The value of systemic immune inflammation index, white blood cell to platelet ratio, and homocysteine in predicting the instability of small saccular intracranial aneurysms

Inflammation has a destructive effect on the homeostasis of the vascular wall, which is involved in the formation, growth, and rupture of human intracranial aneurysms (IAs) disease progression. However, inflammation-related markers have not been well studied in the risk stratification of unruptured...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 24312 - 10
Main Authors Zhang, Wanwan, Xiang, Chao, Liu, Boliang, Hou, Fandi, Zheng, Zhanqiang, Chen, Zhongcan, Suo, Lina, Feng, Guang, Gu, Jianjun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.10.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inflammation has a destructive effect on the homeostasis of the vascular wall, which is involved in the formation, growth, and rupture of human intracranial aneurysms (IAs) disease progression. However, inflammation-related markers have not been well studied in the risk stratification of unruptured IAs. The purpose of this study was to investigate the predictive value of serum inflammatory markers in the unstable progression of small saccular intracranial aneurysms (SIAs). This study retrospectively included 275 patients with small SIAs (aneurysm diameter less than or equal to 7 mm), to compare the level difference of serum inflammatory complex marker systemic immune-inflammatory index (SII), white blood cell to platelet ratio (WPR), and homocysteine (Hcy) in patients with stable (asymptomatic unruptured) and unstable (symptomatic unruptured, ruptured) small SIAs. 187 patients (68%) had aneurysm-related compression symptoms and rupture outcomes. In the multivariate logistic regression after adjusting for baseline differences, SII, WPR, and Hcy were independent risk factors for the instability of small SIAs, the prediction model combined with other risk factors (previous stroke history, aneurysm irregularity) showed good predictive ability for the instability of small SIAs, with an area under the curve of 0.905. In addition, correlation analysis showed that SII, WPR, and Hcy also had significant differences in patients with symptomatic unruptured and ruptured small SIAs, and higher inflammation levels often promoted the disease progression of small SIAs. Higher levels of SII, WPR and Hcy can be used as independent predictors of instability of small SIAs. As an economical and convenient biomarker, it is crucial for clinical treatment strategies of stable small SIAs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-74870-y