Inductive conformal anomaly detection for sequential detection of anomalous sub-trajectories

Detection of anomalous trajectories is an important problem for which many algorithms based on learning of normal trajectory patterns have been proposed. Yet, these algorithms are typically designed for offline anomaly detection in databases and are insensitive to local sub-trajectory anomalies. Gen...

Full description

Saved in:
Bibliographic Details
Published inAnnals of mathematics and artificial intelligence Vol. 74; no. 1-2; pp. 67 - 94
Main Authors Laxhammar, Rikard, Falkman, Göran
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detection of anomalous trajectories is an important problem for which many algorithms based on learning of normal trajectory patterns have been proposed. Yet, these algorithms are typically designed for offline anomaly detection in databases and are insensitive to local sub-trajectory anomalies. Generally, previous anomaly detection algorithms often require tuning of many parameters, including ad-hoc anomaly thresholds, which may result in overfitting and high alarm rates. The main contributions of this paper are two-fold: The first is the proposal and analysis of the Inductive Conformal Anomaly Detector (ICAD), which is a general and parameter-light anomaly detection algorithm that has well-calibrated alarm rate. ICAD is a generalisation of the previously proposed Conformal Anomaly Detector (CAD) based on the concept of Inductive Conformal Predictors . The main advantage of ICAD compared to CAD is the improved computational efficiency. The only design parameter of ICAD is the Non-Conformity Measure (NCM). The second contribution of this paper concerns the proposal and investigation of the Sub-Sequence Local Outlier (SSLO) NCM, which is designed for sequential detection of anomalous sub-trajectories in the framework of ICAD. SSLO-NCM is based on Local Outlier Factor (LOF) and is therefore sensitive to local sub-trajectory anomalies. The results from the empirical investigations on an unlabelled set of vessel trajectories illustrate the most anomalous trajectories detected for different parameter values of SSLO-NCM, and confirm that the empirical alarm rate is indeed well-calibrated.
AbstractList Detection of anomalous trajectories is an important problem for which many algorithms based on learning of normal trajectory patterns have been proposed. Yet, these algorithms are typically designed for offline anomaly detection in databases and are insensitive to local sub-trajectory anomalies. Generally, previous anomaly detection algorithms often require tuning of many parameters, including ad-hoc anomaly thresholds, which may result in overfitting and high alarm rates. The main contributions of this paper are two-fold: The first is the proposal and analysis of the Inductive Conformal Anomaly Detector (ICAD), which is a general and parameter-light anomaly detection algorithm that has well-calibrated alarm rate. ICAD is a generalisation of the previously proposed Conformal Anomaly Detector (CAD) based on the concept of Inductive Conformal Predictors. The main advantage of ICAD compared to CAD is the improved computational efficiency. The only design parameter of ICAD is the Non-Conformity Measure (NCM). The second contribution of this paper concerns the proposal and investigation of the Sub-Sequence Local Outlier (SSLO) NCM, which is designed for sequential detection of anomalous sub-trajectories in the framework of ICAD. SSLO-NCM is based on Local Outlier Factor (LOF) and is therefore sensitive to local sub-trajectory anomalies. The results from the empirical investigations on an unlabelled set of vessel trajectories illustrate the most anomalous trajectories detected for different parameter values of SSLO-NCM, and confirm that the empirical alarm rate is indeed well-calibrated.
Detection of anomalous trajectories is an important problem for which many algorithms based on learning of normal trajectory patterns have been proposed. Yet, these algorithms are typically designed for offline anomaly detection in databases and are insensitive to local sub-trajectory anomalies. Generally, previous anomaly detection algorithms often require tuning of many parameters, including ad-hoc anomaly thresholds, which may result in overfitting and high alarm rates. The main contributions of this paper are two-fold: The first is the proposal and analysis of the Inductive Conformal Anomaly Detector (ICAD), which is a general and parameter-light anomaly detection algorithm that has well-calibrated alarm rate. ICAD is a generalisation of the previously proposed Conformal Anomaly Detector (CAD) based on the concept of Inductive Conformal Predictors . The main advantage of ICAD compared to CAD is the improved computational efficiency. The only design parameter of ICAD is the Non-Conformity Measure (NCM). The second contribution of this paper concerns the proposal and investigation of the Sub-Sequence Local Outlier (SSLO) NCM, which is designed for sequential detection of anomalous sub-trajectories in the framework of ICAD. SSLO-NCM is based on Local Outlier Factor (LOF) and is therefore sensitive to local sub-trajectory anomalies. The results from the empirical investigations on an unlabelled set of vessel trajectories illustrate the most anomalous trajectories detected for different parameter values of SSLO-NCM, and confirm that the empirical alarm rate is indeed well-calibrated.
Author Falkman, Göran
Laxhammar, Rikard
Author_xml – sequence: 1
  givenname: Rikard
  surname: Laxhammar
  fullname: Laxhammar, Rikard
  email: rikard.laxhammar@his.se
  organization: Informatics Research Centre, University of Skövde, Saab Security and Defence Solutions
– sequence: 2
  givenname: Göran
  surname: Falkman
  fullname: Falkman, Göran
  organization: Informatics Research Centre, University of Skövde
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-9034$$DView record from Swedish Publication Index
BookMark eNp1kE1LAzEQhoNUsK3-AG8LHiU6-djN5ljqV6HgRT0JId1N6pY2qcmu0n9v6hZ78jDMwPvMy8w7QgPnnUHoksANARC3kQAXFANhWLKSYHGChiQXDAsuYJBmIBRTztkZGsW4AgBZlMUQvc9c3VVt82Wyyjvrw0avM-18arusNq1JmndZErJoPjvj2iYBR8HbA-27mMVugdugV0nzoTHxHJ1avY7m4tDH6PXh_mX6hOfPj7PpZI4rTmmLK1ExYLkRgpMCRCpTyNoAqxhhtqhzA5YaIJpJsMTaotSSUy51TnhZLwo2Rte9b_w2226htqHZ6LBTXjfqrnmbKB-W6qOJSgLjib7q6W3w6aPYqpXvgksHKipJSaQofinSU1XwMQZj_1wJqH3kqo9cpcjVPnIl0g493JFYtzTh6Pz_0g_PjYa5
CitedBy_id crossref_primary_10_1080_08839514_2022_2131056
crossref_primary_10_1007_s11265_023_01893_5
crossref_primary_10_3390_s19173782
crossref_primary_10_1016_j_oceaneng_2023_113673
crossref_primary_10_1016_j_neucom_2021_08_016
crossref_primary_10_3390_jmse11112085
crossref_primary_10_1007_s10207_023_00677_z
crossref_primary_10_1007_s10489_017_1104_z
crossref_primary_10_1109_ACCESS_2018_2873779
crossref_primary_10_1017_S0373463317000066
crossref_primary_10_1002_sta4_633
crossref_primary_10_2196_18911
crossref_primary_10_1016_j_envsoft_2022_105435
crossref_primary_10_1016_j_patcog_2021_108507
crossref_primary_10_1145_3648005
crossref_primary_10_1007_s10994_022_06233_5
crossref_primary_10_1214_20_AOAS1424
crossref_primary_10_1109_ACCESS_2020_2997967
crossref_primary_10_1155_2018_9702304
crossref_primary_10_1145_3643892
crossref_primary_10_1016_j_eswa_2023_120561
crossref_primary_10_1093_jrsssb_qkad138
crossref_primary_10_1214_22_AOS2244
Cites_doi 10.1007/978-94-015-3994-4
10.1109/TCSVT.2008.2005599
10.1007/s10115-008-0131-9
10.1093/comjnl/bxl065
10.1016/j.sigpro.2003.07.018
10.1145/357830.357849
10.1007/s00530-006-0058-5
10.1145/1541880.1541882
10.1109/TITS.2010.2048101
10.1007/s10618-006-0049-3
10.1109/TCSVT.2008.927109
10.5244/C.22.103
10.1117/12.800095
10.1109/ICDE.2008.4497422
10.1109/ITAB.2009.5394447
10.1007/978-3-540-73499-4_6
10.5772/6078
10.1109/ICTAI.2007.47
10.1007/978-3-642-16239-8_8
10.1145/342009.335388
10.1109/ICDM.2005.79
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2013
Springer Science+Business Media Dordrecht 2013.
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2013
– notice: Springer Science+Business Media Dordrecht 2013.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PQEST
PQQKQ
PQUKI
PTHSS
ADTPV
AOWAS
DF6
DOI 10.1007/s10472-013-9381-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
SwePub
SwePub Articles
SWEPUB Högskolan i Skövde
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 94
ExternalDocumentID oai_DiVA_org_his_9034
10_1007_s10472_013_9381_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ABJCF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AFKRA
AGQEE
AGRTI
AIGIU
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PQEST
PQQKQ
PQUKI
ADTPV
AOWAS
DF6
ID FETCH-LOGICAL-c422t-c7c3035e7741607160e69de03c313f6d5e0f2e01a390f1ff68a94249a5148db63
IEDL.DBID BENPR
ISSN 1012-2443
1573-7470
IngestDate Tue Oct 01 22:48:46 EDT 2024
Thu Oct 10 22:04:56 EDT 2024
Thu Sep 12 17:11:37 EDT 2024
Sat Dec 16 12:00:39 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 68T10
68T05
Maritime surveillance
Trajectory data
Local outlier factor
Anomaly detection
Conformal prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-c7c3035e7741607160e69de03c313f6d5e0f2e01a390f1ff68a94249a5148db63
PQID 2918197634
PQPubID 2043872
PageCount 28
ParticipantIDs swepub_primary_oai_DiVA_org_his_9034
proquest_journals_2918197634
crossref_primary_10_1007_s10472_013_9381_7
springer_journals_10_1007_s10472_013_9381_7
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2015
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Chandola, Banerjee, Kumar (CR5) 2009; 41
Laxhammar, Falkman (CR16) 2012
Piciarelli, Micheloni, Foresti (CR23) 2008; 18
CR17
CR15
CR14
CR13
CR11
CR10
CR30
Keogh, Lonardi, Ratanamahatana, Wei, Lee, Handley (CR12) 2007; 14
Yankov, Keogh, Rebbapragada (CR29) 2008; 17
Atev, Miller, Papanikolopoulos (CR1) 2010; 11
Axelsson (CR2) 2000; 3
Shafer, Vovk (CR26) 2008; 9
CR4
Markou, Singh (CR18) 2003; 83
CR3
CR6
Gammerman, Vovk (CR8) 2007; 50
CR7
Vovk, Gammerman, Shafer (CR28) 2005
CR27
CR25
CR24
CR22
CR21
Naftel, Khalid (CR20) 2006; 12
Morris, Trivedi (CR19) 2008; 18
Hawkins (CR9) 1980
G Shafer (9381_CR26) 2008; 9
C Piciarelli (9381_CR23) 2008; 18
D Hawkins (9381_CR9) 1980
V Vovk (9381_CR28) 2005
9381_CR27
9381_CR13
9381_CR7
9381_CR15
S Axelsson (9381_CR2) 2000; 3
9381_CR14
9381_CR6
9381_CR30
9381_CR3
9381_CR11
9381_CR4
9381_CR10
S Atev (9381_CR1) 2010; 11
E Keogh (9381_CR12) 2007; 14
V Chandola (9381_CR5) 2009; 41
B Morris (9381_CR19) 2008; 18
M Markou (9381_CR18) 2003; 83
A Gammerman (9381_CR8) 2007; 50
9381_CR17
9381_CR24
A Naftel (9381_CR20) 2006; 12
D Yankov (9381_CR29) 2008; 17
9381_CR25
R Laxhammar (9381_CR16) 2012
9381_CR22
9381_CR21
References_xml – year: 1980
  ident: CR9
  publication-title: Identification of Outliers
  doi: 10.1007/978-94-015-3994-4
  contributor:
    fullname: Hawkins
– ident: CR22
– volume: 18
  start-page: 1544
  issue: 11
  year: 2008
  end-page: 1554
  ident: CR23
  article-title: Trajectory-based anomalous event detection
  publication-title: IEEE Trans. Circuits & Systems for Video Techn.
  doi: 10.1109/TCSVT.2008.2005599
  contributor:
    fullname: Foresti
– year: 2012
  ident: CR16
  article-title: Online detection of anomalous sub-trajectories—a sliding window approach based on conformal anomaly detection and local outlier factor
  publication-title: Proceedings of the AIAI 2012 Workshop on Conformal Prediction and its Applications
  contributor:
    fullname: Falkman
– ident: CR4
– ident: CR14
– volume: 9
  start-page: 371
  year: 2008
  end-page: 421
  ident: CR26
  article-title: A tutorial on conformal prediction
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Vovk
– volume: 17
  start-page: 241
  issue: 2
  year: 2008
  end-page: 262
  ident: CR29
  article-title: Disk aware discord discovery: finding unusual time series in terabyte sized datasets
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-008-0131-9
  contributor:
    fullname: Rebbapragada
– ident: CR30
– volume: 50
  start-page: 151
  issue: 2
  year: 2007
  end-page: 163
  ident: CR8
  article-title: Hedging predictions in machine learning
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxl065
  contributor:
    fullname: Vovk
– volume: 83
  start-page: 2481
  issue: 12
  year: 2003
  end-page: 2497
  ident: CR18
  article-title: Novelty detection: a review—part 1: statistical approaches
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2003.07.018
  contributor:
    fullname: Singh
– ident: CR10
– volume: 3
  start-page: 185
  issue: 3
  year: 2000
  end-page: 205
  ident: CR2
  article-title: The base-rate fallacy and the difficulty of intrusion detection
  publication-title: ACM Trans. Inf. Syst. Secur. (TISSEC)
  doi: 10.1145/357830.357849
  contributor:
    fullname: Axelsson
– ident: CR6
– volume: 12
  start-page: 227
  issue: 3
  year: 2006
  end-page: 238
  ident: CR20
  article-title: Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space
  publication-title: Multimedia Systems
  doi: 10.1007/s00530-006-0058-5
  contributor:
    fullname: Khalid
– ident: CR25
– ident: CR27
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  end-page: 58
  ident: CR5
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
  contributor:
    fullname: Kumar
– ident: CR21
– volume: 11
  start-page: 647
  issue: 3
  year: 2010
  end-page: 657
  ident: CR1
  article-title: Clustering of vehicle trajectories
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2010.2048101
  contributor:
    fullname: Papanikolopoulos
– volume: 14
  start-page: 99
  issue: 1
  year: 2007
  end-page: 129
  ident: CR12
  article-title: Compression-based data mining of sequential data
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-006-0049-3
  contributor:
    fullname: Handley
– ident: CR3
– ident: CR15
– volume: 18
  start-page: 1114
  issue: 8
  year: 2008
  end-page: 1127
  ident: CR19
  article-title: A survey of vision-based trajectory learning and analysis for surveillance
  publication-title: IEEE Trans. Circuits & Systems for Video Techn.
  doi: 10.1109/TCSVT.2008.927109
  contributor:
    fullname: Trivedi
– ident: CR17
– ident: CR13
– ident: CR11
– year: 2005
  ident: CR28
  publication-title: Algorithmic Learning in a Random World
  contributor:
    fullname: Shafer
– ident: CR7
– ident: CR24
– ident: 9381_CR15
– ident: 9381_CR27
  doi: 10.5244/C.22.103
– volume: 9
  start-page: 371
  year: 2008
  ident: 9381_CR26
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: G Shafer
– volume: 50
  start-page: 151
  issue: 2
  year: 2007
  ident: 9381_CR8
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxl065
  contributor:
    fullname: A Gammerman
– ident: 9381_CR3
  doi: 10.1117/12.800095
– ident: 9381_CR17
  doi: 10.1109/ICDE.2008.4497422
– volume: 18
  start-page: 1114
  issue: 8
  year: 2008
  ident: 9381_CR19
  publication-title: IEEE Trans. Circuits & Systems for Video Techn.
  doi: 10.1109/TCSVT.2008.927109
  contributor:
    fullname: B Morris
– ident: 9381_CR30
– ident: 9381_CR13
  doi: 10.1109/ITAB.2009.5394447
– ident: 9381_CR14
  doi: 10.1007/978-3-540-73499-4_6
– ident: 9381_CR24
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  ident: 9381_CR5
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
  contributor:
    fullname: V Chandola
– volume-title: Proceedings of the AIAI 2012 Workshop on Conformal Prediction and its Applications
  year: 2012
  ident: 9381_CR16
  contributor:
    fullname: R Laxhammar
– volume: 18
  start-page: 1544
  issue: 11
  year: 2008
  ident: 9381_CR23
  publication-title: IEEE Trans. Circuits & Systems for Video Techn.
  doi: 10.1109/TCSVT.2008.2005599
  contributor:
    fullname: C Piciarelli
– ident: 9381_CR21
  doi: 10.5772/6078
– ident: 9381_CR22
  doi: 10.1109/ICTAI.2007.47
– volume: 14
  start-page: 99
  issue: 1
  year: 2007
  ident: 9381_CR12
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-006-0049-3
  contributor:
    fullname: E Keogh
– volume: 83
  start-page: 2481
  issue: 12
  year: 2003
  ident: 9381_CR18
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2003.07.018
  contributor:
    fullname: M Markou
– volume: 17
  start-page: 241
  issue: 2
  year: 2008
  ident: 9381_CR29
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-008-0131-9
  contributor:
    fullname: D Yankov
– volume: 3
  start-page: 185
  issue: 3
  year: 2000
  ident: 9381_CR2
  publication-title: ACM Trans. Inf. Syst. Secur. (TISSEC)
  doi: 10.1145/357830.357849
  contributor:
    fullname: S Axelsson
– ident: 9381_CR10
– ident: 9381_CR6
  doi: 10.1007/978-3-642-16239-8_8
– volume-title: Identification of Outliers
  year: 1980
  ident: 9381_CR9
  doi: 10.1007/978-94-015-3994-4
  contributor:
    fullname: D Hawkins
– volume: 11
  start-page: 647
  issue: 3
  year: 2010
  ident: 9381_CR1
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2010.2048101
  contributor:
    fullname: S Atev
– ident: 9381_CR4
  doi: 10.1145/342009.335388
– ident: 9381_CR25
– volume: 12
  start-page: 227
  issue: 3
  year: 2006
  ident: 9381_CR20
  publication-title: Multimedia Systems
  doi: 10.1007/s00530-006-0058-5
  contributor:
    fullname: A Naftel
– ident: 9381_CR7
– volume-title: Algorithmic Learning in a Random World
  year: 2005
  ident: 9381_CR28
  contributor:
    fullname: V Vovk
– ident: 9381_CR11
  doi: 10.1109/ICDM.2005.79
SSID ssj0009686
Score 2.2595677
Snippet Detection of anomalous trajectories is an important problem for which many algorithms based on learning of normal trajectory patterns have been proposed. Yet,...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 67
SubjectTerms Algorithms
Anomalies
Anomaly detection
Artificial Intelligence
Complex Systems
Computer Science
Conformal prediction
Data analysis
Design parameters
Empirical analysis
Local outlier factor
Machine learning
Maritime surveillance
Mathematics
Outliers (statistics)
Skövde Artificial Intelligence Lab (SAIL)
Technology
Teknik
Trajectory data
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGuMCBN2K8lAMnUKauaZP1OPEUaJwAgYQUtWkCY1OL1u4Avx6nj42XkDj14MpV4yT-HDufAQ5ixKBadbrUuErZAEXTiAtFOY9cbTw_Kg9z-tf84ta7vPfvG-BOjy6SYbvOSBYb9ae7bp6wVQSMBuhlqJiDed_yfTVhvnf-cHU6o9rlRX9HS1xF0XmxOpf5m5Kv3mgGMadZ0W8MooXXOVsubwJmBVmhLTYZtid51FbvP6kc__FDK7BUgVDSK2fNKjR0sgbLdYMHUq33NVjsT0lds3V4tG0-iu2RYBBdgN0RCZMUH28k1nlR1JUQFJCyQBs3j9EnQWqqt9NJRrJJRPNx-FIkDTBa34Dbs9Ob4wtaNWegynPdnCqh0Pv5WlhIhziFO5oHsXaYYh1meOxrx7ja6YQscEzHGN4NAw9jvRARWjeOONuEZpImeguI4UIohDlKM9Qd8sgmNz3RjcPYctGYFhzWRpKvJQeHnLEt21GUOIrSjqIULditzSir5ZhJN0Agg8CLeS04qq0xE_-h7KC0_vS7lo37ZHDXk-n4ST4PMhk4zNv-l9IdWEDU5Zf1ZrvQzMcTvYfIJo_2q6n8AVTV79A
  priority: 102
  providerName: Springer Nature
Title Inductive conformal anomaly detection for sequential detection of anomalous sub-trajectories
URI https://link.springer.com/article/10.1007/s10472-013-9381-7
https://www.proquest.com/docview/2918197634
https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-9034
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0V9tIeoKWtuoWufOAEsprEjp2cqm27CwKBEOpWVKpkJY5dQCiBTfbQf99x4mwKB06R4siWZmLPmw-_AdgvEIMaHSbURlo7B8XQXEhNhcgjY3mcd8Gcs3NxvOAnV_GVD7jVvqyyPxPbg7qotIuRf45StEVoOxn_cv9AXdcol131LTQ2YBSF3KVpR19n5xeXA-2uaHs9OhIrioaM9XnN7vIcl64sgdEUzRaVjy3TADfXGdInbKKtBZq_hi0PHcm00_UbeGHKHdju2zIQv0t34NXZmoq1fgu_XXOO9lAj6Pq2EPWOZGWFj7-kME1bilUSHCBdWTVu-bv_Birrv65WNalXOW2W2W0b6kcf-x0s5rMf346pb6lANY-ihmqp0WbFRjoghuhCBEakhQmYZiGzoohNYCMThBlLAxtaK5Is5eihZYirkiIX7D1sllVpPgCxQkqN4EQbhnNnIncpSS6TIiscg4wdw0EvTnXfMWeogSPZyV6h7JWTvZJj2OsFrvwmqtWg8jEc9koYhp-ZbL_T03pdx6H9_ebnVFXLP-r6plZpwPjH59fchZcIjuKuLGwPNpvlynxCANLkE9hI5kcTGE2Pfp3OJv6fw7eLaPoPMm7cOg
link.rule.ids 230,315,786,790,891,12792,21416,27955,27956,33406,33777,41114,41556,42183,42625,43633,43838,52144,52267
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5dByKI-C2PLygVORRTZO7OSEeGpp2RVCUHGoZCWOzUMogU32wL9nnDibwoFTDhPZ0kzs-eaRbwB2M8SgWg0ianylbICiacqFopynvjZBmDbJnNGYD2-C37fhrUu4la6tsr0T64s6K5TNke_7Mfoi9J0sOHh-oXZqlK2uuhEaX2DeUm5GPZg_Oh1fXnW0u7ye9WhJrCg6MtbWNZuf5wJh2xIYjdFtUfHeM3Vwc1Yh_cAmWnugsyX47qAjOWxsvQxzOl-BxXYsA3GndAUWRjMq1vIH_LPDOepLjWDoW0PUJ5LkBT5eSaaruhUrJyggTVs1Hvmn_wSFcW8X05KU05RWk-SxTvVjjL0KN2en18dD6kYqUBX4fkWVUOizQi0sEEN0wT3N40x7TLEBMzwLtWd87Q0SFntmYAyPkjjACC1BXBVlKWdr0MuLXK8DMVwIheBEaYZrJzy1JclARFmSWQYZ04dfrTrlc8OcITuOZKt7ibqXVvdS9GGzVbh0h6iUncn7sNcaoRN_sthuY6fZvpZD--Th76EsJnfy_qGUsceCn5_vuQNfh9ejC3lxPv6zAd8QKIVNi9gm9KrJVG8hGKnSbffFvQGLG9vN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIiE48GpRt7x84AQyZGPH3hxXwPJGHKCiUiU3cWwKRQnaZA_w6xnnsQsIVao45eBonHjGns-e8TcAmwliUKM7XWp9rd0GxdBYSE2FiH1jeRBXhznnF-Lomp_cBDd1ndO8yXZvQpLVnQbH0pQWu4-J3X118Y1Ll1LAaIguh8pJmOI4a3kLpnqHP08Pxry7oiz26FisKHoy1gQ2PxLy1jWN8eYoRPqOTrR0Qf15-N18fJV58ndnWMQ7-vkdr-Mn_m4B5mp4SnqVPS3ChEmXYL4p_UDqlWAJZs9HdK_5F_jlCoCUCyfBnkoY_ECiNMPHE0lMUaZ7pQQbSJW6jcvKw6uGzNZvZ8Oc5MOYFoPovgwn4D7-K1z3D672jmhdtoFq7vsF1VKjXwyMdGAPEYzwjAgT4zHNOsyKJDCe9Y3XiVjo2Y61ohuFHHeBEWK3bhILtgytNEvNNyBWSKkRAGnDUHYkYhf25LKbRIljqbFt2Go0ph4rdg415mF2o6hwFJUbRSXbsNroVNUTNVd-iBAHIRnjbdhuNDNu_oewzcoURv06nu79ux89lQ1u1Z-7XIUe49__S-gGTF_u99XZ8cXpCswgNAuqpLRVaBWDoVlD-FPE67WJvwB8KPx_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inductive+conformal+anomaly+detection+for+sequential+detection+of+anomalous+sub-trajectories&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Laxhammar%2C+Rikard&rft.au=Falkman%2C+G%C3%B6ran&rft.date=2015-06-01&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=74&rft.issue=1-2&rft.spage=67&rft.epage=94&rft_id=info:doi/10.1007%2Fs10472-013-9381-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10472_013_9381_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon