Learning a reactive potential for silica-water through uncertainty attribution
The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 6030 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the
ω
B97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism.
Accurate molecular dynamics of silicate reactivity in aqueous solution at large length and time scale is required to decipher silica condensation. Here, authors developed a potential with a new active learning method to capture silica-water interactions. |
---|---|
AbstractList | The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism.The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism. The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ω B97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism. Accurate molecular dynamics of silicate reactivity in aqueous solution at large length and time scale is required to decipher silica condensation. Here, authors developed a potential with a new active learning method to capture silica-water interactions. Abstract The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism. Abstract The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ω B97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism. The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism.Accurate molecular dynamics of silicate reactivity in aqueous solution at large length and time scale is required to decipher silica condensation. Here, authors developed a potential with a new active learning method to capture silica-water interactions. The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism. |
ArticleNumber | 6030 |
Author | Roy, Swagata Zipoli, Federico Dürholt, Johannes P. Asche, Thomas S. Gómez-Bombarelli, Rafael |
Author_xml | – sequence: 1 givenname: Swagata surname: Roy fullname: Roy, Swagata organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology – sequence: 2 givenname: Johannes P. surname: Dürholt fullname: Dürholt, Johannes P. organization: Evonik Operations GmbH, Essen – sequence: 3 givenname: Thomas S. orcidid: 0000-0003-3376-0404 surname: Asche fullname: Asche, Thomas S. organization: Evonik Operations GmbH, Essen – sequence: 4 givenname: Federico surname: Zipoli fullname: Zipoli, Federico organization: IBM Research Europe – sequence: 5 givenname: Rafael orcidid: 0000-0002-9495-8599 surname: Gómez-Bombarelli fullname: Gómez-Bombarelli, Rafael email: rafagb@mit.edu organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39019930$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1UREvpH-CAInHhEvBnHJ8QqviotIILnK2x42S9ytqL7RT13-NuSmk5YMnyyPPM6xm_z9FJiMEh9JLgtwSz_l3mhHeyxZS3AnMsW_UEnVHMSUskZScP4lN0kfMO18UU6Tl_hk6ZwkQphs_Q142DFHyYGmiSA1v8tWsOsbhQPMzNGFOT_ewttL-guNSUbYrLtG2WYF0q4EO5aaCU5M1SfAwv0NMR5uwu7s5z9OPTx--XX9rNt89Xlx82reWUltYA62jHB0GpUXSQlHPVWcN7CU4wLoAqSxihA5WO174ZJWrEvR2YFbXxkZ2jq1V3iLDTh-T3kG50BK-PFzFNGlLxdnaaYmVEL5QZheS9YyCxcUyYTkI3CjBV6_2qdVjM3g22jp5gfiT6OBP8Vk_xWhNCBVeUV4U3dwop_lxcLnrvs3XzDMHFJWuGe1o3xn1FX_-D7uKSQv2rI4UJqy5Viq6UTTHn5Mb7bgjWt_br1X5d7ddH-_Vt0auHc9yX_DG7AmwFck2FyaW_b_9H9jeVOrvD |
Cites_doi | 10.1021/cr020060i 10.1063/1.3407433 10.1021/accountsmr.1c00238 10.1021/jp063670l 10.1021/jp0477147 10.1039/b005319h 10.1038/s41467-021-25342-8 10.5281/zenodo.11391758 10.1016/j.ijsolstr.2008.03.016 10.1021/ja110357k 10.1039/a801816b 10.1063/5.0078983 10.1021/acs.jpcc.6b07939 10.1016/S0167-2738(00)00632-9 10.1063/1.4790861 10.1021/acs.jpclett.7b00391 10.1063/5.0004608 10.1063/1.3489925 10.1016/j.powtec.2019.05.072 10.1021/acs.chemrev.5b00674 10.18126/pzjr-x7pv 10.1063/5.0083423 10.1021/acs.jctc.8b00908 10.1073/pnas.1602375113 10.1039/C8RA06257A 10.1038/s41524-022-00865-w 10.1021/nn800052e 10.1103/PhysRevE.102.052125 10.1063/5.0095554 10.1021/acs.chemrev.1c00021 10.1021/acs.jpclett.9b02913 10.1021/acs.jchemed.6b00623 10.1039/c3cp51817e 10.1039/f19898501091 10.1209/0295-5075/82/17001 10.1021/acs.jpca.2c00601 10.1002/jcc.21224 10.1016/j.commatsci.2012.10.028 10.1016/j.jaerosci.2018.01.006 10.1111/j.1742-4658.2012.08531.x 10.1021/jp026816z 10.1007/978-94-015-9179-9_11 10.1038/s41467-024-48609-2 10.1021/jp066534p 10.1088/0965-0393/18/1/015012 10.1016/j.cplett.2003.07.017 10.1021/acs.jpclett.1c01566 10.1103/PhysRevLett.64.1955 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C NPM AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-50407-9 |
DatabaseName | Springer Open Access PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Geology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_209b5859bf5748e3a70be35b67a6f5ab 10_1038_s41467_024_50407_9 39019930 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Evonik Stiftung (Evonik Foundation) funderid: 100010134 – fundername: MIT-IBM Watson AI Lab |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP NPM AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PQEST PQUKI PRINS RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c422t-ba36264d522b92d724496cb487ae5345a29c1312d27e40033219f08cd3c5199f3 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 15:11:25 EDT 2024 Tue Sep 17 21:28:27 EDT 2024 Sat Oct 26 04:38:02 EDT 2024 Thu Oct 10 23:04:55 EDT 2024 Fri Aug 23 04:43:01 EDT 2024 Sat Nov 02 11:58:28 EDT 2024 Fri Oct 11 20:46:08 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-ba36264d522b92d724496cb487ae5345a29c1312d27e40033219f08cd3c5199f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9495-8599 0000-0003-3376-0404 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254924/ |
PMID | 39019930 |
PQID | 3082013039 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_209b5859bf5748e3a70be35b67a6f5ab pubmedcentral_primary_oai_pubmedcentral_nih_gov_11254924 proquest_miscellaneous_3082308008 proquest_journals_3082013039 crossref_primary_10_1038_s41467_024_50407_9 pubmed_primary_39019930 springer_journals_10_1038_s41467_024_50407_9 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-17 |
PublicationDateYYYYMMDD | 2024-07-17 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | CeriottiMParrinelloMMarklandTEManolopoulosDEEfficient stochastic thermostatting of path integral molecular dynamicsJ. Chem. Phys.20101331241042010JChPh.133l4104C2088692110.1063/1.3489925 RaiDKBeaucageGVogttKIlavskyJKammlerHKIn situ study of aggregate topology during growth of pyrolytic silicaJ. Aerosol Sci.201811834442018JAerS.118...34R1:CAS:528:DC%2BC1cXisVaqurk%3D10.1016/j.jaerosci.2018.01.006 OngSPPython Materials Genomics (pymatgen): A robust, open-source python library for materials analysisComput. Mater. Sci.2013683143191:CAS:528:DC%2BC3sXhsVGjt7g%3D10.1016/j.commatsci.2012.10.028 SundararajanMTalyAYanQAxiomatic Attribution for Deep Networks34th Int. Conf. Mach. Learn., ICML2017751095118 BalyakinIARempelSVRyltsevRERempelAADeep machine learning interatomic potential for liquid silicaPhys. Rev. E2020102521252020PhRvE.102e2125B1:CAS:528:DC%2BB3cXisFeru7nF10.1103/PhysRevE.102.052125 YehICHummerGSystem-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditionsJ. Phys. Chem. B200410815873158791:CAS:528:DC%2BD2cXnsV2iurk%3D10.1021/jp0477147 MeierMSonnickSAsylbekovERädleMNirschlHMulti-scale characterization of precipitated silicaPowder Technol.201935445511:CAS:528:DC%2BC1MXhtFeqs7%2FJ10.1016/j.powtec.2019.05.072 Perry, C. C. Biogenic Silica: A Model of Amorphous Structure Control. Growth, Dissolution and Pattern Formation in Geosystems 237–251 https://link.springer.com/chapter/10.1007/978-94-015-9179-9_11 (1999). StukowskiAVisualization and analysis of atomistic simulation data with OVITO-the Open Visualization ToolModel. Simul. Mater. Sci. Eng.2009180150122010MSMSE..18a5012S10.1088/0965-0393/18/1/015012 Heaney, P. J., Prewitt, C. T. & Gibbs, G. V.Silica: Physical behavior, geochemistry, and materials applications, vol. 29 (Walter de Gruyter GmbH & Co KG, 2018). BeltonDJDeschaumeOPerryCCAn overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advancesFEBS J.2012279171017201:CAS:528:DC%2BC38XntFyktrg%3D22333209333441910.1111/j.1742-4658.2012.08531.x ElananyMA quantum molecular dynamics simulation study of the initial hydrolysis step in sol-gel processJ. Phys. Chem. B2003107151815241:CAS:528:DC%2BD3sXlsFersA%3D%3D10.1021/jp026816z Schwalbe-KodaDTanARGómez-BombarelliRDifferentiable sampling of molecular geometries with uncertainty-based adversarial attacksNat. Commun.20211211210.1038/s41467-021-25342-8 ZhangXQTrinhTTVan SantenRAJansenAPMechanism of the initial stage of silicate oligomerizationJ. Am. Chem. Soc.2011133661366251:CAS:528:DC%2BC3MXksFGgurw%3D2148601810.1021/ja110357k Pereira, J. C., Catlow, C. R. & Price, G. D. Silica condensation reaction: an ab initio study. Chemical Communications 1387–1388 https://pubs.rsc.org/en/content/articlelanding/1998/cc/a801816b (1998). ErhardLCRohrerJAlbeKDeringerVLA machine-learned interatomic potential for silica and its relation to empirical modelsnpj Comput. Mater. 2022 8:120228112 ShrikumarAGreensidePKundajeALearning important features through propagating activation differences34th Int. Conf. Mach. Learn., ICML2017748444866 Erlebach, A. et al. A reactive neural network framework for water-loaded acidic zeolites. Nat Commun15, 4215 https://doi.org/10.1038/s41467-024-48609-2 (2024). MarsalekOMarklandTEQuantum Dynamics and Spectroscopy of Ab Initio Liquid Water: The Interplay of Nuclear and Electronic Quantum EffectsJ. Phys. Chem. Lett.20178154515511:CAS:528:DC%2BC2sXktlSjtLc%3D2829642210.1021/acs.jpclett.7b00391 Van BeestBWKramerGJVan SantenRAForce fields for silicas and aluminophosphates based on ab initio calculationsPhys. Rev. Lett.19906419551990PhRvL..64.1955V10.1103/PhysRevLett.64.1955 simonaxelrod et al.learningmatter-mit/NeuralForceField: NeuralForceField with Uncertainty attribution https://doi.org/10.5281/zenodo.11391758 (2024). ZaverkinVHolzmüllerDSchuldtRKästnerJPredicting properties of periodic systems from cluster data: A case study of liquid waterJ. Chem. Phys.20221561141032022JChPh.156k4103Z1:CAS:528:DC%2BB38Xntlyjsr0%3D3531758010.1063/5.0078983 Baerlocher, Ch. and McCusker, L.B. Database of Zeolite Structures http://www.iza-structure.org/databases/ (2021). SilversteinTPHellerSTPKa Values in the Undergraduate Curriculum: What Is the Real pKa of Water?J. Chem. Educ.2017946906951:CAS:528:DC%2BC2sXmtVGrsb4%3D10.1021/acs.jchemed.6b00623 SchafferCLThomsonKTDensity functional theory investigation into structure and reactivity of prenucleation silica speciesJ. Phys. Chem. C.200811212653126621:CAS:528:DC%2BD1cXpt1Sgu7c%3D10.1021/jp066534p GaillacRPullumbiPCoudertFXELATE: an open-source online application for analysis and visualization of elastic tensorsJ. Phys.: Condens. Matter20162827520127199239 DietschreitJCDiestlerDJOchsenfeldCHow to obtain reaction free energies from free-energy profilesJ. Chem. Phys.20221561141052022JChPh.156k4105D1:CAS:528:DC%2BB38XntFCntbk%3D3531758810.1063/5.0083423 Erlebach, A., Nachtigall, P. & Grajciar, L. Accurate large-scale simulations of siliceous zeolites by neural network potentials. npj Comput Mater8, 174 https://doi.org/10.1038/s41524-022-00865-w (2022). FogartyJCAktulgaHMGramaAYVan DuinACPanditSAA reactive molecular dynamics simulation of the silica-water interfaceJ. Chem. Phys.20101321747042010JChPh.132q4704F2045918010.1063/1.3407433 EastealAJPriceWEWoolfLADiaphragm cell for high-temperature diffusion measurements. Tracer Diffusion coefficients for water to 363 KJ. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases198985109110971:CAS:528:DyaL1MXkt1yrt7c%3D10.1039/f19898501091 Schütt, K., Unke, O. & Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In Proc. 38th International Conference on Machine Learning, Proc. Machine Learning Research Vol. 139 (eds Meila, M. & Zhang, T.) 9377–9388 (PMLR, 2021). BatznerSE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic PotentialsNat. Commun. 2022 13:1202113111 SchüttKTSchNetPack: A Deep Learning Toolbox for Atomistic SystemsJ. Chem. Theory Comput.2019154484553048145310.1021/acs.jctc.8b00908 YaoYKanaiYNuclear Quantum Effect and Its Temperature Dependence in Liquid Water from Random Phase Approximation via Artificial Neural NetworkJ. Phys. Chem. Lett.202112635463621:CAS:528:DC%2BB3MXhsVOrtrnK3423136610.1021/acs.jpclett.1c01566 LiuJLanJHeXToward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural NetworksJ. Phys. Chem. A2022126392639361:CAS:528:DC%2BB38XhsVOgtLnL3567961010.1021/acs.jpca.2c00601 WangRCarnevaleVKleinMLBorguetEFirst-Principles Calculation of Water p Ka Using the Newly Developed SCAN FunctionalJ. Phys. Chem. Lett.20201154591:CAS:528:DC%2BC1MXitlOlu73J3183480310.1021/acs.jpclett.9b02913 WeitkampJZeolites and catalysisSolid state Ion.20001311751881:CAS:528:DC%2BD3cXks12kt78%3D10.1016/S0167-2738(00)00632-9 SchüttKTSchNet: A continuous-filter convolutional neural network for modeling quantum interactionsAdv. Neural Inf. Process. Syst.2017309921002 Fu, X. et al. Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations https://arxiv.org/abs/2210.07237v1 (2022). CundyCSCoxPAThe hydrothermal synthesis of zeolites: History and development from the earliest days to the present timeChem. Rev.20031036637011:CAS:528:DC%2BD3sXhtlSrsrk%3D1263084910.1021/cr020060i MartinezLAndradeRBirginEGMartínezJMPACKMOL: a package for building initial configurations for molecular dynamics simulationsJ. Comput.Chem.200930215721641:CAS:528:DC%2BD1MXptleqsb8%3D1922994410.1002/jcc.21224 RazaNSynthesis and characterization of amorphous precipitated silica from alkaline dissolution of olivineRSC Adv.2018832651326582018RSCAd...832651R1:CAS:528:DC%2BC1cXhslynu73I35547702908626210.1039/C8RA06257A HolzMHeilSRSaccoATemperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurementsPhys. Chem. Chem. Phys.20002474047421:CAS:528:DC%2BD3cXnt1Klurs%3D10.1039/b005319h RimszaJMYeonJVan DuinACDuJWater Interactions with Nanoporous Silica: Comparison of ReaxFF and ab Initio based Molecular Dynamics SimulationsJ. Phys. Chem. C.201612024803248161:CAS:528:DC%2BC28Xhs1SjtrbL10.1021/acs.jpcc.6b07939 AxelrodSLearning Matter: Materials Design with Machine Learning and Atomistic SimulationsAcc. Mater. Res.202233433571:CAS:528:DC%2BB38Xkt1ChtLc%3D10.1021/accountsmr.1c00238 HalasNJNanoscience under glass: The versatile chemistry of silica nanostructuresACS Nano200821791831:CAS:528:DC%2BD1cXitlOmsbc%3D1920661610.1021/nn800052e DewatiRPrecipitated Silica from Pumice and Carbon Dioxide Gas (Co2) in Bubble Column ReactorJ. Phys.: Conf. Ser.2018953012226 MorawietzTSingraberADellagoCBehlerJHow van der waals interactions determine the unique properties of waterProc. Natl Acad. Sci. USA2016113836883732016PNAS..113.8368M1:CAS:528:DC%2BC28XhtFentr7O27402761496874810.1073/pnas.1602375113 TrinhTTJansenAPVan SantenRAMechanism of oligomerization reactions of silicaJ. Phys. Chem. B200611023099231061:CAS:528:DC%2BD28XhtFWkt7rO1710715010.1021/jp063670l Bergna, H. & Roberts, W.Colloidal silica: fundamentals and applicationshttps://books.google.com/books?hl=en&lr=&id=d0huBwAAQBAJ&oi=fnd&pg=PP1&ots=uYjxTawhd_&sig=Pf92yxgRxSVaJ1on0L2VdXsvb_c (2005). HulmADietschreitJCOchsenfeldCStatistically optimal analysis of the extended-system adaptive biasing force (eABF) methodJ. Chem. Phys.2022157241101:CAS:528:DC%2BB38XhvVWktbzK10.1063/5.0095554 CoudertFXSystematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibilityPhys. Chem. Chem. Phys.20131516012160181:CAS:528:DC%2BC3sXhsVWrtb3O2395938310.1039/c3cp51817e CeriottiMNuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current ChallengesChem. Rev.2016116752975501:CAS:528:DC%2BC28XlsVejsr8%3D2704951310.1021/acs.chemrev.5b00674 SigOpt. https://sigopt.com/. GaoYMultifunctional Role of S V Zaverkin (50407_CR20) 2022; 156 Y Gao (50407_CR3) 2022; 23 LC Erhard (50407_CR21) 2022; 8 A Shrikumar (50407_CR34) 2017; 7 TT Trinh (50407_CR24) 2006; 110 A Stukowski (50407_CR55) 2009; 18 50407_CR31 N Raza (50407_CR6) 2018; 8 50407_CR30 F Neese (50407_CR32) 2020; 152 E Flikkema (50407_CR13) 2003; 378 50407_CR37 S Batzner (50407_CR49) 2021; 13 50407_CR36 JM Rimsza (50407_CR15) 2016; 120 R Dewati (50407_CR7) 2018; 953 L Martinez (50407_CR54) 2009; 30 F Musil (50407_CR16) 2021; 121 D Schwalbe-Koda (50407_CR29) 2021; 12 AK Subramaniyan (50407_CR52) 2008; 45 M Elanany (50407_CR28) 2003; 107 NJ Halas (50407_CR4) 2008; 2 50407_CR23 AJ Easteal (50407_CR40) 1989; 85 50407_CR64 50407_CR65 50407_CR63 50407_CR60 CS Cundy (50407_CR8) 2003; 103 IC Yeh (50407_CR56) 2004; 108 50407_CR27 JC Fogarty (50407_CR14) 2010; 132 KT Schütt (50407_CR51) 2017; 30 O Marsalek (50407_CR38) 2017; 8 A Carré (50407_CR12) 2008; 82 M Sundararajan (50407_CR35) 2017; 7 J Weitkamp (50407_CR2) 2000; 131 R Gaillac (50407_CR59) 2016; 28 50407_CR53 A Hulm (50407_CR62) 2022; 157 DJ Belton (50407_CR47) 2012; 279 50407_CR50 SP Ong (50407_CR58) 2013; 68 DK Rai (50407_CR9) 2018; 118 Y Yao (50407_CR18) 2021; 12 T Morawietz (50407_CR33) 2016; 113 J Liu (50407_CR19) 2022; 126 M Ceriotti (50407_CR41) 2010; 133 CL Schaffer (50407_CR26) 2008; 112 FX Coudert (50407_CR66) 2013; 15 50407_CR1 BW Van Beest (50407_CR11) 1990; 64 S Axelrod (50407_CR17) 2022; 3 TP Silverstein (50407_CR43) 2017; 94 50407_CR5 M Holz (50407_CR39) 2000; 2 XQ Zhang (50407_CR25) 2011; 133 50407_CR42 R Wang (50407_CR45) 2020; 11 M Meier (50407_CR10) 2019; 354 M Ceriotti (50407_CR44) 2016; 116 JC Dietschreit (50407_CR61) 2022; 156 KT Schütt (50407_CR57) 2019; 15 50407_CR48 50407_CR46 IA Balyakin (50407_CR22) 2020; 102 |
References_xml | – volume: 103 start-page: 663 year: 2003 ident: 50407_CR8 publication-title: Chem. Rev. doi: 10.1021/cr020060i contributor: fullname: CS Cundy – volume: 132 start-page: 174704 year: 2010 ident: 50407_CR14 publication-title: J. Chem. Phys. doi: 10.1063/1.3407433 contributor: fullname: JC Fogarty – volume: 3 start-page: 343 year: 2022 ident: 50407_CR17 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00238 contributor: fullname: S Axelrod – volume: 110 start-page: 23099 year: 2006 ident: 50407_CR24 publication-title: J. Phys. Chem. B doi: 10.1021/jp063670l contributor: fullname: TT Trinh – volume: 108 start-page: 15873 year: 2004 ident: 50407_CR56 publication-title: J. Phys. Chem. B doi: 10.1021/jp0477147 contributor: fullname: IC Yeh – volume: 2 start-page: 4740 year: 2000 ident: 50407_CR39 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b005319h contributor: fullname: M Holz – volume: 12 start-page: 1 year: 2021 ident: 50407_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25342-8 contributor: fullname: D Schwalbe-Koda – ident: 50407_CR65 doi: 10.5281/zenodo.11391758 – volume: 45 start-page: 4340 year: 2008 ident: 50407_CR52 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2008.03.016 contributor: fullname: AK Subramaniyan – volume: 133 start-page: 6613 year: 2011 ident: 50407_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110357k contributor: fullname: XQ Zhang – ident: 50407_CR50 – ident: 50407_CR31 – ident: 50407_CR27 doi: 10.1039/a801816b – volume: 7 start-page: 4844 year: 2017 ident: 50407_CR34 publication-title: 34th Int. Conf. Mach. Learn., ICML contributor: fullname: A Shrikumar – volume: 156 start-page: 114103 year: 2022 ident: 50407_CR20 publication-title: J. Chem. Phys. doi: 10.1063/5.0078983 contributor: fullname: V Zaverkin – volume: 23 start-page: 1 year: 2022 ident: 50407_CR3 publication-title: AAPS PharmSciTech 2022 23:4 contributor: fullname: Y Gao – volume: 120 start-page: 24803 year: 2016 ident: 50407_CR15 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.6b07939 contributor: fullname: JM Rimsza – volume: 131 start-page: 175 year: 2000 ident: 50407_CR2 publication-title: Solid state Ion. doi: 10.1016/S0167-2738(00)00632-9 contributor: fullname: J Weitkamp – volume: 28 start-page: 275201 year: 2016 ident: 50407_CR59 publication-title: J. Phys.: Condens. Matter contributor: fullname: R Gaillac – ident: 50407_CR37 doi: 10.1063/1.4790861 – ident: 50407_CR48 – volume: 8 start-page: 1545 year: 2017 ident: 50407_CR38 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00391 contributor: fullname: O Marsalek – volume: 152 start-page: 224108 year: 2020 ident: 50407_CR32 publication-title: J. Chem. Phys. doi: 10.1063/5.0004608 contributor: fullname: F Neese – volume: 133 start-page: 124104 year: 2010 ident: 50407_CR41 publication-title: J. Chem. Phys. doi: 10.1063/1.3489925 contributor: fullname: M Ceriotti – volume: 354 start-page: 45 year: 2019 ident: 50407_CR10 publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.05.072 contributor: fullname: M Meier – ident: 50407_CR30 – volume: 116 start-page: 7529 year: 2016 ident: 50407_CR44 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00674 contributor: fullname: M Ceriotti – volume: 30 start-page: 992 year: 2017 ident: 50407_CR51 publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: KT Schütt – ident: 50407_CR63 doi: 10.18126/pzjr-x7pv – volume: 156 start-page: 114105 year: 2022 ident: 50407_CR61 publication-title: J. Chem. Phys. doi: 10.1063/5.0083423 contributor: fullname: JC Dietschreit – ident: 50407_CR5 – volume: 15 start-page: 448 year: 2019 ident: 50407_CR57 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00908 contributor: fullname: KT Schütt – volume: 113 start-page: 8368 year: 2016 ident: 50407_CR33 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1602375113 contributor: fullname: T Morawietz – volume: 8 start-page: 1 year: 2022 ident: 50407_CR21 publication-title: npj Comput. Mater. 2022 8:1 contributor: fullname: LC Erhard – volume: 7 start-page: 5109 year: 2017 ident: 50407_CR35 publication-title: 34th Int. Conf. Mach. Learn., ICML contributor: fullname: M Sundararajan – volume: 953 start-page: 012226 year: 2018 ident: 50407_CR7 publication-title: J. Phys.: Conf. Ser. contributor: fullname: R Dewati – volume: 8 start-page: 32651 year: 2018 ident: 50407_CR6 publication-title: RSC Adv. doi: 10.1039/C8RA06257A contributor: fullname: N Raza – ident: 50407_CR42 doi: 10.1038/s41524-022-00865-w – volume: 2 start-page: 179 year: 2008 ident: 50407_CR4 publication-title: ACS Nano doi: 10.1021/nn800052e contributor: fullname: NJ Halas – volume: 102 start-page: 52125 year: 2020 ident: 50407_CR22 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.102.052125 contributor: fullname: IA Balyakin – volume: 157 start-page: 24110 year: 2022 ident: 50407_CR62 publication-title: J. Chem. Phys. doi: 10.1063/5.0095554 contributor: fullname: A Hulm – volume: 121 start-page: 1 year: 2021 ident: 50407_CR16 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00021 contributor: fullname: F Musil – volume: 11 start-page: 54 year: 2020 ident: 50407_CR45 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02913 contributor: fullname: R Wang – volume: 94 start-page: 690 year: 2017 ident: 50407_CR43 publication-title: J. Chem. Educ. doi: 10.1021/acs.jchemed.6b00623 contributor: fullname: TP Silverstein – ident: 50407_CR1 – volume: 15 start-page: 16012 year: 2013 ident: 50407_CR66 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51817e contributor: fullname: FX Coudert – volume: 85 start-page: 1091 year: 1989 ident: 50407_CR40 publication-title: J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases doi: 10.1039/f19898501091 contributor: fullname: AJ Easteal – volume: 82 start-page: 17001 year: 2008 ident: 50407_CR12 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/82/17001 contributor: fullname: A Carré – volume: 126 start-page: 3926 year: 2022 ident: 50407_CR19 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.2c00601 contributor: fullname: J Liu – volume: 30 start-page: 2157 year: 2009 ident: 50407_CR54 publication-title: J. Comput.Chem. doi: 10.1002/jcc.21224 contributor: fullname: L Martinez – ident: 50407_CR64 – volume: 68 start-page: 314 year: 2013 ident: 50407_CR58 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.10.028 contributor: fullname: SP Ong – ident: 50407_CR60 – volume: 118 start-page: 34 year: 2018 ident: 50407_CR9 publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2018.01.006 contributor: fullname: DK Rai – volume: 279 start-page: 1710 year: 2012 ident: 50407_CR47 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2012.08531.x contributor: fullname: DJ Belton – volume: 107 start-page: 1518 year: 2003 ident: 50407_CR28 publication-title: J. Phys. Chem. B doi: 10.1021/jp026816z contributor: fullname: M Elanany – volume: 13 start-page: 1 year: 2021 ident: 50407_CR49 publication-title: Nat. Commun. 2022 13:1 contributor: fullname: S Batzner – ident: 50407_CR46 doi: 10.1007/978-94-015-9179-9_11 – ident: 50407_CR23 doi: 10.1038/s41467-024-48609-2 – volume: 112 start-page: 12653 year: 2008 ident: 50407_CR26 publication-title: J. Phys. Chem. C. doi: 10.1021/jp066534p contributor: fullname: CL Schaffer – volume: 18 start-page: 015012 year: 2009 ident: 50407_CR55 publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/1/015012 contributor: fullname: A Stukowski – volume: 378 start-page: 622 year: 2003 ident: 50407_CR13 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2003.07.017 contributor: fullname: E Flikkema – ident: 50407_CR53 – ident: 50407_CR36 – volume: 12 start-page: 6354 year: 2021 ident: 50407_CR18 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c01566 contributor: fullname: Y Yao – volume: 64 start-page: 1955 year: 1990 ident: 50407_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.1955 contributor: fullname: BW Van Beest |
SSID | ssj0000391844 |
Score | 2.4998329 |
Snippet | The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement,... Abstract The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 6030 |
SubjectTerms | 639/301/1034/1035 639/638/440/950 Acidity Aqueous solutions Catalysts Chemical reactions Clusters Dimerization Dynamic characteristics Geology Humanities and Social Sciences Ionization Machine learning Molecular clusters Molecular dynamics multidisciplinary Reactivity Science Science (multidisciplinary) Silica Silicates Silicon dioxide Simulation Uncertainty Water Zeolites |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PjxMhFCamiYkX4_pztGsw8aZEyo8BjrvGpvHQk016I8Awu71Mm3Y2pv-9D5jWVt3sxevAZMj34L0PePM9hD66OkCQ1TXRgQUi6uCJUVSSWPM2NpIF1-Ys33k9W4jvS7k8KfWVcsKKPHABDjbnxgOlNb6VSujInaI-culr5epWOp-9LzUnm6nsg7mBrYsY_pKhXH_ZiewTICQRCRNXEXMWibJg_79Y5t_Jkn_cmOZANH2Gng4MEl-VkV-gR7F7jh6XmpL7F2g-KKbeYIeBEGZ3hjfrPmUFwWvAUfFulU7qyE-gmVs8FOrBEN9KdkC_x64_1sF6iRbTbz--zshQNIEEwVhPvEsCMwJgZt6wRkH4NmAB2Je4KLmQjpkw4RPWMBVFquQGLqulOjQ8AJkzLX-FRt26i28QnniI7bUKVBkqhPJG-nZitJZN5LThokKfDgDaTdHGsPlOm2tb4LYAt81wW1Oh64TxsWfStc4PwNp2sLZ9yNoVGh8sZIfFtrM80xiIxfCND8dmWCbp7sN1cX1X-vDEjnWFXheDHkeSjn2AptEK6TNTnw31vKVb3WYpbmCrSeIOoPh8mBW_x3U_Fm__Bxbv0BOWpnNW-RyjUb-9i5fAkHr_Pi-GXyH3Cwo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLRXmmFGQkbmDV8SO2TwhQtxWHnqjUm2U7TuklWXZTVfvvO3a8qZbXLUqsyJkZz3weT75B6INrAgRZ3RAdWCCiCZ4YRSWJDe9iK1lwXa7yPW_OLsT3S3lZEm7rUla59YnZUbdDSDnyY55jFThc83n5i6SuUel0tbTQeIge1UyptPnSi9M5x5LYz7UQ5V8ZyvXxWmTPAIGJSDBfRcxOPMq0_X_Dmn-WTP52bprD0eIp2i84En-ZFH-AHsT-GXo8dZbcwNVp7ti7eY7OC4PqFXYYAGJ2b3g5jKlKCF4AmBWvr1PmjtwC7Fzh0rgHQ7ybqgXGDXbj3BfrBbpYnPz4dkZKEwUSBGMj8S4RzggQO_OGtQrCuQGNwD7FRcmFdMyEmtesZSqK1NkNXFhHdWh5AHBnOv4S7fVDH18jXHuI9Y0KVBkqhPJG-q42Wss2ctpyUaGPW1Ha5cSVYfMZN9d2ErwFwdsseGsq9DVJex6ZeK7zjWF1ZcuysYwaDxsa4zuphI7cKeojl75Rrumk8xU62urKlsW3tvemUqH382NYNuksxPVxuJnG8ISWdYVeTaqdZ5LSQADbaIX0jtJ3prr7pL_-mam5Ab0myjsQxaetfdzP69-yOPz_Z7xBT1gy2czneYT2xtVNfAtYaPTvssHfAW7VBTc priority: 102 providerName: ProQuest – databaseName: Springer Open Access dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BKyQuiH5AA21lJG6tRdbfPsKqVdVDT1TqzbIdB3rJVt1UqP-esZMNCpRDr4mjWG_svBd7_Abgs1cRSdYoaiKLVKgYqNW1pEnxNjWSRd-WLN8rdXEtLm_kzWiTk8_CzPbvufmyFmUqI5NQieNNU_sStpGDTU7fWqrltJ6Snc6NEOO5mKcfnXFPseh_Slf-mx751x5poZ7zt_Bm1Izk6xDkHXiRul14NVSRfNyDq9Ej9QfxBCVg-YCRu1Wf84DwMVSlZH2b1-boLxSW92QszUOQ0YZ8gP6R-H6qfLUP1-dn35cXdCyTQKNgrKfBZ0sZgcCyYFmjkbAtYo5_Ij5JLqRnNi74gjVMJ5Frt-FHqq1NbHhE-WZb_g62ulWXDoAsArK50rHWthZCBytDu7DGyCbxuuGigpMNgO5ucMNwZRebGzfA7RBuV-B2toJvGeOpZXayLhcwwG6cGI7VNuAviw2t1MIk7nUdEpdBaa9a6UMFh5sIuXF6rR0vwgXZF9_xabqNEyPvdvgurR6GNjzrYVPB-yGgU0_yQg8Ks7oCMwv1rKvzO93tz2K-jfo0m9ohFKebUfGnX__H4sPzmn-E1ywP3OLgeQhb_f1DOkL104fjMux_A24_-zs priority: 102 providerName: Springer Nature |
Title | Learning a reactive potential for silica-water through uncertainty attribution |
URI | https://link.springer.com/article/10.1038/s41467-024-50407-9 https://www.ncbi.nlm.nih.gov/pubmed/39019930 https://www.proquest.com/docview/3082013039 https://www.proquest.com/docview/3082308008 https://pubmed.ncbi.nlm.nih.gov/PMC11254924 https://doaj.org/article/209b5859bf5748e3a70be35b67a6f5ab |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZtx2AvY_d564IHe9vUOLrrMQ3NSmChbCvkTUiy3AZWJyQuo_9-R7KdLbu87CUG28HinCN937GOv4PQOys8gKwSWHniMRPeYS0LjoOgVSg58bZKVb5zcX7JZgu-OECi_xYmFe17tzypv92c1MvrVFu5vvHDvk5sePFpAhwhCoux4SE6hAj9JUdP6y_VkLaw7guZgqrhlqX1AOAIcwhaiaNWaEz2AZyLPUBKuv1_I5t_1kz-tnGa8Gj6CD3siGQ-bgf8GB2E-gm637aWvHuK5p1w6lVuc-CFaVXL16smFgfB34Cq5ttlfGGHvwPb3ORdv54cYK4tEmjuctvs2mE9Q5fTs6-Tc9z1TsCeEdJgZ6PODANrE6dJKQHFNTgC0hMbOGXcEu1HdERKIgOLDd1g5aoK5UvqgdPpij5HR_WqDi9RPnIA8UL6QuqCMek0d9VIK8XLQIuSsgy97w1o1q1Ehklb21SZ1vIGLG-S5Y3O0Gm08e7OKG-dTqw2V6ZzsiGFdpDHaFdxyVSgVhYuUO6EtKLi1mXouPeQ6ebc1tDEZgCS4Rlvd5dhtsQtEFuH1W17D40kWWXoRevQ3Uj6gMiQ2nP13lD3r0CAJkXuPiAz9KGPip_j-rctXv3_k16jByTGc5L4PEZHzeY2vAF61LgBzImFhF81_ThA98bj2ZcZHE_P5hef4exETAbpxcMgzZof_04Scg |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,12777,21400,27936,27937,31731,31732,33385,33386,33756,33757,41132,42201,43322,43612,43817,51588,53804,53806,74073,74363,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIgQXxJvAAkHiBtamfsT2CQGiW2DpaVfam2U7zrKXtNtmteq_Z-y4WZXXrWqiyp0Zz_dlPPkG4K2tPYKsqony1BNee0e0rAQJNWtDI6i3beryndezE_7tVJzmgts6t1Vuc2JK1M3Cxxr5AUtYhQlXf1hekDg1Kp6u5hEaN-EWZ4jV8U3x6eFYY4nq54rz_K5MxdTBmqfMgMBEBIavJHoHj5Js_9-45p8tk7-dmyY4mt6He5lHlh8Hxz-AG6F7CLeHyZIb_HSYJvZuHsE8K6ielbZEgpjSW7lc9LFLCH8AOWu5Po-VO3KFtHNV5sE9JeLd0C3Qb0rbj3OxHsPJ9Mvx5xnJQxSI55T2xNkoOMPR7NRp2kiEc40ewecUGwTjwlLtJ2xCGyoDj5PdMIW1lfIN80judMuewF636MIzKCcOsb6WvpK64lw6LVw70UqJJrCqYbyAd1tTmuWglWHSGTdTZjC8QcObZHijC_gUrT3eGXWu0xeL1ZnJ28bQSjt8oNGuFZKrwKysXGDC1dLWrbCugP2tr0zefGtzHSoFvBkv47aJZyG2C4vL4R4W2bIq4Ong2nElsQyEtK0qQO04fWepu1e6859JmhvZa5S8Q1O838bH9br-bYvn__8br-HO7PjHkTn6Ov_-Au7SGL5J23Mf9vrVZXiJvKh3r1Lw_wK24ggZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEYgL4llSCgSJG1ib9SO2T4jXtjy04kCl3izbcUovm2U3VbX_nrHjTbW8blESRc7MeL4v9uQbgJe29giyqibKU0947R3RshIk1KwNjaDetqnKd14fn_DPp-I01z-tc1nlNiemRN10Pq6RT1jCKky4etLmsohvH2Zvlj9J7CAVd1pzO43rcANRsY4xr2ZH43pLVEJXnOf_ZiqmJmuesgSCFBEYypLoHWxKEv5_451_lk_-toeaoGl2F-5kTlm-HYLgHlwLi_twc-gyucGjo9S9d_MA5llN9ay0JZLFlOrKZdfHiiF8APLXcn0eV_HIJVLQVZmb-JSIfUPlQL8pbT_2yHoIJ7OP398fk9xQgXhOaU-cjeIzHF1AnaaNRGjX6B38ZrFBMC4s1X7KprShMvDY5Q3TWVsp3zCPRE-37BHsLbpFeAzl1CHu19JXUlecS6eFa6daKdEEVjWMF_Bqa0qzHHQzTNrvZsoMhjdoeJMMb3QB76K1xzuj5nU60a3OTJ5Chlba4ceNdq2QXAVmZeUCE66Wtm6FdQUcbn1l8kRcm6uwKeDFeBmnUNwXsYvQXQz3sMicVQH7g2vHkcQlIaRwVQFqx-k7Q929sjj_kWS6kclG-Ts0xettfFyN69-2OPj_azyHWxj35uun-ZcncJvG6E0yn4ew168uwlOkSL17lmL_F1UCDFE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+reactive+potential+for+silica-water+through+uncertainty+attribution&rft.jtitle=Nature+communications&rft.au=Roy%2C+Swagata&rft.au=D%C3%BCrholt%2C+Johannes+P.&rft.au=Asche%2C+Thomas+S.&rft.au=Zipoli%2C+Federico&rft.date=2024-07-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-50407-9&rft.externalDocID=10_1038_s41467_024_50407_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |