Chromatin Accessibility Dynamics during iPSC Reprogramming
Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and clo...
Saved in:
Published in | Cell stem cell Vol. 21; no. 6; pp. 819 - 833.e6 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and closed to open (CO), with an initial burst of OC and an ending surge of CO. The OC loci are largely composed of genes associated with a somatic fate, while the CO loci are associated with pluripotency. Factors/conditions known to impede reprogramming prevent OSK-driven OC and skew OC-CO dynamics. While the CO loci are enriched for OSK motifs, the OC loci are not, suggesting alternative mechanisms for chromatin closing. Sap30, a Sin3A corepressor complex component, is required for the OC shift and facilitates reduced H3K27ac deposition at OC loci. These results reveal a chromatin accessibility logic during reprogramming that may apply to other cell-fate decisions.
[Display omitted]
•ATAC-seq reveals chromatin accessibility dynamics during reprogramming•TFs associated with initial chromatin closing are barriers for reprogramming•OSK opens the pluripotent loci gradually through a direct process•OSK closes the somatic loci indirectly in part through SAP30
Li et al. show that Yamanaka factors remodel the nuclear architecture of MEFs following a binary logic that may guide further improvement in reprograming technology and be applicable for other cell-fate decisions. |
---|---|
AbstractList | Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and closed to open (CO), with an initial burst of OC and an ending surge of CO. The OC loci are largely composed of genes associated with a somatic fate, while the CO loci are associated with pluripotency. Factors/conditions known to impede reprogramming prevent OSK-driven OC and skew OC-CO dynamics. While the CO loci are enriched for OSK motifs, the OC loci are not, suggesting alternative mechanisms for chromatin closing. Sap30, a Sin3A corepressor complex component, is required for the OC shift and facilitates reduced H3K27ac deposition at OC loci. These results reveal a chromatin accessibility logic during reprogramming that may apply to other cell-fate decisions.Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and closed to open (CO), with an initial burst of OC and an ending surge of CO. The OC loci are largely composed of genes associated with a somatic fate, while the CO loci are associated with pluripotency. Factors/conditions known to impede reprogramming prevent OSK-driven OC and skew OC-CO dynamics. While the CO loci are enriched for OSK motifs, the OC loci are not, suggesting alternative mechanisms for chromatin closing. Sap30, a Sin3A corepressor complex component, is required for the OC shift and facilitates reduced H3K27ac deposition at OC loci. These results reveal a chromatin accessibility logic during reprogramming that may apply to other cell-fate decisions. Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and closed to open (CO), with an initial burst of OC and an ending surge of CO. The OC loci are largely composed of genes associated with a somatic fate, while the CO loci are associated with pluripotency. Factors/conditions known to impede reprogramming prevent OSK-driven OC and skew OC-CO dynamics. While the CO loci are enriched for OSK motifs, the OC loci are not, suggesting alternative mechanisms for chromatin closing. Sap30, a Sin3A corepressor complex component, is required for the OC shift and facilitates reduced H3K27ac deposition at OC loci. These results reveal a chromatin accessibility logic during reprogramming that may apply to other cell-fate decisions. Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and closed to open (CO), with an initial burst of OC and an ending surge of CO. The OC loci are largely composed of genes associated with a somatic fate, while the CO loci are associated with pluripotency. Factors/conditions known to impede reprogramming prevent OSK-driven OC and skew OC-CO dynamics. While the CO loci are enriched for OSK motifs, the OC loci are not, suggesting alternative mechanisms for chromatin closing. Sap30, a Sin3A corepressor complex component, is required for the OC shift and facilitates reduced H3K27ac deposition at OC loci. These results reveal a chromatin accessibility logic during reprogramming that may apply to other cell-fate decisions. [Display omitted] •ATAC-seq reveals chromatin accessibility dynamics during reprogramming•TFs associated with initial chromatin closing are barriers for reprogramming•OSK opens the pluripotent loci gradually through a direct process•OSK closes the somatic loci indirectly in part through SAP30 Li et al. show that Yamanaka factors remodel the nuclear architecture of MEFs following a binary logic that may guide further improvement in reprograming technology and be applicable for other cell-fate decisions. |
Author | Wu, Chuman Qin, Yue Wang, Xiaoshan Yu, Shenyong Liu, He Pei, Duanqing Liu, Jing Kuang, Junqi Guo, Lin Chen, Jiekai Zhou, Chunhua Hutchins, Andrew P. Yang, Xuejie Li, Dongwei He, Jiangping Guo, Jing Wu, Fang |
Author_xml | – sequence: 1 givenname: Dongwei surname: Li fullname: Li, Dongwei organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 2 givenname: Jing surname: Liu fullname: Liu, Jing organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 3 givenname: Xuejie surname: Yang fullname: Yang, Xuejie organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 4 givenname: Chunhua surname: Zhou fullname: Zhou, Chunhua organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 5 givenname: Jing surname: Guo fullname: Guo, Jing organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 6 givenname: Chuman surname: Wu fullname: Wu, Chuman organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 7 givenname: Yue surname: Qin fullname: Qin, Yue organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 8 givenname: Lin surname: Guo fullname: Guo, Lin organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 9 givenname: Jiangping surname: He fullname: He, Jiangping organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 10 givenname: Shenyong surname: Yu fullname: Yu, Shenyong organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 11 givenname: He surname: Liu fullname: Liu, He organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 12 givenname: Xiaoshan surname: Wang fullname: Wang, Xiaoshan organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 13 givenname: Fang surname: Wu fullname: Wu, Fang organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 14 givenname: Junqi surname: Kuang fullname: Kuang, Junqi organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 15 givenname: Andrew P. surname: Hutchins fullname: Hutchins, Andrew P. email: aphutchins@icloud.com organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 16 givenname: Jiekai surname: Chen fullname: Chen, Jiekai email: chen_jiekai@gibh.ac.cn organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 17 givenname: Duanqing surname: Pei fullname: Pei, Duanqing email: pei_duanqing@gibh.ac.cn organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29220666$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kElPwzAQhS1URBf4AxxQjlxSbCeOG8SlKqtUCcRytpzxpLjKUuwUqf8eV20vHKo5ePT83ozmG5Je0zZIyCWjY0ZZdrMc-w7rMadMBmFMGT8hAzaRIs6llL3Q50kai5zmfTL0fkmpkIzKM9LnOec0y7IBuZ19u7bWnW2iKQB6bwtb2W4T3W8aXVvwkVk72ywi-_Yxi95x5dqF03UdpHNyWurK48X-HZGvx4fP2XM8f316mU3nMaScdzGwVBRo0DDN0lIDCl6kRW5kikKLtARRSsGAmizXRZEBleFfJ0YCQwYgkxG53s0Nu3_W6DtVWw9YVbrBdu0Vy6WgScJCjcjV3rouajRq5Wyt3UYd7g2Gyc4ArvXeYanAduH6tumctpViVG3RqqXaolVbtFstoA1R_i96mH40dLcLYQD0a9EpDxYbQGMdQqdMa4_F_wDijZLR |
CitedBy_id | crossref_primary_10_1038_s41467_024_54924_5 crossref_primary_10_1186_s12915_024_01997_9 crossref_primary_10_1016_j_gde_2018_05_013 crossref_primary_10_1089_scd_2022_0300 crossref_primary_10_1093_molbev_msab075 crossref_primary_10_1016_j_celrep_2019_04_088 crossref_primary_10_1038_s41467_018_08006_y crossref_primary_10_1016_j_cr_2018_05_002 crossref_primary_10_1016_j_stemcr_2021_03_032 crossref_primary_10_7554_eLife_100735 crossref_primary_10_1016_j_stemcr_2020_08_011 crossref_primary_10_1016_j_tcb_2018_10_002 crossref_primary_10_1002_ggn2_202200015 crossref_primary_10_15283_ijsc23148 crossref_primary_10_3390_jof7010037 crossref_primary_10_15252_embj_2022113150 crossref_primary_10_1038_s41392_024_01809_0 crossref_primary_10_1038_s41467_021_21808_x crossref_primary_10_1186_s13619_021_00078_4 crossref_primary_10_1038_s41556_023_01193_x crossref_primary_10_1186_s13100_022_00279_x crossref_primary_10_1007_s00018_021_03883_x crossref_primary_10_1016_j_bbagrm_2019_194407 crossref_primary_10_1042_BST20220763 crossref_primary_10_1016_j_molcel_2019_01_042 crossref_primary_10_1016_j_tcb_2018_04_009 crossref_primary_10_1038_s41576_024_00792_0 crossref_primary_10_1038_s41588_024_01658_1 crossref_primary_10_1016_j_celrep_2019_04_077 crossref_primary_10_1016_j_molcel_2021_02_020 crossref_primary_10_1038_s41467_019_13411_y crossref_primary_10_1007_s00018_024_05129_y crossref_primary_10_3390_cells11091404 crossref_primary_10_3390_ijms231911941 crossref_primary_10_1016_j_celrep_2024_114170 crossref_primary_10_1016_j_celrep_2018_11_032 crossref_primary_10_1093_nar_gkae183 crossref_primary_10_1016_j_celrep_2019_05_068 crossref_primary_10_1016_j_gde_2020_05_016 crossref_primary_10_1007_s12015_020_09956_x crossref_primary_10_1089_cmb_2019_0098 crossref_primary_10_1038_s41556_019_0390_6 crossref_primary_10_1038_s41588_021_00947_3 crossref_primary_10_1016_j_celrep_2018_06_030 crossref_primary_10_3390_ijms24031917 crossref_primary_10_1016_j_stemcr_2022_10_005 crossref_primary_10_1016_j_stem_2023_11_010 crossref_primary_10_1016_j_molcel_2022_07_014 crossref_primary_10_7554_eLife_83444 crossref_primary_10_1074_jbc_RA120_014598 crossref_primary_10_1186_s13578_022_00827_1 crossref_primary_10_1007_s11427_020_1897_0 crossref_primary_10_1016_j_celrep_2020_108309 crossref_primary_10_4252_wjsc_v11_i9_650 crossref_primary_10_1038_s41556_024_01595_5 crossref_primary_10_1096_fj_202100230R crossref_primary_10_1016_j_scib_2024_09_004 crossref_primary_10_4049_jimmunol_2200778 crossref_primary_10_1242_dev_201921 crossref_primary_10_3390_ijms25168819 crossref_primary_10_1016_j_celrep_2019_07_088 crossref_primary_10_1038_s41556_022_00986_w crossref_primary_10_1016_j_stem_2018_06_013 crossref_primary_10_1038_s42003_022_04264_1 crossref_primary_10_1093_nar_gkaf001 crossref_primary_10_1007_s00018_018_2748_5 crossref_primary_10_1007_s12551_024_01205_6 crossref_primary_10_15252_emmm_202012063 crossref_primary_10_1016_j_celrep_2018_04_036 crossref_primary_10_1016_j_bbcan_2019_04_003 crossref_primary_10_1016_j_gde_2021_06_003 crossref_primary_10_1038_s42255_020_0267_9 crossref_primary_10_1073_pnas_2104841118 crossref_primary_10_15252_embj_2023113448 crossref_primary_10_1038_s41420_024_02230_w crossref_primary_10_1161_CIRCULATIONAHA_119_042371 crossref_primary_10_1186_s13059_023_02954_5 crossref_primary_10_3389_fvets_2021_716570 crossref_primary_10_1016_j_gde_2018_06_002 crossref_primary_10_1038_s42003_024_06874_3 crossref_primary_10_1111_febs_15818 crossref_primary_10_1111_febs_15894 crossref_primary_10_1002_advs_202409160 crossref_primary_10_1007_s12015_019_09931_1 crossref_primary_10_1016_j_mcp_2018_09_003 crossref_primary_10_1038_s41467_024_46956_8 crossref_primary_10_1186_s13619_023_00179_2 crossref_primary_10_1093_nar_gkad597 crossref_primary_10_7554_eLife_100735_3 crossref_primary_10_3390_ijms252313128 crossref_primary_10_1016_j_lfs_2018_09_057 crossref_primary_10_1038_s41467_023_37256_8 crossref_primary_10_1371_journal_pcbi_1009282 crossref_primary_10_1016_j_stem_2017_11_017 crossref_primary_10_1186_s13578_023_01141_0 crossref_primary_10_1016_j_bbrc_2021_08_047 crossref_primary_10_1016_j_celrep_2020_108120 crossref_primary_10_1016_j_stem_2018_11_014 crossref_primary_10_1016_j_stem_2018_05_020 crossref_primary_10_1126_sciimmunol_adm8251 crossref_primary_10_1002_adma_202211609 crossref_primary_10_15252_embj_201899165 crossref_primary_10_1016_j_arr_2025_102737 crossref_primary_10_3389_fcell_2021_708066 crossref_primary_10_7717_peerj_8952 crossref_primary_10_1186_s13059_019_1762_8 crossref_primary_10_3389_fcell_2022_927555 crossref_primary_10_1126_sciadv_abl8070 crossref_primary_10_1002_sctm_20_0278 crossref_primary_10_3390_biomedinformatics3040061 crossref_primary_10_1038_s41556_021_00727_5 crossref_primary_10_1038_s41594_020_0487_4 crossref_primary_10_1038_s41467_024_50551_2 crossref_primary_10_1016_j_celrep_2018_07_026 crossref_primary_10_1016_j_heliyon_2024_e37361 crossref_primary_10_1038_s41467_023_38543_0 crossref_primary_10_15252_embr_202051264 crossref_primary_10_1016_j_stem_2018_03_005 crossref_primary_10_1038_s41588_019_0408_9 crossref_primary_10_1016_j_apsb_2019_09_003 crossref_primary_10_1016_j_scr_2020_102062 crossref_primary_10_1038_s41420_023_01533_8 crossref_primary_10_1016_j_stemcr_2020_10_012 crossref_primary_10_1038_s41556_020_0516_x crossref_primary_10_1016_j_stem_2019_06_008 crossref_primary_10_1093_nar_gky610 crossref_primary_10_3390_mps5020028 crossref_primary_10_1126_sciadv_adh2501 crossref_primary_10_1002_stem_3437 crossref_primary_10_1038_s41421_018_0074_6 crossref_primary_10_1016_j_celrep_2024_115106 crossref_primary_10_1038_s41419_021_04384_2 crossref_primary_10_1038_s41596_022_00692_9 crossref_primary_10_1016_j_trim_2023_101804 crossref_primary_10_1126_science_aay3983 crossref_primary_10_1016_j_heliyon_2023_e18133 crossref_primary_10_1038_s41467_019_11741_5 crossref_primary_10_1038_s41587_021_01031_1 crossref_primary_10_1038_s41467_018_07687_9 crossref_primary_10_22141_2224_0721_18_3_2022_1165 crossref_primary_10_1096_fj_202300131RRR crossref_primary_10_1038_s41467_019_11054_7 crossref_primary_10_1007_s12015_021_10220_z crossref_primary_10_1073_pnas_1812449116 crossref_primary_10_1111_cpr_13080 crossref_primary_10_1111_acel_13858 crossref_primary_10_3389_fcell_2023_1328522 crossref_primary_10_1016_j_celrep_2022_110626 crossref_primary_10_1074_jbc_RA119_009757 crossref_primary_10_15252_embr_202051644 crossref_primary_10_1007_s11427_022_2349_9 crossref_primary_10_1038_s41419_023_05705_3 crossref_primary_10_1038_s43587_023_00539_2 crossref_primary_10_3389_fcell_2021_637309 crossref_primary_10_26508_lsa_202302121 crossref_primary_10_1002_dneu_22605 crossref_primary_10_3390_metabo11030154 crossref_primary_10_1158_1541_7786_MCR_21_0672 crossref_primary_10_1007_s12015_022_10339_7 crossref_primary_10_1038_s42003_024_07230_1 crossref_primary_10_1038_s41467_019_14028_x crossref_primary_10_1016_j_stemcr_2018_12_008 crossref_primary_10_1186_s12864_021_08266_x crossref_primary_10_15252_embj_2023113880 crossref_primary_10_1016_j_jgg_2021_09_006 crossref_primary_10_3389_fcell_2023_1097780 crossref_primary_10_1016_j_stemcr_2024_04_005 crossref_primary_10_14348_molcells_2020_0207 crossref_primary_10_3389_fcell_2022_838332 crossref_primary_10_1016_j_aqrep_2023_101540 |
Cites_doi | 10.1038/nrm3036 10.1186/1471-2105-12-480 10.1016/j.cell.2016.12.016 10.1186/1471-2105-12-323 10.1016/j.stem.2010.12.001 10.1016/j.celrep.2017.01.055 10.1016/j.cell.2009.01.001 10.1016/j.cell.2006.07.024 10.1186/gb-2010-11-2-r14 10.1038/nrm.2016.6 10.1038/nature14590 10.1016/j.stem.2010.04.014 10.1016/j.stem.2009.12.001 10.1016/j.molcel.2014.02.032 10.1093/nar/gku365 10.1128/MCB.00975-10 10.1038/nature14046 10.1016/j.tcb.2015.12.003 10.1016/j.celrep.2016.05.049 10.1016/j.cell.2015.06.016 10.1093/nar/gkx054 10.1016/j.molcel.2010.05.004 10.1016/j.cell.2008.04.043 10.1007/s00294-004-0541-5 10.1002/0471142727.mb2129s109 10.1074/jbc.R800063200 10.1038/nature13992 10.1038/emboj.2013.31 10.1038/nmeth.2688 10.1038/ng.2491 10.1016/j.cell.2012.09.045 10.1186/gb-2008-9-9-r137 10.1038/nrg3473 10.1038/nature15749 10.1016/j.cell.2012.11.039 10.1186/gb-2012-13-10-251 10.1093/database/bav067 10.1038/nature07056 10.1126/science.aab1601 10.1038/ncb3326 10.1016/S1097-2765(00)80111-2 10.1038/nprot.2008.211 10.1038/cr.2011.51 10.1038/nbt.2596 10.1038/ncomms4678 10.1016/j.stem.2010.04.015 10.1016/j.celrep.2016.01.013 10.1038/ncb3193 10.1016/j.cell.2015.03.017 10.1038/nbt1418 10.1038/nmeth.1923 10.1016/j.stem.2008.02.001 10.1016/S0925-4773(02)00087-4 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.stem.2017.10.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-9777 |
EndPage | 833.e6 |
ExternalDocumentID | 29220666 10_1016_j_stem_2017_10_012 S1934590917304290 |
Genre | Journal Article |
GroupedDBID | --- --K 0R~ 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 WQ6 ZA5 ZBA 5VS AAEDT AAIKJ AAMRU AAQFI AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c422t-c145beded1a14face52b4b9d74e5a54fc5f751c0d69abb6c072b4a3d7c1e1cc73 |
IEDL.DBID | IXB |
ISSN | 1934-5909 1875-9777 |
IngestDate | Fri Jul 11 16:08:21 EDT 2025 Thu Apr 03 07:00:02 EDT 2025 Tue Jul 01 01:08:29 EDT 2025 Thu Apr 24 23:10:24 EDT 2025 Fri Feb 23 02:30:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | reprogramming Sap30 chromatin dynamics binary logic open/close |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-c145beded1a14face52b4b9d74e5a54fc5f751c0d69abb6c072b4a3d7c1e1cc73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1934590917304290 |
PMID | 29220666 |
PQID | 1975033131 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1975033131 pubmed_primary_29220666 crossref_citationtrail_10_1016_j_stem_2017_10_012 crossref_primary_10_1016_j_stem_2017_10_012 elsevier_sciencedirect_doi_10_1016_j_stem_2017_10_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-07 |
PublicationDateYYYYMMDD | 2017-12-07 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell stem cell |
PublicationTitleAlternate | Cell Stem Cell |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Hutchins, Jauch, Dyla, Miranda-Saavedra (bib22) 2014; 3 Huang, Sherman, Lempicki (bib19) 2009; 4 Buenrostro, Giresi, Zaba, Chang, Greenleaf (bib2) 2013; 10 Buganim, Faddah, Jaenisch (bib5) 2013; 14 Hutchins, Yang, Li, He, Fu, Wang, Li, Liu, He, Wang (bib23) 2017; 45 Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib18) 2010; 38 Schmidt, Plath (bib40) 2012; 13 Soufi, Garcia, Jaroszewicz, Osman, Pellegrini, Zaret (bib44) 2015; 161 Young, Wakefield, Smyth, Oshlack (bib53) 2010; 11 Aksoy, Jauch, Chen, Dyla, Divakar, Bogu, Teo, Leng Ng, Herath, Lili (bib1) 2013; 32 Silverstein, Ekwall (bib41) 2005; 47 Ramírez, Dündar, Diehl, Grüning, Manke (bib36) 2014; 42 Buenrostro, Wu, Litzenburger, Ruff, Gonzales, Snyder, Chang, Greenleaf (bib4) 2015; 523 Chen, Chen, Li, Liu, Gao, Kou, Zhao, Zheng, Zhang, Huo (bib11) 2016; 14 van Oevelen, Bowman, Pellegrino, Asp, Cheng, Parisi, Micsinai, Kluger, Chu, Blais (bib51) 2010; 30 Chen, Liu, Liu, Qi, Wei, Yang, Liang, Chen, Chen, Wu (bib10) 2013; 45 Koche, Smith, Adli, Gu, Ku, Gnirke, Bernstein, Meissner (bib24) 2011; 8 Li, Dewey (bib28) 2011; 12 Soufi, Donahue, Zaret (bib43) 2012; 151 Xu, Zhang, Li, Zhu, Bao, Qin, Hutchins, Esteban (bib52) 2016; 26 Yue, Cheng, Breschi, Vierstra, Wu, Ryba, Sandstrom, Ma, Davis, Pope (bib54) 2014; 515 Cusanovich, Daza, Adey, Pliner, Christiansen, Gunderson, Steemers, Trapnell, Shendure (bib14) 2015; 348 Saunders, Huang, Fidalgo, Reimer, Faiola, Ding, Sánchez-Priego, Guallar, Sáenz, Li, Wang (bib39) 2017; 18 Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nusbaum, Myers, Brown, Li, Liu (bib55) 2008; 9 Langmead, Salzberg (bib27) 2012; 9 Takahashi, Yamanaka (bib48) 2006; 126 Samavarchi-Tehrani, Golipour, David, Sung, Beyer, Datti, Woltjen, Nagy, Wrana (bib38) 2010; 7 Chen, Xu, Yuan, Fang, Huss, Vega, Wong, Orlov, Zhang, Jiang (bib8) 2008; 133 Chen, Liu, Chen, Yang, Chen, Liu, Zhao, Mo, Song, Guo (bib9) 2011; 21 Cacchiarelli, Trapnell, Ziller, Soumillon, Cesana, Karnik, Donaghey, Smith, Ratanasirintrawoot, Zhang (bib6) 2015; 162 Polo, Anderssen, Walsh, Schwarz, Nefzger, Lim, Borkent, Apostolou, Alaei, Cloutier (bib35) 2012; 151 Kumar, Muratani, Rayan, Kraus, Lufkin, Ng, Prabhakar (bib25) 2013; 31 Liu, Chen, Pei (bib30) 2015 Pei (bib34) 2009; 284 Cheloufi, Elling, Hopfgartner, Jung, Murn, Ninova, Hubmann, Badeaux, Euong Ang, Tenen (bib7) 2015; 528 Medvedeva, Lennartsson, Ehsani, Kulakovskiy, Vorontsov, Panahandeh, Khimulya, Kasukawa, Drabløs (bib32) 2015; 2015 Gaspar-Maia, Alajem, Meshorer, Ramalho-Santos (bib17) 2011; 12 Hussein, Puri, Tonge, Benevento, Corso, Clancy, Mosbergen, Li, Lee, Cloonan (bib21) 2014; 516 Smith, Sindhu, Meissner (bib42) 2016; 17 Sridharan, Tchieu, Mason, Yachechko, Kuoy, Horvath, Zhou, Plath (bib45) 2009; 136 Szabó, Hübner, Schöler, Mann (bib47) 2002; 115 Di Stefano, Collombet, Jakobsen, Wierer, Sardina, Lackner, Stadhouders, Segura-Morales, Francesconi, Limone (bib15) 2016; 18 Esteban, Wang, Qin, Yang, Qin, Cai, Li, Weng, Chen, Ni (bib16) 2010; 6 Li, Liang, Ni, Zhou, Qing, Li, He, Chen, Li, Zhuang (bib29) 2010; 7 Liu, Han, Peng, Peng, Wei, Li, Wang, Yu, Yang, Cao (bib31) 2015; 17 Mikkelsen, Hanna, Zhang, Ku, Wernig, Schorderet, Bernstein, Jaenisch, Lander, Meissner (bib33) 2008; 454 Risso, Schwartz, Sherlock, Dudoit (bib37) 2011; 12 Takahashi, Tanabe, Ohnuki, Narita, Sasaki, Yamamoto, Nakamura, Sutou, Osafune, Yamanaka (bib49) 2014; 5 Chronis, Fiziev, Papp, Butz, Bonora, Sabri, Ernst, Plath (bib13) 2017; 168 Laherty, Billin, Lavinsky, Yochum, Bush, Sun, Mullen, Davie, Rose, Glass (bib26) 1998; 2 Stadtfeld, Maherali, Breault, Hochedlinger (bib46) 2008; 2 Huangfu, Maehr, Guo, Eijkelenboom, Snitow, Chen, Melton (bib20) 2008; 26 Buenrostro, Wu, Chang, Greenleaf (bib3) 2015; 109 Cheng, Blum, Bowman, Hu, Shilatifard, Shen, Dynlacht (bib12) 2014; 53 Toh, Chan, Chong, Wang, Guo, Satapathy, Ma, Goh, Khattar, Yang (bib50) 2016; 15 Young (10.1016/j.stem.2017.10.012_bib53) 2010; 11 Liu (10.1016/j.stem.2017.10.012_bib31) 2015; 17 Takahashi (10.1016/j.stem.2017.10.012_bib48) 2006; 126 Cheng (10.1016/j.stem.2017.10.012_bib12) 2014; 53 Liu (10.1016/j.stem.2017.10.012_bib30) 2015 Li (10.1016/j.stem.2017.10.012_bib28) 2011; 12 Buganim (10.1016/j.stem.2017.10.012_bib5) 2013; 14 Chen (10.1016/j.stem.2017.10.012_bib10) 2013; 45 Cacchiarelli (10.1016/j.stem.2017.10.012_bib6) 2015; 162 Heinz (10.1016/j.stem.2017.10.012_bib18) 2010; 38 Takahashi (10.1016/j.stem.2017.10.012_bib49) 2014; 5 Mikkelsen (10.1016/j.stem.2017.10.012_bib33) 2008; 454 Ramírez (10.1016/j.stem.2017.10.012_bib36) 2014; 42 Cusanovich (10.1016/j.stem.2017.10.012_bib14) 2015; 348 Koche (10.1016/j.stem.2017.10.012_bib24) 2011; 8 Szabó (10.1016/j.stem.2017.10.012_bib47) 2002; 115 Laherty (10.1016/j.stem.2017.10.012_bib26) 1998; 2 Hussein (10.1016/j.stem.2017.10.012_bib21) 2014; 516 Schmidt (10.1016/j.stem.2017.10.012_bib40) 2012; 13 van Oevelen (10.1016/j.stem.2017.10.012_bib51) 2010; 30 Huang (10.1016/j.stem.2017.10.012_bib19) 2009; 4 Langmead (10.1016/j.stem.2017.10.012_bib27) 2012; 9 Kumar (10.1016/j.stem.2017.10.012_bib25) 2013; 31 Toh (10.1016/j.stem.2017.10.012_bib50) 2016; 15 Buenrostro (10.1016/j.stem.2017.10.012_bib4) 2015; 523 Silverstein (10.1016/j.stem.2017.10.012_bib41) 2005; 47 Huangfu (10.1016/j.stem.2017.10.012_bib20) 2008; 26 Soufi (10.1016/j.stem.2017.10.012_bib44) 2015; 161 Aksoy (10.1016/j.stem.2017.10.012_bib1) 2013; 32 Yue (10.1016/j.stem.2017.10.012_bib54) 2014; 515 Risso (10.1016/j.stem.2017.10.012_bib37) 2011; 12 Polo (10.1016/j.stem.2017.10.012_bib35) 2012; 151 Buenrostro (10.1016/j.stem.2017.10.012_bib2) 2013; 10 Cheloufi (10.1016/j.stem.2017.10.012_bib7) 2015; 528 Saunders (10.1016/j.stem.2017.10.012_bib39) 2017; 18 Stadtfeld (10.1016/j.stem.2017.10.012_bib46) 2008; 2 Hutchins (10.1016/j.stem.2017.10.012_bib22) 2014; 3 Zhang (10.1016/j.stem.2017.10.012_bib55) 2008; 9 Smith (10.1016/j.stem.2017.10.012_bib42) 2016; 17 Samavarchi-Tehrani (10.1016/j.stem.2017.10.012_bib38) 2010; 7 Di Stefano (10.1016/j.stem.2017.10.012_bib15) 2016; 18 Sridharan (10.1016/j.stem.2017.10.012_bib45) 2009; 136 Chen (10.1016/j.stem.2017.10.012_bib8) 2008; 133 Chen (10.1016/j.stem.2017.10.012_bib9) 2011; 21 Xu (10.1016/j.stem.2017.10.012_bib52) 2016; 26 Hutchins (10.1016/j.stem.2017.10.012_bib23) 2017; 45 Pei (10.1016/j.stem.2017.10.012_bib34) 2009; 284 Buenrostro (10.1016/j.stem.2017.10.012_bib3) 2015; 109 Chen (10.1016/j.stem.2017.10.012_bib11) 2016; 14 Li (10.1016/j.stem.2017.10.012_bib29) 2010; 7 Gaspar-Maia (10.1016/j.stem.2017.10.012_bib17) 2011; 12 Soufi (10.1016/j.stem.2017.10.012_bib43) 2012; 151 Medvedeva (10.1016/j.stem.2017.10.012_bib32) 2015; 2015 Chronis (10.1016/j.stem.2017.10.012_bib13) 2017; 168 Esteban (10.1016/j.stem.2017.10.012_bib16) 2010; 6 29220662 - Cell Stem Cell. 2017 Dec 7;21(6):711-712 |
References_xml | – volume: 42 start-page: W187 year: 2014 end-page: W191 ident: bib36 article-title: deepTools: A flexible platform for exploring deep-sequencing data publication-title: Nucleic Acids Res. – volume: 115 start-page: 157 year: 2002 end-page: 160 ident: bib47 article-title: Allele-specific expression of imprinted genes in mouse migratory primordial germ cells publication-title: Mech. Dev. – volume: 14 start-page: 427 year: 2013 end-page: 439 ident: bib5 article-title: Mechanisms and models of somatic cell reprogramming publication-title: Nat. Rev. Genet. – volume: 161 start-page: 555 year: 2015 end-page: 568 ident: bib44 article-title: Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming publication-title: Cell – volume: 47 start-page: 1 year: 2005 end-page: 17 ident: bib41 article-title: Sin3: A flexible regulator of global gene expression and genome stability publication-title: Curr. Genet. – volume: 53 start-page: 979 year: 2014 end-page: 992 ident: bib12 article-title: A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers publication-title: Mol. Cell – volume: 348 start-page: 910 year: 2015 end-page: 914 ident: bib14 article-title: Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing publication-title: Science – volume: 523 start-page: 486 year: 2015 end-page: 490 ident: bib4 article-title: Single-cell chromatin accessibility reveals principles of regulatory variation publication-title: Nature – volume: 17 start-page: 856 year: 2015 end-page: 867 ident: bib31 article-title: The oncogene c-Jun impedes somatic cell reprogramming publication-title: Nat. Cell Biol. – volume: 31 start-page: 615 year: 2013 end-page: 622 ident: bib25 article-title: Uniform, optimal signal processing of mapped deep-sequencing data publication-title: Nat. Biotechnol. – volume: 11 start-page: R14 year: 2010 ident: bib53 article-title: Gene ontology analysis for RNA-seq: Accounting for selection bias publication-title: Genome Biol. – volume: 5 start-page: 3678 year: 2014 ident: bib49 article-title: Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm publication-title: Nat. Commun. – volume: 14 start-page: 1540 year: 2016 end-page: 1554 ident: bib11 article-title: Hierarchical Oct4 binding in concert with primed epigenetic rearrangements during somatic cell reprogramming publication-title: Cell Rep. – volume: 15 start-page: 2597 year: 2016 end-page: 2607 ident: bib50 article-title: RNAi Reveals Phase-Specific Global Regulators of Human Somatic Cell Reprogramming publication-title: Cell Rep. – volume: 45 start-page: 2354 year: 2017 end-page: 2367 ident: bib23 article-title: Models of global gene expression define major domains of cell type and tissue identity publication-title: Nucleic Acids Res. – volume: 13 start-page: 251 year: 2012 ident: bib40 article-title: The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation publication-title: Genome Biol. – volume: 17 start-page: 139 year: 2016 end-page: 154 ident: bib42 article-title: Molecular features of cellular reprogramming and development publication-title: Nat. Rev. Mol. Cell Biol. – volume: 2015 start-page: bav067 year: 2015 ident: bib32 article-title: EpiFactors: A comprehensive database of human epigenetic factors and complexes publication-title: Database (Oxford) – volume: 168 start-page: 442 year: 2017 end-page: 459 ident: bib13 article-title: Cooperative binding of transcription factors orchestrates reprogramming publication-title: Cell – volume: 7 start-page: 51 year: 2010 end-page: 63 ident: bib29 article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts publication-title: Cell Stem Cell – volume: 133 start-page: 1106 year: 2008 end-page: 1117 ident: bib8 article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells publication-title: Cell – volume: 12 start-page: 323 year: 2011 ident: bib28 article-title: RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinformatics – volume: 26 start-page: 272 year: 2016 end-page: 288 ident: bib52 article-title: Transcriptional Control of Somatic Cell Reprogramming publication-title: Trends Cell Biol. – year: 2015 ident: bib30 article-title: Reprogramming Mouse Embryonic Fibroblasts Using Different Reprogramming Factors – volume: 26 start-page: 795 year: 2008 end-page: 797 ident: bib20 article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds publication-title: Nat. Biotechnol. – volume: 4 start-page: 44 year: 2009 end-page: 57 ident: bib19 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat. Protoc. – volume: 126 start-page: 663 year: 2006 end-page: 676 ident: bib48 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 162 start-page: 412 year: 2015 end-page: 424 ident: bib6 article-title: Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency publication-title: Cell – volume: 6 start-page: 71 year: 2010 end-page: 79 ident: bib16 article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells publication-title: Cell Stem Cell – volume: 151 start-page: 1617 year: 2012 end-page: 1632 ident: bib35 article-title: A molecular roadmap of reprogramming somatic cells into iPS cells publication-title: Cell – volume: 12 start-page: 480 year: 2011 ident: bib37 article-title: GC-content normalization for RNA-Seq data publication-title: BMC Bioinformatics – volume: 3 start-page: 1 year: 2014 ident: bib22 article-title: glbase: A framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data publication-title: Cell Regen. (Lond.) – volume: 32 start-page: 938 year: 2013 end-page: 953 ident: bib1 article-title: Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm publication-title: EMBO J. – volume: 516 start-page: 198 year: 2014 end-page: 206 ident: bib21 article-title: Genome-wide characterization of the routes to pluripotency publication-title: Nature – volume: 18 start-page: 1713 year: 2017 end-page: 1726 ident: bib39 article-title: The SIN3A/HDAC corepressor complex functionally cooperates with NANOG to promote pluripotency publication-title: Cell Rep. – volume: 2 start-page: 33 year: 1998 end-page: 42 ident: bib26 article-title: SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors publication-title: Mol. Cell – volume: 2 start-page: 230 year: 2008 end-page: 240 ident: bib46 article-title: Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse publication-title: Cell Stem Cell – volume: 18 start-page: 371 year: 2016 end-page: 381 ident: bib15 article-title: C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4 publication-title: Nat. Cell Biol. – volume: 10 start-page: 1213 year: 2013 end-page: 1218 ident: bib2 article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position publication-title: Nat. Methods – volume: 136 start-page: 364 year: 2009 end-page: 377 ident: bib45 article-title: Role of the murine reprogramming factors in the induction of pluripotency publication-title: Cell – volume: 21 start-page: 884 year: 2011 end-page: 894 ident: bib9 article-title: Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics publication-title: Cell Res. – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: bib27 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods – volume: 30 start-page: 5686 year: 2010 end-page: 5697 ident: bib51 article-title: The mammalian Sin3 proteins are required for muscle development and sarcomere specification publication-title: Mol. Cell. Biol. – volume: 7 start-page: 64 year: 2010 end-page: 77 ident: bib38 article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming publication-title: Cell Stem Cell – volume: 45 start-page: 34 year: 2013 end-page: 42 ident: bib10 article-title: H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs publication-title: Nat. Genet. – volume: 454 start-page: 49 year: 2008 end-page: 55 ident: bib33 article-title: Dissecting direct reprogramming through integrative genomic analysis publication-title: Nature – volume: 9 start-page: R137 year: 2008 ident: bib55 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. – volume: 8 start-page: 96 year: 2011 end-page: 105 ident: bib24 article-title: Reprogramming factor expression initiates widespread targeted chromatin remodeling publication-title: Cell Stem Cell – volume: 109 start-page: 21 year: 2015 end-page: 29 ident: bib3 article-title: ATAC-seq: A method for assaying chromatin accessibility genome-wide publication-title: Curr. Protoc. Mol. Biol. – volume: 12 start-page: 36 year: 2011 end-page: 47 ident: bib17 article-title: Open chromatin in pluripotency and reprogramming publication-title: Nat. Rev. Mol. Cell Biol. – volume: 515 start-page: 355 year: 2014 end-page: 364 ident: bib54 article-title: A comparative encyclopedia of DNA elements in the mouse genome publication-title: Nature – volume: 38 start-page: 576 year: 2010 end-page: 589 ident: bib18 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell – volume: 284 start-page: 3365 year: 2009 end-page: 3369 ident: bib34 article-title: Regulation of pluripotency and reprogramming by transcription factors publication-title: J. Biol. Chem. – volume: 528 start-page: 218 year: 2015 end-page: 224 ident: bib7 article-title: The histone chaperone CAF-1 safeguards somatic cell identity publication-title: Nature – volume: 151 start-page: 994 year: 2012 end-page: 1004 ident: bib43 article-title: Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome publication-title: Cell – volume: 12 start-page: 36 year: 2011 ident: 10.1016/j.stem.2017.10.012_bib17 article-title: Open chromatin in pluripotency and reprogramming publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3036 – volume: 12 start-page: 480 year: 2011 ident: 10.1016/j.stem.2017.10.012_bib37 article-title: GC-content normalization for RNA-Seq data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-480 – volume: 3 start-page: 1 year: 2014 ident: 10.1016/j.stem.2017.10.012_bib22 article-title: glbase: A framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data publication-title: Cell Regen. (Lond.) – volume: 168 start-page: 442 year: 2017 ident: 10.1016/j.stem.2017.10.012_bib13 article-title: Cooperative binding of transcription factors orchestrates reprogramming publication-title: Cell doi: 10.1016/j.cell.2016.12.016 – volume: 12 start-page: 323 year: 2011 ident: 10.1016/j.stem.2017.10.012_bib28 article-title: RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 – volume: 8 start-page: 96 year: 2011 ident: 10.1016/j.stem.2017.10.012_bib24 article-title: Reprogramming factor expression initiates widespread targeted chromatin remodeling publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.12.001 – volume: 18 start-page: 1713 year: 2017 ident: 10.1016/j.stem.2017.10.012_bib39 article-title: The SIN3A/HDAC corepressor complex functionally cooperates with NANOG to promote pluripotency publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.01.055 – volume: 136 start-page: 364 year: 2009 ident: 10.1016/j.stem.2017.10.012_bib45 article-title: Role of the murine reprogramming factors in the induction of pluripotency publication-title: Cell doi: 10.1016/j.cell.2009.01.001 – volume: 126 start-page: 663 year: 2006 ident: 10.1016/j.stem.2017.10.012_bib48 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 11 start-page: R14 year: 2010 ident: 10.1016/j.stem.2017.10.012_bib53 article-title: Gene ontology analysis for RNA-seq: Accounting for selection bias publication-title: Genome Biol. doi: 10.1186/gb-2010-11-2-r14 – volume: 17 start-page: 139 year: 2016 ident: 10.1016/j.stem.2017.10.012_bib42 article-title: Molecular features of cellular reprogramming and development publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.6 – volume: 523 start-page: 486 year: 2015 ident: 10.1016/j.stem.2017.10.012_bib4 article-title: Single-cell chromatin accessibility reveals principles of regulatory variation publication-title: Nature doi: 10.1038/nature14590 – volume: 7 start-page: 51 year: 2010 ident: 10.1016/j.stem.2017.10.012_bib29 article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.04.014 – volume: 6 start-page: 71 year: 2010 ident: 10.1016/j.stem.2017.10.012_bib16 article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.12.001 – volume: 53 start-page: 979 year: 2014 ident: 10.1016/j.stem.2017.10.012_bib12 article-title: A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.02.032 – year: 2015 ident: 10.1016/j.stem.2017.10.012_bib30 – volume: 42 start-page: W187 year: 2014 ident: 10.1016/j.stem.2017.10.012_bib36 article-title: deepTools: A flexible platform for exploring deep-sequencing data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku365 – volume: 30 start-page: 5686 year: 2010 ident: 10.1016/j.stem.2017.10.012_bib51 article-title: The mammalian Sin3 proteins are required for muscle development and sarcomere specification publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00975-10 – volume: 516 start-page: 198 year: 2014 ident: 10.1016/j.stem.2017.10.012_bib21 article-title: Genome-wide characterization of the routes to pluripotency publication-title: Nature doi: 10.1038/nature14046 – volume: 26 start-page: 272 year: 2016 ident: 10.1016/j.stem.2017.10.012_bib52 article-title: Transcriptional Control of Somatic Cell Reprogramming publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.12.003 – volume: 15 start-page: 2597 year: 2016 ident: 10.1016/j.stem.2017.10.012_bib50 article-title: RNAi Reveals Phase-Specific Global Regulators of Human Somatic Cell Reprogramming publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.05.049 – volume: 162 start-page: 412 year: 2015 ident: 10.1016/j.stem.2017.10.012_bib6 article-title: Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency publication-title: Cell doi: 10.1016/j.cell.2015.06.016 – volume: 45 start-page: 2354 year: 2017 ident: 10.1016/j.stem.2017.10.012_bib23 article-title: Models of global gene expression define major domains of cell type and tissue identity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx054 – volume: 38 start-page: 576 year: 2010 ident: 10.1016/j.stem.2017.10.012_bib18 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 133 start-page: 1106 year: 2008 ident: 10.1016/j.stem.2017.10.012_bib8 article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2008.04.043 – volume: 47 start-page: 1 year: 2005 ident: 10.1016/j.stem.2017.10.012_bib41 article-title: Sin3: A flexible regulator of global gene expression and genome stability publication-title: Curr. Genet. doi: 10.1007/s00294-004-0541-5 – volume: 109 start-page: 21 year: 2015 ident: 10.1016/j.stem.2017.10.012_bib3 article-title: ATAC-seq: A method for assaying chromatin accessibility genome-wide publication-title: Curr. Protoc. Mol. Biol. doi: 10.1002/0471142727.mb2129s109 – volume: 284 start-page: 3365 year: 2009 ident: 10.1016/j.stem.2017.10.012_bib34 article-title: Regulation of pluripotency and reprogramming by transcription factors publication-title: J. Biol. Chem. doi: 10.1074/jbc.R800063200 – volume: 515 start-page: 355 year: 2014 ident: 10.1016/j.stem.2017.10.012_bib54 article-title: A comparative encyclopedia of DNA elements in the mouse genome publication-title: Nature doi: 10.1038/nature13992 – volume: 32 start-page: 938 year: 2013 ident: 10.1016/j.stem.2017.10.012_bib1 article-title: Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm publication-title: EMBO J. doi: 10.1038/emboj.2013.31 – volume: 10 start-page: 1213 year: 2013 ident: 10.1016/j.stem.2017.10.012_bib2 article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position publication-title: Nat. Methods doi: 10.1038/nmeth.2688 – volume: 45 start-page: 34 year: 2013 ident: 10.1016/j.stem.2017.10.012_bib10 article-title: H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs publication-title: Nat. Genet. doi: 10.1038/ng.2491 – volume: 151 start-page: 994 year: 2012 ident: 10.1016/j.stem.2017.10.012_bib43 article-title: Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome publication-title: Cell doi: 10.1016/j.cell.2012.09.045 – volume: 9 start-page: R137 year: 2008 ident: 10.1016/j.stem.2017.10.012_bib55 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 14 start-page: 427 year: 2013 ident: 10.1016/j.stem.2017.10.012_bib5 article-title: Mechanisms and models of somatic cell reprogramming publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3473 – volume: 528 start-page: 218 year: 2015 ident: 10.1016/j.stem.2017.10.012_bib7 article-title: The histone chaperone CAF-1 safeguards somatic cell identity publication-title: Nature doi: 10.1038/nature15749 – volume: 151 start-page: 1617 year: 2012 ident: 10.1016/j.stem.2017.10.012_bib35 article-title: A molecular roadmap of reprogramming somatic cells into iPS cells publication-title: Cell doi: 10.1016/j.cell.2012.11.039 – volume: 13 start-page: 251 year: 2012 ident: 10.1016/j.stem.2017.10.012_bib40 article-title: The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation publication-title: Genome Biol. doi: 10.1186/gb-2012-13-10-251 – volume: 2015 start-page: bav067 year: 2015 ident: 10.1016/j.stem.2017.10.012_bib32 article-title: EpiFactors: A comprehensive database of human epigenetic factors and complexes publication-title: Database (Oxford) doi: 10.1093/database/bav067 – volume: 454 start-page: 49 year: 2008 ident: 10.1016/j.stem.2017.10.012_bib33 article-title: Dissecting direct reprogramming through integrative genomic analysis publication-title: Nature doi: 10.1038/nature07056 – volume: 348 start-page: 910 year: 2015 ident: 10.1016/j.stem.2017.10.012_bib14 article-title: Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing publication-title: Science doi: 10.1126/science.aab1601 – volume: 18 start-page: 371 year: 2016 ident: 10.1016/j.stem.2017.10.012_bib15 article-title: C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3326 – volume: 2 start-page: 33 year: 1998 ident: 10.1016/j.stem.2017.10.012_bib26 article-title: SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80111-2 – volume: 4 start-page: 44 year: 2009 ident: 10.1016/j.stem.2017.10.012_bib19 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.211 – volume: 21 start-page: 884 year: 2011 ident: 10.1016/j.stem.2017.10.012_bib9 article-title: Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics publication-title: Cell Res. doi: 10.1038/cr.2011.51 – volume: 31 start-page: 615 year: 2013 ident: 10.1016/j.stem.2017.10.012_bib25 article-title: Uniform, optimal signal processing of mapped deep-sequencing data publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2596 – volume: 5 start-page: 3678 year: 2014 ident: 10.1016/j.stem.2017.10.012_bib49 article-title: Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm publication-title: Nat. Commun. doi: 10.1038/ncomms4678 – volume: 7 start-page: 64 year: 2010 ident: 10.1016/j.stem.2017.10.012_bib38 article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.04.015 – volume: 14 start-page: 1540 year: 2016 ident: 10.1016/j.stem.2017.10.012_bib11 article-title: Hierarchical Oct4 binding in concert with primed epigenetic rearrangements during somatic cell reprogramming publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.01.013 – volume: 17 start-page: 856 year: 2015 ident: 10.1016/j.stem.2017.10.012_bib31 article-title: The oncogene c-Jun impedes somatic cell reprogramming publication-title: Nat. Cell Biol. doi: 10.1038/ncb3193 – volume: 161 start-page: 555 year: 2015 ident: 10.1016/j.stem.2017.10.012_bib44 article-title: Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming publication-title: Cell doi: 10.1016/j.cell.2015.03.017 – volume: 26 start-page: 795 year: 2008 ident: 10.1016/j.stem.2017.10.012_bib20 article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds publication-title: Nat. Biotechnol. doi: 10.1038/nbt1418 – volume: 9 start-page: 357 year: 2012 ident: 10.1016/j.stem.2017.10.012_bib27 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 2 start-page: 230 year: 2008 ident: 10.1016/j.stem.2017.10.012_bib46 article-title: Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.02.001 – volume: 115 start-page: 157 year: 2002 ident: 10.1016/j.stem.2017.10.012_bib47 article-title: Allele-specific expression of imprinted genes in mouse migratory primordial germ cells publication-title: Mech. Dev. doi: 10.1016/S0925-4773(02)00087-4 – reference: 29220662 - Cell Stem Cell. 2017 Dec 7;21(6):711-712 |
SSID | ssj0057107 |
Score | 2.5982163 |
Snippet | Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 819 |
SubjectTerms | Animals binary logic Cells, Cultured Cellular Reprogramming Chromatin - genetics Chromatin - metabolism chromatin dynamics Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Kruppel-Like Transcription Factors - metabolism Mice Octamer Transcription Factor-3 - metabolism open/close reprogramming Sap30 SOXB1 Transcription Factors - metabolism |
Title | Chromatin Accessibility Dynamics during iPSC Reprogramming |
URI | https://dx.doi.org/10.1016/j.stem.2017.10.012 https://www.ncbi.nlm.nih.gov/pubmed/29220666 https://www.proquest.com/docview/1975033131 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lIHgR39YXK3iTtZttstl4q9VSBEWohd5CXgsV3RbbHvrvzSS7BQ_twePmwYaZ3ZkJ8803CN3mKs815jKGOs-YZIpAktDGmU5VkSTGJJ5n9vUtG4zIy5iOG6hX18IArLKy_cGme2tdjbQrabZnk0l76EIPQrnzdwyu5Bzu7R2S-yK-8WNtjanzoCxklkkMq6vCmYDxAq5kgHexe0B44XSTc9oUfHon1N9He1X0GHXDAQ9Qw5aHaCf0k1wdoQeguoUQtIy6vhFigL6uoqfQd34eharEaPI-7EUu9g7grG83dIxG_eeP3iCumiPEmqTpItaYUGWNNVhiUkhtaaqI4oYRSyUlhaYFo1gnJuNSqUwnzM3LjmEaW6w165ygZjkt7RmKlG82zZmbtMTonBdYu7CCSW6AXlC2EK6lInTFHA4NLL5EDRH7FCBJAZKEMSfJFrpb75kF3oytq2ktbPFH-8IZ9q37bmrNCPdbQK5Dlna6nAvMfYIWd3ALnQaVrc-R8hRI7LPzf771Au3Ckwe1sEvUXPws7ZULTRbq2n97v_bu4Bk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEKKXime7LdBUKicUNvba8RqJA4-iXV5CAqS9Gb8ibQUBdRdV-7v6B_HECRIHOCBxtePE-uzMfNZ8ngH41TXdriVSp3jPM2W5YRgk9GluqSmyzLmsyjN7dp73rtnxgA-m4H9zFwZllbXtjza9stZ1S7tGs_0wHLYvA_VgXAZ_J_BILrNaWXniJ__CuW202z8Mi7xJ6dHvq4NeWpcWSC2jdJxawrjxzjuiCSu09ZwaZqQTzHPNWWF5ITixmculNia3mQj9uuOEJZ5YKzrhvdMwG9iHQGvQH-w35p8Hly1iKJulOL36pk4UlWFyZtSTiW2UlBH6mjd8je1WXu9oAT7XdDXZi4gswpQvl2AuFrCcLMMO5tZFzlsme1Xlxai1nSSHsdD9KInXIJPhxeVBEsh-VIPdhaYVuP4QyFZhprwv_VdITFXdWorQ6ZmzXVkQG3iM0NJhPkPdAtKgomydqhwrZtyqRpP2RyGSCpHEtoBkC7aexzzERB1vPs0bsNWL7aaCJ3lz3M9mZVT4DzG4okt__zhSRFYRYdIhLfgSl-x5HlRSzJqff3vnV3_AfO_q7FSd9s9PvsMn7KkUNWINZsZ_H_164EVjs1HtwwRuPnrjPwHPJh_m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromatin+Accessibility+Dynamics+during+iPSC+Reprogramming&rft.jtitle=Cell+stem+cell&rft.au=Li%2C+Dongwei&rft.au=Liu%2C+Jing&rft.au=Yang%2C+Xuejie&rft.au=Zhou%2C+Chunhua&rft.date=2017-12-07&rft.issn=1875-9777&rft.eissn=1875-9777&rft.volume=21&rft.issue=6&rft.spage=819&rft_id=info:doi/10.1016%2Fj.stem.2017.10.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon |