Warning: Full texts from electronic resources are only available from the university network. You are currently outside this network. Please log in to access full texts
NLMEM: a NEW SAS/IML macro for hierarchical nonlinear models
Analysis of longitudinal data is one of the most challenging tasks in statistical modeling. In the analysis, it is often necessary to take into account nonlinear response to a set of parameters of interest and correlation between measurements taken from the same individual. In addition, between- and...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 55; no. 3; pp. 207 - 216 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier Ireland Ltd
01.03.1998
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-2607 1872-7565 |
DOI | 10.1016/S0169-2607(97)00066-7 |
Cover
Abstract | Analysis of longitudinal data is one of the most challenging tasks in statistical modeling. In the analysis, it is often necessary to take into account nonlinear response to a set of parameters of interest and correlation between measurements taken from the same individual. In addition, between- and within-subject variation has to be handled properly. An example of addressing these issues is the hierarchical nonlinear model, where parameter estimation can be performed using linearization method. In this paper a new NLMEM SAS/IML macro for hierarchical nonlinear models is proposed. The program uses a portion of the code developed earlier in NLINMIX. NLMEM retains all the benefits of NLINMIX while allowing the systematic part of the model structure to be specified using IML syntax. Consequently, NLMEM allows estimation of models which are not tractable using NLINMIX. In particular, it allows us to address advanced population pharmacokinetics and pharmacodynamics models specified by ordinary differential equations. |
---|---|
AbstractList | Analysis of longitudinal data is one of the most challenging tasks in statistical modeling. In the analysis, it is often necessary to take into account nonlinear response to a set of parameters of interest and correlation between measurements taken from the same individual. In addition, between- and within-subject variation has to be handled properly. An example of addressing these issues is the hierarchical nonlinear model, where parameter estimation can be performed using linearization method. In this paper a new NLMEM SAS/IML macro for hierarchical nonlinear models is proposed. The program uses a portion of the code developed earlier in NLINMIX. NLMEM retains all the benefits of NLINMIX while allowing the systematic part of the model structure to be specified using IML syntax. Consequently, NLMEM allows estimation of models which are not tractable using NLINMIX. In particular, it allows us to address advanced population pharmacokinetics and pharmacodynamics models specified by ordinary differential equations. Analysis of longitudinal data is one of the most challenging tasks in statistical modeling. In the analysis, it is often necessary to take into account nonlinear response to a set of parameters of interest and correlation between measurements taken from the same individual. In addition, between- and within-subject variation has to be handled properly. An example of addressing these issues is the hierarchical nonlinear model, where parameter estimation can be performed using linearization method. In this paper a new NLMEM SAS/IML macro for hierarchical nonlinear models is proposed. The program uses a portion of the code developed earlier in NLINMIX. NLMEM retains all the benefits of NLINMIX while allowing the systematic part of the model structure to be specified using IML syntax. Consequently, NLMEM allows estimation of models which are not tractable using NLINMIX. In particular, it allows us to address advanced population pharmacokinetics and pharmacodynamics models specified by ordinary differential equations.Analysis of longitudinal data is one of the most challenging tasks in statistical modeling. In the analysis, it is often necessary to take into account nonlinear response to a set of parameters of interest and correlation between measurements taken from the same individual. In addition, between- and within-subject variation has to be handled properly. An example of addressing these issues is the hierarchical nonlinear model, where parameter estimation can be performed using linearization method. In this paper a new NLMEM SAS/IML macro for hierarchical nonlinear models is proposed. The program uses a portion of the code developed earlier in NLINMIX. NLMEM retains all the benefits of NLINMIX while allowing the systematic part of the model structure to be specified using IML syntax. Consequently, NLMEM allows estimation of models which are not tractable using NLINMIX. In particular, it allows us to address advanced population pharmacokinetics and pharmacodynamics models specified by ordinary differential equations. |
Author | Galecki, Andrzej T. |
Author_xml | – sequence: 1 givenname: Andrzej T. surname: Galecki fullname: Galecki, Andrzej T. organization: Institute of Gerontology University of Michigan, Ann Arbor, MI 48109-2007, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9617520$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKAzEUhoMoWi-PIMxKdDGaZCY5ExWkSL1Aq4sqLkOaOYORuWgyFXx7U1tduOkmWZzvPxz-b5dstl2LhBwyesook2fT-KiUSwrHCk4opVKmsEEGrACegpBikwz-kB2yG8JbhLgQcptsK8lAcDoglw_jyWhynpjkYfSSTIfTs_vJOGmM9V1SdT55deiNt6_OmjqJF9SuReOTpiuxDvtkqzJ1wIPVv0eeb0ZP13fp-PH2_no4Tm3OeZ-aQikocWZyZVjFc26w5DOKWGQ8zyVUFQCKCopcAacGpIGskJIppJkCwbI9crTc--67jzmGXjcuWKxr02I3DxqU4kAzWAtyKUEC5OtBlgkWC4rg4Qqczxos9bt3jfFfelVgnF8s57GwEDxW2rre9K5re29crRnVC1v6x5ZeqNAK9I8tvbhX_Ev_7l-Xu1rmogT8jIp0sA5bi6XzaHtddm7Nhm9RG6fs |
CitedBy_id | crossref_primary_10_1080_01621459_2000_10474299 crossref_primary_10_1080_02664760500250552 crossref_primary_10_1146_annurev_psych_58_110405_085520 crossref_primary_10_1081_BIP_120037194 crossref_primary_10_1016_S0167_9473_00_00015_3 crossref_primary_10_1208_s12248_012_9320_2 crossref_primary_10_1198_1085711032697 |
Cites_doi | 10.2307/2532087 10.1080/00949659308811554 10.1093/biomet/80.4.791 10.1159/000457062 10.1007/BF00140873 10.2307/2290687 |
ContentType | Journal Article |
Copyright | 1998 Elsevier Science Ireland Ltd |
Copyright_xml | – notice: 1998 Elsevier Science Ireland Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1016/S0169-2607(97)00066-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE Computer and Information Systems Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
EndPage | 216 |
ExternalDocumentID | 338236 9617520 10_1016_S0169_2607_97_00066_7 S0169260797000667 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG08808 |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABLVK ABMAC ABMZM ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AEVXI AFKWA AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LCYCR LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFCTW AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM EFKBS 7SC 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c422t-a8997deba49a1f242aed2b0ee8324467ff77e5f7849720a76a7386619e0397513 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 |
IngestDate | Fri Sep 05 12:17:22 EDT 2025 Thu Sep 04 22:51:17 EDT 2025 Thu Sep 04 15:44:37 EDT 2025 Wed Feb 19 01:18:58 EST 2025 Tue Jul 01 02:40:15 EDT 2025 Thu Apr 24 22:58:45 EDT 2025 Fri Feb 23 02:22:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Population pharmacokinetics and pharmacodynamics models SAS macro Hierarchical nonlinear mixed effects model IML interface Linearization method Longitudinal data analysis |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-a8997deba49a1f242aed2b0ee8324467ff77e5f7849720a76a7386619e0397513 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 9617520 |
PQID | 21351520 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_79927037 proquest_miscellaneous_26676774 proquest_miscellaneous_21351520 pubmed_primary_9617520 crossref_citationtrail_10_1016_S0169_2607_97_00066_7 crossref_primary_10_1016_S0169_2607_97_00066_7 elsevier_sciencedirect_doi_10_1016_S0169_2607_97_00066_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1998-03-01 |
PublicationDateYYYYMMDD | 1998-03-01 |
PublicationDate_xml | – month: 03 year: 1998 text: 1998-03-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 1998 |
Publisher | Elsevier Ireland Ltd |
Publisher_xml | – name: Elsevier Ireland Ltd |
References | Vonesh, Chinchilli (BIB13) 1997 Pinheiro, Bates (BIB12) 1996; 6 Jacquez (BIB14) 1985 Breslow, Clayton (BIB3) 1993; 88 (BIB9) 1991 Lindstrom, Bates (BIB2) 1990; 46 Beal, Sheiner (BIB10) 1992 Grasela, Donn (BIB7) 1985; 8 Wolfinger (BIB5) 1993; 80 Davidian, Giltinan (BIB1) 1995 (BIB11) 1997 Littel, Milliken, Stroup, Wolfinger (BIB8) 1996 Wolfinger, O'Connell (BIB4) 1993; 48 (BIB6) 1997 Davidian (10.1016/S0169-2607(97)00066-7_BIB1) 1995 Jacquez (10.1016/S0169-2607(97)00066-7_BIB14) 1985 Grasela (10.1016/S0169-2607(97)00066-7_BIB7) 1985; 8 Beal (10.1016/S0169-2607(97)00066-7_BIB10) 1992 Littel (10.1016/S0169-2607(97)00066-7_BIB8) 1996 (10.1016/S0169-2607(97)00066-7_BIB9) 1991 Lindstrom (10.1016/S0169-2607(97)00066-7_BIB2) 1990; 46 Breslow (10.1016/S0169-2607(97)00066-7_BIB3) 1993; 88 Wolfinger (10.1016/S0169-2607(97)00066-7_BIB4) 1993; 48 (10.1016/S0169-2607(97)00066-7_BIB11) 1997 Pinheiro (10.1016/S0169-2607(97)00066-7_BIB12) 1996; 6 Wolfinger (10.1016/S0169-2607(97)00066-7_BIB5) 1993; 80 (10.1016/S0169-2607(97)00066-7_BIB6) 1997 Vonesh (10.1016/S0169-2607(97)00066-7_BIB13) 1997 |
References_xml | – volume: 88 start-page: 9 year: 1993 end-page: 25 ident: BIB3 article-title: Approximate inference in generalized linear mixed models publication-title: J. Am. Stat. Assoc. – volume: 48 start-page: 233 year: 1993 end-page: 243 ident: BIB4 article-title: Generalized linear mixed models: a pseudo-likelihood approach’ publication-title: J. Stat. Comput. Simul. – volume: 8 start-page: 374 year: 1985 end-page: 383 ident: BIB7 article-title: Neonatal population pharmacokinetics for phenobarbital derived from routine clinical data publication-title: Dev. Pharmacol. Ther. – volume: 80 start-page: 791 year: 1993 end-page: 795 ident: BIB5 article-title: Laplace's approximation for nonlinear mixed effects models publication-title: Biometrika – year: 1992 ident: BIB10 publication-title: NONMEM User's Guides – year: 1996 ident: BIB8 publication-title: SAS System for Mixed Models – year: 1997 ident: BIB11 publication-title: Splus 4. Guide to Statistics – year: 1995 ident: BIB1 publication-title: Nonlinear Models for Repeated Measurement Data – volume: 6 start-page: 289 year: 1996 end-page: 296 ident: BIB12 article-title: Unconstrained parametrizations for variance-covariance matrices publication-title: Stat. Comput. – year: 1997 ident: BIB13 publication-title: Linear and Nonlinear Models for the Analysis of Repeated Measurements – year: 1997 ident: BIB6 publication-title: SAS/STAT Software: Changes and Enhancements through Release 6.12 – year: 1991 ident: BIB9 publication-title: SAS Technical Report P-230 SAS/IML Software: Changes and Enhancements Release 6.07 – year: 1985 ident: BIB14 publication-title: Compartmental Analysis in Biology and Medicine – volume: 46 start-page: 673 year: 1990 end-page: 687 ident: BIB2 article-title: Nonlinear mixed effects models for repeated measures data publication-title: Biometrics – volume: 46 start-page: 673 year: 1990 ident: 10.1016/S0169-2607(97)00066-7_BIB2 article-title: Nonlinear mixed effects models for repeated measures data publication-title: Biometrics doi: 10.2307/2532087 – volume: 48 start-page: 233 year: 1993 ident: 10.1016/S0169-2607(97)00066-7_BIB4 article-title: Generalized linear mixed models: a pseudo-likelihood approach’ publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949659308811554 – year: 1991 ident: 10.1016/S0169-2607(97)00066-7_BIB9 – volume: 80 start-page: 791 year: 1993 ident: 10.1016/S0169-2607(97)00066-7_BIB5 article-title: Laplace's approximation for nonlinear mixed effects models publication-title: Biometrika doi: 10.1093/biomet/80.4.791 – year: 1997 ident: 10.1016/S0169-2607(97)00066-7_BIB11 – year: 1995 ident: 10.1016/S0169-2607(97)00066-7_BIB1 – year: 1992 ident: 10.1016/S0169-2607(97)00066-7_BIB10 – volume: 8 start-page: 374 year: 1985 ident: 10.1016/S0169-2607(97)00066-7_BIB7 article-title: Neonatal population pharmacokinetics for phenobarbital derived from routine clinical data publication-title: Dev. Pharmacol. Ther. doi: 10.1159/000457062 – year: 1996 ident: 10.1016/S0169-2607(97)00066-7_BIB8 – year: 1997 ident: 10.1016/S0169-2607(97)00066-7_BIB13 – volume: 6 start-page: 289 year: 1996 ident: 10.1016/S0169-2607(97)00066-7_BIB12 article-title: Unconstrained parametrizations for variance-covariance matrices publication-title: Stat. Comput. doi: 10.1007/BF00140873 – year: 1997 ident: 10.1016/S0169-2607(97)00066-7_BIB6 – volume: 88 start-page: 9 year: 1993 ident: 10.1016/S0169-2607(97)00066-7_BIB3 article-title: Approximate inference in generalized linear mixed models publication-title: J. Am. Stat. Assoc. doi: 10.2307/2290687 – year: 1985 ident: 10.1016/S0169-2607(97)00066-7_BIB14 |
SSID | ssj0002556 |
Score | 1.5444129 |
Snippet | Analysis of longitudinal data is one of the most challenging tasks in statistical modeling. In the analysis, it is often necessary to take into account... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 207 |
SubjectTerms | Computer Simulation Computer software Data reduction Differential equations Hierarchical nonlinear mixed effects model IML interface Linearization Linearization method Longitudinal data analysis Mathematical Computing Nonlinear Dynamics Nonlinear systems Parameter estimation Pharmacodynamics Pharmacokinetics Population pharmacokinetics and pharmacodynamics models SAS macro Software Statistical methods |
Title | NLMEM: a NEW SAS/IML macro for hierarchical nonlinear models |
URI | https://dx.doi.org/10.1016/S0169-2607(97)00066-7 https://www.ncbi.nlm.nih.gov/pubmed/9617520 https://www.proquest.com/docview/21351520 https://www.proquest.com/docview/26676774 https://www.proquest.com/docview/79927037 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IJsaL8UXEB_bgQQ-F3drdbo0XQiCgLBckcmu6u21Cokh4XP3tTvcBekASr0077U5nZ75mXgjdeiKIaEI1MW6sCUscRUBuDEki0Iw6YjEXNlE4HPjdEXsee-MSahW5MDasMtf9mU5PtXU-0si52ZhNJo2hrSMCaJwLnhpOm1HOGLeyXv_ahHnYEltZfW9B7OxNFk9GIR28E_w-JUL4Nvu0DX-mdqhzhA5zAImb2RmPUUlPT9B-mLvIT9HToB-2w0es8KD9hofNYaMX9vGHgu0wAFRse1-n3gO4HDzNCmWoOU474izO0KjTfm11Sd4igcSM0iVR8FziiY4UE8o1YG6VTmjkaA0Mh4ceN4Zz7RkeMMGpo7ivbJNPeDRpB4CI5z5UUBm20ucI-yyJvCA23FhvrGaCKQHKgPlau35kaBWxgjEyzuuH2zYW7_JHoJgvpOWnzLzavi95FdXXy2ZZAY1dC4KC6_KXJEhQ8ruW3hS3JOEvsa4PNdWfq4WkthGhR50_ZthgX8DC22dwISjoR9ilkgnA-nsEwEAgfvH_k1-igyLZ0XGvUHk5X-lrQDvLqJaKcw3tNXsv3cE3JWX0rw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgSMAF8RTjtRw4wCGsDWmzIC4TGtrY2stAcIvSNpEmwZi28f9x-hhwGEhcozhJHfezLcc2wHkgWwnLmKHWTw3lmacpyo2lWYLIaBKeCukShaM47D7xh5fgZQXuqlwY96yyxP4C03O0LkeaJTebk9GoOXR1RNAaF1LkilOswhoP0NurwVq71-_GC0B2VbaKEt-SOoKvRJ5ikXzwQorLfB0qlqmoZSZororut2GrtCFJuzjmDqyY8S6sR2WUfA9u40HUiW6IJnHnmQzbw2YvGpA3jdsRtFGJa3-dBxDwfsi4qJWhpyRvijPbh6f7zuNdl5ZdEmjKGZtTjR6TyEyiudS-RY2rTcYSzxjkOfp6wlohTGBFi0vBPC1C7fp8ot9kPLRFAv_6AGq4lTkEEvIsCVqpFdYFZA2XXEvEAx4a44eJZXXgFWNUWpYQd50sXtW3t2KhVI6fqghsh6ESdbhakE2KGhp_EbQqrqsfwqAQ5_8ibVS3pPBHcdEPPTbvHzPFXC_CgHm_zHDvfdEcXj5DSMkQInGXg0IAFt8j0RLExY_-f_IGbHQfo4Ea9OL-MWxWuY-efwK1-fTDnKLxM0_OSuH-BLHe92Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NLMEM%3A+a+NEW+SAS%2FIML+macro+for+hierarchical+nonlinear+models&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Galecki%2C+Andrzej+T.&rft.date=1998-03-01&rft.pub=Elsevier+Ireland+Ltd&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=55&rft.issue=3&rft.spage=207&rft.epage=216&rft_id=info:doi/10.1016%2FS0169-2607%2897%2900066-7&rft.externalDocID=S0169260797000667 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |