A Self-Initializing PolInSAR Classifier Using Interferometric Phase Differences

This paper describes an unsupervised classifier for polarimetric interferometric synthetic aperture radar (PolInSAR) data. Expectation maximization is used to estimate class parameters that maximize the likelihood of observations in an input data set for a given number of classes. Polarimetric infor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 45; no. 11; pp. 3503 - 3518
Main Authors Jager, M., Neumann, M., Guillaso, S., Reigber, A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper describes an unsupervised classifier for polarimetric interferometric synthetic aperture radar (PolInSAR) data. Expectation maximization is used to estimate class parameters that maximize the likelihood of observations in an input data set for a given number of classes. Polarimetric information, in the form of coherency matrices, and interferometric information, in the form of complex coherences, are taken into account. Differences in interferometric phase across different polarization states are explicitly modeled to make the classifier sensitive to the vertical structure of the scene under observation, and the distribution over such phase differences is introduced. The classifier is self-initializing, in that it does not rely on decompositions or thresholds. Classification results obtained for real polarimetric interferometric data are presented and discussed.
AbstractList This paper describes an unsupervised classifier for polarimetric interferometric synthetic aperture radar (PolInSAR) data. Expectation maximization is used to estimate class parameters that maximize the likelihood of observations in an input data set for a given number of classes. Polarimetric information, in the form of coherency matrices, and interferometric information, in the form of complex coherences, are taken into account. Differences in interferometric phase across different polarization states are explicitly modeled to make the classifier sensitive to the vertical structure of the scene under observation, and the distribution over such phase differences is introduced. The classifier is self-initializing, in that it does not rely on decompositions or thresholds. Classification results obtained for real polarimetric interferometric data are presented and discussed.
Author Jager, M.
Guillaso, S.
Reigber, A.
Neumann, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Jager
  fullname: Jager, M.
  organization: Tech. Univ. of Berlin, Berlin
– sequence: 2
  givenname: M.
  surname: Neumann
  fullname: Neumann, M.
– sequence: 3
  givenname: S.
  surname: Guillaso
  fullname: Guillaso, S.
– sequence: 4
  givenname: A.
  surname: Reigber
  fullname: Reigber, A.
BackLink https://hal.science/hal-00540726$$DView record in HAL
BookMark eNpdkc1LI0EQxRtxYaO79wUvgxfxMNnqz-k5hrhqIGBI9Nx0OtXaMunR7omw_vXOMOLBU8Gr36vi8U7IcWwjEvKHwpRSqP_e36w3UwZQTWvQHPgRmVApdQlKiGMyAVqrkuma_SQnOT8DUCFpNSF3s2KDjS8XMXTBNuE9xMdi1TaLuJmti3ljcw4-YCoe8rBZxA6Tx9TusUvBFasnm7G4Cr7XMDrMv8gPb5uMvz_nKXm4_nc_vy2XdzeL-WxZOsFYVzrl6x0CV7SGnePeWsc4IlrOvBTObRlTmm4rsWPMMpBWKF0pueNb8E5RzU_J5Xj3yTbmJYW9Tf9Na4O5nS3NoAFIARVTb7RnL0b2JbWvB8yd2YfssGlsxPaQjdagpOZS9uT5N_K5PaTYBzFaCaiZogMEI-RSm3NC__Wfghm6MEMXZujCjF30lrPREvqMX7jgFecV5R_TTYVO
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2011_2164393
crossref_primary_10_1109_TGRS_2009_2023908
crossref_primary_10_1109_TGRS_2024_3402137
crossref_primary_10_3390_rs12172715
crossref_primary_10_1109_TGRS_2009_2035052
crossref_primary_10_1109_TGRS_2012_2192937
crossref_primary_10_1080_01431161_2013_879347
crossref_primary_10_1109_TGRS_2009_2035496
crossref_primary_10_1109_TGRS_2018_2879787
crossref_primary_10_3390_rs10111742
crossref_primary_10_1016_j_ophoto_2023_100047
crossref_primary_10_5589_m10_046
crossref_primary_10_1109_TGRS_2012_2185703
crossref_primary_10_1080_01431161_2013_860566
Cites_doi 10.1109/TGRS.2002.808066
10.1109/36.673687
10.1109/36.789621
10.1109/36.964971
10.1111/j.1751-5823.2001.tb00465.x
10.1109/TGRS.2005.864142
10.1109/TGRS.2005.843958
10.1109/IGARSS.1992.576832
10.1109/LGRS.2005.851543
10.1109/TGRS.2003.819883
10.1109/36.312890
10.1109/34.667881
10.1109/36.551935
10.1029/1999RS900108
10.1109/TGRS.2005.860950
10.1109/36.485128
10.1214/aoms/1177704250
10.1109/IGARSS.2002.1025129
10.1109/TGRS.2004.842108
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
1XC
DOI 10.1109/TGRS.2007.908303
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 3518
ExternalDocumentID oai_HAL_hal_00540726v1
2333755021
10_1109_TGRS_2007_908303
4373371
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
XFK
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
1XC
ID FETCH-LOGICAL-c422t-c6f9de036190dc3faac23eeea32f54ccb22681b74d22a205a468765d3b0fc6183
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Tue Oct 15 15:03:38 EDT 2024
Fri Aug 16 10:30:21 EDT 2024
Thu Oct 10 20:17:38 EDT 2024
Fri Aug 23 03:22:07 EDT 2024
Wed Jun 26 19:26:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-c6f9de036190dc3faac23eeea32f54ccb22681b74d22a205a468765d3b0fc6183
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-9805-9390
PQID 864092615
PQPubID 85465
PageCount 16
ParticipantIDs proquest_miscellaneous_880658355
crossref_primary_10_1109_TGRS_2007_908303
proquest_journals_864092615
hal_primary_oai_HAL_hal_00540726v1
ieee_primary_4373371
PublicationCentury 2000
PublicationDate 2007-11-01
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2007
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ferro-famil (ref8) 2006
ref14
ref20
ref11
lee (ref9) 2006
ref22
ref10
dempster (ref16) 1977; 39
ref21
ref2
ref1
ref17
ref19
ref18
ref7
ref4
ref3
ref6
ref5
pottier (ref23) 1998
References_xml – ident: ref19
  doi: 10.1109/TGRS.2002.808066
– ident: ref21
  doi: 10.1109/36.673687
– ident: ref5
  doi: 10.1109/36.789621
– ident: ref1
  doi: 10.1109/36.964971
– ident: ref18
  doi: 10.1111/j.1751-5823.2001.tb00465.x
– ident: ref20
  doi: 10.1109/TGRS.2005.864142
– ident: ref4
  doi: 10.1109/TGRS.2005.843958
– ident: ref14
  doi: 10.1109/IGARSS.1992.576832
– year: 2006
  ident: ref8
  article-title: forest mapping and classification at l-band using pol-insar optimal coherence set statistics
  publication-title: Proc EUSAR
  contributor:
    fullname: ferro-famil
– ident: ref11
  doi: 10.1109/LGRS.2005.851543
– ident: ref6
  doi: 10.1109/TGRS.2003.819883
– ident: ref15
  doi: 10.1109/36.312890
– start-page: 535
  year: 1998
  ident: ref23
  article-title: unsupervised classification scheme and topography derivation of polsar data based on the polarimetric decomposition theorem
  publication-title: Proc 4th Int Workshop Radar Polarimetry
  contributor:
    fullname: pottier
– volume: 39
  start-page: 1
  year: 1977
  ident: ref16
  article-title: maximum-likehood from incomplete data via the expectation maximization algorithm
  publication-title: J R Stat Soc B
  contributor:
    fullname: dempster
– ident: ref17
  doi: 10.1109/34.667881
– year: 2006
  ident: ref9
  article-title: forest classification based on multi-baseline interferometric and polarimetric e-sar data
  publication-title: Proc EUSAR
  contributor:
    fullname: lee
– ident: ref22
  doi: 10.1109/36.551935
– ident: ref2
  doi: 10.1029/1999RS900108
– ident: ref3
  doi: 10.1109/TGRS.2005.860950
– ident: ref12
  doi: 10.1109/36.485128
– ident: ref13
  doi: 10.1214/aoms/1177704250
– ident: ref10
  doi: 10.1109/IGARSS.2002.1025129
– ident: ref7
  doi: 10.1109/TGRS.2004.842108
SSID ssj0014517
Score 2.039615
Snippet This paper describes an unsupervised classifier for polarimetric interferometric synthetic aperture radar (PolInSAR) data. Expectation maximization is used to...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 3503
SubjectTerms Classification
Classifiers
Clustering algorithms
Coherence
Interferometric synthetic aperture radar
Interferometry
Iterative algorithms
Layout
Mathematical analysis
Mathematical models
Matrices
Maximization
Parameter estimation
Polarization
Radar polarimetry
Radar remote sensing
radar target classification
Remote sensing
Synthetic aperture radar
synthetic aperture radar (SAR)
Synthetic aperture radar interferometry
Title A Self-Initializing PolInSAR Classifier Using Interferometric Phase Differences
URI https://ieeexplore.ieee.org/document/4373371
https://www.proquest.com/docview/864092615
https://search.proquest.com/docview/880658355
https://hal.science/hal-00540726
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BUqX2wLMV4SUL9VKJLFnHduLjCrosFbQrFiRuke3YoirKInaXw_56xs5DVemBWxRbkePxzHzjeQF8RZTKmGZ5nDCdxkxlfeS5PI1lTiUvnUp0SI--_ilGd-zHPb9fgZMuF8ZaG4LPbM8_Bl9-OTULf1V26svwpD5hfDWTss7V6jwGjPeb1GgRoxFBW5dkIk9vL24mdbFCiYCjbY_VqKDVBx8AGTqrvBHHQccMN-C6XV0dWvKnt5jrnln-U7jxvcvfhPUGbJJBfTq2YMVW2_DprxKE2_AhhICa2Q78GpCJfXTxpQ8nQnS-xHEynj5eVpPBDQnNM387VKIkRBmQcJXorK924Iv8k_ED6kNy3vRbQenzGe6G32_PRnHTbiE2jNJ5bISTpUWNhhihNKlTytAUf0Kl1HFmjEakhiA3YyWliiZcMYGilJepTpwRKBq-wFo1rewuEGG4yDUvrUF21_1SWpWpFM9EprhjNIngW0uB4qmuqlEEaySRhaeWb46ZFTW1IjhGEnXTfDns0eCq8O8C3syoeOlHsOP3u5vVbHUE-y1Fi4Y3Z0Uu0KZFw5FHQLpRZCrvKVGVnS5winc3Izble___7j58DHe8ISfxANbmzwt7iOBkro_CqXwFJl7e4A
link.rule.ids 230,315,783,787,799,888,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RUFU4tDxaEaDFQr1UapasYzvJcVWgu7ALiF0kbpHt2AKBsgh2OfDrGTsPVZQDtyi2otjjmfnG8wL4iSiVMcXSMGIqDplMushzaRxmKc14YWWkfHr06FT0L9nxFb9agN9tLowxxgefmY579L78Yqrn7qps35XhiV3C-BLi6lRU2Vqtz4Dxbp0cLUI0I2jjlIyy_cnfi3FVrjBDyNE0yKqV0IdrFwLpe6v8J5C9ljn6AqPm_6rgktvOfKY6-vlV6cb3LmAVPtdwk_Sq87EGC6Zch5V_ihCuw0cfBKofN-CsR8bmzoYDF1CE-PwZx8n59G5QjnsXxLfPvLGoRomPMyD-MtEaV-_Alfkn59eoEclB3XEF5c9XuDw6nPzph3XDhVAzSmehFjYrDOo0RAmFjq2Umsa4CBlTy5nWCrEawtyEFZRKGnHJBApTXsQqslqgcPgGi-W0NJtAhOYiVbwwGhledYvMyETGeCoSyS2jUQC_Ggrk91VdjdzbI1GWO2q59phJXlErgD0kUTvNFcTu94a5e-cRZ0LFUzeADbff7ax6qwPYbiia19z5mKcCrVo0HXkApB1FtnK-Elma6RynOIczolO-9fZ3d-FTfzIa5sPB6ck2LPsbX5-huAOLs4e5-Y5QZaZ--BP6AvQe4is
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Self-Initializing+PolInSAR+Classifier+Using+Interferometric+Phase+Differences&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Jager%2C+M.&rft.au=Neumann%2C+M.&rft.au=Guillaso%2C+S.&rft.au=Reigber%2C+A.&rft.date=2007-11-01&rft.pub=IEEE&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=45&rft.issue=11&rft.spage=3503&rft.epage=3518&rft_id=info:doi/10.1109%2FTGRS.2007.908303&rft.externalDocID=4373371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon