Chromatin Accessibility Dynamics during iPSC Reprogramming

Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and clo...

Full description

Saved in:
Bibliographic Details
Published inCell stem cell Vol. 21; no. 6; pp. 819 - 833.e6
Main Authors Li, Dongwei, Liu, Jing, Yang, Xuejie, Zhou, Chunhua, Guo, Jing, Wu, Chuman, Qin, Yue, Guo, Lin, He, Jiangping, Yu, Shenyong, Liu, He, Wang, Xiaoshan, Wu, Fang, Kuang, Junqi, Hutchins, Andrew P., Chen, Jiekai, Pei, Duanqing
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and closed to open (CO), with an initial burst of OC and an ending surge of CO. The OC loci are largely composed of genes associated with a somatic fate, while the CO loci are associated with pluripotency. Factors/conditions known to impede reprogramming prevent OSK-driven OC and skew OC-CO dynamics. While the CO loci are enriched for OSK motifs, the OC loci are not, suggesting alternative mechanisms for chromatin closing. Sap30, a Sin3A corepressor complex component, is required for the OC shift and facilitates reduced H3K27ac deposition at OC loci. These results reveal a chromatin accessibility logic during reprogramming that may apply to other cell-fate decisions. [Display omitted] •ATAC-seq reveals chromatin accessibility dynamics during reprogramming•TFs associated with initial chromatin closing are barriers for reprogramming•OSK opens the pluripotent loci gradually through a direct process•OSK closes the somatic loci indirectly in part through SAP30 Li et al. show that Yamanaka factors remodel the nuclear architecture of MEFs following a binary logic that may guide further improvement in reprograming technology and be applicable for other cell-fate decisions.
AbstractList Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and closed to open (CO), with an initial burst of OC and an ending surge of CO. The OC loci are largely composed of genes associated with a somatic fate, while the CO loci are associated with pluripotency. Factors/conditions known to impede reprogramming prevent OSK-driven OC and skew OC-CO dynamics. While the CO loci are enriched for OSK motifs, the OC loci are not, suggesting alternative mechanisms for chromatin closing. Sap30, a Sin3A corepressor complex component, is required for the OC shift and facilitates reduced H3K27ac deposition at OC loci. These results reveal a chromatin accessibility logic during reprogramming that may apply to other cell-fate decisions.Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and closed to open (CO), with an initial burst of OC and an ending surge of CO. The OC loci are largely composed of genes associated with a somatic fate, while the CO loci are associated with pluripotency. Factors/conditions known to impede reprogramming prevent OSK-driven OC and skew OC-CO dynamics. While the CO loci are enriched for OSK motifs, the OC loci are not, suggesting alternative mechanisms for chromatin closing. Sap30, a Sin3A corepressor complex component, is required for the OC shift and facilitates reduced H3K27ac deposition at OC loci. These results reveal a chromatin accessibility logic during reprogramming that may apply to other cell-fate decisions.
Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and closed to open (CO), with an initial burst of OC and an ending surge of CO. The OC loci are largely composed of genes associated with a somatic fate, while the CO loci are associated with pluripotency. Factors/conditions known to impede reprogramming prevent OSK-driven OC and skew OC-CO dynamics. While the CO loci are enriched for OSK motifs, the OC loci are not, suggesting alternative mechanisms for chromatin closing. Sap30, a Sin3A corepressor complex component, is required for the OC shift and facilitates reduced H3K27ac deposition at OC loci. These results reveal a chromatin accessibility logic during reprogramming that may apply to other cell-fate decisions.
Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and closed to open (CO), with an initial burst of OC and an ending surge of CO. The OC loci are largely composed of genes associated with a somatic fate, while the CO loci are associated with pluripotency. Factors/conditions known to impede reprogramming prevent OSK-driven OC and skew OC-CO dynamics. While the CO loci are enriched for OSK motifs, the OC loci are not, suggesting alternative mechanisms for chromatin closing. Sap30, a Sin3A corepressor complex component, is required for the OC shift and facilitates reduced H3K27ac deposition at OC loci. These results reveal a chromatin accessibility logic during reprogramming that may apply to other cell-fate decisions. [Display omitted] •ATAC-seq reveals chromatin accessibility dynamics during reprogramming•TFs associated with initial chromatin closing are barriers for reprogramming•OSK opens the pluripotent loci gradually through a direct process•OSK closes the somatic loci indirectly in part through SAP30 Li et al. show that Yamanaka factors remodel the nuclear architecture of MEFs following a binary logic that may guide further improvement in reprograming technology and be applicable for other cell-fate decisions.
Author Wu, Chuman
Qin, Yue
Wang, Xiaoshan
Yu, Shenyong
Liu, He
Pei, Duanqing
Liu, Jing
Kuang, Junqi
Guo, Lin
Chen, Jiekai
Zhou, Chunhua
Hutchins, Andrew P.
Yang, Xuejie
Li, Dongwei
He, Jiangping
Guo, Jing
Wu, Fang
Author_xml – sequence: 1
  givenname: Dongwei
  surname: Li
  fullname: Li, Dongwei
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 2
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 3
  givenname: Xuejie
  surname: Yang
  fullname: Yang, Xuejie
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 4
  givenname: Chunhua
  surname: Zhou
  fullname: Zhou, Chunhua
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 5
  givenname: Jing
  surname: Guo
  fullname: Guo, Jing
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 6
  givenname: Chuman
  surname: Wu
  fullname: Wu, Chuman
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 7
  givenname: Yue
  surname: Qin
  fullname: Qin, Yue
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 8
  givenname: Lin
  surname: Guo
  fullname: Guo, Lin
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 9
  givenname: Jiangping
  surname: He
  fullname: He, Jiangping
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 10
  givenname: Shenyong
  surname: Yu
  fullname: Yu, Shenyong
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 11
  givenname: He
  surname: Liu
  fullname: Liu, He
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 12
  givenname: Xiaoshan
  surname: Wang
  fullname: Wang, Xiaoshan
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 13
  givenname: Fang
  surname: Wu
  fullname: Wu, Fang
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 14
  givenname: Junqi
  surname: Kuang
  fullname: Kuang, Junqi
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 15
  givenname: Andrew P.
  surname: Hutchins
  fullname: Hutchins, Andrew P.
  email: aphutchins@icloud.com
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 16
  givenname: Jiekai
  surname: Chen
  fullname: Chen, Jiekai
  email: chen_jiekai@gibh.ac.cn
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 17
  givenname: Duanqing
  surname: Pei
  fullname: Pei, Duanqing
  email: pei_duanqing@gibh.ac.cn
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29220666$$D View this record in MEDLINE/PubMed
BookMark eNp9kElPwzAQhS1URBf4AxxQjlxSbCeOG8SlKqtUCcRytpzxpLjKUuwUqf8eV20vHKo5ePT83ozmG5Je0zZIyCWjY0ZZdrMc-w7rMadMBmFMGT8hAzaRIs6llL3Q50kai5zmfTL0fkmpkIzKM9LnOec0y7IBuZ19u7bWnW2iKQB6bwtb2W4T3W8aXVvwkVk72ywi-_Yxi95x5dqF03UdpHNyWurK48X-HZGvx4fP2XM8f316mU3nMaScdzGwVBRo0DDN0lIDCl6kRW5kikKLtARRSsGAmizXRZEBleFfJ0YCQwYgkxG53s0Nu3_W6DtVWw9YVbrBdu0Vy6WgScJCjcjV3rouajRq5Wyt3UYd7g2Gyc4ArvXeYanAduH6tumctpViVG3RqqXaolVbtFstoA1R_i96mH40dLcLYQD0a9EpDxYbQGMdQqdMa4_F_wDijZLR
CitedBy_id crossref_primary_10_1038_s41467_024_54924_5
crossref_primary_10_1186_s12915_024_01997_9
crossref_primary_10_1016_j_gde_2018_05_013
crossref_primary_10_1089_scd_2022_0300
crossref_primary_10_1093_molbev_msab075
crossref_primary_10_1016_j_celrep_2019_04_088
crossref_primary_10_1038_s41467_018_08006_y
crossref_primary_10_1016_j_cr_2018_05_002
crossref_primary_10_1016_j_stemcr_2021_03_032
crossref_primary_10_7554_eLife_100735
crossref_primary_10_1016_j_stemcr_2020_08_011
crossref_primary_10_1016_j_tcb_2018_10_002
crossref_primary_10_1002_ggn2_202200015
crossref_primary_10_15283_ijsc23148
crossref_primary_10_3390_jof7010037
crossref_primary_10_15252_embj_2022113150
crossref_primary_10_1038_s41392_024_01809_0
crossref_primary_10_1038_s41467_021_21808_x
crossref_primary_10_1186_s13619_021_00078_4
crossref_primary_10_1038_s41556_023_01193_x
crossref_primary_10_1186_s13100_022_00279_x
crossref_primary_10_1007_s00018_021_03883_x
crossref_primary_10_1016_j_bbagrm_2019_194407
crossref_primary_10_1042_BST20220763
crossref_primary_10_1016_j_molcel_2019_01_042
crossref_primary_10_1016_j_tcb_2018_04_009
crossref_primary_10_1038_s41576_024_00792_0
crossref_primary_10_1038_s41588_024_01658_1
crossref_primary_10_1016_j_celrep_2019_04_077
crossref_primary_10_1016_j_molcel_2021_02_020
crossref_primary_10_1038_s41467_019_13411_y
crossref_primary_10_1007_s00018_024_05129_y
crossref_primary_10_3390_cells11091404
crossref_primary_10_3390_ijms231911941
crossref_primary_10_1016_j_celrep_2024_114170
crossref_primary_10_1016_j_celrep_2018_11_032
crossref_primary_10_1093_nar_gkae183
crossref_primary_10_1016_j_celrep_2019_05_068
crossref_primary_10_1016_j_gde_2020_05_016
crossref_primary_10_1007_s12015_020_09956_x
crossref_primary_10_1089_cmb_2019_0098
crossref_primary_10_1038_s41556_019_0390_6
crossref_primary_10_1038_s41588_021_00947_3
crossref_primary_10_1016_j_celrep_2018_06_030
crossref_primary_10_3390_ijms24031917
crossref_primary_10_1016_j_stemcr_2022_10_005
crossref_primary_10_1016_j_stem_2023_11_010
crossref_primary_10_1016_j_molcel_2022_07_014
crossref_primary_10_7554_eLife_83444
crossref_primary_10_1074_jbc_RA120_014598
crossref_primary_10_1186_s13578_022_00827_1
crossref_primary_10_1007_s11427_020_1897_0
crossref_primary_10_1016_j_celrep_2020_108309
crossref_primary_10_4252_wjsc_v11_i9_650
crossref_primary_10_1038_s41556_024_01595_5
crossref_primary_10_1096_fj_202100230R
crossref_primary_10_1016_j_scib_2024_09_004
crossref_primary_10_4049_jimmunol_2200778
crossref_primary_10_1242_dev_201921
crossref_primary_10_3390_ijms25168819
crossref_primary_10_1016_j_celrep_2019_07_088
crossref_primary_10_1038_s41556_022_00986_w
crossref_primary_10_1016_j_stem_2018_06_013
crossref_primary_10_1038_s42003_022_04264_1
crossref_primary_10_1093_nar_gkaf001
crossref_primary_10_1007_s00018_018_2748_5
crossref_primary_10_1007_s12551_024_01205_6
crossref_primary_10_15252_emmm_202012063
crossref_primary_10_1016_j_celrep_2018_04_036
crossref_primary_10_1016_j_bbcan_2019_04_003
crossref_primary_10_1016_j_gde_2021_06_003
crossref_primary_10_1038_s42255_020_0267_9
crossref_primary_10_1073_pnas_2104841118
crossref_primary_10_15252_embj_2023113448
crossref_primary_10_1038_s41420_024_02230_w
crossref_primary_10_1161_CIRCULATIONAHA_119_042371
crossref_primary_10_1186_s13059_023_02954_5
crossref_primary_10_3389_fvets_2021_716570
crossref_primary_10_1016_j_gde_2018_06_002
crossref_primary_10_1038_s42003_024_06874_3
crossref_primary_10_1111_febs_15818
crossref_primary_10_1111_febs_15894
crossref_primary_10_1002_advs_202409160
crossref_primary_10_1007_s12015_019_09931_1
crossref_primary_10_1016_j_mcp_2018_09_003
crossref_primary_10_1038_s41467_024_46956_8
crossref_primary_10_1186_s13619_023_00179_2
crossref_primary_10_1093_nar_gkad597
crossref_primary_10_7554_eLife_100735_3
crossref_primary_10_3390_ijms252313128
crossref_primary_10_1016_j_lfs_2018_09_057
crossref_primary_10_1038_s41467_023_37256_8
crossref_primary_10_1371_journal_pcbi_1009282
crossref_primary_10_1016_j_stem_2017_11_017
crossref_primary_10_1186_s13578_023_01141_0
crossref_primary_10_1016_j_bbrc_2021_08_047
crossref_primary_10_1016_j_celrep_2020_108120
crossref_primary_10_1016_j_stem_2018_11_014
crossref_primary_10_1016_j_stem_2018_05_020
crossref_primary_10_1126_sciimmunol_adm8251
crossref_primary_10_1002_adma_202211609
crossref_primary_10_15252_embj_201899165
crossref_primary_10_1016_j_arr_2025_102737
crossref_primary_10_3389_fcell_2021_708066
crossref_primary_10_7717_peerj_8952
crossref_primary_10_1186_s13059_019_1762_8
crossref_primary_10_3389_fcell_2022_927555
crossref_primary_10_1126_sciadv_abl8070
crossref_primary_10_1002_sctm_20_0278
crossref_primary_10_3390_biomedinformatics3040061
crossref_primary_10_1038_s41556_021_00727_5
crossref_primary_10_1038_s41594_020_0487_4
crossref_primary_10_1038_s41467_024_50551_2
crossref_primary_10_1016_j_celrep_2018_07_026
crossref_primary_10_1016_j_heliyon_2024_e37361
crossref_primary_10_1038_s41467_023_38543_0
crossref_primary_10_15252_embr_202051264
crossref_primary_10_1016_j_stem_2018_03_005
crossref_primary_10_1038_s41588_019_0408_9
crossref_primary_10_1016_j_apsb_2019_09_003
crossref_primary_10_1016_j_scr_2020_102062
crossref_primary_10_1038_s41420_023_01533_8
crossref_primary_10_1016_j_stemcr_2020_10_012
crossref_primary_10_1038_s41556_020_0516_x
crossref_primary_10_1016_j_stem_2019_06_008
crossref_primary_10_1093_nar_gky610
crossref_primary_10_3390_mps5020028
crossref_primary_10_1126_sciadv_adh2501
crossref_primary_10_1002_stem_3437
crossref_primary_10_1038_s41421_018_0074_6
crossref_primary_10_1016_j_celrep_2024_115106
crossref_primary_10_1038_s41419_021_04384_2
crossref_primary_10_1038_s41596_022_00692_9
crossref_primary_10_1016_j_trim_2023_101804
crossref_primary_10_1126_science_aay3983
crossref_primary_10_1016_j_heliyon_2023_e18133
crossref_primary_10_1038_s41467_019_11741_5
crossref_primary_10_1038_s41587_021_01031_1
crossref_primary_10_1038_s41467_018_07687_9
crossref_primary_10_22141_2224_0721_18_3_2022_1165
crossref_primary_10_1096_fj_202300131RRR
crossref_primary_10_1038_s41467_019_11054_7
crossref_primary_10_1007_s12015_021_10220_z
crossref_primary_10_1073_pnas_1812449116
crossref_primary_10_1111_cpr_13080
crossref_primary_10_1111_acel_13858
crossref_primary_10_3389_fcell_2023_1328522
crossref_primary_10_1016_j_celrep_2022_110626
crossref_primary_10_1074_jbc_RA119_009757
crossref_primary_10_15252_embr_202051644
crossref_primary_10_1007_s11427_022_2349_9
crossref_primary_10_1038_s41419_023_05705_3
crossref_primary_10_1038_s43587_023_00539_2
crossref_primary_10_3389_fcell_2021_637309
crossref_primary_10_26508_lsa_202302121
crossref_primary_10_1002_dneu_22605
crossref_primary_10_3390_metabo11030154
crossref_primary_10_1158_1541_7786_MCR_21_0672
crossref_primary_10_1007_s12015_022_10339_7
crossref_primary_10_1038_s42003_024_07230_1
crossref_primary_10_1038_s41467_019_14028_x
crossref_primary_10_1016_j_stemcr_2018_12_008
crossref_primary_10_1186_s12864_021_08266_x
crossref_primary_10_15252_embj_2023113880
crossref_primary_10_1016_j_jgg_2021_09_006
crossref_primary_10_3389_fcell_2023_1097780
crossref_primary_10_1016_j_stemcr_2024_04_005
crossref_primary_10_14348_molcells_2020_0207
crossref_primary_10_3389_fcell_2022_838332
crossref_primary_10_1016_j_aqrep_2023_101540
Cites_doi 10.1038/nrm3036
10.1186/1471-2105-12-480
10.1016/j.cell.2016.12.016
10.1186/1471-2105-12-323
10.1016/j.stem.2010.12.001
10.1016/j.celrep.2017.01.055
10.1016/j.cell.2009.01.001
10.1016/j.cell.2006.07.024
10.1186/gb-2010-11-2-r14
10.1038/nrm.2016.6
10.1038/nature14590
10.1016/j.stem.2010.04.014
10.1016/j.stem.2009.12.001
10.1016/j.molcel.2014.02.032
10.1093/nar/gku365
10.1128/MCB.00975-10
10.1038/nature14046
10.1016/j.tcb.2015.12.003
10.1016/j.celrep.2016.05.049
10.1016/j.cell.2015.06.016
10.1093/nar/gkx054
10.1016/j.molcel.2010.05.004
10.1016/j.cell.2008.04.043
10.1007/s00294-004-0541-5
10.1002/0471142727.mb2129s109
10.1074/jbc.R800063200
10.1038/nature13992
10.1038/emboj.2013.31
10.1038/nmeth.2688
10.1038/ng.2491
10.1016/j.cell.2012.09.045
10.1186/gb-2008-9-9-r137
10.1038/nrg3473
10.1038/nature15749
10.1016/j.cell.2012.11.039
10.1186/gb-2012-13-10-251
10.1093/database/bav067
10.1038/nature07056
10.1126/science.aab1601
10.1038/ncb3326
10.1016/S1097-2765(00)80111-2
10.1038/nprot.2008.211
10.1038/cr.2011.51
10.1038/nbt.2596
10.1038/ncomms4678
10.1016/j.stem.2010.04.015
10.1016/j.celrep.2016.01.013
10.1038/ncb3193
10.1016/j.cell.2015.03.017
10.1038/nbt1418
10.1038/nmeth.1923
10.1016/j.stem.2008.02.001
10.1016/S0925-4773(02)00087-4
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.stem.2017.10.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-9777
EndPage 833.e6
ExternalDocumentID 29220666
10_1016_j_stem_2017_10_012
S1934590917304290
Genre Journal Article
GroupedDBID ---
--K
0R~
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
WQ6
ZA5
ZBA
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c422t-c145beded1a14face52b4b9d74e5a54fc5f751c0d69abb6c072b4a3d7c1e1cc73
IEDL.DBID IXB
ISSN 1934-5909
1875-9777
IngestDate Fri Jul 11 16:08:21 EDT 2025
Thu Apr 03 07:00:02 EDT 2025
Tue Jul 01 01:08:29 EDT 2025
Thu Apr 24 23:10:24 EDT 2025
Fri Feb 23 02:30:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords reprogramming
Sap30
chromatin dynamics
binary logic
open/close
Language English
License This article is made available under the Elsevier license.
Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-c145beded1a14face52b4b9d74e5a54fc5f751c0d69abb6c072b4a3d7c1e1cc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1934590917304290
PMID 29220666
PQID 1975033131
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1975033131
pubmed_primary_29220666
crossref_citationtrail_10_1016_j_stem_2017_10_012
crossref_primary_10_1016_j_stem_2017_10_012
elsevier_sciencedirect_doi_10_1016_j_stem_2017_10_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-07
PublicationDateYYYYMMDD 2017-12-07
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell stem cell
PublicationTitleAlternate Cell Stem Cell
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hutchins, Jauch, Dyla, Miranda-Saavedra (bib22) 2014; 3
Huang, Sherman, Lempicki (bib19) 2009; 4
Buenrostro, Giresi, Zaba, Chang, Greenleaf (bib2) 2013; 10
Buganim, Faddah, Jaenisch (bib5) 2013; 14
Hutchins, Yang, Li, He, Fu, Wang, Li, Liu, He, Wang (bib23) 2017; 45
Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib18) 2010; 38
Schmidt, Plath (bib40) 2012; 13
Soufi, Garcia, Jaroszewicz, Osman, Pellegrini, Zaret (bib44) 2015; 161
Young, Wakefield, Smyth, Oshlack (bib53) 2010; 11
Aksoy, Jauch, Chen, Dyla, Divakar, Bogu, Teo, Leng Ng, Herath, Lili (bib1) 2013; 32
Silverstein, Ekwall (bib41) 2005; 47
Ramírez, Dündar, Diehl, Grüning, Manke (bib36) 2014; 42
Buenrostro, Wu, Litzenburger, Ruff, Gonzales, Snyder, Chang, Greenleaf (bib4) 2015; 523
Chen, Chen, Li, Liu, Gao, Kou, Zhao, Zheng, Zhang, Huo (bib11) 2016; 14
van Oevelen, Bowman, Pellegrino, Asp, Cheng, Parisi, Micsinai, Kluger, Chu, Blais (bib51) 2010; 30
Chen, Liu, Liu, Qi, Wei, Yang, Liang, Chen, Chen, Wu (bib10) 2013; 45
Koche, Smith, Adli, Gu, Ku, Gnirke, Bernstein, Meissner (bib24) 2011; 8
Li, Dewey (bib28) 2011; 12
Soufi, Donahue, Zaret (bib43) 2012; 151
Xu, Zhang, Li, Zhu, Bao, Qin, Hutchins, Esteban (bib52) 2016; 26
Yue, Cheng, Breschi, Vierstra, Wu, Ryba, Sandstrom, Ma, Davis, Pope (bib54) 2014; 515
Cusanovich, Daza, Adey, Pliner, Christiansen, Gunderson, Steemers, Trapnell, Shendure (bib14) 2015; 348
Saunders, Huang, Fidalgo, Reimer, Faiola, Ding, Sánchez-Priego, Guallar, Sáenz, Li, Wang (bib39) 2017; 18
Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nusbaum, Myers, Brown, Li, Liu (bib55) 2008; 9
Langmead, Salzberg (bib27) 2012; 9
Takahashi, Yamanaka (bib48) 2006; 126
Samavarchi-Tehrani, Golipour, David, Sung, Beyer, Datti, Woltjen, Nagy, Wrana (bib38) 2010; 7
Chen, Xu, Yuan, Fang, Huss, Vega, Wong, Orlov, Zhang, Jiang (bib8) 2008; 133
Chen, Liu, Chen, Yang, Chen, Liu, Zhao, Mo, Song, Guo (bib9) 2011; 21
Cacchiarelli, Trapnell, Ziller, Soumillon, Cesana, Karnik, Donaghey, Smith, Ratanasirintrawoot, Zhang (bib6) 2015; 162
Polo, Anderssen, Walsh, Schwarz, Nefzger, Lim, Borkent, Apostolou, Alaei, Cloutier (bib35) 2012; 151
Kumar, Muratani, Rayan, Kraus, Lufkin, Ng, Prabhakar (bib25) 2013; 31
Liu, Chen, Pei (bib30) 2015
Pei (bib34) 2009; 284
Cheloufi, Elling, Hopfgartner, Jung, Murn, Ninova, Hubmann, Badeaux, Euong Ang, Tenen (bib7) 2015; 528
Medvedeva, Lennartsson, Ehsani, Kulakovskiy, Vorontsov, Panahandeh, Khimulya, Kasukawa, Drabløs (bib32) 2015; 2015
Gaspar-Maia, Alajem, Meshorer, Ramalho-Santos (bib17) 2011; 12
Hussein, Puri, Tonge, Benevento, Corso, Clancy, Mosbergen, Li, Lee, Cloonan (bib21) 2014; 516
Smith, Sindhu, Meissner (bib42) 2016; 17
Sridharan, Tchieu, Mason, Yachechko, Kuoy, Horvath, Zhou, Plath (bib45) 2009; 136
Szabó, Hübner, Schöler, Mann (bib47) 2002; 115
Di Stefano, Collombet, Jakobsen, Wierer, Sardina, Lackner, Stadhouders, Segura-Morales, Francesconi, Limone (bib15) 2016; 18
Esteban, Wang, Qin, Yang, Qin, Cai, Li, Weng, Chen, Ni (bib16) 2010; 6
Li, Liang, Ni, Zhou, Qing, Li, He, Chen, Li, Zhuang (bib29) 2010; 7
Liu, Han, Peng, Peng, Wei, Li, Wang, Yu, Yang, Cao (bib31) 2015; 17
Mikkelsen, Hanna, Zhang, Ku, Wernig, Schorderet, Bernstein, Jaenisch, Lander, Meissner (bib33) 2008; 454
Risso, Schwartz, Sherlock, Dudoit (bib37) 2011; 12
Takahashi, Tanabe, Ohnuki, Narita, Sasaki, Yamamoto, Nakamura, Sutou, Osafune, Yamanaka (bib49) 2014; 5
Chronis, Fiziev, Papp, Butz, Bonora, Sabri, Ernst, Plath (bib13) 2017; 168
Laherty, Billin, Lavinsky, Yochum, Bush, Sun, Mullen, Davie, Rose, Glass (bib26) 1998; 2
Stadtfeld, Maherali, Breault, Hochedlinger (bib46) 2008; 2
Huangfu, Maehr, Guo, Eijkelenboom, Snitow, Chen, Melton (bib20) 2008; 26
Buenrostro, Wu, Chang, Greenleaf (bib3) 2015; 109
Cheng, Blum, Bowman, Hu, Shilatifard, Shen, Dynlacht (bib12) 2014; 53
Toh, Chan, Chong, Wang, Guo, Satapathy, Ma, Goh, Khattar, Yang (bib50) 2016; 15
Young (10.1016/j.stem.2017.10.012_bib53) 2010; 11
Liu (10.1016/j.stem.2017.10.012_bib31) 2015; 17
Takahashi (10.1016/j.stem.2017.10.012_bib48) 2006; 126
Cheng (10.1016/j.stem.2017.10.012_bib12) 2014; 53
Liu (10.1016/j.stem.2017.10.012_bib30) 2015
Li (10.1016/j.stem.2017.10.012_bib28) 2011; 12
Buganim (10.1016/j.stem.2017.10.012_bib5) 2013; 14
Chen (10.1016/j.stem.2017.10.012_bib10) 2013; 45
Cacchiarelli (10.1016/j.stem.2017.10.012_bib6) 2015; 162
Heinz (10.1016/j.stem.2017.10.012_bib18) 2010; 38
Takahashi (10.1016/j.stem.2017.10.012_bib49) 2014; 5
Mikkelsen (10.1016/j.stem.2017.10.012_bib33) 2008; 454
Ramírez (10.1016/j.stem.2017.10.012_bib36) 2014; 42
Cusanovich (10.1016/j.stem.2017.10.012_bib14) 2015; 348
Koche (10.1016/j.stem.2017.10.012_bib24) 2011; 8
Szabó (10.1016/j.stem.2017.10.012_bib47) 2002; 115
Laherty (10.1016/j.stem.2017.10.012_bib26) 1998; 2
Hussein (10.1016/j.stem.2017.10.012_bib21) 2014; 516
Schmidt (10.1016/j.stem.2017.10.012_bib40) 2012; 13
van Oevelen (10.1016/j.stem.2017.10.012_bib51) 2010; 30
Huang (10.1016/j.stem.2017.10.012_bib19) 2009; 4
Langmead (10.1016/j.stem.2017.10.012_bib27) 2012; 9
Kumar (10.1016/j.stem.2017.10.012_bib25) 2013; 31
Toh (10.1016/j.stem.2017.10.012_bib50) 2016; 15
Buenrostro (10.1016/j.stem.2017.10.012_bib4) 2015; 523
Silverstein (10.1016/j.stem.2017.10.012_bib41) 2005; 47
Huangfu (10.1016/j.stem.2017.10.012_bib20) 2008; 26
Soufi (10.1016/j.stem.2017.10.012_bib44) 2015; 161
Aksoy (10.1016/j.stem.2017.10.012_bib1) 2013; 32
Yue (10.1016/j.stem.2017.10.012_bib54) 2014; 515
Risso (10.1016/j.stem.2017.10.012_bib37) 2011; 12
Polo (10.1016/j.stem.2017.10.012_bib35) 2012; 151
Buenrostro (10.1016/j.stem.2017.10.012_bib2) 2013; 10
Cheloufi (10.1016/j.stem.2017.10.012_bib7) 2015; 528
Saunders (10.1016/j.stem.2017.10.012_bib39) 2017; 18
Stadtfeld (10.1016/j.stem.2017.10.012_bib46) 2008; 2
Hutchins (10.1016/j.stem.2017.10.012_bib22) 2014; 3
Zhang (10.1016/j.stem.2017.10.012_bib55) 2008; 9
Smith (10.1016/j.stem.2017.10.012_bib42) 2016; 17
Samavarchi-Tehrani (10.1016/j.stem.2017.10.012_bib38) 2010; 7
Di Stefano (10.1016/j.stem.2017.10.012_bib15) 2016; 18
Sridharan (10.1016/j.stem.2017.10.012_bib45) 2009; 136
Chen (10.1016/j.stem.2017.10.012_bib8) 2008; 133
Chen (10.1016/j.stem.2017.10.012_bib9) 2011; 21
Xu (10.1016/j.stem.2017.10.012_bib52) 2016; 26
Hutchins (10.1016/j.stem.2017.10.012_bib23) 2017; 45
Pei (10.1016/j.stem.2017.10.012_bib34) 2009; 284
Buenrostro (10.1016/j.stem.2017.10.012_bib3) 2015; 109
Chen (10.1016/j.stem.2017.10.012_bib11) 2016; 14
Li (10.1016/j.stem.2017.10.012_bib29) 2010; 7
Gaspar-Maia (10.1016/j.stem.2017.10.012_bib17) 2011; 12
Soufi (10.1016/j.stem.2017.10.012_bib43) 2012; 151
Medvedeva (10.1016/j.stem.2017.10.012_bib32) 2015; 2015
Chronis (10.1016/j.stem.2017.10.012_bib13) 2017; 168
Esteban (10.1016/j.stem.2017.10.012_bib16) 2010; 6
29220662 - Cell Stem Cell. 2017 Dec 7;21(6):711-712
References_xml – volume: 42
  start-page: W187
  year: 2014
  end-page: W191
  ident: bib36
  article-title: deepTools: A flexible platform for exploring deep-sequencing data
  publication-title: Nucleic Acids Res.
– volume: 115
  start-page: 157
  year: 2002
  end-page: 160
  ident: bib47
  article-title: Allele-specific expression of imprinted genes in mouse migratory primordial germ cells
  publication-title: Mech. Dev.
– volume: 14
  start-page: 427
  year: 2013
  end-page: 439
  ident: bib5
  article-title: Mechanisms and models of somatic cell reprogramming
  publication-title: Nat. Rev. Genet.
– volume: 161
  start-page: 555
  year: 2015
  end-page: 568
  ident: bib44
  article-title: Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming
  publication-title: Cell
– volume: 47
  start-page: 1
  year: 2005
  end-page: 17
  ident: bib41
  article-title: Sin3: A flexible regulator of global gene expression and genome stability
  publication-title: Curr. Genet.
– volume: 53
  start-page: 979
  year: 2014
  end-page: 992
  ident: bib12
  article-title: A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers
  publication-title: Mol. Cell
– volume: 348
  start-page: 910
  year: 2015
  end-page: 914
  ident: bib14
  article-title: Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing
  publication-title: Science
– volume: 523
  start-page: 486
  year: 2015
  end-page: 490
  ident: bib4
  article-title: Single-cell chromatin accessibility reveals principles of regulatory variation
  publication-title: Nature
– volume: 17
  start-page: 856
  year: 2015
  end-page: 867
  ident: bib31
  article-title: The oncogene c-Jun impedes somatic cell reprogramming
  publication-title: Nat. Cell Biol.
– volume: 31
  start-page: 615
  year: 2013
  end-page: 622
  ident: bib25
  article-title: Uniform, optimal signal processing of mapped deep-sequencing data
  publication-title: Nat. Biotechnol.
– volume: 11
  start-page: R14
  year: 2010
  ident: bib53
  article-title: Gene ontology analysis for RNA-seq: Accounting for selection bias
  publication-title: Genome Biol.
– volume: 5
  start-page: 3678
  year: 2014
  ident: bib49
  article-title: Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1540
  year: 2016
  end-page: 1554
  ident: bib11
  article-title: Hierarchical Oct4 binding in concert with primed epigenetic rearrangements during somatic cell reprogramming
  publication-title: Cell Rep.
– volume: 15
  start-page: 2597
  year: 2016
  end-page: 2607
  ident: bib50
  article-title: RNAi Reveals Phase-Specific Global Regulators of Human Somatic Cell Reprogramming
  publication-title: Cell Rep.
– volume: 45
  start-page: 2354
  year: 2017
  end-page: 2367
  ident: bib23
  article-title: Models of global gene expression define major domains of cell type and tissue identity
  publication-title: Nucleic Acids Res.
– volume: 13
  start-page: 251
  year: 2012
  ident: bib40
  article-title: The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation
  publication-title: Genome Biol.
– volume: 17
  start-page: 139
  year: 2016
  end-page: 154
  ident: bib42
  article-title: Molecular features of cellular reprogramming and development
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 2015
  start-page: bav067
  year: 2015
  ident: bib32
  article-title: EpiFactors: A comprehensive database of human epigenetic factors and complexes
  publication-title: Database (Oxford)
– volume: 168
  start-page: 442
  year: 2017
  end-page: 459
  ident: bib13
  article-title: Cooperative binding of transcription factors orchestrates reprogramming
  publication-title: Cell
– volume: 7
  start-page: 51
  year: 2010
  end-page: 63
  ident: bib29
  article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
  publication-title: Cell Stem Cell
– volume: 133
  start-page: 1106
  year: 2008
  end-page: 1117
  ident: bib8
  article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells
  publication-title: Cell
– volume: 12
  start-page: 323
  year: 2011
  ident: bib28
  article-title: RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
– volume: 26
  start-page: 272
  year: 2016
  end-page: 288
  ident: bib52
  article-title: Transcriptional Control of Somatic Cell Reprogramming
  publication-title: Trends Cell Biol.
– year: 2015
  ident: bib30
  article-title: Reprogramming Mouse Embryonic Fibroblasts Using Different Reprogramming Factors
– volume: 26
  start-page: 795
  year: 2008
  end-page: 797
  ident: bib20
  article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds
  publication-title: Nat. Biotechnol.
– volume: 4
  start-page: 44
  year: 2009
  end-page: 57
  ident: bib19
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc.
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: bib48
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 162
  start-page: 412
  year: 2015
  end-page: 424
  ident: bib6
  article-title: Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency
  publication-title: Cell
– volume: 6
  start-page: 71
  year: 2010
  end-page: 79
  ident: bib16
  article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 151
  start-page: 1617
  year: 2012
  end-page: 1632
  ident: bib35
  article-title: A molecular roadmap of reprogramming somatic cells into iPS cells
  publication-title: Cell
– volume: 12
  start-page: 480
  year: 2011
  ident: bib37
  article-title: GC-content normalization for RNA-Seq data
  publication-title: BMC Bioinformatics
– volume: 3
  start-page: 1
  year: 2014
  ident: bib22
  article-title: glbase: A framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data
  publication-title: Cell Regen. (Lond.)
– volume: 32
  start-page: 938
  year: 2013
  end-page: 953
  ident: bib1
  article-title: Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm
  publication-title: EMBO J.
– volume: 516
  start-page: 198
  year: 2014
  end-page: 206
  ident: bib21
  article-title: Genome-wide characterization of the routes to pluripotency
  publication-title: Nature
– volume: 18
  start-page: 1713
  year: 2017
  end-page: 1726
  ident: bib39
  article-title: The SIN3A/HDAC corepressor complex functionally cooperates with NANOG to promote pluripotency
  publication-title: Cell Rep.
– volume: 2
  start-page: 33
  year: 1998
  end-page: 42
  ident: bib26
  article-title: SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors
  publication-title: Mol. Cell
– volume: 2
  start-page: 230
  year: 2008
  end-page: 240
  ident: bib46
  article-title: Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse
  publication-title: Cell Stem Cell
– volume: 18
  start-page: 371
  year: 2016
  end-page: 381
  ident: bib15
  article-title: C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4
  publication-title: Nat. Cell Biol.
– volume: 10
  start-page: 1213
  year: 2013
  end-page: 1218
  ident: bib2
  article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
  publication-title: Nat. Methods
– volume: 136
  start-page: 364
  year: 2009
  end-page: 377
  ident: bib45
  article-title: Role of the murine reprogramming factors in the induction of pluripotency
  publication-title: Cell
– volume: 21
  start-page: 884
  year: 2011
  end-page: 894
  ident: bib9
  article-title: Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics
  publication-title: Cell Res.
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: bib27
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
– volume: 30
  start-page: 5686
  year: 2010
  end-page: 5697
  ident: bib51
  article-title: The mammalian Sin3 proteins are required for muscle development and sarcomere specification
  publication-title: Mol. Cell. Biol.
– volume: 7
  start-page: 64
  year: 2010
  end-page: 77
  ident: bib38
  article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
  publication-title: Cell Stem Cell
– volume: 45
  start-page: 34
  year: 2013
  end-page: 42
  ident: bib10
  article-title: H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs
  publication-title: Nat. Genet.
– volume: 454
  start-page: 49
  year: 2008
  end-page: 55
  ident: bib33
  article-title: Dissecting direct reprogramming through integrative genomic analysis
  publication-title: Nature
– volume: 9
  start-page: R137
  year: 2008
  ident: bib55
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
– volume: 8
  start-page: 96
  year: 2011
  end-page: 105
  ident: bib24
  article-title: Reprogramming factor expression initiates widespread targeted chromatin remodeling
  publication-title: Cell Stem Cell
– volume: 109
  start-page: 21
  year: 2015
  end-page: 29
  ident: bib3
  article-title: ATAC-seq: A method for assaying chromatin accessibility genome-wide
  publication-title: Curr. Protoc. Mol. Biol.
– volume: 12
  start-page: 36
  year: 2011
  end-page: 47
  ident: bib17
  article-title: Open chromatin in pluripotency and reprogramming
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 515
  start-page: 355
  year: 2014
  end-page: 364
  ident: bib54
  article-title: A comparative encyclopedia of DNA elements in the mouse genome
  publication-title: Nature
– volume: 38
  start-page: 576
  year: 2010
  end-page: 589
  ident: bib18
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
– volume: 284
  start-page: 3365
  year: 2009
  end-page: 3369
  ident: bib34
  article-title: Regulation of pluripotency and reprogramming by transcription factors
  publication-title: J. Biol. Chem.
– volume: 528
  start-page: 218
  year: 2015
  end-page: 224
  ident: bib7
  article-title: The histone chaperone CAF-1 safeguards somatic cell identity
  publication-title: Nature
– volume: 151
  start-page: 994
  year: 2012
  end-page: 1004
  ident: bib43
  article-title: Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome
  publication-title: Cell
– volume: 12
  start-page: 36
  year: 2011
  ident: 10.1016/j.stem.2017.10.012_bib17
  article-title: Open chromatin in pluripotency and reprogramming
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3036
– volume: 12
  start-page: 480
  year: 2011
  ident: 10.1016/j.stem.2017.10.012_bib37
  article-title: GC-content normalization for RNA-Seq data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-480
– volume: 3
  start-page: 1
  year: 2014
  ident: 10.1016/j.stem.2017.10.012_bib22
  article-title: glbase: A framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data
  publication-title: Cell Regen. (Lond.)
– volume: 168
  start-page: 442
  year: 2017
  ident: 10.1016/j.stem.2017.10.012_bib13
  article-title: Cooperative binding of transcription factors orchestrates reprogramming
  publication-title: Cell
  doi: 10.1016/j.cell.2016.12.016
– volume: 12
  start-page: 323
  year: 2011
  ident: 10.1016/j.stem.2017.10.012_bib28
  article-title: RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
– volume: 8
  start-page: 96
  year: 2011
  ident: 10.1016/j.stem.2017.10.012_bib24
  article-title: Reprogramming factor expression initiates widespread targeted chromatin remodeling
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.12.001
– volume: 18
  start-page: 1713
  year: 2017
  ident: 10.1016/j.stem.2017.10.012_bib39
  article-title: The SIN3A/HDAC corepressor complex functionally cooperates with NANOG to promote pluripotency
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.01.055
– volume: 136
  start-page: 364
  year: 2009
  ident: 10.1016/j.stem.2017.10.012_bib45
  article-title: Role of the murine reprogramming factors in the induction of pluripotency
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.001
– volume: 126
  start-page: 663
  year: 2006
  ident: 10.1016/j.stem.2017.10.012_bib48
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 11
  start-page: R14
  year: 2010
  ident: 10.1016/j.stem.2017.10.012_bib53
  article-title: Gene ontology analysis for RNA-seq: Accounting for selection bias
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-2-r14
– volume: 17
  start-page: 139
  year: 2016
  ident: 10.1016/j.stem.2017.10.012_bib42
  article-title: Molecular features of cellular reprogramming and development
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.6
– volume: 523
  start-page: 486
  year: 2015
  ident: 10.1016/j.stem.2017.10.012_bib4
  article-title: Single-cell chromatin accessibility reveals principles of regulatory variation
  publication-title: Nature
  doi: 10.1038/nature14590
– volume: 7
  start-page: 51
  year: 2010
  ident: 10.1016/j.stem.2017.10.012_bib29
  article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.04.014
– volume: 6
  start-page: 71
  year: 2010
  ident: 10.1016/j.stem.2017.10.012_bib16
  article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.12.001
– volume: 53
  start-page: 979
  year: 2014
  ident: 10.1016/j.stem.2017.10.012_bib12
  article-title: A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.02.032
– year: 2015
  ident: 10.1016/j.stem.2017.10.012_bib30
– volume: 42
  start-page: W187
  year: 2014
  ident: 10.1016/j.stem.2017.10.012_bib36
  article-title: deepTools: A flexible platform for exploring deep-sequencing data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku365
– volume: 30
  start-page: 5686
  year: 2010
  ident: 10.1016/j.stem.2017.10.012_bib51
  article-title: The mammalian Sin3 proteins are required for muscle development and sarcomere specification
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00975-10
– volume: 516
  start-page: 198
  year: 2014
  ident: 10.1016/j.stem.2017.10.012_bib21
  article-title: Genome-wide characterization of the routes to pluripotency
  publication-title: Nature
  doi: 10.1038/nature14046
– volume: 26
  start-page: 272
  year: 2016
  ident: 10.1016/j.stem.2017.10.012_bib52
  article-title: Transcriptional Control of Somatic Cell Reprogramming
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2015.12.003
– volume: 15
  start-page: 2597
  year: 2016
  ident: 10.1016/j.stem.2017.10.012_bib50
  article-title: RNAi Reveals Phase-Specific Global Regulators of Human Somatic Cell Reprogramming
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.05.049
– volume: 162
  start-page: 412
  year: 2015
  ident: 10.1016/j.stem.2017.10.012_bib6
  article-title: Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.016
– volume: 45
  start-page: 2354
  year: 2017
  ident: 10.1016/j.stem.2017.10.012_bib23
  article-title: Models of global gene expression define major domains of cell type and tissue identity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx054
– volume: 38
  start-page: 576
  year: 2010
  ident: 10.1016/j.stem.2017.10.012_bib18
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 133
  start-page: 1106
  year: 2008
  ident: 10.1016/j.stem.2017.10.012_bib8
  article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.043
– volume: 47
  start-page: 1
  year: 2005
  ident: 10.1016/j.stem.2017.10.012_bib41
  article-title: Sin3: A flexible regulator of global gene expression and genome stability
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-004-0541-5
– volume: 109
  start-page: 21
  year: 2015
  ident: 10.1016/j.stem.2017.10.012_bib3
  article-title: ATAC-seq: A method for assaying chromatin accessibility genome-wide
  publication-title: Curr. Protoc. Mol. Biol.
  doi: 10.1002/0471142727.mb2129s109
– volume: 284
  start-page: 3365
  year: 2009
  ident: 10.1016/j.stem.2017.10.012_bib34
  article-title: Regulation of pluripotency and reprogramming by transcription factors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R800063200
– volume: 515
  start-page: 355
  year: 2014
  ident: 10.1016/j.stem.2017.10.012_bib54
  article-title: A comparative encyclopedia of DNA elements in the mouse genome
  publication-title: Nature
  doi: 10.1038/nature13992
– volume: 32
  start-page: 938
  year: 2013
  ident: 10.1016/j.stem.2017.10.012_bib1
  article-title: Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.31
– volume: 10
  start-page: 1213
  year: 2013
  ident: 10.1016/j.stem.2017.10.012_bib2
  article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2688
– volume: 45
  start-page: 34
  year: 2013
  ident: 10.1016/j.stem.2017.10.012_bib10
  article-title: H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2491
– volume: 151
  start-page: 994
  year: 2012
  ident: 10.1016/j.stem.2017.10.012_bib43
  article-title: Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.045
– volume: 9
  start-page: R137
  year: 2008
  ident: 10.1016/j.stem.2017.10.012_bib55
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 14
  start-page: 427
  year: 2013
  ident: 10.1016/j.stem.2017.10.012_bib5
  article-title: Mechanisms and models of somatic cell reprogramming
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3473
– volume: 528
  start-page: 218
  year: 2015
  ident: 10.1016/j.stem.2017.10.012_bib7
  article-title: The histone chaperone CAF-1 safeguards somatic cell identity
  publication-title: Nature
  doi: 10.1038/nature15749
– volume: 151
  start-page: 1617
  year: 2012
  ident: 10.1016/j.stem.2017.10.012_bib35
  article-title: A molecular roadmap of reprogramming somatic cells into iPS cells
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.039
– volume: 13
  start-page: 251
  year: 2012
  ident: 10.1016/j.stem.2017.10.012_bib40
  article-title: The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-10-251
– volume: 2015
  start-page: bav067
  year: 2015
  ident: 10.1016/j.stem.2017.10.012_bib32
  article-title: EpiFactors: A comprehensive database of human epigenetic factors and complexes
  publication-title: Database (Oxford)
  doi: 10.1093/database/bav067
– volume: 454
  start-page: 49
  year: 2008
  ident: 10.1016/j.stem.2017.10.012_bib33
  article-title: Dissecting direct reprogramming through integrative genomic analysis
  publication-title: Nature
  doi: 10.1038/nature07056
– volume: 348
  start-page: 910
  year: 2015
  ident: 10.1016/j.stem.2017.10.012_bib14
  article-title: Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing
  publication-title: Science
  doi: 10.1126/science.aab1601
– volume: 18
  start-page: 371
  year: 2016
  ident: 10.1016/j.stem.2017.10.012_bib15
  article-title: C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3326
– volume: 2
  start-page: 33
  year: 1998
  ident: 10.1016/j.stem.2017.10.012_bib26
  article-title: SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80111-2
– volume: 4
  start-page: 44
  year: 2009
  ident: 10.1016/j.stem.2017.10.012_bib19
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.211
– volume: 21
  start-page: 884
  year: 2011
  ident: 10.1016/j.stem.2017.10.012_bib9
  article-title: Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.51
– volume: 31
  start-page: 615
  year: 2013
  ident: 10.1016/j.stem.2017.10.012_bib25
  article-title: Uniform, optimal signal processing of mapped deep-sequencing data
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2596
– volume: 5
  start-page: 3678
  year: 2014
  ident: 10.1016/j.stem.2017.10.012_bib49
  article-title: Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4678
– volume: 7
  start-page: 64
  year: 2010
  ident: 10.1016/j.stem.2017.10.012_bib38
  article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.04.015
– volume: 14
  start-page: 1540
  year: 2016
  ident: 10.1016/j.stem.2017.10.012_bib11
  article-title: Hierarchical Oct4 binding in concert with primed epigenetic rearrangements during somatic cell reprogramming
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.01.013
– volume: 17
  start-page: 856
  year: 2015
  ident: 10.1016/j.stem.2017.10.012_bib31
  article-title: The oncogene c-Jun impedes somatic cell reprogramming
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3193
– volume: 161
  start-page: 555
  year: 2015
  ident: 10.1016/j.stem.2017.10.012_bib44
  article-title: Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.017
– volume: 26
  start-page: 795
  year: 2008
  ident: 10.1016/j.stem.2017.10.012_bib20
  article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1418
– volume: 9
  start-page: 357
  year: 2012
  ident: 10.1016/j.stem.2017.10.012_bib27
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 2
  start-page: 230
  year: 2008
  ident: 10.1016/j.stem.2017.10.012_bib46
  article-title: Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.02.001
– volume: 115
  start-page: 157
  year: 2002
  ident: 10.1016/j.stem.2017.10.012_bib47
  article-title: Allele-specific expression of imprinted genes in mouse migratory primordial germ cells
  publication-title: Mech. Dev.
  doi: 10.1016/S0925-4773(02)00087-4
– reference: 29220662 - Cell Stem Cell. 2017 Dec 7;21(6):711-712
SSID ssj0057107
Score 2.5982163
Snippet Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 819
SubjectTerms Animals
binary logic
Cells, Cultured
Cellular Reprogramming
Chromatin - genetics
Chromatin - metabolism
chromatin dynamics
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Kruppel-Like Transcription Factors - metabolism
Mice
Octamer Transcription Factor-3 - metabolism
open/close
reprogramming
Sap30
SOXB1 Transcription Factors - metabolism
Title Chromatin Accessibility Dynamics during iPSC Reprogramming
URI https://dx.doi.org/10.1016/j.stem.2017.10.012
https://www.ncbi.nlm.nih.gov/pubmed/29220666
https://www.proquest.com/docview/1975033131
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lIHgR39YXK3iTtZttstl4q9VSBEWohd5CXgsV3RbbHvrvzSS7BQ_twePmwYaZ3ZkJ8803CN3mKs815jKGOs-YZIpAktDGmU5VkSTGJJ5n9vUtG4zIy5iOG6hX18IArLKy_cGme2tdjbQrabZnk0l76EIPQrnzdwyu5Bzu7R2S-yK-8WNtjanzoCxklkkMq6vCmYDxAq5kgHexe0B44XSTc9oUfHon1N9He1X0GHXDAQ9Qw5aHaCf0k1wdoQeguoUQtIy6vhFigL6uoqfQd34eharEaPI-7EUu9g7grG83dIxG_eeP3iCumiPEmqTpItaYUGWNNVhiUkhtaaqI4oYRSyUlhaYFo1gnJuNSqUwnzM3LjmEaW6w165ygZjkt7RmKlG82zZmbtMTonBdYu7CCSW6AXlC2EK6lInTFHA4NLL5EDRH7FCBJAZKEMSfJFrpb75kF3oytq2ktbPFH-8IZ9q37bmrNCPdbQK5Dlna6nAvMfYIWd3ALnQaVrc-R8hRI7LPzf771Au3Ckwe1sEvUXPws7ZULTRbq2n97v_bu4Bk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEKKXime7LdBUKicUNvba8RqJA4-iXV5CAqS9Gb8ibQUBdRdV-7v6B_HECRIHOCBxtePE-uzMfNZ8ngH41TXdriVSp3jPM2W5YRgk9GluqSmyzLmsyjN7dp73rtnxgA-m4H9zFwZllbXtjza9stZ1S7tGs_0wHLYvA_VgXAZ_J_BILrNaWXniJ__CuW202z8Mi7xJ6dHvq4NeWpcWSC2jdJxawrjxzjuiCSu09ZwaZqQTzHPNWWF5ITixmculNia3mQj9uuOEJZ5YKzrhvdMwG9iHQGvQH-w35p8Hly1iKJulOL36pk4UlWFyZtSTiW2UlBH6mjd8je1WXu9oAT7XdDXZi4gswpQvl2AuFrCcLMMO5tZFzlsme1Xlxai1nSSHsdD9KInXIJPhxeVBEsh-VIPdhaYVuP4QyFZhprwv_VdITFXdWorQ6ZmzXVkQG3iM0NJhPkPdAtKgomydqhwrZtyqRpP2RyGSCpHEtoBkC7aexzzERB1vPs0bsNWL7aaCJ3lz3M9mZVT4DzG4okt__zhSRFYRYdIhLfgSl-x5HlRSzJqff3vnV3_AfO_q7FSd9s9PvsMn7KkUNWINZsZ_H_164EVjs1HtwwRuPnrjPwHPJh_m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromatin+Accessibility+Dynamics+during+iPSC+Reprogramming&rft.jtitle=Cell+stem+cell&rft.au=Li%2C+Dongwei&rft.au=Liu%2C+Jing&rft.au=Yang%2C+Xuejie&rft.au=Zhou%2C+Chunhua&rft.date=2017-12-07&rft.issn=1875-9777&rft.eissn=1875-9777&rft.volume=21&rft.issue=6&rft.spage=819&rft_id=info:doi/10.1016%2Fj.stem.2017.10.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon