The research on landslide detection in remote sensing images based on improved DeepLabv3+ method
In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large numbers of network parameters, and long training times, this paper proposes a lightweight landslide detection model, Landslide Detection Network (...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 7957 - 16 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-025-92822-y |
Cover
Loading…
Abstract | In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large numbers of network parameters, and long training times, this paper proposes a lightweight landslide detection model, Landslide Detection Network (LDNet), based on DeepLabv3+ and a dual attention mechanism. LDNet uses the lightweight network MobileNetv2 to replace the Xception backbone of DeepLabv3+, thereby reducing model parameters and improving training speed. Additionally, the model incorporates a dual attention mechanism from the lightweight Convolutional Block Attention Module to more accurately and efficiently detect landslide features. The model underwent dataset creation, training, detection, and accuracy evaluation. Results show that the improved LDNet model significantly enhances reliability in landslide detection, achieving values of 93.37%, 91.93%, 92.64%, 86.30%, 89.79%, and 95.28% for precision (P), recall (R), F1-score (F1), intersection over union (IoU), mean IoU (mIoU), and overall accuracy (OA), respectively, representing improvements of 14.81%, 13.25%, 14.02%, 14.58%, 14.27%, and 13.71% compared to the original DeepLabv3+ network. Moreover, LDNet outperforms classical semantic segmentation models such as UNet, PSPNet, DeepLabv3+, HRNet and Swin Transformer in terms of recognition accuracy, while having significantly fewer parameters and shorter training times. The model also demonstrates good generalization capability in tests conducted in other regions, ensuring extraction accuracy while significantly reducing the number of parameters. It meets real-time requirements, enabling rapid and accurate landslide detection, and shows promising potential for widespread application. |
---|---|
AbstractList | In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large numbers of network parameters, and long training times, this paper proposes a lightweight landslide detection model, Landslide Detection Network (LDNet), based on DeepLabv3+ and a dual attention mechanism. LDNet uses the lightweight network MobileNetv2 to replace the Xception backbone of DeepLabv3+, thereby reducing model parameters and improving training speed. Additionally, the model incorporates a dual attention mechanism from the lightweight Convolutional Block Attention Module to more accurately and efficiently detect landslide features. The model underwent dataset creation, training, detection, and accuracy evaluation. Results show that the improved LDNet model significantly enhances reliability in landslide detection, achieving values of 93.37%, 91.93%, 92.64%, 86.30%, 89.79%, and 95.28% for precision (P), recall (R), F1-score (F1), intersection over union (IoU), mean IoU (mIoU), and overall accuracy (OA), respectively, representing improvements of 14.81%, 13.25%, 14.02%, 14.58%, 14.27%, and 13.71% compared to the original DeepLabv3+ network. Moreover, LDNet outperforms classical semantic segmentation models such as UNet, PSPNet, DeepLabv3+, HRNet and Swin Transformer in terms of recognition accuracy, while having significantly fewer parameters and shorter training times. The model also demonstrates good generalization capability in tests conducted in other regions, ensuring extraction accuracy while significantly reducing the number of parameters. It meets real-time requirements, enabling rapid and accurate landslide detection, and shows promising potential for widespread application.In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large numbers of network parameters, and long training times, this paper proposes a lightweight landslide detection model, Landslide Detection Network (LDNet), based on DeepLabv3+ and a dual attention mechanism. LDNet uses the lightweight network MobileNetv2 to replace the Xception backbone of DeepLabv3+, thereby reducing model parameters and improving training speed. Additionally, the model incorporates a dual attention mechanism from the lightweight Convolutional Block Attention Module to more accurately and efficiently detect landslide features. The model underwent dataset creation, training, detection, and accuracy evaluation. Results show that the improved LDNet model significantly enhances reliability in landslide detection, achieving values of 93.37%, 91.93%, 92.64%, 86.30%, 89.79%, and 95.28% for precision (P), recall (R), F1-score (F1), intersection over union (IoU), mean IoU (mIoU), and overall accuracy (OA), respectively, representing improvements of 14.81%, 13.25%, 14.02%, 14.58%, 14.27%, and 13.71% compared to the original DeepLabv3+ network. Moreover, LDNet outperforms classical semantic segmentation models such as UNet, PSPNet, DeepLabv3+, HRNet and Swin Transformer in terms of recognition accuracy, while having significantly fewer parameters and shorter training times. The model also demonstrates good generalization capability in tests conducted in other regions, ensuring extraction accuracy while significantly reducing the number of parameters. It meets real-time requirements, enabling rapid and accurate landslide detection, and shows promising potential for widespread application. In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large numbers of network parameters, and long training times, this paper proposes a lightweight landslide detection model, Landslide Detection Network (LDNet), based on DeepLabv3+ and a dual attention mechanism. LDNet uses the lightweight network MobileNetv2 to replace the Xception backbone of DeepLabv3+, thereby reducing model parameters and improving training speed. Additionally, the model incorporates a dual attention mechanism from the lightweight Convolutional Block Attention Module to more accurately and efficiently detect landslide features. The model underwent dataset creation, training, detection, and accuracy evaluation. Results show that the improved LDNet model significantly enhances reliability in landslide detection, achieving values of 93.37%, 91.93%, 92.64%, 86.30%, 89.79%, and 95.28% for precision (P), recall (R), F1-score (F1), intersection over union (IoU), mean IoU (mIoU), and overall accuracy (OA), respectively, representing improvements of 14.81%, 13.25%, 14.02%, 14.58%, 14.27%, and 13.71% compared to the original DeepLabv3+ network. Moreover, LDNet outperforms classical semantic segmentation models such as UNet, PSPNet, DeepLabv3+, HRNet and Swin Transformer in terms of recognition accuracy, while having significantly fewer parameters and shorter training times. The model also demonstrates good generalization capability in tests conducted in other regions, ensuring extraction accuracy while significantly reducing the number of parameters. It meets real-time requirements, enabling rapid and accurate landslide detection, and shows promising potential for widespread application. Abstract In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large numbers of network parameters, and long training times, this paper proposes a lightweight landslide detection model, Landslide Detection Network (LDNet), based on DeepLabv3+ and a dual attention mechanism. LDNet uses the lightweight network MobileNetv2 to replace the Xception backbone of DeepLabv3+, thereby reducing model parameters and improving training speed. Additionally, the model incorporates a dual attention mechanism from the lightweight Convolutional Block Attention Module to more accurately and efficiently detect landslide features. The model underwent dataset creation, training, detection, and accuracy evaluation. Results show that the improved LDNet model significantly enhances reliability in landslide detection, achieving values of 93.37%, 91.93%, 92.64%, 86.30%, 89.79%, and 95.28% for precision (P), recall (R), F1-score (F1), intersection over union (IoU), mean IoU (mIoU), and overall accuracy (OA), respectively, representing improvements of 14.81%, 13.25%, 14.02%, 14.58%, 14.27%, and 13.71% compared to the original DeepLabv3+ network. Moreover, LDNet outperforms classical semantic segmentation models such as UNet, PSPNet, DeepLabv3+, HRNet and Swin Transformer in terms of recognition accuracy, while having significantly fewer parameters and shorter training times. The model also demonstrates good generalization capability in tests conducted in other regions, ensuring extraction accuracy while significantly reducing the number of parameters. It meets real-time requirements, enabling rapid and accurate landslide detection, and shows promising potential for widespread application. |
ArticleNumber | 7957 |
Author | Li, Yong |
Author_xml | – sequence: 1 givenname: Yong surname: Li fullname: Li, Yong email: lyliiyong@gmail.com organization: Yangtze University School of Geosciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40055457$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi3UipbSP8ABReKCVKXYjp3EJ4TaApVW4lLOxh-TrFeJvdjZlfbf12lKaTngi0czz7wejd836MgHDwi9I_iS4Kr9lBjhoi0x5aWgLaXl4RU6pZjxklaUHj2LT9B5ShucD6eCEfEanbAcc8abU_Trbg1FhAQqmnURfDEob9PgLBQWJjCTyznnMzKGCYoEPjnfF25UPaRCqwR27nLjNoZ9jq8Btiul99VFMcK0DvYtOu7UkOD88T5DP7_e3F19L1c_vt1efVmVhlE6lVq0AuvOYMFqrrEwgBvOVQekUrYibSt0ZWyua2Z1y0GDqQlXhAismo7r6gzdLro2qI3cxjxhPMignHxIhNhLFSdnBpBCdMIQwpkgjAlDNakFNS1w3ehcUFnr86K13ekRrAE_RTW8EH1Z8W4t-7CXZB6UiCYrfHxUiOH3DtIkR5cMDHm7EHZJVqThddPUnGf0wz_oJuyiz7uaKSbmT6sz9f75SE-z_PnJDNAFMDGkFKF7QgiWs2Pk4hiZHSMfHCMPualamlKGfQ_x79v_6boH3m3DmQ |
Cites_doi | 10.1016/j.enggeo.2008.03.010 10.1007/s12145-022-00889-2 10.1007/s10064-009-0204-3 10.1109/ICCV48922.2021.00986 10.1130/G33217.1 10.5194/tc-16-4273-2022 10.1016/j.enggeo.2006.09.019 10.1007/s12040-024-02327-x 10.3390/rs11212575 10.3390/rs14184599 10.3390/rs15081976 10.5194/nhess-18-2161-2018 10.1109/ACCESS.2019.2935761 10.1109/JSTARS.2021.3064981 10.1016/j.earscirev.2012.02.001 10.5194/nhess-10-2539-2010 10.3390/s18030821 10.1007/s10346-021-01694-6 10.1016/j.cageo.2016.12.007 10.3390/rs71114680 10.1109/CVPR42600.2020.01155 10.1007/978-3-030-01234-2_49 10.1080/20964471.2022.2031544 10.20965/jdr.2021.p0588 10.1109/CVPR.2017.195 10.1038/s41598-021-94190-9 10.1007/s11069-018-3543-1 10.1016/j.geomorph.2006.09.022 10.1080/07038992.2024.2418087 10.3390/foods11243999 10.1553/giscience2021_01_s39 10.1109/CVPR.2018.00474 10.1007/s10346-020-01353-2 10.1126/science.1143308 10.1007/s10346-023-02089-5 10.1080/01431161.2019.1672904 10.1002/ett.3998 10.1007/s10346-022-01861-3 10.1007/978-3-030-01234-2_1 10.1109/JSTARS.2021.3101203 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-92822-y |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_99f9c115491449c2b1692c8e5b7b9c1a PMC11889197 40055457 10_1038_s41598_025_92822_y |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM UKHRP AASML AAYXX AFPKN CITATION PHGZM SNYQT NPM PJZUB PPXIY PQGLB 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c422t-b9890bfc09465b09ce0755afe13ad31889b3cdfc0b4db85ebec615a1190a7f5b3 |
IEDL.DBID | BENPR |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:27:27 EDT 2025 Thu Aug 21 18:34:50 EDT 2025 Fri Jul 11 12:35:52 EDT 2025 Sat Aug 23 12:24:51 EDT 2025 Mon Jul 21 05:51:03 EDT 2025 Tue Jul 01 05:32:32 EDT 2025 Sat Mar 08 01:10:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Attention mechanism DeepLabv3 Landslide disaster Lightweight |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-b9890bfc09465b09ce0755afe13ad31889b3cdfc0b4db85ebec615a1190a7f5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3174952946?pq-origsite=%requestingapplication% |
PMID | 40055457 |
PQID | 3174952946 |
PQPubID | 2041939 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_99f9c115491449c2b1692c8e5b7b9c1a pubmedcentral_primary_oai_pubmedcentral_nih_gov_11889197 proquest_miscellaneous_3175677655 proquest_journals_3174952946 pubmed_primary_40055457 crossref_primary_10_1038_s41598_025_92822_y springer_journals_10_1038_s41598_025_92822_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-07 |
PublicationDateYYYYMMDD | 2025-03-07 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | DK Keefer (92822_CR1) 2007; 316 X Chu (92822_CR26) 2022; 16 L Cheng (92822_CR27) 2021; 18 B Yu (92822_CR15) 2017; 100 CJ Van Westen (92822_CR7) 2008; 102 92822_CR39 92822_CR38 92822_CR35 92822_CR34 92822_CR37 Z Chen (92822_CR8) 2018; 18 H Shahabi (92822_CR18) 2024; 50 S Tavakkoli Piralilou (92822_CR20) 2019; 11 L Wei (92822_CR30) 2023; 20 F Hu (92822_CR21) 2015; 7 O Ghorbanzadeh (92822_CR29) 2023; 7 VC SS (92822_CR5) 2022; 15 DE Alexander (92822_CR12) 2008; 94 S Ullo (92822_CR24) 2021; 14 N Chandra (92822_CR31) 2024; 133 WC Haneberg (92822_CR17) 2009; 68 Z Yu (92822_CR32) 2022; 14 WH Schulz (92822_CR16) 2007; 89 A Mohan (92822_CR11) 2021; 32 S Tavakkoli Piralilou (92822_CR19) 2021; 1 SR Meena (92822_CR25) 2022; 19 A Tanatipuknon (92822_CR28) 2021; 16 S Ji (92822_CR22) 2020; 17 C Zhong (92822_CR10) 2020; 41 F Guzzetti (92822_CR3) 2012; 112 M Santangelo (92822_CR13) 2010; 10 X Gao (92822_CR23) 2021; 14 92822_CR41 O Ghorbanzadeh (92822_CR6) 2021; 11 L Mo (92822_CR33) 2022; 11 92822_CR40 MI Sameen (92822_CR14) 2019; 7 K Pawluszek (92822_CR9) 2019; 96 D Petley (92822_CR2) 2012; 40 MJ Froude (92822_CR4) 2018; 18 J Liu (92822_CR36) 2023; 15 |
References_xml | – volume: 102 start-page: 112 year: 2008 ident: 92822_CR7 publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2008.03.010 – volume: 15 start-page: 2063 year: 2022 ident: 92822_CR5 publication-title: Earth Sci. Inform. doi: 10.1007/s12145-022-00889-2 – volume: 68 start-page: 263 year: 2009 ident: 92822_CR17 publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-009-0204-3 – ident: 92822_CR41 doi: 10.1109/ICCV48922.2021.00986 – volume: 40 start-page: 927 year: 2012 ident: 92822_CR2 publication-title: Geology doi: 10.1130/G33217.1 – volume: 16 start-page: 4273 year: 2022 ident: 92822_CR26 publication-title: Cryosphere doi: 10.5194/tc-16-4273-2022 – volume: 89 start-page: 67 year: 2007 ident: 92822_CR16 publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2006.09.019 – volume: 133 start-page: 127 year: 2024 ident: 92822_CR31 publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-024-02327-x – volume: 11 start-page: 2575 year: 2019 ident: 92822_CR20 publication-title: Remote Sens. doi: 10.3390/rs11212575 – volume: 14 start-page: 4599 year: 2022 ident: 92822_CR32 publication-title: Remote Sens. doi: 10.3390/rs14184599 – volume: 15 start-page: 1976 year: 2023 ident: 92822_CR36 publication-title: Remote Sens. doi: 10.3390/rs15081976 – volume: 18 start-page: 2161 year: 2018 ident: 92822_CR4 publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-18-2161-2018 – volume: 7 start-page: 114363 year: 2019 ident: 92822_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2935761 – volume: 14 start-page: 3799 year: 2021 ident: 92822_CR24 publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3064981 – ident: 92822_CR39 – volume: 112 start-page: 42 year: 2012 ident: 92822_CR3 publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2012.02.001 – volume: 10 start-page: 2539 year: 2010 ident: 92822_CR13 publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-10-2539-2010 – volume: 18 start-page: 821 year: 2018 ident: 92822_CR8 publication-title: Sensors doi: 10.3390/s18030821 – volume: 18 start-page: 2751 year: 2021 ident: 92822_CR27 publication-title: Landslides doi: 10.1007/s10346-021-01694-6 – volume: 100 start-page: 115 year: 2017 ident: 92822_CR15 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2016.12.007 – volume: 7 start-page: 14680 year: 2015 ident: 92822_CR21 publication-title: Remote Sens. doi: 10.3390/rs71114680 – ident: 92822_CR40 doi: 10.1109/CVPR42600.2020.01155 – ident: 92822_CR34 doi: 10.1007/978-3-030-01234-2_49 – volume: 7 start-page: 961 year: 2023 ident: 92822_CR29 publication-title: Big Earth Data doi: 10.1080/20964471.2022.2031544 – volume: 16 start-page: 588 year: 2021 ident: 92822_CR28 publication-title: J. Disaster Res. doi: 10.20965/jdr.2021.p0588 – ident: 92822_CR35 doi: 10.1109/CVPR.2017.195 – volume: 11 start-page: 14629 year: 2021 ident: 92822_CR6 publication-title: Sci. Rep. doi: 10.1038/s41598-021-94190-9 – volume: 96 start-page: 311 year: 2019 ident: 92822_CR9 publication-title: Nat. Hazards doi: 10.1007/s11069-018-3543-1 – volume: 94 start-page: 261 year: 2008 ident: 92822_CR12 publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.09.022 – volume: 50 start-page: 2418087 year: 2024 ident: 92822_CR18 publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2024.2418087 – volume: 11 start-page: 3999 year: 2022 ident: 92822_CR33 publication-title: Foods doi: 10.3390/foods11243999 – volume: 1 start-page: 39 year: 2021 ident: 92822_CR19 publication-title: GI_Forum doi: 10.1553/giscience2021_01_s39 – ident: 92822_CR37 doi: 10.1109/CVPR.2018.00474 – volume: 17 start-page: 1337 year: 2020 ident: 92822_CR22 publication-title: Landslides doi: 10.1007/s10346-020-01353-2 – volume: 316 start-page: 1136 year: 2007 ident: 92822_CR1 publication-title: Science doi: 10.1126/science.1143308 – volume: 20 start-page: 1975 issue: 9 year: 2023 ident: 92822_CR30 publication-title: Landslides doi: 10.1007/s10346-023-02089-5 – volume: 41 start-page: 1555 year: 2020 ident: 92822_CR10 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1672904 – volume: 32 year: 2021 ident: 92822_CR11 publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.3998 – volume: 19 start-page: 1209 year: 2022 ident: 92822_CR25 publication-title: Landslides doi: 10.1007/s10346-022-01861-3 – ident: 92822_CR38 doi: 10.1007/978-3-030-01234-2_1 – volume: 14 start-page: 7881 year: 2021 ident: 92822_CR23 publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3101203 |
SSID | ssj0000529419 |
Score | 2.4583197 |
Snippet | In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large... Abstract In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 7957 |
SubjectTerms | 704/172 704/4111 Accuracy Attention mechanism DeepLabv3 Humanities and Social Sciences Landslide disaster Landslides Lightweight multidisciplinary Remote sensing Science Science (multidisciplinary) Semantics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA4iCF7E12qvDyJ408Z-5XX0iYh4UvCWzau1Yc3IzijMv7eS9IzOrrIXb80kDUV9qamvOpUvCO1rXlvaUog06wwUKDXJRWFJzigwOeWg_lGxy_eGXt41V_fk_sNVX6EnLMkDJ8cdCdEKEzRjBFB_YSpdUlEZ7ohmGgYiNYKc96GYSqrelWhK0Z-SKWp-NIRMFU6TVWBMaJ3MxzOZKAr2f8Yy_22W_GvHNCaii2W01DNIfJwsX0Fzzq-ihXSn5HgN_QLgcS_h84gHHsfDvL8767B1o9h45XHnYQqA5PAwNLD7B9w9wR_LEIekZsNbXfzYAM9nzj1fK_1aH-B02_Q6urs4vz29zPtrFHLTVNUo14KLQrcGCjlKdCGMA5pAVAtAKAshzYWujYVx3VjNSUAVaI4qgSoo1hJd_0DzfuDdJsLKsaLSpDGKucYYyqH8aQtmlHGKUUEydDBxqXxOahky7nLXXCYAJAAgIwBynKGT4PXpzKB0HX8A_GWPv_wf_hnanmAm-_AbSiBFUPjBEqAZ2psOQ-CE3RDl3eAlziGUMUrA6o0E8dSSJkiTNYRliM-AP2Pq7IjvHqM4dxkcWgp49XCyTt7t-toXP7_DF1tosQoLPLTIsW00P_rz4naAM430bgyPNxGOErc priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozErUTk5dcRFqoKIU5U6s34lTZS8VbdLdL-e2acZNFCOXCLMnY08ueJZzzjzwBvnGqD6AVaWogeA5SWl7oKvJQCPTkbMf6xucr3qzg-6T6f8tM9aOazMLloP1Na5t_0XB32boULDR0Ga_BbVPlYbm7BbaJuJ778hVhs91Uoc9XVejofU7Xqhq47a1Cm6r_Jv_y7TPKPXGlego7uw73Jd2TvR20fwF5MD-HOeJvk5hF8R8jZRN5zzpaJ5WO8F0OILMR1LrlKbEjYBOGJbEWl6-mMDT_wl7JitJwF6jXkbQZ8_hjj5RfrfraHbLxn-jGcHH36tjgupwsUSt81zbp0WunK9R5DOMFdpX1EB4HbHiGwAY1Zadf6gHLXBac44YkOjq3RSbCy5659AvtpmeIzYDbKqnG881bGznuhMPDpK-mtj1YKzQs4nIfUXI48GSbnt1tlRgAMAmAyAGZTwAca9W1L4rjOL5ZXZ2bC3Gjda09sQRqDPu0bVwvdeBW5kw4FtoCDGTMzGd7KoDuEIR9OAVHA660YTYbyIDbF5XVuw4WUgqPWT0eIt5p0RErWcVmA2gF_R9VdSRrOMy13TQNaa-z6dp4nv_X691g8_7_mL-BuQ1OZyuDkAeyvr67jS_SL1u5VNoRfjlMJJg priority: 102 providerName: Springer Nature |
Title | The research on landslide detection in remote sensing images based on improved DeepLabv3+ method |
URI | https://link.springer.com/article/10.1038/s41598-025-92822-y https://www.ncbi.nlm.nih.gov/pubmed/40055457 https://www.proquest.com/docview/3174952946 https://www.proquest.com/docview/3175677655 https://pubmed.ncbi.nlm.nih.gov/PMC11889197 https://doaj.org/article/99f9c115491449c2b1692c8e5b7b9c1a |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZrwmAvY_e564IGe-tMfdPtaaRZSwmjjG2FvGm6uTVsdlqng_z7HclKSnZ7M5YMx_p0dK46B6G3mpeW1hQ4zToDBkpJUpFZkjIKmpxyYP-okOV7Ts8uqvmCLKLDrY9plZszMRzUtjPeR34Ecg50-UJU9P3yOvVdo3x0NbbQ2ENjOII5GaHx8cn5p89bL4uPY1W5iLdlspIf9SCx_K2yAojyKZTpekcihcL9f9M2_0ya_C1yGgTS6SP0MGqSeDpA_xjdc-0TdH_oLbl-ir7BBsCxlM8V7locLvV-b6zD1q1CAlaLmxamAFgO9z6Rvb3EzQ84YHrshZv1XzXB6QDPH5xbflT6Z3mIh67Tz9DF6cnX2Vka2ymkpiqKVaoFF5muDRh0lOhMGAfqAlE1AKIssDYXujQWxnVlNSceXVB3VA4qg2I10eVzNGq71r1EWDmWFZpURjFXGUM5mEF1xowyTjEqSIION0sql0PVDBmi3SWXAwASAJABALlO0LFf9e1MX_E6vOhuLmVkIClELYyvHSTABBSm0DkVheGOaKZhQCXoYIOZjGzYy7tNk6A322FgIB8VUa3rbsMcQhmjBKh-MUC8paTyJcoqwhLEd8DfIXV3pG2uQpHu3C9oLuDTd5t9ckfXv9di__-_8Qo9KPzW9Ulw7ACNVje37jVoRSs9QXtswSZoPJ3Ov8wnkRHg7YzOJsHT8AvxARB5 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CqtEFwQbwIFjASnEjVxYjs-IERpqy1dVgi1Um-uX2kj0WTbbEH7U3wjYyfZanndeotiJxrPwzPjGc8g9FoXmWUlA0mzzoCDktFYJJbGnIElpxz4Pypk-U7Y6DD_dESPVtDP4S6MT6sc9sSwUdvG-DPyTdBzYMsTkbP30_PYd43y0dWhhUbHFvtu_gNctvbd3jbQ9w0huzsHH0dx31UgNjkhs1iLQiS6NODXMKoTYRxoTapKgEtZ4PBC6MxYGNe51QX1iwStr1LQnIqXVGfw3xtoDcwMAVK0trUz-fJ1carj42Z5KvrbOUlWbLagIf0tNgJI8Cmb8XxJA4ZGAX-zbv9M0vwtUhsU4O5ddKe3XPGHjtXuoRVX30c3u16W8wfoGBgO96WDTnFT43CJ-FtlHbZuFhK-alzVMAWYw-HWJ87XJ7g6gw2txV6ZWv9VFQ454HnbuelY6e_ZBu66XD9Eh9eC6EdotW5q9wRh5XhCNM2N4i43hhXgdpUJN8o4xZmgEdoYUCqnXZUOGaLrWSE7AkgggAwEkPMIbXmsL2b6CtvhRXNxInuBlUKUwvhaRQJcTmGITpkgpnBUcw0DKkLrA81kL_atvGLSCL1aDIPA-iiMql1zGeZQxjmjAPXjjsQLSHJfEi2nPELFEvGXQF0eqavTUBQ89QhNBXz6duCTK7j-jYun_1_GS3RrdPB5LMd7k_1n6DbxbOwT8Pg6Wp1dXLrnYJHN9IteDDA6vm7J-wWQIkpV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2AnFBPEtKASPBqUSbl-34gBBlu2pptaoQlXpzbcdpI0Gy7W5B-2t8HWMn2Wp53XqLYicaz8Mz4xnPALzWeVqwkqGkFdagg5LSUEQFDTlDS05Z9H-Uz_KdsL3j7NMJPVmDn_1dGJdW2e-JfqMuGuPOyIeo59CWT0TGhmWXFnE0Gr-fXoSug5SLtPbtNFoWObCLH-i-zd7tj5DWb5JkvPvl417YdRgITZYk81CLXES6NOjjMKojYSxqUKpKhFEVyO250KkpcFxnhc6pWzBaACpGLap4SXWK_70F6xy1Yj6A9Z3dydHn5QmPi6Flsehu6kRpPpyhtnQ32hJEiEvfDBcr2tA3DfibpftnwuZvUVuvDMf34V5nxZIPLds9gDVbP4TbbV_LxSM4ReYjXRmhc9LUxF8o_loVlhR27pO_alLVOAUZxZKZS6Kvz0j1DTe3GXGKtXBfVf7AA59H1k4Plf6ebpO24_VjOL4RRD-BQd3U9ikQZXmUaJoZxW1mDMvRBSsjbpSxijNBA9juUSqnbcUO6SPtaS5bAkgkgPQEkIsAdhzWlzNdtW3_ork8k53wSiFKYVzdIoHupzCJjplITG6p5hoHVABbPc1ktwXM5DXDBvBqOYzC6yIyqrbNlZ9DGeeMItQbLYmXkGSuPFpGeQD5CvFXQF0dqatzXyA8dgiNBX76tueTa7j-jYvN_y_jJdxBiZOH-5ODZ3A3cVzscvH4Fgzml1f2ORpnc_2ikwICpzcteL8AsxBOgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+research+on+landslide+detection+in+remote+sensing+images+based+on+improved+DeepLabv3%2B+method&rft.jtitle=Scientific+reports&rft.au=Li%2C+Yong&rft.date=2025-03-07&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=7957&rft_id=info:doi/10.1038%2Fs41598-025-92822-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |