment, fulfilling all criteria of experimental standardization, the goal is to reduce the “noise” to obtain statistically significant and reproducible results. To this end, I provide guidelines that may help achieve this goal in future studies.
AbstractList Protists are paramount for biogeochemical cycling in every aquatic ecosystem due to their vast population sizes and physiological versatility. Numerical response (NR) and functional response (FR) experiments are cornerstones of trait-based functional ecology and are increasingly studied experimentally with phagotrophic aquatic protists. Such experiments provide estimates of protist growth, production and consumption rates in relation to biotic (food supply) and abiotic variables (e.g., temperature, pH, and salinity) that can be used in mathematical models of ecosystem dynamics. Until now, NR and FR experiments lack standardization and are subject to potential pitfalls that received little attention in the literature. It is a common misconception that an experimental investigation of a phagotrophic protist's growth and ingestion rates represents a single experiment with replication. I demonstrate that a typical NR or FR experiment consists of a series of individual experiments in which not only the experimental target variable (food, i.e., prey abundance or biomass) changes but also other factors (physiological conditions of prey and predator, nutrient levels, unwanted contaminants) vary that may affect the experimental outcome. Standardizing all variables affecting a series of NR and FR experiments is virtually impossible. I further explain why FR experiments are more prone to experimental bias than NR experiments. Since it is principally impossible to perform an "ideal" NR or FR experiment, fulfilling all criteria of experimental standardization, the goal is to reduce the "noise" to obtain statistically significant and reproducible results. To this end, I provide guidelines that may help achieve this goal in future studies.
Protists are paramount for biogeochemical cycling in every aquatic ecosystem due to their vast population sizes and physiological versatility. Numerical response (NR) and functional response (FR) experiments are cornerstones of trait-based functional ecology and are increasingly studied experimentally with phagotrophic aquatic protists. Such experiments provide estimates of protist growth, production and consumption rates in relation to biotic (food supply) and abiotic variables (e.g., temperature, pH, and salinity) that can be used in mathematical models of ecosystem dynamics. Until now, NR and FR experiments lack standardization and are subject to potential pitfalls that received little attention in the literature. It is a common misconception that an experimental investigation of a phagotrophic protist's growth and ingestion rates represents a single experiment with replication. I demonstrate that a typical NR or FR experiment consists of a series of individual experiments in which not only the experimental target variable (food, i.e., prey abundance or biomass) changes but also other factors (physiological conditions of prey and predator, nutrient levels, unwanted contaminants) vary that may affect the experimental outcome. Standardizing all variables affecting a series of NR and FR experiments is virtually impossible. I further explain why FR experiments are more prone to experimental bias than NR experiments. Since it is principally impossible to perform an "ideal" NR or FR experiment, fulfilling all criteria of experimental standardization, the goal is to reduce the "noise" to obtain statistically significant and reproducible results. To this end, I provide guidelines that may help achieve this goal in future studies.Protists are paramount for biogeochemical cycling in every aquatic ecosystem due to their vast population sizes and physiological versatility. Numerical response (NR) and functional response (FR) experiments are cornerstones of trait-based functional ecology and are increasingly studied experimentally with phagotrophic aquatic protists. Such experiments provide estimates of protist growth, production and consumption rates in relation to biotic (food supply) and abiotic variables (e.g., temperature, pH, and salinity) that can be used in mathematical models of ecosystem dynamics. Until now, NR and FR experiments lack standardization and are subject to potential pitfalls that received little attention in the literature. It is a common misconception that an experimental investigation of a phagotrophic protist's growth and ingestion rates represents a single experiment with replication. I demonstrate that a typical NR or FR experiment consists of a series of individual experiments in which not only the experimental target variable (food, i.e., prey abundance or biomass) changes but also other factors (physiological conditions of prey and predator, nutrient levels, unwanted contaminants) vary that may affect the experimental outcome. Standardizing all variables affecting a series of NR and FR experiments is virtually impossible. I further explain why FR experiments are more prone to experimental bias than NR experiments. Since it is principally impossible to perform an "ideal" NR or FR experiment, fulfilling all criteria of experimental standardization, the goal is to reduce the "noise" to obtain statistically significant and reproducible results. To this end, I provide guidelines that may help achieve this goal in future studies.
Author Weisse, Thomas
AuthorAffiliation Research Department for Limnology, University of Innsbruck , Mondsee , Austria
AuthorAffiliation_xml – name: Research Department for Limnology, University of Innsbruck , Mondsee , Austria
Author_xml – sequence: 1
  givenname: Thomas
  surname: Weisse
  fullname: Weisse, Thomas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40556895$$D View this record in MEDLINE/PubMed
BookMark eNpVkstu1DAUhi1URMvQF2CBvGQzg-9J2CBUUahUwQYkdpZjn0xSJXZqO5TueIg-IU-CpzNUrRc-vvz-zjny_xId-eABodeUbDivm3fdNNh2wwiTGyplUxP2DJ1QpcSaE_bz6NH6GJ2mdEXKEISV-QU6FkRKVTfyBKWvywRxsGbExjvcLd7mIfiyjZDm4BPg0OG5N9uQY5j7wWJzvZhc4hxDHlJO73HuAQ8OyiP4PRfaBD7__XO3A970t_gGsDXeh4y3kPGQX6HnnRkTnB7iCv04__T97Mv68tvni7OPl2srGMtrRyvDlGmUJQ0nleu4dEo4YK3pOFS2lqp1tlGCWmW4UdTJitRUSUmkVcD5Cl3suS6YKz2Xuky81cEM-v4gxK02sXQygm4713BaKxC8Fa0xtatp1SoJVDTClnwr9GHPmpd2AmdLh9GMT6BPb_zQ6234pSkrWCFVIbw9EGK4XiBlPQ3JwjgaD2FJmjPGG85JvSv8zeNkD1n-f1sRsL3AxpBShO5BQone2UPf20Pv7KEP9uD_AIySsZs
Cites_doi 10.4319/lo.1980.25.4.0733
10.1007/978-3-319-32211-7_19
10.3354/ame040163
10.1007/s12275-020-9567-8
10.4319/lo.1982.27.6.1059
10.4039/Ent91293-5
10.1111/gcb.13641
10.1016/j.tim.2012.01.007
10.1046/j.1523-1739.1995.09040962.x
10.1186/1472-6785-11-1
10.1111/j.1600-0706.2013.00418.x
10.1111/j.1462-2920.2006.01175.x
10.3354/meps13200
10.1007/s002480000116
10.4319/lo.1990.35.1.0024
10.1016/j.limno.2016.05.002
10.1093/oso/9780192895509.001.0001
10.1038/s41598-019-38507-9
10.4319/lo.1997.42.5.1006
10.1111/j.1365-2486.2008.01700.x
10.1038/ismej.2012.117
10.1007/s10526-012-9492-9
10.1002/lno.10282
10.3354/meps121065
10.1016/j.actao.2011.07.002
10.1002/lol2.10264
10.1111/jeu.12823
10.1111/2041-210X.12312
10.1038/nature08058
10.1007/s00248-003-9000-y
10.1127/0003-9136/2006/0167-0371
10.2307/1936826
10.3354/ame01340
10.4319/lo.2004.49.6.1915
10.1111/jeu.1282310.1098/rspb.2013.1389
10.1093/plankt/fbx020
10.1016/j.ecolind.2020.106992
10.3354/ame01455
10.1093/plankt/fbab017
10.1098/rspb.2019.2818
10.1111/jeu.12879
10.3389/fmars.2020.569309
10.3389/fevo.2023.1033818
10.1111/2041-210x.13039
10.3354/meps119125
10.1002/ecs2.3051
10.1038/nclimate1958
10.3354/ame042063
10.4319/lo.1997.42.6.1375
10.4319/lo.2000.45.3.0569
10.2307/2679836
10.1016/j.ejop.2023.125973
10.1016/j.tree.2006.02.002
10.4319/lo.2002.47.5.1447
10.1016/j.watres.2011.12.018
10.3354/meps338061
10.1177/0049124104268644
10.1016/j.protis.2015.02.003
10.1111/jpy.12826
10.5962/bhl.title.4489
10.1086/282586
10.3354/ame01352
10.1007/s00227-012-2009-3
10.1017/S1464793103006286
10.4319/lo.1972.17.6.0805
10.1093/acprof:osobl/9780199913831.001.0001
10.1007/BF00379954
10.1093/oso/9780195131871.003.0010
10.1016/j.ejop.2017.04.001
10.1007/s00248-024-02406-y
10.1111/j.1558-5646.2009.00902.x
10.1093/plankt/fbi100
10.1038/s41559-017-0269-5
10.3354/meps10291
10.1093/plankt/23.4.353
10.1016/j.ejop.2016.03.003
10.1111/j.2006.0030-1299.15280.x
10.1146/annurev.ecolsys.39.110707.173549
10.4319/lo.2001.46.8.2008
10.1111/jeu.12969
10.1016/j.ejsobi.2011.05.008
10.1016/0967-0653(96)81057-x
10.1242/jeb.045435
ContentType Journal Article
Copyright Copyright © 2025 Weisse.
Copyright © 2025 Weisse. 2025 Weisse
Copyright_xml – notice: Copyright © 2025 Weisse.
– notice: Copyright © 2025 Weisse. 2025 Weisse
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2025.1559802
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_bfd93186e43b4baa8d817b65e1494caf
PMC12186456
40556895
10_3389_fmicb_2025_1559802
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
M48
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c422t-d17a26a96c09307df35d64de2baf3e7c856bdc9641c6a3a61d5708165505c6e33
IEDL.DBID DOA
ISSN 1664-302X
IngestDate Wed Aug 27 01:13:56 EDT 2025
Thu Aug 21 18:26:25 EDT 2025
Thu Jun 26 01:29:02 EDT 2025
Fri Jun 27 02:12:46 EDT 2025
Thu Jul 03 08:21:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords experimental design
growth rates
ingestion rates
noise and bias
ciliates
functional ecology
Language English
License Copyright © 2025 Weisse.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-d17a26a96c09307df35d64de2baf3e7c856bdc9641c6a3a61d5708165505c6e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Miroslav Macek, National Autonomous University of Mexico, Mexico
Krystyna Kalinowska, Stanisław Sakowicz Inland Fisheries Institute, Poland
Reviewed by: Indranil Mukherjee, Biology Centre of the Czech Academy of Sciences, Czechia
OpenAccessLink https://doaj.org/article/bfd93186e43b4baa8d817b65e1494caf
PMID 40556895
PQID 3223933083
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_bfd93186e43b4baa8d817b65e1494caf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12186456
proquest_miscellaneous_3223933083
pubmed_primary_40556895
crossref_primary_10_3389_fmicb_2025_1559802
PublicationCentury 2000
PublicationDate 2025-06-10
PublicationDateYYYYMMDD 2025-06-10
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Fuhrman (B26) 2009; 459
Koen-Alonso (B39) 2007
Uszko (B75) 2020; 11
Yang (B91) 2013; 7
Weisse (B80) 2006; 28
Kivi (B38) 1995; 119
Boenigk (B8) 2001; 42
Boenigk (B7) 2007; 9
Weisse (B83); 59
Montagnes (B52) 1996; 130
Burnham (B10) 2004; 33
Jakobsen (B33) 2004; 49
Elliott (B19) 2012; 46
Jacob (B32) 2017; 1
Weisse (B84); 121
Riebesell (B65) 2011
Stoecker (B70) 2009; 57
Weisse (B76) 2006; 167
DeLong (B15) 2021
Gismervik (B28) 2005; 40
DeLong (B17) 2013; 122
Rosenbaum (B66) 2018; 9
Rothhaupt (B67) 1990; 35
Macek (B46) 2001; 23
Paine (B62) 1995; 9
Poloczanska (B63) 2013; 3
Altermatt (B1) 2015; 6
DeLong (B16) 2011; 11
Montagnes (B57) 2012; 20
Franzè (B24) 2020; 634
Litchman (B43) 2008; 39
Banse (B4) 1982; 27
Berges (B5) 1997; 42
Weisse (B88); 88
Gause (B27) 1934
Laurent (B40) 2020; 287
Thomas (B73) 2017; 23
Jeschke (B34) 2004; 79
Calbet (B11) 2013; 483
Okuyama (B60) 2011; 37
Edwards (B18) 2016; 61
Straile (B71) 1997; 42
Weisse (B79) 2020; 58
Weisse (B78) 2022; 69
McManus (B49) 2013
Menden-Deuer (B50) 2000; 45
Montagnes (B54) 2004; 48
Juliano (B35) 2001
Smith (B69) 2007; 338
Beveridge (B6) 2010; 213
Frost (B25) 1972; 17
Weisse (B89) 2002; 47
Fenchel (B20) 1980; 25
Montagnes (B55) 2001; 46
Wirth (B90) 2019; 55
Hewett (B30) 1980; 61
Kimmance (B37) 2006; 42
Meunier (B51) 2012; 159
Weisse (B85); 43
Chen (B14) 2020; 7
Okuyama (B59) 2013; 58
Arditi (B2) 2012
Lukić (B45) 2022; 7
Weisse (B87); 70
Armengol (B3) 2019; 9
Chaine (B13) 2010; 64
Lu (B44) 2021; 68
Ng (B58) 2017; 39
Li (B42) 2013; 280
Weisse (B77) 2017
Paine (B61) 1969; 103
(B64) 2021
Hansen (B29) 1995; 121
Holling (B31) 1959; 91
Skalski (B68) 2001; 82
Fenchel (B21) 1987
Kalinkat (B36) 2023; 11
McGill (B48) 2006; 21
Mazerolle (B47) 2023
Montagnes (B53) 2013
Trexler (B74) 1988; 76
Weisse (B81) 2016
Caron (B12) 2009; 57
Bolker (B9) 2008
Fox (B23) 2007; 116
Fournier (B22) 2012; 49
Li (B41) 2015; 166
Montagnes (B56) 2008; 14
Tarangkoon (B72) 2011; 62
Weisse (B86) 2024; 87
Weisse (B82); 55
References_xml – volume: 25
  start-page: 733
  year: 1980
  ident: B20
  article-title: Relation between particle size selection and clearance in suspension-feeding ciliates.
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1980.25.4.0733
– year: 2016
  ident: B81
  article-title: Ciliates in planktonic food webs: Communication and adaptive response
  publication-title: Biocommunication of ciliates
  doi: 10.1007/978-3-319-32211-7_19
– volume: 40
  start-page: 163
  year: 2005
  ident: B28
  article-title: Numerical and functional responses of choreo- and oligotrich planktonic ciliates.
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame040163
– volume: 58
  start-page: 268
  year: 2020
  ident: B79
  article-title: Light affects picocyanobacterial grazing and growth response of the mixotrophic flagellate Poterioochromonas malhamensis.
  publication-title: J. Microbiol.
  doi: 10.1007/s12275-020-9567-8
– volume: 27
  start-page: 1059
  year: 1982
  ident: B4
  article-title: Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial.
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1982.27.6.1059
– year: 1987
  ident: B21
  publication-title: Ecology of protozoa. The biology of free-living phagotrophic protists.
– year: 2013
  ident: B49
  article-title: Tintinnids in microzooplankton communities
  publication-title: The biology and ecology of tintinnid ciliates: Models for marine plankton
– volume: 91
  start-page: 293
  year: 1959
  ident: B31
  article-title: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly.
  publication-title: Can. Entomol.
  doi: 10.4039/Ent91293-5
– volume: 23
  start-page: 3269
  year: 2017
  ident: B73
  article-title: Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton.
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13641
– volume: 20
  start-page: 184
  year: 2012
  ident: B57
  article-title: The rise of model protozoa.
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2012.01.007
– volume: 9
  start-page: 962
  year: 1995
  ident: B62
  article-title: A conversation on refining the concept of keystone species.
  publication-title: Conserv. Biol.
  doi: 10.1046/j.1523-1739.1995.09040962.x
– year: 2023
  ident: B47
  publication-title: AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c).
– volume: 11
  start-page: 1
  year: 2011
  ident: B16
  article-title: Mutual interference is common and mostly intermediate in magnitude.
  publication-title: BMC Ecol.
  doi: 10.1186/1472-6785-11-1
– volume: 122
  start-page: 1393
  year: 2013
  ident: B17
  article-title: Linked exploitation and interference competition drives the variable behavior of a classic predator-prey system.
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2013.00418.x
– volume: 9
  start-page: 593
  year: 2007
  ident: B7
  article-title: Differential thermal adaptation of clonal strains of a protist morphospecies originating from different climatic zones.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2006.01175.x
– volume: 634
  start-page: 1
  year: 2020
  ident: B24
  article-title: Common temperature-growth dependency and acclimation response in three herbivorous protists.
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps13200
– volume: 42
  start-page: 168
  year: 2001
  ident: B8
  article-title: The influence of preculture conditions and food quality on the ingestion and digestion process of three species of heterotrophic nanoflagellates.
  publication-title: Microb. Ecol.
  doi: 10.1007/s002480000116
– volume: 35
  start-page: 24
  year: 1990
  ident: B67
  article-title: Changes of the functional responses of the rotifers Brachionus rubens and Brachionus calyciflorus with particle sizes.
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1990.35.1.0024
– volume: 59
  start-page: 78
  ident: B83
  article-title: Phytoplankton response to short-term temperature and nutrient changes.
  publication-title: Limnologica
  doi: 10.1016/j.limno.2016.05.002
– year: 2021
  ident: B64
  publication-title: R: A language and environment for statistical computing.
– year: 2021
  ident: B15
  publication-title: Predator ecology: Evolutionary ecology of the functional response.
  doi: 10.1093/oso/9780192895509.001.0001
– volume: 9
  start-page: 2044
  year: 2019
  ident: B3
  article-title: Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38507-9
– volume: 42
  start-page: 1006
  year: 1997
  ident: B5
  article-title: Ratios, regression statistics, and “spurious” correlations.
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1997.42.5.1006
– volume: 14
  start-page: 2810
  year: 2008
  ident: B56
  article-title: Short-term temperature change may impact freshwater carbon flux: A microbial perspective.
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2008.01700.x
– volume: 7
  start-page: 405
  year: 2013
  ident: B91
  article-title: Strain-specific functional and numerical responses are required to evaluate impacts on predator-prey dynamics.
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.117
– volume: 58
  start-page: 293
  year: 2013
  ident: B59
  article-title: On selection of functional response models: Holling’s models and more.
  publication-title: BioControl
  doi: 10.1007/s10526-012-9492-9
– volume: 61
  start-page: 1232
  year: 2016
  ident: B18
  article-title: Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level.
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10282
– volume: 121
  start-page: 65
  year: 1995
  ident: B29
  article-title: Growth and grazing response of a ciliate feeding on the red tide dinoflagellate Gyrodinium aureolum in monoculture and in mixture with a non-toxic alga.
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps121065
– volume: 37
  start-page: 512
  year: 2011
  ident: B60
  article-title: Solutions for functional response experiments.
  publication-title: Acta Oecol.
  doi: 10.1016/j.actao.2011.07.002
– volume: 7
  start-page: 520
  year: 2022
  ident: B45
  article-title: Thermal performance of planktonic ciliates differs between marine and freshwaters: A case study providing guidance for climate change studies.
  publication-title: Limnol. Oceanogr. Lett.
  doi: 10.1002/lol2.10264
– volume: 68
  start-page: e12823
  year: 2021
  ident: B44
  article-title: Functional ecology of two contrasting freshwater ciliated protists in relation to temperature.
  publication-title: J. Eukaryot. Microb.
  doi: 10.1111/jeu.12823
– volume: 6
  start-page: 218
  year: 2015
  ident: B1
  article-title: Big answers from small worlds: A user’s guide for protist microcosms as a model system in ecology and evolution.
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12312
– volume: 459
  start-page: 193
  year: 2009
  ident: B26
  article-title: Microbial community structure and its functional implications.
  publication-title: Nature
  doi: 10.1038/nature08058
– volume: 48
  start-page: 139
  year: 2004
  ident: B54
  article-title: Determining parameters of the numerical response.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-003-9000-y
– volume: 167
  start-page: 371
  year: 2006
  ident: B76
  article-title: Freshwater ciliates as ecophysiological model organisms - lessons from Daphnia, major achievements, and future perspectives.
  publication-title: Arch. Hydrobiol.
  doi: 10.1127/0003-9136/2006/0167-0371
– volume: 61
  start-page: 1075
  year: 1980
  ident: B30
  article-title: The effect of prey size on the functional and numerical responses of a protozoan predator to its prey.
  publication-title: Ecology
  doi: 10.2307/1936826
– volume: 57
  start-page: 279
  year: 2009
  ident: B70
  article-title: Acquired phototrophy in aquatic protists.
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame01340
– volume: 49
  start-page: 1915
  year: 2004
  ident: B33
  article-title: Circadian cycles in growth and feeding rates of heterotrophic protist plankton.
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2004.49.6.1915
– volume: 280
  start-page: 20131389
  year: 2013
  ident: B42
  article-title: Reconsidering the importance of the past in predator–prey models: Both numerical and functional responses depend on delayed prey densities.
  publication-title: Proc. R. Soc. B
  doi: 10.1111/jeu.1282310.1098/rspb.2013.1389
– volume: 39
  start-page: 450
  year: 2017
  ident: B58
  article-title: Diel variation of grazing of the dinoflagellate Lepidodinium sp. and ciliate Euplotes sp. on algal prey: The effect of prey cell properties.
  publication-title: J. Plankt. Res.
  doi: 10.1093/plankt/fbx020
– volume: 121
  start-page: 106992
  ident: B84
  article-title: Picoplankton feeding by the ciliate Vorticella similis in comparison to other peritrichs emphasizes their significance in the water purification process.
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2020.106992
– volume: 62
  start-page: 25
  year: 2011
  ident: B72
  article-title: Prey selection, ingestion and growth responses of the common marine ciliate Mesodinium pulex in the light and in the dark.
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame01455
– volume: 43
  start-page: 288
  ident: B85
  article-title: Container volume may affect growth rates of ciliates and clearance rates of their microcrustacean predators in microcosm experiments.
  publication-title: J. Plankt. Res.
  doi: 10.1093/plankt/fbab017
– volume: 287
  start-page: 20192818
  year: 2020
  ident: B40
  article-title: Fragmentation mediates thermal habitat choice in ciliate microcosms.
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2019.2818
– volume: 69
  start-page: e12879
  year: 2022
  ident: B78
  article-title: Ecology of planktonic ciliates in a changing world: Concepts, methods, and challenges.
  publication-title: J. Eukaryot. Microbiol.
  doi: 10.1111/jeu.12879
– start-page: 99
  year: 2011
  ident: B65
  publication-title: Effects of ocean acidification on pelagic organisms and ecosystems. Ocean acidification.
– volume: 7
  start-page: 569309
  year: 2020
  ident: B14
  article-title: Neglect of presence of bacteria leads to inaccurate growth parameters of the oligotrich ciliate Strombidium sp. during grazing experiments on nanoflagellates.
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2020.569309
– volume: 11
  start-page: 3818
  year: 2023
  ident: B36
  article-title: Empirical evidence of type III functional responses and why it remains rare.
  publication-title: Front. Ecol. Evol.
  doi: 10.3389/fevo.2023.1033818
– volume: 9
  start-page: 2076
  year: 2018
  ident: B66
  article-title: Fitting functional responses: Direct parameter estimation by simulating differential equations.
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210x.13039
– volume: 119
  start-page: 9125
  year: 1995
  ident: B38
  article-title: Simultaneous measurement of food particle selection and clearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichina).
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps119125
– volume: 11
  start-page: e03051
  year: 2020
  ident: B75
  article-title: Fitting functional response surfaces to data: A best practice guide.
  publication-title: Ecosphere
  doi: 10.1002/ecs2.3051
– volume: 3
  start-page: 919
  year: 2013
  ident: B63
  article-title: Global imprint of climate change on marine life.
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1958
– volume: 42
  start-page: 63
  year: 2006
  ident: B37
  article-title: Do temperature–food interactions matter? Responses of production and its components in the model heterotrophic flagellate Oxyrrhis marina.
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame042063
– volume: 42
  start-page: 1375
  year: 1997
  ident: B71
  article-title: Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group.
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1997.42.6.1375
– volume: 45
  start-page: 569
  year: 2000
  ident: B50
  article-title: Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton.
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2000.45.3.0569
– volume: 82
  start-page: 3083
  year: 2001
  ident: B68
  article-title: Functional responses with predator interference: Viable alternatives to the Holling type II model.
  publication-title: Ecology
  doi: 10.2307/2679836
– volume: 88
  start-page: 125973
  ident: B88
  article-title: Temperature-dependent resistance to starvation of three contrasting freshwater ciliates.
  publication-title: Eur. J. Protistol.
  doi: 10.1016/j.ejop.2023.125973
– volume: 21
  start-page: 178
  year: 2006
  ident: B48
  article-title: Rebuilding community ecology from functional traits.
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2006.02.002
– volume: 47
  start-page: 1447
  year: 2002
  ident: B89
  article-title: Interactive effect of temperature and food concentration on growth rate: A test case using the small freshwater ciliate Urotricha farcta.
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2002.47.5.1447
– volume: 46
  start-page: 1364
  year: 2012
  ident: B19
  article-title: Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria.
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.12.018
– volume: 338
  start-page: 61
  year: 2007
  ident: B69
  article-title: Interaction between Mesodinium rubrum and its prey: Importance of prey concentration, irradiance and pH.
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps338061
– volume: 33
  start-page: 261
  year: 2004
  ident: B10
  article-title: Multimodel inference: Understanding AIC and BIC in model selection.
  publication-title: Sociol. Methods Res.
  doi: 10.1177/0049124104268644
– volume: 166
  start-page: 211
  year: 2015
  ident: B41
  article-title: Restructuring fundamental predator-prey models by recognising prey-dependent conversion efficiency and mortality rates.
  publication-title: Protist
  doi: 10.1016/j.protis.2015.02.003
– volume: 55
  start-page: 404
  year: 2019
  ident: B90
  article-title: Temperature x light interaction and tolerance of high water temperature in the planktonic freshwater flagellates Cryptomonas (Cryptophyceae) and Dinobryon (Chrysophyceae).
  publication-title: J. Phycol.
  doi: 10.1111/jpy.12826
– year: 1934
  ident: B27
  publication-title: The struggle for existence.
  doi: 10.5962/bhl.title.4489
– volume: 103
  start-page: 91
  year: 1969
  ident: B61
  article-title: A note on trophic complexity and community stability.
  publication-title: Am. Nat.
  doi: 10.1086/282586
– volume: 57
  start-page: 227
  year: 2009
  ident: B12
  article-title: Hypotheses on the role of the protistan rare biosphere in a changing world.
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame01352
– volume: 159
  start-page: 2241
  year: 2012
  ident: B51
  article-title: Dynamic stoichiometric response to food quality fluctuations in the heterotrophic dinoflagellate Oxyrrhis marina.
  publication-title: Mar. Biol.
  doi: 10.1007/s00227-012-2009-3
– volume: 79
  start-page: 337
  year: 2004
  ident: B34
  article-title: Consumer-food systems: Why type I functional responses are exclusive to filter feeders.
  publication-title: Biol. Rev.
  doi: 10.1017/S1464793103006286
– volume: 17
  start-page: 805
  year: 1972
  ident: B25
  article-title: Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus.
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1972.17.6.0805
– year: 2012
  ident: B2
  publication-title: How species interact: Altering the standard view on trophic ecology.
  doi: 10.1093/acprof:osobl/9780199913831.001.0001
– year: 2013
  ident: B53
  article-title: Ecophysiology and behavior of tintinnids
  publication-title: The biology and ecology of tintinnid ciliates: Models for marine plankton
– volume: 76
  start-page: 206
  year: 1988
  ident: B74
  article-title: How can the functional reponse best be determined?
  publication-title: Oecologia
  doi: 10.1007/BF00379954
– year: 2008
  ident: B9
  publication-title: Ecological models and data in R.
– year: 2001
  ident: B35
  article-title: Nonlinear curve fitting: Predation and functional response curves
  publication-title: Design and analysis of ecological experiments
  doi: 10.1093/oso/9780195131871.003.0010
– start-page: 331
  year: 2017
  ident: B77
  article-title: Functional diversity of aquatic ciliates.
  publication-title: Eur. J. Protistol.
  doi: 10.1016/j.ejop.2017.04.001
– volume: 87
  start-page: 89
  year: 2024
  ident: B86
  article-title: Numerical and thermal response of the bacterivorous ciliate Colpidium kleini, a species potentially at risk of extinction by rising water temperatures.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-024-02406-y
– volume: 64
  start-page: 1290
  year: 2010
  ident: B13
  article-title: Kin-based recognition and social aggregation in a ciliate.
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2009.00902.x
– volume: 28
  start-page: 55
  year: 2006
  ident: B80
  article-title: Pronounced ecophysiological clonal differences of two common freshwater ciliates, Coleps spetai (Prostomatida) and Rimostrombidium lacustris (Oligotrichida), challenge the morphospecies concept.
  publication-title: J. Plankt. Res.
  doi: 10.1093/plankt/fbi100
– volume: 1
  start-page: 1407
  year: 2017
  ident: B32
  article-title: Gene flow favours local adaptation under habitat choice in ciliate microcosms.
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-017-0269-5
– volume: 483
  start-page: 67
  year: 2013
  ident: B11
  article-title: Adaptations to feast and famine in different strains of the marine heterotrophic dinoflagellates Gyrodinium dominans and Oxyrrhis marina.
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps10291
– volume: 23
  start-page: 353
  year: 2001
  ident: B46
  article-title: Conspicuous peak of oligotrichous ciliates following winter stratification in a bog lake.
  publication-title: J. Plankt. Res.
  doi: 10.1093/plankt/23.4.353
– volume: 55
  start-page: 50
  ident: B82
  article-title: Functional ecology of aquatic phagotrophic protists – Concepts, limitations, and perspectives.
  publication-title: Eur. J. Protistol.
  doi: 10.1016/j.ejop.2016.03.003
– volume: 116
  start-page: 189
  year: 2007
  ident: B23
  article-title: The dynamics of top-down and bottom-up effects in food webs of varying prey diversity, composition, and productivity.
  publication-title: Oikos
  doi: 10.1111/j.2006.0030-1299.15280.x
– volume: 39
  start-page: 615
  year: 2008
  ident: B43
  article-title: Trait-based community ecology of phytoplankton.
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev.ecolsys.39.110707.173549
– volume: 46
  start-page: 2008
  year: 2001
  ident: B55
  article-title: Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms.
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2001.46.8.2008
– volume: 70
  start-page: e12969
  ident: B87
  article-title: Functional ecology of planktonic ciliates: Measuring mortality rates in response to starvation.
  publication-title: J. Eukaryot. Microbiol.
  doi: 10.1111/jeu.12969
– volume: 49
  start-page: 85
  year: 2012
  ident: B22
  article-title: Toward the use of testate amoeba functional traits as indicator of floodplain restoration success.
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2011.05.008
– volume: 130
  start-page: 241
  year: 1996
  ident: B52
  article-title: Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium.
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.1016/0967-0653(96)81057-x
– volume: 213
  start-page: 4223
  year: 2010
  ident: B6
  article-title: Mechanisms of temperature-dependent swimming: The importance of physics, physiology and body size in determining protist swimming speed.
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.045435
– year: 2007
  ident: B39
  publication-title: A process-oriented approach to the multispecies functional response. From energetics to ecosystems: The dynamics and structure of ecological systems.
SSID ssj0000402000
Score 2.405692
Snippet Protists are paramount for biogeochemical cycling in every aquatic ecosystem due to their vast population sizes and physiological versatility. Numerical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1559802
SubjectTerms ciliates
experimental design
functional ecology
growth rates
ingestion rates
Microbiology
noise and bias
Title Numerical and functional response of phagotrophic aquatic protists: the ideal experiment—and why we cannot get it
URI https://www.ncbi.nlm.nih.gov/pubmed/40556895
https://www.proquest.com/docview/3223933083
https://pubmed.ncbi.nlm.nih.gov/PMC12186456
https://doaj.org/article/bfd93186e43b4baa8d817b65e1494caf
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kQfAivo0vWvAm0fQzaW8qrovgnlyYW9Ov7AQkGWcyLHvzR_gL_SVWpTPrjAhevOSQhKSpr7oe3dVfEfIieG7Ac8dSBVOVsk66dC5BqsKTbJJTbT7F__lUn5zJTwu12Gv1hTVhmR44C-61b6MBvdNJCi-9c01sWO21ShDay-BatL7g8_aSqckGY1pUVfmUDGRhBmDqgod8kKtXuBPXzOsoO080Efb_Lcr8s1hyz_sc3yI357CRvs3DvU2upf4OuZ4bSV7eJZvTbd55-UpdHyk6q7zGR9e5BjbRoaWrpTsfxvWwWnaBum9I8h0oEjUA1Js3FEJB2kUIHOlv2v-f33_gBy-Wl_QiUYChH0Z6nkbajffI2fGHL-9PyrmdQhkk52MZWe24dkaHysDMjq1QUcuYuHetSHVolPYxGC1Z0E44zaKqsS0H5jBBJyHuk6N-6NNDQiGjFsmAja0AUumjYarmInKWqtqoyhfk5U60dpVZMyxkGwiEnYCwCISdgSjIO5T-1ZvIeD3dAD2wsx7Yf-lBQZ7vsLMwQ3Dbw_Vp2G4smCyByzaNKMiDjOXVryRyCTVGFaQ5QPlgLIdP-m45sXAz7OYF4eej_zH6x-QGSgRr0Fj1hByN6216CtHO6J9Nig3Xjwv2C8VfAgA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+and+functional+response+of+phagotrophic+aquatic+protists%3A+the+ideal+experiment%E2%80%94and+why+we+cannot+get+it&rft.jtitle=Frontiers+in+microbiology&rft.au=Thomas+Weisse&rft.date=2025-06-10&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=16&rft_id=info:doi/10.3389%2Ffmicb.2025.1559802&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bfd93186e43b4baa8d817b65e1494caf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon