Learning a reactive potential for silica-water through uncertainty attribution

The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 6030 - 10
Main Authors Roy, Swagata, Dürholt, Johannes P., Asche, Thomas S., Zipoli, Federico, Gómez-Bombarelli, Rafael
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ω B97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism. Accurate molecular dynamics of silicate reactivity in aqueous solution at large length and time scale is required to decipher silica condensation. Here, authors developed a potential with a new active learning method to capture silica-water interactions.
AbstractList The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism.The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism.
The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ω B97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism. Accurate molecular dynamics of silicate reactivity in aqueous solution at large length and time scale is required to decipher silica condensation. Here, authors developed a potential with a new active learning method to capture silica-water interactions.
Abstract The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism.
Abstract The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ω B97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism.
The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism.Accurate molecular dynamics of silicate reactivity in aqueous solution at large length and time scale is required to decipher silica condensation. Here, authors developed a potential with a new active learning method to capture silica-water interactions.
The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism.
ArticleNumber 6030
Author Roy, Swagata
Zipoli, Federico
Dürholt, Johannes P.
Asche, Thomas S.
Gómez-Bombarelli, Rafael
Author_xml – sequence: 1
  givenname: Swagata
  surname: Roy
  fullname: Roy, Swagata
  organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology
– sequence: 2
  givenname: Johannes P.
  surname: Dürholt
  fullname: Dürholt, Johannes P.
  organization: Evonik Operations GmbH, Essen
– sequence: 3
  givenname: Thomas S.
  orcidid: 0000-0003-3376-0404
  surname: Asche
  fullname: Asche, Thomas S.
  organization: Evonik Operations GmbH, Essen
– sequence: 4
  givenname: Federico
  surname: Zipoli
  fullname: Zipoli, Federico
  organization: IBM Research Europe
– sequence: 5
  givenname: Rafael
  orcidid: 0000-0002-9495-8599
  surname: Gómez-Bombarelli
  fullname: Gómez-Bombarelli, Rafael
  email: rafagb@mit.edu
  organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39019930$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1UREvpH-CAInHhEvBnHJ8QqviotIILnK2x42S9ytqL7RT13-NuSmk5YMnyyPPM6xm_z9FJiMEh9JLgtwSz_l3mhHeyxZS3AnMsW_UEnVHMSUskZScP4lN0kfMO18UU6Tl_hk6ZwkQphs_Q142DFHyYGmiSA1v8tWsOsbhQPMzNGFOT_ewttL-guNSUbYrLtG2WYF0q4EO5aaCU5M1SfAwv0NMR5uwu7s5z9OPTx--XX9rNt89Xlx82reWUltYA62jHB0GpUXSQlHPVWcN7CU4wLoAqSxihA5WO174ZJWrEvR2YFbXxkZ2jq1V3iLDTh-T3kG50BK-PFzFNGlLxdnaaYmVEL5QZheS9YyCxcUyYTkI3CjBV6_2qdVjM3g22jp5gfiT6OBP8Vk_xWhNCBVeUV4U3dwop_lxcLnrvs3XzDMHFJWuGe1o3xn1FX_-D7uKSQv2rI4UJqy5Viq6UTTHn5Mb7bgjWt_br1X5d7ddH-_Vt0auHc9yX_DG7AmwFck2FyaW_b_9H9jeVOrvD
Cites_doi 10.1021/cr020060i
10.1063/1.3407433
10.1021/accountsmr.1c00238
10.1021/jp063670l
10.1021/jp0477147
10.1039/b005319h
10.1038/s41467-021-25342-8
10.5281/zenodo.11391758
10.1016/j.ijsolstr.2008.03.016
10.1021/ja110357k
10.1039/a801816b
10.1063/5.0078983
10.1021/acs.jpcc.6b07939
10.1016/S0167-2738(00)00632-9
10.1063/1.4790861
10.1021/acs.jpclett.7b00391
10.1063/5.0004608
10.1063/1.3489925
10.1016/j.powtec.2019.05.072
10.1021/acs.chemrev.5b00674
10.18126/pzjr-x7pv
10.1063/5.0083423
10.1021/acs.jctc.8b00908
10.1073/pnas.1602375113
10.1039/C8RA06257A
10.1038/s41524-022-00865-w
10.1021/nn800052e
10.1103/PhysRevE.102.052125
10.1063/5.0095554
10.1021/acs.chemrev.1c00021
10.1021/acs.jpclett.9b02913
10.1021/acs.jchemed.6b00623
10.1039/c3cp51817e
10.1039/f19898501091
10.1209/0295-5075/82/17001
10.1021/acs.jpca.2c00601
10.1002/jcc.21224
10.1016/j.commatsci.2012.10.028
10.1016/j.jaerosci.2018.01.006
10.1111/j.1742-4658.2012.08531.x
10.1021/jp026816z
10.1007/978-94-015-9179-9_11
10.1038/s41467-024-48609-2
10.1021/jp066534p
10.1088/0965-0393/18/1/015012
10.1016/j.cplett.2003.07.017
10.1021/acs.jpclett.1c01566
10.1103/PhysRevLett.64.1955
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
NPM
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-50407-9
DatabaseName Springer Open Access
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Geology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_209b5859bf5748e3a70be35b67a6f5ab
10_1038_s41467_024_50407_9
39019930
Genre Journal Article
GrantInformation_xml – fundername: Evonik Stiftung (Evonik Foundation)
  funderid: 100010134
– fundername: MIT-IBM Watson AI Lab
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
NPM
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c422t-ba36264d522b92d724496cb487ae5345a29c1312d27e40033219f08cd3c5199f3
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Tue Oct 22 15:11:25 EDT 2024
Tue Sep 17 21:28:27 EDT 2024
Sat Oct 26 04:38:02 EDT 2024
Thu Oct 10 23:04:55 EDT 2024
Fri Aug 23 04:43:01 EDT 2024
Sat Nov 02 11:58:28 EDT 2024
Fri Oct 11 20:46:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-ba36264d522b92d724496cb487ae5345a29c1312d27e40033219f08cd3c5199f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9495-8599
0000-0003-3376-0404
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254924/
PMID 39019930
PQID 3082013039
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_209b5859bf5748e3a70be35b67a6f5ab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11254924
proquest_miscellaneous_3082308008
proquest_journals_3082013039
crossref_primary_10_1038_s41467_024_50407_9
pubmed_primary_39019930
springer_journals_10_1038_s41467_024_50407_9
PublicationCentury 2000
PublicationDate 2024-07-17
PublicationDateYYYYMMDD 2024-07-17
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References CeriottiMParrinelloMMarklandTEManolopoulosDEEfficient stochastic thermostatting of path integral molecular dynamicsJ. Chem. Phys.20101331241042010JChPh.133l4104C2088692110.1063/1.3489925
RaiDKBeaucageGVogttKIlavskyJKammlerHKIn situ study of aggregate topology during growth of pyrolytic silicaJ. Aerosol Sci.201811834442018JAerS.118...34R1:CAS:528:DC%2BC1cXisVaqurk%3D10.1016/j.jaerosci.2018.01.006
OngSPPython Materials Genomics (pymatgen): A robust, open-source python library for materials analysisComput. Mater. Sci.2013683143191:CAS:528:DC%2BC3sXhsVGjt7g%3D10.1016/j.commatsci.2012.10.028
SundararajanMTalyAYanQAxiomatic Attribution for Deep Networks34th Int. Conf. Mach. Learn., ICML2017751095118
BalyakinIARempelSVRyltsevRERempelAADeep machine learning interatomic potential for liquid silicaPhys. Rev. E2020102521252020PhRvE.102e2125B1:CAS:528:DC%2BB3cXisFeru7nF10.1103/PhysRevE.102.052125
YehICHummerGSystem-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditionsJ. Phys. Chem. B200410815873158791:CAS:528:DC%2BD2cXnsV2iurk%3D10.1021/jp0477147
MeierMSonnickSAsylbekovERädleMNirschlHMulti-scale characterization of precipitated silicaPowder Technol.201935445511:CAS:528:DC%2BC1MXhtFeqs7%2FJ10.1016/j.powtec.2019.05.072
Perry, C. C. Biogenic Silica: A Model of Amorphous Structure Control. Growth, Dissolution and Pattern Formation in Geosystems 237–251 https://link.springer.com/chapter/10.1007/978-94-015-9179-9_11 (1999).
StukowskiAVisualization and analysis of atomistic simulation data with OVITO-the Open Visualization ToolModel. Simul. Mater. Sci. Eng.2009180150122010MSMSE..18a5012S10.1088/0965-0393/18/1/015012
Heaney, P. J., Prewitt, C. T. & Gibbs, G. V.Silica: Physical behavior, geochemistry, and materials applications, vol. 29 (Walter de Gruyter GmbH & Co KG, 2018).
BeltonDJDeschaumeOPerryCCAn overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advancesFEBS J.2012279171017201:CAS:528:DC%2BC38XntFyktrg%3D22333209333441910.1111/j.1742-4658.2012.08531.x
ElananyMA quantum molecular dynamics simulation study of the initial hydrolysis step in sol-gel processJ. Phys. Chem. B2003107151815241:CAS:528:DC%2BD3sXlsFersA%3D%3D10.1021/jp026816z
Schwalbe-KodaDTanARGómez-BombarelliRDifferentiable sampling of molecular geometries with uncertainty-based adversarial attacksNat. Commun.20211211210.1038/s41467-021-25342-8
ZhangXQTrinhTTVan SantenRAJansenAPMechanism of the initial stage of silicate oligomerizationJ. Am. Chem. Soc.2011133661366251:CAS:528:DC%2BC3MXksFGgurw%3D2148601810.1021/ja110357k
Pereira, J. C., Catlow, C. R. & Price, G. D. Silica condensation reaction: an ab initio study. Chemical Communications 1387–1388 https://pubs.rsc.org/en/content/articlelanding/1998/cc/a801816b (1998).
ErhardLCRohrerJAlbeKDeringerVLA machine-learned interatomic potential for silica and its relation to empirical modelsnpj Comput. Mater. 2022 8:120228112
ShrikumarAGreensidePKundajeALearning important features through propagating activation differences34th Int. Conf. Mach. Learn., ICML2017748444866
Erlebach, A. et al. A reactive neural network framework for water-loaded acidic zeolites. Nat Commun15, 4215 https://doi.org/10.1038/s41467-024-48609-2 (2024).
MarsalekOMarklandTEQuantum Dynamics and Spectroscopy of Ab Initio Liquid Water: The Interplay of Nuclear and Electronic Quantum EffectsJ. Phys. Chem. Lett.20178154515511:CAS:528:DC%2BC2sXktlSjtLc%3D2829642210.1021/acs.jpclett.7b00391
Van BeestBWKramerGJVan SantenRAForce fields for silicas and aluminophosphates based on ab initio calculationsPhys. Rev. Lett.19906419551990PhRvL..64.1955V10.1103/PhysRevLett.64.1955
simonaxelrod et al.learningmatter-mit/NeuralForceField: NeuralForceField with Uncertainty attribution https://doi.org/10.5281/zenodo.11391758 (2024).
ZaverkinVHolzmüllerDSchuldtRKästnerJPredicting properties of periodic systems from cluster data: A case study of liquid waterJ. Chem. Phys.20221561141032022JChPh.156k4103Z1:CAS:528:DC%2BB38Xntlyjsr0%3D3531758010.1063/5.0078983
Baerlocher, Ch. and McCusker, L.B. Database of Zeolite Structures http://www.iza-structure.org/databases/ (2021).
SilversteinTPHellerSTPKa Values in the Undergraduate Curriculum: What Is the Real pKa of Water?J. Chem. Educ.2017946906951:CAS:528:DC%2BC2sXmtVGrsb4%3D10.1021/acs.jchemed.6b00623
SchafferCLThomsonKTDensity functional theory investigation into structure and reactivity of prenucleation silica speciesJ. Phys. Chem. C.200811212653126621:CAS:528:DC%2BD1cXpt1Sgu7c%3D10.1021/jp066534p
GaillacRPullumbiPCoudertFXELATE: an open-source online application for analysis and visualization of elastic tensorsJ. Phys.: Condens. Matter20162827520127199239
DietschreitJCDiestlerDJOchsenfeldCHow to obtain reaction free energies from free-energy profilesJ. Chem. Phys.20221561141052022JChPh.156k4105D1:CAS:528:DC%2BB38XntFCntbk%3D3531758810.1063/5.0083423
Erlebach, A., Nachtigall, P. & Grajciar, L. Accurate large-scale simulations of siliceous zeolites by neural network potentials. npj Comput Mater8, 174 https://doi.org/10.1038/s41524-022-00865-w (2022).
FogartyJCAktulgaHMGramaAYVan DuinACPanditSAA reactive molecular dynamics simulation of the silica-water interfaceJ. Chem. Phys.20101321747042010JChPh.132q4704F2045918010.1063/1.3407433
EastealAJPriceWEWoolfLADiaphragm cell for high-temperature diffusion measurements. Tracer Diffusion coefficients for water to 363 KJ. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases198985109110971:CAS:528:DyaL1MXkt1yrt7c%3D10.1039/f19898501091
Schütt, K., Unke, O. & Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In Proc. 38th International Conference on Machine Learning, Proc. Machine Learning Research Vol. 139 (eds Meila, M. & Zhang, T.) 9377–9388 (PMLR, 2021).
BatznerSE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic PotentialsNat. Commun. 2022 13:1202113111
SchüttKTSchNetPack: A Deep Learning Toolbox for Atomistic SystemsJ. Chem. Theory Comput.2019154484553048145310.1021/acs.jctc.8b00908
YaoYKanaiYNuclear Quantum Effect and Its Temperature Dependence in Liquid Water from Random Phase Approximation via Artificial Neural NetworkJ. Phys. Chem. Lett.202112635463621:CAS:528:DC%2BB3MXhsVOrtrnK3423136610.1021/acs.jpclett.1c01566
LiuJLanJHeXToward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural NetworksJ. Phys. Chem. A2022126392639361:CAS:528:DC%2BB38XhsVOgtLnL3567961010.1021/acs.jpca.2c00601
WangRCarnevaleVKleinMLBorguetEFirst-Principles Calculation of Water p Ka Using the Newly Developed SCAN FunctionalJ. Phys. Chem. Lett.20201154591:CAS:528:DC%2BC1MXitlOlu73J3183480310.1021/acs.jpclett.9b02913
WeitkampJZeolites and catalysisSolid state Ion.20001311751881:CAS:528:DC%2BD3cXks12kt78%3D10.1016/S0167-2738(00)00632-9
SchüttKTSchNet: A continuous-filter convolutional neural network for modeling quantum interactionsAdv. Neural Inf. Process. Syst.2017309921002
Fu, X. et al. Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations https://arxiv.org/abs/2210.07237v1 (2022).
CundyCSCoxPAThe hydrothermal synthesis of zeolites: History and development from the earliest days to the present timeChem. Rev.20031036637011:CAS:528:DC%2BD3sXhtlSrsrk%3D1263084910.1021/cr020060i
MartinezLAndradeRBirginEGMartínezJMPACKMOL: a package for building initial configurations for molecular dynamics simulationsJ. Comput.Chem.200930215721641:CAS:528:DC%2BD1MXptleqsb8%3D1922994410.1002/jcc.21224
RazaNSynthesis and characterization of amorphous precipitated silica from alkaline dissolution of olivineRSC Adv.2018832651326582018RSCAd...832651R1:CAS:528:DC%2BC1cXhslynu73I35547702908626210.1039/C8RA06257A
HolzMHeilSRSaccoATemperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurementsPhys. Chem. Chem. Phys.20002474047421:CAS:528:DC%2BD3cXnt1Klurs%3D10.1039/b005319h
RimszaJMYeonJVan DuinACDuJWater Interactions with Nanoporous Silica: Comparison of ReaxFF and ab Initio based Molecular Dynamics SimulationsJ. Phys. Chem. C.201612024803248161:CAS:528:DC%2BC28Xhs1SjtrbL10.1021/acs.jpcc.6b07939
AxelrodSLearning Matter: Materials Design with Machine Learning and Atomistic SimulationsAcc. Mater. Res.202233433571:CAS:528:DC%2BB38Xkt1ChtLc%3D10.1021/accountsmr.1c00238
HalasNJNanoscience under glass: The versatile chemistry of silica nanostructuresACS Nano200821791831:CAS:528:DC%2BD1cXitlOmsbc%3D1920661610.1021/nn800052e
DewatiRPrecipitated Silica from Pumice and Carbon Dioxide Gas (Co2) in Bubble Column ReactorJ. Phys.: Conf. Ser.2018953012226
MorawietzTSingraberADellagoCBehlerJHow van der waals interactions determine the unique properties of waterProc. Natl Acad. Sci. USA2016113836883732016PNAS..113.8368M1:CAS:528:DC%2BC28XhtFentr7O27402761496874810.1073/pnas.1602375113
TrinhTTJansenAPVan SantenRAMechanism of oligomerization reactions of silicaJ. Phys. Chem. B200611023099231061:CAS:528:DC%2BD28XhtFWkt7rO1710715010.1021/jp063670l
Bergna, H. & Roberts, W.Colloidal silica: fundamentals and applicationshttps://books.google.com/books?hl=en&lr=&id=d0huBwAAQBAJ&oi=fnd&pg=PP1&ots=uYjxTawhd_&sig=Pf92yxgRxSVaJ1on0L2VdXsvb_c (2005).
HulmADietschreitJCOchsenfeldCStatistically optimal analysis of the extended-system adaptive biasing force (eABF) methodJ. Chem. Phys.2022157241101:CAS:528:DC%2BB38XhvVWktbzK10.1063/5.0095554
CoudertFXSystematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibilityPhys. Chem. Chem. Phys.20131516012160181:CAS:528:DC%2BC3sXhsVWrtb3O2395938310.1039/c3cp51817e
CeriottiMNuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current ChallengesChem. Rev.2016116752975501:CAS:528:DC%2BC28XlsVejsr8%3D2704951310.1021/acs.chemrev.5b00674
SigOpt. https://sigopt.com/.
GaoYMultifunctional Role of S
V Zaverkin (50407_CR20) 2022; 156
Y Gao (50407_CR3) 2022; 23
LC Erhard (50407_CR21) 2022; 8
A Shrikumar (50407_CR34) 2017; 7
TT Trinh (50407_CR24) 2006; 110
A Stukowski (50407_CR55) 2009; 18
50407_CR31
N Raza (50407_CR6) 2018; 8
50407_CR30
F Neese (50407_CR32) 2020; 152
E Flikkema (50407_CR13) 2003; 378
50407_CR37
S Batzner (50407_CR49) 2021; 13
50407_CR36
JM Rimsza (50407_CR15) 2016; 120
R Dewati (50407_CR7) 2018; 953
L Martinez (50407_CR54) 2009; 30
F Musil (50407_CR16) 2021; 121
D Schwalbe-Koda (50407_CR29) 2021; 12
AK Subramaniyan (50407_CR52) 2008; 45
M Elanany (50407_CR28) 2003; 107
NJ Halas (50407_CR4) 2008; 2
50407_CR23
AJ Easteal (50407_CR40) 1989; 85
50407_CR64
50407_CR65
50407_CR63
50407_CR60
CS Cundy (50407_CR8) 2003; 103
IC Yeh (50407_CR56) 2004; 108
50407_CR27
JC Fogarty (50407_CR14) 2010; 132
KT Schütt (50407_CR51) 2017; 30
O Marsalek (50407_CR38) 2017; 8
A Carré (50407_CR12) 2008; 82
M Sundararajan (50407_CR35) 2017; 7
J Weitkamp (50407_CR2) 2000; 131
R Gaillac (50407_CR59) 2016; 28
50407_CR53
A Hulm (50407_CR62) 2022; 157
DJ Belton (50407_CR47) 2012; 279
50407_CR50
SP Ong (50407_CR58) 2013; 68
DK Rai (50407_CR9) 2018; 118
Y Yao (50407_CR18) 2021; 12
T Morawietz (50407_CR33) 2016; 113
J Liu (50407_CR19) 2022; 126
M Ceriotti (50407_CR41) 2010; 133
CL Schaffer (50407_CR26) 2008; 112
FX Coudert (50407_CR66) 2013; 15
50407_CR1
BW Van Beest (50407_CR11) 1990; 64
S Axelrod (50407_CR17) 2022; 3
TP Silverstein (50407_CR43) 2017; 94
50407_CR5
M Holz (50407_CR39) 2000; 2
XQ Zhang (50407_CR25) 2011; 133
50407_CR42
R Wang (50407_CR45) 2020; 11
M Meier (50407_CR10) 2019; 354
M Ceriotti (50407_CR44) 2016; 116
JC Dietschreit (50407_CR61) 2022; 156
KT Schütt (50407_CR57) 2019; 15
50407_CR48
50407_CR46
IA Balyakin (50407_CR22) 2020; 102
References_xml – volume: 103
  start-page: 663
  year: 2003
  ident: 50407_CR8
  publication-title: Chem. Rev.
  doi: 10.1021/cr020060i
  contributor:
    fullname: CS Cundy
– volume: 132
  start-page: 174704
  year: 2010
  ident: 50407_CR14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3407433
  contributor:
    fullname: JC Fogarty
– volume: 3
  start-page: 343
  year: 2022
  ident: 50407_CR17
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00238
  contributor:
    fullname: S Axelrod
– volume: 110
  start-page: 23099
  year: 2006
  ident: 50407_CR24
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp063670l
  contributor:
    fullname: TT Trinh
– volume: 108
  start-page: 15873
  year: 2004
  ident: 50407_CR56
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0477147
  contributor:
    fullname: IC Yeh
– volume: 2
  start-page: 4740
  year: 2000
  ident: 50407_CR39
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b005319h
  contributor:
    fullname: M Holz
– volume: 12
  start-page: 1
  year: 2021
  ident: 50407_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25342-8
  contributor:
    fullname: D Schwalbe-Koda
– ident: 50407_CR65
  doi: 10.5281/zenodo.11391758
– volume: 45
  start-page: 4340
  year: 2008
  ident: 50407_CR52
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2008.03.016
  contributor:
    fullname: AK Subramaniyan
– volume: 133
  start-page: 6613
  year: 2011
  ident: 50407_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110357k
  contributor:
    fullname: XQ Zhang
– ident: 50407_CR50
– ident: 50407_CR31
– ident: 50407_CR27
  doi: 10.1039/a801816b
– volume: 7
  start-page: 4844
  year: 2017
  ident: 50407_CR34
  publication-title: 34th Int. Conf. Mach. Learn., ICML
  contributor:
    fullname: A Shrikumar
– volume: 156
  start-page: 114103
  year: 2022
  ident: 50407_CR20
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0078983
  contributor:
    fullname: V Zaverkin
– volume: 23
  start-page: 1
  year: 2022
  ident: 50407_CR3
  publication-title: AAPS PharmSciTech 2022 23:4
  contributor:
    fullname: Y Gao
– volume: 120
  start-page: 24803
  year: 2016
  ident: 50407_CR15
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.6b07939
  contributor:
    fullname: JM Rimsza
– volume: 131
  start-page: 175
  year: 2000
  ident: 50407_CR2
  publication-title: Solid state Ion.
  doi: 10.1016/S0167-2738(00)00632-9
  contributor:
    fullname: J Weitkamp
– volume: 28
  start-page: 275201
  year: 2016
  ident: 50407_CR59
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: R Gaillac
– ident: 50407_CR37
  doi: 10.1063/1.4790861
– ident: 50407_CR48
– volume: 8
  start-page: 1545
  year: 2017
  ident: 50407_CR38
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00391
  contributor:
    fullname: O Marsalek
– volume: 152
  start-page: 224108
  year: 2020
  ident: 50407_CR32
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0004608
  contributor:
    fullname: F Neese
– volume: 133
  start-page: 124104
  year: 2010
  ident: 50407_CR41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3489925
  contributor:
    fullname: M Ceriotti
– volume: 354
  start-page: 45
  year: 2019
  ident: 50407_CR10
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.05.072
  contributor:
    fullname: M Meier
– ident: 50407_CR30
– volume: 116
  start-page: 7529
  year: 2016
  ident: 50407_CR44
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00674
  contributor:
    fullname: M Ceriotti
– volume: 30
  start-page: 992
  year: 2017
  ident: 50407_CR51
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: KT Schütt
– ident: 50407_CR63
  doi: 10.18126/pzjr-x7pv
– volume: 156
  start-page: 114105
  year: 2022
  ident: 50407_CR61
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0083423
  contributor:
    fullname: JC Dietschreit
– ident: 50407_CR5
– volume: 15
  start-page: 448
  year: 2019
  ident: 50407_CR57
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00908
  contributor:
    fullname: KT Schütt
– volume: 113
  start-page: 8368
  year: 2016
  ident: 50407_CR33
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1602375113
  contributor:
    fullname: T Morawietz
– volume: 8
  start-page: 1
  year: 2022
  ident: 50407_CR21
  publication-title: npj Comput. Mater. 2022 8:1
  contributor:
    fullname: LC Erhard
– volume: 7
  start-page: 5109
  year: 2017
  ident: 50407_CR35
  publication-title: 34th Int. Conf. Mach. Learn., ICML
  contributor:
    fullname: M Sundararajan
– volume: 953
  start-page: 012226
  year: 2018
  ident: 50407_CR7
  publication-title: J. Phys.: Conf. Ser.
  contributor:
    fullname: R Dewati
– volume: 8
  start-page: 32651
  year: 2018
  ident: 50407_CR6
  publication-title: RSC Adv.
  doi: 10.1039/C8RA06257A
  contributor:
    fullname: N Raza
– ident: 50407_CR42
  doi: 10.1038/s41524-022-00865-w
– volume: 2
  start-page: 179
  year: 2008
  ident: 50407_CR4
  publication-title: ACS Nano
  doi: 10.1021/nn800052e
  contributor:
    fullname: NJ Halas
– volume: 102
  start-page: 52125
  year: 2020
  ident: 50407_CR22
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.052125
  contributor:
    fullname: IA Balyakin
– volume: 157
  start-page: 24110
  year: 2022
  ident: 50407_CR62
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0095554
  contributor:
    fullname: A Hulm
– volume: 121
  start-page: 1
  year: 2021
  ident: 50407_CR16
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00021
  contributor:
    fullname: F Musil
– volume: 11
  start-page: 54
  year: 2020
  ident: 50407_CR45
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02913
  contributor:
    fullname: R Wang
– volume: 94
  start-page: 690
  year: 2017
  ident: 50407_CR43
  publication-title: J. Chem. Educ.
  doi: 10.1021/acs.jchemed.6b00623
  contributor:
    fullname: TP Silverstein
– ident: 50407_CR1
– volume: 15
  start-page: 16012
  year: 2013
  ident: 50407_CR66
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51817e
  contributor:
    fullname: FX Coudert
– volume: 85
  start-page: 1091
  year: 1989
  ident: 50407_CR40
  publication-title: J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases
  doi: 10.1039/f19898501091
  contributor:
    fullname: AJ Easteal
– volume: 82
  start-page: 17001
  year: 2008
  ident: 50407_CR12
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/82/17001
  contributor:
    fullname: A Carré
– volume: 126
  start-page: 3926
  year: 2022
  ident: 50407_CR19
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.2c00601
  contributor:
    fullname: J Liu
– volume: 30
  start-page: 2157
  year: 2009
  ident: 50407_CR54
  publication-title: J. Comput.Chem.
  doi: 10.1002/jcc.21224
  contributor:
    fullname: L Martinez
– ident: 50407_CR64
– volume: 68
  start-page: 314
  year: 2013
  ident: 50407_CR58
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.10.028
  contributor:
    fullname: SP Ong
– ident: 50407_CR60
– volume: 118
  start-page: 34
  year: 2018
  ident: 50407_CR9
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2018.01.006
  contributor:
    fullname: DK Rai
– volume: 279
  start-page: 1710
  year: 2012
  ident: 50407_CR47
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2012.08531.x
  contributor:
    fullname: DJ Belton
– volume: 107
  start-page: 1518
  year: 2003
  ident: 50407_CR28
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp026816z
  contributor:
    fullname: M Elanany
– volume: 13
  start-page: 1
  year: 2021
  ident: 50407_CR49
  publication-title: Nat. Commun. 2022 13:1
  contributor:
    fullname: S Batzner
– ident: 50407_CR46
  doi: 10.1007/978-94-015-9179-9_11
– ident: 50407_CR23
  doi: 10.1038/s41467-024-48609-2
– volume: 112
  start-page: 12653
  year: 2008
  ident: 50407_CR26
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp066534p
  contributor:
    fullname: CL Schaffer
– volume: 18
  start-page: 015012
  year: 2009
  ident: 50407_CR55
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/1/015012
  contributor:
    fullname: A Stukowski
– volume: 378
  start-page: 622
  year: 2003
  ident: 50407_CR13
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2003.07.017
  contributor:
    fullname: E Flikkema
– ident: 50407_CR53
– ident: 50407_CR36
– volume: 12
  start-page: 6354
  year: 2021
  ident: 50407_CR18
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c01566
  contributor:
    fullname: Y Yao
– volume: 64
  start-page: 1955
  year: 1990
  ident: 50407_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.1955
  contributor:
    fullname: BW Van Beest
SSID ssj0000391844
Score 2.4998329
Snippet The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement,...
Abstract The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6030
SubjectTerms 639/301/1034/1035
639/638/440/950
Acidity
Aqueous solutions
Catalysts
Chemical reactions
Clusters
Dimerization
Dynamic characteristics
Geology
Humanities and Social Sciences
Ionization
Machine learning
Molecular clusters
Molecular dynamics
multidisciplinary
Reactivity
Science
Science (multidisciplinary)
Silica
Silicates
Silicon dioxide
Simulation
Uncertainty
Water
Zeolites
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PjxMhFCamiYkX4_pztGsw8aZEyo8BjrvGpvHQk016I8Awu71Mm3Y2pv-9D5jWVt3sxevAZMj34L0PePM9hD66OkCQ1TXRgQUi6uCJUVSSWPM2NpIF1-Ys33k9W4jvS7k8KfWVcsKKPHABDjbnxgOlNb6VSujInaI-culr5epWOp-9LzUnm6nsg7mBrYsY_pKhXH_ZiewTICQRCRNXEXMWibJg_79Y5t_Jkn_cmOZANH2Gng4MEl-VkV-gR7F7jh6XmpL7F2g-KKbeYIeBEGZ3hjfrPmUFwWvAUfFulU7qyE-gmVs8FOrBEN9KdkC_x64_1sF6iRbTbz--zshQNIEEwVhPvEsCMwJgZt6wRkH4NmAB2Je4KLmQjpkw4RPWMBVFquQGLqulOjQ8AJkzLX-FRt26i28QnniI7bUKVBkqhPJG-nZitJZN5LThokKfDgDaTdHGsPlOm2tb4LYAt81wW1Oh64TxsWfStc4PwNp2sLZ9yNoVGh8sZIfFtrM80xiIxfCND8dmWCbp7sN1cX1X-vDEjnWFXheDHkeSjn2AptEK6TNTnw31vKVb3WYpbmCrSeIOoPh8mBW_x3U_Fm__Bxbv0BOWpnNW-RyjUb-9i5fAkHr_Pi-GXyH3Cwo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLRXmmFGQkbmDV8SO2TwhQtxWHnqjUm2U7TuklWXZTVfvvO3a8qZbXLUqsyJkZz3weT75B6INrAgRZ3RAdWCCiCZ4YRSWJDe9iK1lwXa7yPW_OLsT3S3lZEm7rUla59YnZUbdDSDnyY55jFThc83n5i6SuUel0tbTQeIge1UyptPnSi9M5x5LYz7UQ5V8ZyvXxWmTPAIGJSDBfRcxOPMq0_X_Dmn-WTP52bprD0eIp2i84En-ZFH-AHsT-GXo8dZbcwNVp7ti7eY7OC4PqFXYYAGJ2b3g5jKlKCF4AmBWvr1PmjtwC7Fzh0rgHQ7ybqgXGDXbj3BfrBbpYnPz4dkZKEwUSBGMj8S4RzggQO_OGtQrCuQGNwD7FRcmFdMyEmtesZSqK1NkNXFhHdWh5AHBnOv4S7fVDH18jXHuI9Y0KVBkqhPJG-q42Wss2ctpyUaGPW1Ha5cSVYfMZN9d2ErwFwdsseGsq9DVJex6ZeK7zjWF1ZcuysYwaDxsa4zuphI7cKeojl75Rrumk8xU62urKlsW3tvemUqH382NYNuksxPVxuJnG8ISWdYVeTaqdZ5LSQADbaIX0jtJ3prr7pL_-mam5Ab0myjsQxaetfdzP69-yOPz_Z7xBT1gy2czneYT2xtVNfAtYaPTvssHfAW7VBTc
  priority: 102
  providerName: ProQuest
– databaseName: Springer Open Access
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BKyQuiH5AA21lJG6tRdbfPsKqVdVDT1TqzbIdB3rJVt1UqP-esZMNCpRDr4mjWG_svBd7_Abgs1cRSdYoaiKLVKgYqNW1pEnxNjWSRd-WLN8rdXEtLm_kzWiTk8_CzPbvufmyFmUqI5NQieNNU_sStpGDTU7fWqrltJ6Snc6NEOO5mKcfnXFPseh_Slf-mx751x5poZ7zt_Bm1Izk6xDkHXiRul14NVSRfNyDq9Ej9QfxBCVg-YCRu1Wf84DwMVSlZH2b1-boLxSW92QszUOQ0YZ8gP6R-H6qfLUP1-dn35cXdCyTQKNgrKfBZ0sZgcCyYFmjkbAtYo5_Ij5JLqRnNi74gjVMJ5Frt-FHqq1NbHhE-WZb_g62ulWXDoAsArK50rHWthZCBytDu7DGyCbxuuGigpMNgO5ucMNwZRebGzfA7RBuV-B2toJvGeOpZXayLhcwwG6cGI7VNuAviw2t1MIk7nUdEpdBaa9a6UMFh5sIuXF6rR0vwgXZF9_xabqNEyPvdvgurR6GNjzrYVPB-yGgU0_yQg8Ks7oCMwv1rKvzO93tz2K-jfo0m9ohFKebUfGnX__H4sPzmn-E1ywP3OLgeQhb_f1DOkL104fjMux_A24_-zs
  priority: 102
  providerName: Springer Nature
Title Learning a reactive potential for silica-water through uncertainty attribution
URI https://link.springer.com/article/10.1038/s41467-024-50407-9
https://www.ncbi.nlm.nih.gov/pubmed/39019930
https://www.proquest.com/docview/3082013039
https://www.proquest.com/docview/3082308008
https://pubmed.ncbi.nlm.nih.gov/PMC11254924
https://doaj.org/article/209b5859bf5748e3a70be35b67a6f5ab
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZtx2AvY_d564IHe9vUOLrrMQ3NSmChbCvkTUiy3AZWJyQuo_9-R7KdLbu87CUG28HinCN937GOv4PQOys8gKwSWHniMRPeYS0LjoOgVSg58bZKVb5zcX7JZgu-OECi_xYmFe17tzypv92c1MvrVFu5vvHDvk5sePFpAhwhCoux4SE6hAj9JUdP6y_VkLaw7guZgqrhlqX1AOAIcwhaiaNWaEz2AZyLPUBKuv1_I5t_1kz-tnGa8Gj6CD3siGQ-bgf8GB2E-gm637aWvHuK5p1w6lVuc-CFaVXL16smFgfB34Cq5ttlfGGHvwPb3ORdv54cYK4tEmjuctvs2mE9Q5fTs6-Tc9z1TsCeEdJgZ6PODANrE6dJKQHFNTgC0hMbOGXcEu1HdERKIgOLDd1g5aoK5UvqgdPpij5HR_WqDi9RPnIA8UL6QuqCMek0d9VIK8XLQIuSsgy97w1o1q1Ehklb21SZ1vIGLG-S5Y3O0Gm08e7OKG-dTqw2V6ZzsiGFdpDHaFdxyVSgVhYuUO6EtKLi1mXouPeQ6ebc1tDEZgCS4Rlvd5dhtsQtEFuH1W17D40kWWXoRevQ3Uj6gMiQ2nP13lD3r0CAJkXuPiAz9KGPip_j-rctXv3_k16jByTGc5L4PEZHzeY2vAF61LgBzImFhF81_ThA98bj2ZcZHE_P5hef4exETAbpxcMgzZof_04Scg
link.rule.ids 230,315,730,783,787,867,888,2109,12068,12777,21400,27936,27937,31731,31732,33385,33386,33756,33757,41132,42201,43322,43612,43817,51588,53804,53806,74073,74363,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIgQXxJvAAkHiBtamfsT2CQGiW2DpaVfam2U7zrKXtNtmteq_Z-y4WZXXrWqiyp0Zz_dlPPkG4K2tPYKsqony1BNee0e0rAQJNWtDI6i3beryndezE_7tVJzmgts6t1Vuc2JK1M3Cxxr5AUtYhQlXf1hekDg1Kp6u5hEaN-EWZ4jV8U3x6eFYY4nq54rz_K5MxdTBmqfMgMBEBIavJHoHj5Js_9-45p8tk7-dmyY4mt6He5lHlh8Hxz-AG6F7CLeHyZIb_HSYJvZuHsE8K6ielbZEgpjSW7lc9LFLCH8AOWu5Po-VO3KFtHNV5sE9JeLd0C3Qb0rbj3OxHsPJ9Mvx5xnJQxSI55T2xNkoOMPR7NRp2kiEc40ewecUGwTjwlLtJ2xCGyoDj5PdMIW1lfIN80judMuewF636MIzKCcOsb6WvpK64lw6LVw70UqJJrCqYbyAd1tTmuWglWHSGTdTZjC8QcObZHijC_gUrT3eGXWu0xeL1ZnJ28bQSjt8oNGuFZKrwKysXGDC1dLWrbCugP2tr0zefGtzHSoFvBkv47aJZyG2C4vL4R4W2bIq4Ong2nElsQyEtK0qQO04fWepu1e6859JmhvZa5S8Q1O838bH9br-bYvn__8br-HO7PjHkTn6Ov_-Au7SGL5J23Mf9vrVZXiJvKh3r1Lw_wK24ggZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEYgL4llSCgSJG1ib9SO2T4jXtjy04kCl3izbcUovm2U3VbX_nrHjTbW8blESRc7MeL4v9uQbgJe29giyqibKU0947R3RshIk1KwNjaDetqnKd14fn_DPp-I01z-tc1nlNiemRN10Pq6RT1jCKky4etLmsohvH2Zvlj9J7CAVd1pzO43rcANRsY4xr2ZH43pLVEJXnOf_ZiqmJmuesgSCFBEYypLoHWxKEv5_451_lk_-toeaoGl2F-5kTlm-HYLgHlwLi_twc-gyucGjo9S9d_MA5llN9ay0JZLFlOrKZdfHiiF8APLXcn0eV_HIJVLQVZmb-JSIfUPlQL8pbT_2yHoIJ7OP398fk9xQgXhOaU-cjeIzHF1AnaaNRGjX6B38ZrFBMC4s1X7KprShMvDY5Q3TWVsp3zCPRE-37BHsLbpFeAzl1CHu19JXUlecS6eFa6daKdEEVjWMF_Bqa0qzHHQzTNrvZsoMhjdoeJMMb3QB76K1xzuj5nU60a3OTJ5Chlba4ceNdq2QXAVmZeUCE66Wtm6FdQUcbn1l8kRcm6uwKeDFeBmnUNwXsYvQXQz3sMicVQH7g2vHkcQlIaRwVQFqx-k7Q929sjj_kWS6kclG-Ts0xettfFyN69-2OPj_azyHWxj35uun-ZcncJvG6E0yn4ew168uwlOkSL17lmL_F1UCDFE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+reactive+potential+for+silica-water+through+uncertainty+attribution&rft.jtitle=Nature+communications&rft.au=Roy%2C+Swagata&rft.au=D%C3%BCrholt%2C+Johannes+P.&rft.au=Asche%2C+Thomas+S.&rft.au=Zipoli%2C+Federico&rft.date=2024-07-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-50407-9&rft.externalDocID=10_1038_s41467_024_50407_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon