NLMEM: a NEW SAS/IML macro for hierarchical nonlinear models

Analysis of longitudinal data is one of the most challenging tasks in statistical modeling. In the analysis, it is often necessary to take into account nonlinear response to a set of parameters of interest and correlation between measurements taken from the same individual. In addition, between- and...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 55; no. 3; pp. 207 - 216
Main Author Galecki, Andrzej T.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.03.1998
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
DOI10.1016/S0169-2607(97)00066-7

Cover

Abstract Analysis of longitudinal data is one of the most challenging tasks in statistical modeling. In the analysis, it is often necessary to take into account nonlinear response to a set of parameters of interest and correlation between measurements taken from the same individual. In addition, between- and within-subject variation has to be handled properly. An example of addressing these issues is the hierarchical nonlinear model, where parameter estimation can be performed using linearization method. In this paper a new NLMEM SAS/IML macro for hierarchical nonlinear models is proposed. The program uses a portion of the code developed earlier in NLINMIX. NLMEM retains all the benefits of NLINMIX while allowing the systematic part of the model structure to be specified using IML syntax. Consequently, NLMEM allows estimation of models which are not tractable using NLINMIX. In particular, it allows us to address advanced population pharmacokinetics and pharmacodynamics models specified by ordinary differential equations.
AbstractList Analysis of longitudinal data is one of the most challenging tasks in statistical modeling. In the analysis, it is often necessary to take into account nonlinear response to a set of parameters of interest and correlation between measurements taken from the same individual. In addition, between- and within-subject variation has to be handled properly. An example of addressing these issues is the hierarchical nonlinear model, where parameter estimation can be performed using linearization method. In this paper a new NLMEM SAS/IML macro for hierarchical nonlinear models is proposed. The program uses a portion of the code developed earlier in NLINMIX. NLMEM retains all the benefits of NLINMIX while allowing the systematic part of the model structure to be specified using IML syntax. Consequently, NLMEM allows estimation of models which are not tractable using NLINMIX. In particular, it allows us to address advanced population pharmacokinetics and pharmacodynamics models specified by ordinary differential equations.
Analysis of longitudinal data is one of the most challenging tasks in statistical modeling. In the analysis, it is often necessary to take into account nonlinear response to a set of parameters of interest and correlation between measurements taken from the same individual. In addition, between- and within-subject variation has to be handled properly. An example of addressing these issues is the hierarchical nonlinear model, where parameter estimation can be performed using linearization method. In this paper a new NLMEM SAS/IML macro for hierarchical nonlinear models is proposed. The program uses a portion of the code developed earlier in NLINMIX. NLMEM retains all the benefits of NLINMIX while allowing the systematic part of the model structure to be specified using IML syntax. Consequently, NLMEM allows estimation of models which are not tractable using NLINMIX. In particular, it allows us to address advanced population pharmacokinetics and pharmacodynamics models specified by ordinary differential equations.Analysis of longitudinal data is one of the most challenging tasks in statistical modeling. In the analysis, it is often necessary to take into account nonlinear response to a set of parameters of interest and correlation between measurements taken from the same individual. In addition, between- and within-subject variation has to be handled properly. An example of addressing these issues is the hierarchical nonlinear model, where parameter estimation can be performed using linearization method. In this paper a new NLMEM SAS/IML macro for hierarchical nonlinear models is proposed. The program uses a portion of the code developed earlier in NLINMIX. NLMEM retains all the benefits of NLINMIX while allowing the systematic part of the model structure to be specified using IML syntax. Consequently, NLMEM allows estimation of models which are not tractable using NLINMIX. In particular, it allows us to address advanced population pharmacokinetics and pharmacodynamics models specified by ordinary differential equations.
Author Galecki, Andrzej T.
Author_xml – sequence: 1
  givenname: Andrzej T.
  surname: Galecki
  fullname: Galecki, Andrzej T.
  organization: Institute of Gerontology University of Michigan, Ann Arbor, MI 48109-2007, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9617520$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKAzEUhoMoWi-PIMxKdDGaZCY5ExWkSL1Aq4sqLkOaOYORuWgyFXx7U1tduOkmWZzvPxz-b5dstl2LhBwyesook2fT-KiUSwrHCk4opVKmsEEGrACegpBikwz-kB2yG8JbhLgQcptsK8lAcDoglw_jyWhynpjkYfSSTIfTs_vJOGmM9V1SdT55deiNt6_OmjqJF9SuReOTpiuxDvtkqzJ1wIPVv0eeb0ZP13fp-PH2_no4Tm3OeZ-aQikocWZyZVjFc26w5DOKWGQ8zyVUFQCKCopcAacGpIGskJIppJkCwbI9crTc--67jzmGXjcuWKxr02I3DxqU4kAzWAtyKUEC5OtBlgkWC4rg4Qqczxos9bt3jfFfelVgnF8s57GwEDxW2rre9K5re29crRnVC1v6x5ZeqNAK9I8tvbhX_Ev_7l-Xu1rmogT8jIp0sA5bi6XzaHtddm7Nhm9RG6fs
CitedBy_id crossref_primary_10_1080_01621459_2000_10474299
crossref_primary_10_1080_02664760500250552
crossref_primary_10_1146_annurev_psych_58_110405_085520
crossref_primary_10_1081_BIP_120037194
crossref_primary_10_1016_S0167_9473_00_00015_3
crossref_primary_10_1208_s12248_012_9320_2
crossref_primary_10_1198_1085711032697
Cites_doi 10.2307/2532087
10.1080/00949659308811554
10.1093/biomet/80.4.791
10.1159/000457062
10.1007/BF00140873
10.2307/2290687
ContentType Journal Article
Copyright 1998 Elsevier Science Ireland Ltd
Copyright_xml – notice: 1998 Elsevier Science Ireland Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1016/S0169-2607(97)00066-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Computer and Information Systems Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 216
ExternalDocumentID 338236
9617520
10_1016_S0169_2607_97_00066_7
S0169260797000667
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P30 AG08808
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABLVK
ABMAC
ABMZM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AEVXI
AFKWA
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFCTW
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
EFKBS
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c422t-a8997deba49a1f242aed2b0ee8324467ff77e5f7849720a76a7386619e0397513
IEDL.DBID .~1
ISSN 0169-2607
IngestDate Fri Sep 05 12:17:22 EDT 2025
Thu Sep 04 22:51:17 EDT 2025
Thu Sep 04 15:44:37 EDT 2025
Wed Feb 19 01:18:58 EST 2025
Tue Jul 01 02:40:15 EDT 2025
Thu Apr 24 22:58:45 EDT 2025
Fri Feb 23 02:22:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Population pharmacokinetics and pharmacodynamics models
SAS macro
Hierarchical nonlinear mixed effects model
IML interface
Linearization method
Longitudinal data analysis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-a8997deba49a1f242aed2b0ee8324467ff77e5f7849720a76a7386619e0397513
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 9617520
PQID 21351520
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_79927037
proquest_miscellaneous_26676774
proquest_miscellaneous_21351520
pubmed_primary_9617520
crossref_citationtrail_10_1016_S0169_2607_97_00066_7
crossref_primary_10_1016_S0169_2607_97_00066_7
elsevier_sciencedirect_doi_10_1016_S0169_2607_97_00066_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1998-03-01
PublicationDateYYYYMMDD 1998-03-01
PublicationDate_xml – month: 03
  year: 1998
  text: 1998-03-01
  day: 01
PublicationDecade 1990
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 1998
Publisher Elsevier Ireland Ltd
Publisher_xml – name: Elsevier Ireland Ltd
References Vonesh, Chinchilli (BIB13) 1997
Pinheiro, Bates (BIB12) 1996; 6
Jacquez (BIB14) 1985
Breslow, Clayton (BIB3) 1993; 88
(BIB9) 1991
Lindstrom, Bates (BIB2) 1990; 46
Beal, Sheiner (BIB10) 1992
Grasela, Donn (BIB7) 1985; 8
Wolfinger (BIB5) 1993; 80
Davidian, Giltinan (BIB1) 1995
(BIB11) 1997
Littel, Milliken, Stroup, Wolfinger (BIB8) 1996
Wolfinger, O'Connell (BIB4) 1993; 48
(BIB6) 1997
Davidian (10.1016/S0169-2607(97)00066-7_BIB1) 1995
Jacquez (10.1016/S0169-2607(97)00066-7_BIB14) 1985
Grasela (10.1016/S0169-2607(97)00066-7_BIB7) 1985; 8
Beal (10.1016/S0169-2607(97)00066-7_BIB10) 1992
Littel (10.1016/S0169-2607(97)00066-7_BIB8) 1996
(10.1016/S0169-2607(97)00066-7_BIB9) 1991
Lindstrom (10.1016/S0169-2607(97)00066-7_BIB2) 1990; 46
Breslow (10.1016/S0169-2607(97)00066-7_BIB3) 1993; 88
Wolfinger (10.1016/S0169-2607(97)00066-7_BIB4) 1993; 48
(10.1016/S0169-2607(97)00066-7_BIB11) 1997
Pinheiro (10.1016/S0169-2607(97)00066-7_BIB12) 1996; 6
Wolfinger (10.1016/S0169-2607(97)00066-7_BIB5) 1993; 80
(10.1016/S0169-2607(97)00066-7_BIB6) 1997
Vonesh (10.1016/S0169-2607(97)00066-7_BIB13) 1997
References_xml – volume: 88
  start-page: 9
  year: 1993
  end-page: 25
  ident: BIB3
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J. Am. Stat. Assoc.
– volume: 48
  start-page: 233
  year: 1993
  end-page: 243
  ident: BIB4
  article-title: Generalized linear mixed models: a pseudo-likelihood approach’
  publication-title: J. Stat. Comput. Simul.
– volume: 8
  start-page: 374
  year: 1985
  end-page: 383
  ident: BIB7
  article-title: Neonatal population pharmacokinetics for phenobarbital derived from routine clinical data
  publication-title: Dev. Pharmacol. Ther.
– volume: 80
  start-page: 791
  year: 1993
  end-page: 795
  ident: BIB5
  article-title: Laplace's approximation for nonlinear mixed effects models
  publication-title: Biometrika
– year: 1992
  ident: BIB10
  publication-title: NONMEM User's Guides
– year: 1996
  ident: BIB8
  publication-title: SAS System for Mixed Models
– year: 1997
  ident: BIB11
  publication-title: Splus 4. Guide to Statistics
– year: 1995
  ident: BIB1
  publication-title: Nonlinear Models for Repeated Measurement Data
– volume: 6
  start-page: 289
  year: 1996
  end-page: 296
  ident: BIB12
  article-title: Unconstrained parametrizations for variance-covariance matrices
  publication-title: Stat. Comput.
– year: 1997
  ident: BIB13
  publication-title: Linear and Nonlinear Models for the Analysis of Repeated Measurements
– year: 1997
  ident: BIB6
  publication-title: SAS/STAT Software: Changes and Enhancements through Release 6.12
– year: 1991
  ident: BIB9
  publication-title: SAS Technical Report P-230 SAS/IML Software: Changes and Enhancements Release 6.07
– year: 1985
  ident: BIB14
  publication-title: Compartmental Analysis in Biology and Medicine
– volume: 46
  start-page: 673
  year: 1990
  end-page: 687
  ident: BIB2
  article-title: Nonlinear mixed effects models for repeated measures data
  publication-title: Biometrics
– volume: 46
  start-page: 673
  year: 1990
  ident: 10.1016/S0169-2607(97)00066-7_BIB2
  article-title: Nonlinear mixed effects models for repeated measures data
  publication-title: Biometrics
  doi: 10.2307/2532087
– volume: 48
  start-page: 233
  year: 1993
  ident: 10.1016/S0169-2607(97)00066-7_BIB4
  article-title: Generalized linear mixed models: a pseudo-likelihood approach’
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949659308811554
– year: 1991
  ident: 10.1016/S0169-2607(97)00066-7_BIB9
– volume: 80
  start-page: 791
  year: 1993
  ident: 10.1016/S0169-2607(97)00066-7_BIB5
  article-title: Laplace's approximation for nonlinear mixed effects models
  publication-title: Biometrika
  doi: 10.1093/biomet/80.4.791
– year: 1997
  ident: 10.1016/S0169-2607(97)00066-7_BIB11
– year: 1995
  ident: 10.1016/S0169-2607(97)00066-7_BIB1
– year: 1992
  ident: 10.1016/S0169-2607(97)00066-7_BIB10
– volume: 8
  start-page: 374
  year: 1985
  ident: 10.1016/S0169-2607(97)00066-7_BIB7
  article-title: Neonatal population pharmacokinetics for phenobarbital derived from routine clinical data
  publication-title: Dev. Pharmacol. Ther.
  doi: 10.1159/000457062
– year: 1996
  ident: 10.1016/S0169-2607(97)00066-7_BIB8
– year: 1997
  ident: 10.1016/S0169-2607(97)00066-7_BIB13
– volume: 6
  start-page: 289
  year: 1996
  ident: 10.1016/S0169-2607(97)00066-7_BIB12
  article-title: Unconstrained parametrizations for variance-covariance matrices
  publication-title: Stat. Comput.
  doi: 10.1007/BF00140873
– year: 1997
  ident: 10.1016/S0169-2607(97)00066-7_BIB6
– volume: 88
  start-page: 9
  year: 1993
  ident: 10.1016/S0169-2607(97)00066-7_BIB3
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2290687
– year: 1985
  ident: 10.1016/S0169-2607(97)00066-7_BIB14
SSID ssj0002556
Score 1.5444129
Snippet Analysis of longitudinal data is one of the most challenging tasks in statistical modeling. In the analysis, it is often necessary to take into account...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 207
SubjectTerms Computer Simulation
Computer software
Data reduction
Differential equations
Hierarchical nonlinear mixed effects model
IML interface
Linearization
Linearization method
Longitudinal data analysis
Mathematical Computing
Nonlinear Dynamics
Nonlinear systems
Parameter estimation
Pharmacodynamics
Pharmacokinetics
Population pharmacokinetics and pharmacodynamics models
SAS macro
Software
Statistical methods
Title NLMEM: a NEW SAS/IML macro for hierarchical nonlinear models
URI https://dx.doi.org/10.1016/S0169-2607(97)00066-7
https://www.ncbi.nlm.nih.gov/pubmed/9617520
https://www.proquest.com/docview/21351520
https://www.proquest.com/docview/26676774
https://www.proquest.com/docview/79927037
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IJsaL8UXEB_bgQQ-F3drdbo0XQiCgLBckcmu6u21Cokh4XP3tTvcBekASr0077U5nZ75mXgjdeiKIaEI1MW6sCUscRUBuDEki0Iw6YjEXNlE4HPjdEXsee-MSahW5MDasMtf9mU5PtXU-0si52ZhNJo2hrSMCaJwLnhpOm1HOGLeyXv_ahHnYEltZfW9B7OxNFk9GIR28E_w-JUL4Nvu0DX-mdqhzhA5zAImb2RmPUUlPT9B-mLvIT9HToB-2w0es8KD9hofNYaMX9vGHgu0wAFRse1-n3gO4HDzNCmWoOU474izO0KjTfm11Sd4igcSM0iVR8FziiY4UE8o1YG6VTmjkaA0Mh4ceN4Zz7RkeMMGpo7ivbJNPeDRpB4CI5z5UUBm20ucI-yyJvCA23FhvrGaCKQHKgPlau35kaBWxgjEyzuuH2zYW7_JHoJgvpOWnzLzavi95FdXXy2ZZAY1dC4KC6_KXJEhQ8ruW3hS3JOEvsa4PNdWfq4WkthGhR50_ZthgX8DC22dwISjoR9ilkgnA-nsEwEAgfvH_k1-igyLZ0XGvUHk5X-lrQDvLqJaKcw3tNXsv3cE3JWX0rw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgSMAF8RTjtRw4wCGsDWmzIC4TGtrY2stAcIvSNpEmwZi28f9x-hhwGEhcozhJHfezLcc2wHkgWwnLmKHWTw3lmacpyo2lWYLIaBKeCukShaM47D7xh5fgZQXuqlwY96yyxP4C03O0LkeaJTebk9GoOXR1RNAaF1LkilOswhoP0NurwVq71-_GC0B2VbaKEt-SOoKvRJ5ikXzwQorLfB0qlqmoZSZororut2GrtCFJuzjmDqyY8S6sR2WUfA9u40HUiW6IJnHnmQzbw2YvGpA3jdsRtFGJa3-dBxDwfsi4qJWhpyRvijPbh6f7zuNdl5ZdEmjKGZtTjR6TyEyiudS-RY2rTcYSzxjkOfp6wlohTGBFi0vBPC1C7fp8ot9kPLRFAv_6AGq4lTkEEvIsCVqpFdYFZA2XXEvEAx4a44eJZXXgFWNUWpYQd50sXtW3t2KhVI6fqghsh6ESdbhakE2KGhp_EbQqrqsfwqAQ5_8ibVS3pPBHcdEPPTbvHzPFXC_CgHm_zHDvfdEcXj5DSMkQInGXg0IAFt8j0RLExY_-f_IGbHQfo4Ea9OL-MWxWuY-efwK1-fTDnKLxM0_OSuH-BLHe92Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NLMEM%3A+a+NEW+SAS%2FIML+macro+for+hierarchical+nonlinear+models&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Galecki%2C+Andrzej+T.&rft.date=1998-03-01&rft.pub=Elsevier+Ireland+Ltd&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=55&rft.issue=3&rft.spage=207&rft.epage=216&rft_id=info:doi/10.1016%2FS0169-2607%2897%2900066-7&rft.externalDocID=S0169260797000667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon