The research on landslide detection in remote sensing images based on improved DeepLabv3+ method

In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large numbers of network parameters, and long training times, this paper proposes a lightweight landslide detection model, Landslide Detection Network (...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 7957 - 16
Main Author Li, Yong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-92822-y

Cover

Loading…
Abstract In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large numbers of network parameters, and long training times, this paper proposes a lightweight landslide detection model, Landslide Detection Network (LDNet), based on DeepLabv3+  and a dual attention mechanism. LDNet uses the lightweight network MobileNetv2 to replace the Xception backbone of DeepLabv3+, thereby reducing model parameters and improving training speed. Additionally, the model incorporates a dual attention mechanism from the lightweight Convolutional Block Attention Module to more accurately and efficiently detect landslide features. The model underwent dataset creation, training, detection, and accuracy evaluation. Results show that the improved LDNet model significantly enhances reliability in landslide detection, achieving values of 93.37%, 91.93%, 92.64%, 86.30%, 89.79%, and 95.28% for precision (P), recall (R), F1-score (F1), intersection over union (IoU), mean IoU (mIoU), and overall accuracy (OA), respectively, representing improvements of 14.81%, 13.25%, 14.02%, 14.58%, 14.27%, and 13.71% compared to the original DeepLabv3+  network. Moreover, LDNet outperforms classical semantic segmentation models such as UNet, PSPNet, DeepLabv3+, HRNet and Swin Transformer in terms of recognition accuracy, while having significantly fewer parameters and shorter training times. The model also demonstrates good generalization capability in tests conducted in other regions, ensuring extraction accuracy while significantly reducing the number of parameters. It meets real-time requirements, enabling rapid and accurate landslide detection, and shows promising potential for widespread application.
AbstractList In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large numbers of network parameters, and long training times, this paper proposes a lightweight landslide detection model, Landslide Detection Network (LDNet), based on DeepLabv3+  and a dual attention mechanism. LDNet uses the lightweight network MobileNetv2 to replace the Xception backbone of DeepLabv3+, thereby reducing model parameters and improving training speed. Additionally, the model incorporates a dual attention mechanism from the lightweight Convolutional Block Attention Module to more accurately and efficiently detect landslide features. The model underwent dataset creation, training, detection, and accuracy evaluation. Results show that the improved LDNet model significantly enhances reliability in landslide detection, achieving values of 93.37%, 91.93%, 92.64%, 86.30%, 89.79%, and 95.28% for precision (P), recall (R), F1-score (F1), intersection over union (IoU), mean IoU (mIoU), and overall accuracy (OA), respectively, representing improvements of 14.81%, 13.25%, 14.02%, 14.58%, 14.27%, and 13.71% compared to the original DeepLabv3+  network. Moreover, LDNet outperforms classical semantic segmentation models such as UNet, PSPNet, DeepLabv3+, HRNet and Swin Transformer in terms of recognition accuracy, while having significantly fewer parameters and shorter training times. The model also demonstrates good generalization capability in tests conducted in other regions, ensuring extraction accuracy while significantly reducing the number of parameters. It meets real-time requirements, enabling rapid and accurate landslide detection, and shows promising potential for widespread application.In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large numbers of network parameters, and long training times, this paper proposes a lightweight landslide detection model, Landslide Detection Network (LDNet), based on DeepLabv3+  and a dual attention mechanism. LDNet uses the lightweight network MobileNetv2 to replace the Xception backbone of DeepLabv3+, thereby reducing model parameters and improving training speed. Additionally, the model incorporates a dual attention mechanism from the lightweight Convolutional Block Attention Module to more accurately and efficiently detect landslide features. The model underwent dataset creation, training, detection, and accuracy evaluation. Results show that the improved LDNet model significantly enhances reliability in landslide detection, achieving values of 93.37%, 91.93%, 92.64%, 86.30%, 89.79%, and 95.28% for precision (P), recall (R), F1-score (F1), intersection over union (IoU), mean IoU (mIoU), and overall accuracy (OA), respectively, representing improvements of 14.81%, 13.25%, 14.02%, 14.58%, 14.27%, and 13.71% compared to the original DeepLabv3+  network. Moreover, LDNet outperforms classical semantic segmentation models such as UNet, PSPNet, DeepLabv3+, HRNet and Swin Transformer in terms of recognition accuracy, while having significantly fewer parameters and shorter training times. The model also demonstrates good generalization capability in tests conducted in other regions, ensuring extraction accuracy while significantly reducing the number of parameters. It meets real-time requirements, enabling rapid and accurate landslide detection, and shows promising potential for widespread application.
In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large numbers of network parameters, and long training times, this paper proposes a lightweight landslide detection model, Landslide Detection Network (LDNet), based on DeepLabv3+  and a dual attention mechanism. LDNet uses the lightweight network MobileNetv2 to replace the Xception backbone of DeepLabv3+, thereby reducing model parameters and improving training speed. Additionally, the model incorporates a dual attention mechanism from the lightweight Convolutional Block Attention Module to more accurately and efficiently detect landslide features. The model underwent dataset creation, training, detection, and accuracy evaluation. Results show that the improved LDNet model significantly enhances reliability in landslide detection, achieving values of 93.37%, 91.93%, 92.64%, 86.30%, 89.79%, and 95.28% for precision (P), recall (R), F1-score (F1), intersection over union (IoU), mean IoU (mIoU), and overall accuracy (OA), respectively, representing improvements of 14.81%, 13.25%, 14.02%, 14.58%, 14.27%, and 13.71% compared to the original DeepLabv3+  network. Moreover, LDNet outperforms classical semantic segmentation models such as UNet, PSPNet, DeepLabv3+, HRNet and Swin Transformer in terms of recognition accuracy, while having significantly fewer parameters and shorter training times. The model also demonstrates good generalization capability in tests conducted in other regions, ensuring extraction accuracy while significantly reducing the number of parameters. It meets real-time requirements, enabling rapid and accurate landslide detection, and shows promising potential for widespread application.
Abstract In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large numbers of network parameters, and long training times, this paper proposes a lightweight landslide detection model, Landslide Detection Network (LDNet), based on DeepLabv3+  and a dual attention mechanism. LDNet uses the lightweight network MobileNetv2 to replace the Xception backbone of DeepLabv3+, thereby reducing model parameters and improving training speed. Additionally, the model incorporates a dual attention mechanism from the lightweight Convolutional Block Attention Module to more accurately and efficiently detect landslide features. The model underwent dataset creation, training, detection, and accuracy evaluation. Results show that the improved LDNet model significantly enhances reliability in landslide detection, achieving values of 93.37%, 91.93%, 92.64%, 86.30%, 89.79%, and 95.28% for precision (P), recall (R), F1-score (F1), intersection over union (IoU), mean IoU (mIoU), and overall accuracy (OA), respectively, representing improvements of 14.81%, 13.25%, 14.02%, 14.58%, 14.27%, and 13.71% compared to the original DeepLabv3+  network. Moreover, LDNet outperforms classical semantic segmentation models such as UNet, PSPNet, DeepLabv3+, HRNet and Swin Transformer in terms of recognition accuracy, while having significantly fewer parameters and shorter training times. The model also demonstrates good generalization capability in tests conducted in other regions, ensuring extraction accuracy while significantly reducing the number of parameters. It meets real-time requirements, enabling rapid and accurate landslide detection, and shows promising potential for widespread application.
ArticleNumber 7957
Author Li, Yong
Author_xml – sequence: 1
  givenname: Yong
  surname: Li
  fullname: Li, Yong
  email: lyliiyong@gmail.com
  organization: Yangtze University School of Geosciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40055457$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi3UipbSP8ABReKCVKXYjp3EJ4TaApVW4lLOxh-TrFeJvdjZlfbf12lKaTngi0czz7wejd836MgHDwi9I_iS4Kr9lBjhoi0x5aWgLaXl4RU6pZjxklaUHj2LT9B5ShucD6eCEfEanbAcc8abU_Trbg1FhAQqmnURfDEob9PgLBQWJjCTyznnMzKGCYoEPjnfF25UPaRCqwR27nLjNoZ9jq8Btiul99VFMcK0DvYtOu7UkOD88T5DP7_e3F19L1c_vt1efVmVhlE6lVq0AuvOYMFqrrEwgBvOVQekUrYibSt0ZWyua2Z1y0GDqQlXhAismo7r6gzdLro2qI3cxjxhPMignHxIhNhLFSdnBpBCdMIQwpkgjAlDNakFNS1w3ehcUFnr86K13ekRrAE_RTW8EH1Z8W4t-7CXZB6UiCYrfHxUiOH3DtIkR5cMDHm7EHZJVqThddPUnGf0wz_oJuyiz7uaKSbmT6sz9f75SE-z_PnJDNAFMDGkFKF7QgiWs2Pk4hiZHSMfHCMPualamlKGfQ_x79v_6boH3m3DmQ
Cites_doi 10.1016/j.enggeo.2008.03.010
10.1007/s12145-022-00889-2
10.1007/s10064-009-0204-3
10.1109/ICCV48922.2021.00986
10.1130/G33217.1
10.5194/tc-16-4273-2022
10.1016/j.enggeo.2006.09.019
10.1007/s12040-024-02327-x
10.3390/rs11212575
10.3390/rs14184599
10.3390/rs15081976
10.5194/nhess-18-2161-2018
10.1109/ACCESS.2019.2935761
10.1109/JSTARS.2021.3064981
10.1016/j.earscirev.2012.02.001
10.5194/nhess-10-2539-2010
10.3390/s18030821
10.1007/s10346-021-01694-6
10.1016/j.cageo.2016.12.007
10.3390/rs71114680
10.1109/CVPR42600.2020.01155
10.1007/978-3-030-01234-2_49
10.1080/20964471.2022.2031544
10.20965/jdr.2021.p0588
10.1109/CVPR.2017.195
10.1038/s41598-021-94190-9
10.1007/s11069-018-3543-1
10.1016/j.geomorph.2006.09.022
10.1080/07038992.2024.2418087
10.3390/foods11243999
10.1553/giscience2021_01_s39
10.1109/CVPR.2018.00474
10.1007/s10346-020-01353-2
10.1126/science.1143308
10.1007/s10346-023-02089-5
10.1080/01431161.2019.1672904
10.1002/ett.3998
10.1007/s10346-022-01861-3
10.1007/978-3-030-01234-2_1
10.1109/JSTARS.2021.3101203
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-92822-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database ProQuest
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database



PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_99f9c115491449c2b1692c8e5b7b9c1a
PMC11889197
40055457
10_1038_s41598_025_92822_y
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
SNYQT
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c422t-b9890bfc09465b09ce0755afe13ad31889b3cdfc0b4db85ebec615a1190a7f5b3
IEDL.DBID BENPR
ISSN 2045-2322
IngestDate Wed Aug 27 01:27:27 EDT 2025
Thu Aug 21 18:34:50 EDT 2025
Fri Jul 11 12:35:52 EDT 2025
Sat Aug 23 12:24:51 EDT 2025
Mon Jul 21 05:51:03 EDT 2025
Tue Jul 01 05:32:32 EDT 2025
Sat Mar 08 01:10:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Attention mechanism
DeepLabv3
Landslide disaster
Lightweight
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-b9890bfc09465b09ce0755afe13ad31889b3cdfc0b4db85ebec615a1190a7f5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3174952946?pq-origsite=%requestingapplication%
PMID 40055457
PQID 3174952946
PQPubID 2041939
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_99f9c115491449c2b1692c8e5b7b9c1a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11889197
proquest_miscellaneous_3175677655
proquest_journals_3174952946
pubmed_primary_40055457
crossref_primary_10_1038_s41598_025_92822_y
springer_journals_10_1038_s41598_025_92822_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-07
PublicationDateYYYYMMDD 2025-03-07
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References DK Keefer (92822_CR1) 2007; 316
X Chu (92822_CR26) 2022; 16
L Cheng (92822_CR27) 2021; 18
B Yu (92822_CR15) 2017; 100
CJ Van Westen (92822_CR7) 2008; 102
92822_CR39
92822_CR38
92822_CR35
92822_CR34
92822_CR37
Z Chen (92822_CR8) 2018; 18
H Shahabi (92822_CR18) 2024; 50
S Tavakkoli Piralilou (92822_CR20) 2019; 11
L Wei (92822_CR30) 2023; 20
F Hu (92822_CR21) 2015; 7
O Ghorbanzadeh (92822_CR29) 2023; 7
VC SS (92822_CR5) 2022; 15
DE Alexander (92822_CR12) 2008; 94
S Ullo (92822_CR24) 2021; 14
N Chandra (92822_CR31) 2024; 133
WC Haneberg (92822_CR17) 2009; 68
Z Yu (92822_CR32) 2022; 14
WH Schulz (92822_CR16) 2007; 89
A Mohan (92822_CR11) 2021; 32
S Tavakkoli Piralilou (92822_CR19) 2021; 1
SR Meena (92822_CR25) 2022; 19
A Tanatipuknon (92822_CR28) 2021; 16
S Ji (92822_CR22) 2020; 17
C Zhong (92822_CR10) 2020; 41
F Guzzetti (92822_CR3) 2012; 112
M Santangelo (92822_CR13) 2010; 10
X Gao (92822_CR23) 2021; 14
92822_CR41
O Ghorbanzadeh (92822_CR6) 2021; 11
L Mo (92822_CR33) 2022; 11
92822_CR40
MI Sameen (92822_CR14) 2019; 7
K Pawluszek (92822_CR9) 2019; 96
D Petley (92822_CR2) 2012; 40
MJ Froude (92822_CR4) 2018; 18
J Liu (92822_CR36) 2023; 15
References_xml – volume: 102
  start-page: 112
  year: 2008
  ident: 92822_CR7
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2008.03.010
– volume: 15
  start-page: 2063
  year: 2022
  ident: 92822_CR5
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-022-00889-2
– volume: 68
  start-page: 263
  year: 2009
  ident: 92822_CR17
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-009-0204-3
– ident: 92822_CR41
  doi: 10.1109/ICCV48922.2021.00986
– volume: 40
  start-page: 927
  year: 2012
  ident: 92822_CR2
  publication-title: Geology
  doi: 10.1130/G33217.1
– volume: 16
  start-page: 4273
  year: 2022
  ident: 92822_CR26
  publication-title: Cryosphere
  doi: 10.5194/tc-16-4273-2022
– volume: 89
  start-page: 67
  year: 2007
  ident: 92822_CR16
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2006.09.019
– volume: 133
  start-page: 127
  year: 2024
  ident: 92822_CR31
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-024-02327-x
– volume: 11
  start-page: 2575
  year: 2019
  ident: 92822_CR20
  publication-title: Remote Sens.
  doi: 10.3390/rs11212575
– volume: 14
  start-page: 4599
  year: 2022
  ident: 92822_CR32
  publication-title: Remote Sens.
  doi: 10.3390/rs14184599
– volume: 15
  start-page: 1976
  year: 2023
  ident: 92822_CR36
  publication-title: Remote Sens.
  doi: 10.3390/rs15081976
– volume: 18
  start-page: 2161
  year: 2018
  ident: 92822_CR4
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-18-2161-2018
– volume: 7
  start-page: 114363
  year: 2019
  ident: 92822_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2935761
– volume: 14
  start-page: 3799
  year: 2021
  ident: 92822_CR24
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3064981
– ident: 92822_CR39
– volume: 112
  start-page: 42
  year: 2012
  ident: 92822_CR3
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2012.02.001
– volume: 10
  start-page: 2539
  year: 2010
  ident: 92822_CR13
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-10-2539-2010
– volume: 18
  start-page: 821
  year: 2018
  ident: 92822_CR8
  publication-title: Sensors
  doi: 10.3390/s18030821
– volume: 18
  start-page: 2751
  year: 2021
  ident: 92822_CR27
  publication-title: Landslides
  doi: 10.1007/s10346-021-01694-6
– volume: 100
  start-page: 115
  year: 2017
  ident: 92822_CR15
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.12.007
– volume: 7
  start-page: 14680
  year: 2015
  ident: 92822_CR21
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– ident: 92822_CR40
  doi: 10.1109/CVPR42600.2020.01155
– ident: 92822_CR34
  doi: 10.1007/978-3-030-01234-2_49
– volume: 7
  start-page: 961
  year: 2023
  ident: 92822_CR29
  publication-title: Big Earth Data
  doi: 10.1080/20964471.2022.2031544
– volume: 16
  start-page: 588
  year: 2021
  ident: 92822_CR28
  publication-title: J. Disaster Res.
  doi: 10.20965/jdr.2021.p0588
– ident: 92822_CR35
  doi: 10.1109/CVPR.2017.195
– volume: 11
  start-page: 14629
  year: 2021
  ident: 92822_CR6
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-94190-9
– volume: 96
  start-page: 311
  year: 2019
  ident: 92822_CR9
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3543-1
– volume: 94
  start-page: 261
  year: 2008
  ident: 92822_CR12
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.09.022
– volume: 50
  start-page: 2418087
  year: 2024
  ident: 92822_CR18
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2024.2418087
– volume: 11
  start-page: 3999
  year: 2022
  ident: 92822_CR33
  publication-title: Foods
  doi: 10.3390/foods11243999
– volume: 1
  start-page: 39
  year: 2021
  ident: 92822_CR19
  publication-title: GI_Forum
  doi: 10.1553/giscience2021_01_s39
– ident: 92822_CR37
  doi: 10.1109/CVPR.2018.00474
– volume: 17
  start-page: 1337
  year: 2020
  ident: 92822_CR22
  publication-title: Landslides
  doi: 10.1007/s10346-020-01353-2
– volume: 316
  start-page: 1136
  year: 2007
  ident: 92822_CR1
  publication-title: Science
  doi: 10.1126/science.1143308
– volume: 20
  start-page: 1975
  issue: 9
  year: 2023
  ident: 92822_CR30
  publication-title: Landslides
  doi: 10.1007/s10346-023-02089-5
– volume: 41
  start-page: 1555
  year: 2020
  ident: 92822_CR10
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1672904
– volume: 32
  year: 2021
  ident: 92822_CR11
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.3998
– volume: 19
  start-page: 1209
  year: 2022
  ident: 92822_CR25
  publication-title: Landslides
  doi: 10.1007/s10346-022-01861-3
– ident: 92822_CR38
  doi: 10.1007/978-3-030-01234-2_1
– volume: 14
  start-page: 7881
  year: 2021
  ident: 92822_CR23
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3101203
SSID ssj0000529419
Score 2.4583197
Snippet In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images, large...
Abstract In response to issues with existing classical semantic segmentation models, such as inaccurate landslide edge extraction in high-resolution images,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7957
SubjectTerms 704/172
704/4111
Accuracy
Attention mechanism
DeepLabv3
Humanities and Social Sciences
Landslide disaster
Landslides
Lightweight
multidisciplinary
Remote sensing
Science
Science (multidisciplinary)
Semantics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA4iCF7E12qvDyJ408Z-5XX0iYh4UvCWzau1Yc3IzijMv7eS9IzOrrIXb80kDUV9qamvOpUvCO1rXlvaUog06wwUKDXJRWFJzigwOeWg_lGxy_eGXt41V_fk_sNVX6EnLMkDJ8cdCdEKEzRjBFB_YSpdUlEZ7ohmGgYiNYKc96GYSqrelWhK0Z-SKWp-NIRMFU6TVWBMaJ3MxzOZKAr2f8Yy_22W_GvHNCaii2W01DNIfJwsX0Fzzq-ihXSn5HgN_QLgcS_h84gHHsfDvL8767B1o9h45XHnYQqA5PAwNLD7B9w9wR_LEIekZsNbXfzYAM9nzj1fK_1aH-B02_Q6urs4vz29zPtrFHLTVNUo14KLQrcGCjlKdCGMA5pAVAtAKAshzYWujYVx3VjNSUAVaI4qgSoo1hJd_0DzfuDdJsLKsaLSpDGKucYYyqH8aQtmlHGKUUEydDBxqXxOahky7nLXXCYAJAAgIwBynKGT4PXpzKB0HX8A_GWPv_wf_hnanmAm-_AbSiBFUPjBEqAZ2psOQ-CE3RDl3eAlziGUMUrA6o0E8dSSJkiTNYRliM-AP2Pq7IjvHqM4dxkcWgp49XCyTt7t-toXP7_DF1tosQoLPLTIsW00P_rz4naAM430bgyPNxGOErc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozErUTk5dcRFqoKIU5U6s34lTZS8VbdLdL-e2acZNFCOXCLMnY08ueJZzzjzwBvnGqD6AVaWogeA5SWl7oKvJQCPTkbMf6xucr3qzg-6T6f8tM9aOazMLloP1Na5t_0XB32boULDR0Ga_BbVPlYbm7BbaJuJ778hVhs91Uoc9XVejofU7Xqhq47a1Cm6r_Jv_y7TPKPXGlego7uw73Jd2TvR20fwF5MD-HOeJvk5hF8R8jZRN5zzpaJ5WO8F0OILMR1LrlKbEjYBOGJbEWl6-mMDT_wl7JitJwF6jXkbQZ8_hjj5RfrfraHbLxn-jGcHH36tjgupwsUSt81zbp0WunK9R5DOMFdpX1EB4HbHiGwAY1Zadf6gHLXBac44YkOjq3RSbCy5659AvtpmeIzYDbKqnG881bGznuhMPDpK-mtj1YKzQs4nIfUXI48GSbnt1tlRgAMAmAyAGZTwAca9W1L4rjOL5ZXZ2bC3Gjda09sQRqDPu0bVwvdeBW5kw4FtoCDGTMzGd7KoDuEIR9OAVHA660YTYbyIDbF5XVuw4WUgqPWT0eIt5p0RErWcVmA2gF_R9VdSRrOMy13TQNaa-z6dp4nv_X691g8_7_mL-BuQ1OZyuDkAeyvr67jS_SL1u5VNoRfjlMJJg
  priority: 102
  providerName: Springer Nature
Title The research on landslide detection in remote sensing images based on improved DeepLabv3+ method
URI https://link.springer.com/article/10.1038/s41598-025-92822-y
https://www.ncbi.nlm.nih.gov/pubmed/40055457
https://www.proquest.com/docview/3174952946
https://www.proquest.com/docview/3175677655
https://pubmed.ncbi.nlm.nih.gov/PMC11889197
https://doaj.org/article/99f9c115491449c2b1692c8e5b7b9c1a
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZrwmAvY_e564IGe-tMfdPtaaRZSwmjjG2FvGm6uTVsdlqng_z7HclKSnZ7M5YMx_p0dK46B6G3mpeW1hQ4zToDBkpJUpFZkjIKmpxyYP-okOV7Ts8uqvmCLKLDrY9plZszMRzUtjPeR34Ecg50-UJU9P3yOvVdo3x0NbbQ2ENjOII5GaHx8cn5p89bL4uPY1W5iLdlspIf9SCx_K2yAojyKZTpekcihcL9f9M2_0ya_C1yGgTS6SP0MGqSeDpA_xjdc-0TdH_oLbl-ir7BBsCxlM8V7locLvV-b6zD1q1CAlaLmxamAFgO9z6Rvb3EzQ84YHrshZv1XzXB6QDPH5xbflT6Z3mIh67Tz9DF6cnX2Vka2ymkpiqKVaoFF5muDRh0lOhMGAfqAlE1AKIssDYXujQWxnVlNSceXVB3VA4qg2I10eVzNGq71r1EWDmWFZpURjFXGUM5mEF1xowyTjEqSIION0sql0PVDBmi3SWXAwASAJABALlO0LFf9e1MX_E6vOhuLmVkIClELYyvHSTABBSm0DkVheGOaKZhQCXoYIOZjGzYy7tNk6A322FgIB8VUa3rbsMcQhmjBKh-MUC8paTyJcoqwhLEd8DfIXV3pG2uQpHu3C9oLuDTd5t9ckfXv9di__-_8Qo9KPzW9Ulw7ACNVje37jVoRSs9QXtswSZoPJ3Ov8wnkRHg7YzOJsHT8AvxARB5
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CqtEFwQbwIFjASnEjVxYjs-IERpqy1dVgi1Um-uX2kj0WTbbEH7U3wjYyfZanndeotiJxrPwzPjGc8g9FoXmWUlA0mzzoCDktFYJJbGnIElpxz4Pypk-U7Y6DD_dESPVtDP4S6MT6sc9sSwUdvG-DPyTdBzYMsTkbP30_PYd43y0dWhhUbHFvtu_gNctvbd3jbQ9w0huzsHH0dx31UgNjkhs1iLQiS6NODXMKoTYRxoTapKgEtZ4PBC6MxYGNe51QX1iwStr1LQnIqXVGfw3xtoDcwMAVK0trUz-fJ1carj42Z5KvrbOUlWbLagIf0tNgJI8Cmb8XxJA4ZGAX-zbv9M0vwtUhsU4O5ddKe3XPGHjtXuoRVX30c3u16W8wfoGBgO96WDTnFT43CJ-FtlHbZuFhK-alzVMAWYw-HWJ87XJ7g6gw2txV6ZWv9VFQ454HnbuelY6e_ZBu66XD9Eh9eC6EdotW5q9wRh5XhCNM2N4i43hhXgdpUJN8o4xZmgEdoYUCqnXZUOGaLrWSE7AkgggAwEkPMIbXmsL2b6CtvhRXNxInuBlUKUwvhaRQJcTmGITpkgpnBUcw0DKkLrA81kL_atvGLSCL1aDIPA-iiMql1zGeZQxjmjAPXjjsQLSHJfEi2nPELFEvGXQF0eqavTUBQ89QhNBXz6duCTK7j-jYun_1_GS3RrdPB5LMd7k_1n6DbxbOwT8Pg6Wp1dXLrnYJHN9IteDDA6vm7J-wWQIkpV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2AnFBPEtKASPBqUSbl-34gBBlu2pptaoQlXpzbcdpI0Gy7W5B-2t8HWMn2Wp53XqLYicaz8Mz4xnPALzWeVqwkqGkFdagg5LSUEQFDTlDS05Z9H-Uz_KdsL3j7NMJPVmDn_1dGJdW2e-JfqMuGuPOyIeo59CWT0TGhmWXFnE0Gr-fXoSug5SLtPbtNFoWObCLH-i-zd7tj5DWb5JkvPvl417YdRgITZYk81CLXES6NOjjMKojYSxqUKpKhFEVyO250KkpcFxnhc6pWzBaACpGLap4SXWK_70F6xy1Yj6A9Z3dydHn5QmPi6Flsehu6kRpPpyhtnQ32hJEiEvfDBcr2tA3DfibpftnwuZvUVuvDMf34V5nxZIPLds9gDVbP4TbbV_LxSM4ReYjXRmhc9LUxF8o_loVlhR27pO_alLVOAUZxZKZS6Kvz0j1DTe3GXGKtXBfVf7AA59H1k4Plf6ebpO24_VjOL4RRD-BQd3U9ikQZXmUaJoZxW1mDMvRBSsjbpSxijNBA9juUSqnbcUO6SPtaS5bAkgkgPQEkIsAdhzWlzNdtW3_ork8k53wSiFKYVzdIoHupzCJjplITG6p5hoHVABbPc1ktwXM5DXDBvBqOYzC6yIyqrbNlZ9DGeeMItQbLYmXkGSuPFpGeQD5CvFXQF0dqatzXyA8dgiNBX76tueTa7j-jYvN_y_jJdxBiZOH-5ODZ3A3cVzscvH4Fgzml1f2ORpnc_2ikwICpzcteL8AsxBOgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+research+on+landslide+detection+in+remote+sensing+images+based+on+improved+DeepLabv3%2B+method&rft.jtitle=Scientific+reports&rft.au=Li%2C+Yong&rft.date=2025-03-07&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=7957&rft_id=info:doi/10.1038%2Fs41598-025-92822-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon