A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression
Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing th...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 121; no. 8; p. e2306132121 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
20.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare. |
---|---|
AbstractList | This study identified a comprehensive set of clinical, quantitative imaging, and biological biomarkers for precise prediction of Temporomandibular joint osteoarthritis (TMJ OA) disease progression. We developed an open-source tool based on a robust method called Ensemble via Hierarchical Predictions through Nested cross-validation (EHPN), which surpassed the performance of the 48 models tested. The EHPN model achieved an F1 score of 0.82, indicating strong performance and reliability with new, unseen data, and minimizing false positives and negatives. The use of the EHPN model may revolutionize the standards of care, providing clinicians with an accurate tool for anticipating the future status of TMJ OA patients, thereby enhancing their decision-making process.
Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare. Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare. Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare. |
Author | Benavides, Erika Fontana, Margherita Rao, Arvind Al Turkestani, Najla Mishina, Yuji Bianchi, Jonas Gurgel, Marcela Shah, Hina Soki, Fabiana Prieto, Juan Zhu, Hongtu Li, Tengfei Cevidanes, Lucia |
Author_xml | – sequence: 1 givenname: Najla orcidid: 0000-0002-7650-3638 surname: Al Turkestani fullname: Al Turkestani, Najla organization: Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia, Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 – sequence: 2 givenname: Tengfei orcidid: 0000-0001-6142-3865 surname: Li fullname: Li, Tengfei organization: Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 – sequence: 3 givenname: Jonas surname: Bianchi fullname: Bianchi, Jonas organization: Department of Orthodontics, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA 94103 – sequence: 4 givenname: Marcela surname: Gurgel fullname: Gurgel, Marcela organization: Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 – sequence: 5 givenname: Juan surname: Prieto fullname: Prieto, Juan organization: Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 – sequence: 6 givenname: Hina surname: Shah fullname: Shah, Hina organization: Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 – sequence: 7 givenname: Erika surname: Benavides fullname: Benavides, Erika organization: Department of Periodontics & Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 – sequence: 8 givenname: Fabiana surname: Soki fullname: Soki, Fabiana organization: Department of Periodontics & Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 – sequence: 9 givenname: Yuji orcidid: 0000-0002-6268-4204 surname: Mishina fullname: Mishina, Yuji organization: Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 – sequence: 10 givenname: Margherita orcidid: 0000-0003-2357-7534 surname: Fontana fullname: Fontana, Margherita organization: Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 – sequence: 11 givenname: Arvind surname: Rao fullname: Rao, Arvind organization: Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, Department of Computational Medicine & Bioinformatics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 – sequence: 12 givenname: Hongtu orcidid: 0000-0002-6781-2690 surname: Zhu fullname: Zhu, Hongtu organization: Department of Radiology and Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 – sequence: 13 givenname: Lucia orcidid: 0000-0001-9786-2253 surname: Cevidanes fullname: Cevidanes, Lucia organization: Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38346188$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LHTEUxYNY6tN27a4MdNPNaD5mJsmqiFRbELrRdcgkN748ZpJpkhH875tXtR9CN8ni_s7h3HuO0WGIARA6JfiMYM7Ol6DzGWV4IIwSSg7QhmBJ2qGT-BBtMKa8FR3tjtBxzjuMsewFfouOmGDdQITYoO1FY-K8JNhCyP4BmkUXD6G0eQHjnTdNnVlvio-hmaOFqXExNQXmJaY462D9uE46NbvoQ2liLhB1Ktvki89VG-8T5FzF79Abp6cM75__E3R39eX28mt78_362-XFTWs6SkurqeEjs8yB7rngo9Od1pZICk5y6izFBLuecdzXRzKune2BMjdYMRo9GHaCPj_5Lus4gzV1l6QntSQ_6_Soovbq30nwW3UfHxTBQvaMyerw6dkhxR8r5KJmnw1Mkw4Q16yopAPmklBR0Y-v0F1cU6j7VYphQTn7RX34O9LvLC8tVKB_AkyKOSdwyvii9yevCf1Uo6l922rftvrTdtWdv9K9WP9P8RMn-LCY |
CitedBy_id | crossref_primary_10_1302_0301_620X_106B11_BJJ_2024_0453_R1 crossref_primary_10_1016_j_bone_2024_117263 |
Cites_doi | 10.1177/1759720X12437354 10.1186/ar4405 10.1038/s41598-020-69328-w 10.2174/18742106-v16-e2112290 10.1016/j.joca.2014.06.014 10.1155/2017/3203027 10.1177/0022034515574770 10.1080/24740527.2019.1709163 10.1038/s41368-021-00129-1 10.3389/fphys.2022.859517 10.1007/s00784-018-2664-y 10.3390/ijms24119483 10.1016/j.bj.2016.06.003 10.3390/diagnostics11020285 10.1016/j.jot.2021.07.001 10.1259/dmfr.20160435 10.1155/2022/6863014 10.1016/j.mcpro.2022.100200 10.1007/s00330-018-5444-9 10.3389/fdmed.2022.1007011 10.1038/s41598-022-12976-x 10.1371/journal.pone.0272715 10.1111/odi.13623 10.3390/electronics12071558 10.1002/jcp.20435 10.1259/dmfr/59263880 10.1177/0022034519828731 10.1097/MD.0000000000018686 10.11607/jop.1151 10.1177/0022034516653743 10.3390/jimaging7080124 10.1259/dmfr.20190049 10.1080/08869634.2001.11746148 10.3389/fphar.2022.996668 10.1155/2022/5846255 10.1172/JCI82585 10.1111/cts.12884 10.1111/1754-9485.13054 10.1016/j.joca.2018.08.003 10.1016/j.jcjp.2022.100091 10.1038/s41598-021-92799-4 10.1177/1759720X211040300 10.1016/j.oooo.2018.12.014 10.1080/08869634.2023.2229607 10.1002/jor.23471 10.1038/s41598-020-63493-8 10.1089/ten.teb.2022.0065 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 20, 2024 Copyright © 2024 the Author(s). Published by PNAS. 2024 |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 20, 2024 – notice: Copyright © 2024 the Author(s). Published by PNAS. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2306132121 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | PMC10895339 38346188 10_1073_pnas_2306132121 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: R01 DE024450 – fundername: ; grantid: R01 DE024450 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c422t-a2c7b3d3fea5787bfa4aad192ef972fd2010f53705537937afd5e23f6d8bca6c3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:31:50 EDT 2025 Fri Jul 11 04:11:30 EDT 2025 Mon Jun 30 07:54:47 EDT 2025 Mon Jul 21 06:04:11 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Tue Jul 01 02:37:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | temporomandibular joint osteoarthritis degenerative joint disease machine learning prognosis TMJ OA |
Language | English |
License | This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c422t-a2c7b3d3fea5787bfa4aad192ef972fd2010f53705537937afd5e23f6d8bca6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Donald Geman, Johns Hopkins University, Baltimore, MD; received April 17, 2023; accepted January 3, 2024 |
ORCID | 0000-0001-6142-3865 0000-0002-6781-2690 0000-0001-9786-2253 0000-0003-2357-7534 0000-0002-7650-3638 0000-0002-6268-4204 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10895339 |
PMID | 38346188 |
PQID | 2930827328 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10895339 proquest_miscellaneous_2926079128 proquest_journals_2930827328 pubmed_primary_38346188 crossref_citationtrail_10_1073_pnas_2306132121 crossref_primary_10_1073_pnas_2306132121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-20 |
PublicationDateYYYYMMDD | 2024-02-20 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2024 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 Aoun Y. (e_1_3_3_26_2) 2023 e_1_3_3_18_2 e_1_3_3_12_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 Tao Y. (e_1_3_3_45_2) 2015; 8 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 dos S. Conceição H. N. (e_1_3_3_39_2) 2022; 5 e_1_3_3_17_2 Basu A. (e_1_3_3_37_2) 2019; 3 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_15_2 doi: 10.1177/1759720X12437354 – ident: e_1_3_3_14_2 doi: 10.1186/ar4405 – ident: e_1_3_3_28_2 doi: 10.1038/s41598-020-69328-w – ident: e_1_3_3_12_2 doi: 10.2174/18742106-v16-e2112290 – ident: e_1_3_3_29_2 doi: 10.1016/j.joca.2014.06.014 – volume: 3 year: 2019 ident: e_1_3_3_37_2 article-title: Call for data standardization: Lessons learned and recommendations in an imaging study publication-title: JCO Clin. Cancer Inform. – ident: e_1_3_3_40_2 doi: 10.1155/2017/3203027 – ident: e_1_3_3_43_2 doi: 10.1177/0022034515574770 – ident: e_1_3_3_27_2 doi: 10.1080/24740527.2019.1709163 – ident: e_1_3_3_22_2 doi: 10.1038/s41368-021-00129-1 – volume: 5 start-page: 56 year: 2022 ident: e_1_3_3_39_2 article-title: Comorbidities associated with temporomandibular joint disorders and the role of central sensitization: Literature review publication-title: Braz. J. Pain – ident: e_1_3_3_8_2 doi: 10.3389/fphys.2022.859517 – ident: e_1_3_3_7_2 doi: 10.1007/s00784-018-2664-y – ident: e_1_3_3_23_2 doi: 10.3390/ijms24119483 – ident: e_1_3_3_18_2 doi: 10.1016/j.bj.2016.06.003 – ident: e_1_3_3_10_2 doi: 10.3390/diagnostics11020285 – ident: e_1_3_3_46_2 doi: 10.1016/j.jot.2021.07.001 – ident: e_1_3_3_16_2 doi: 10.1259/dmfr.20160435 – ident: e_1_3_3_47_2 doi: 10.1155/2022/6863014 – ident: e_1_3_3_24_2 doi: 10.1016/j.mcpro.2022.100200 – ident: e_1_3_3_20_2 doi: 10.1007/s00330-018-5444-9 – ident: e_1_3_3_31_2 doi: 10.3389/fdmed.2022.1007011 – ident: e_1_3_3_41_2 doi: 10.1038/s41598-022-12976-x – ident: e_1_3_3_9_2 doi: 10.1371/journal.pone.0272715 – ident: e_1_3_3_44_2 doi: 10.1111/odi.13623 – ident: e_1_3_3_1_2 doi: 10.3390/electronics12071558 – ident: e_1_3_3_50_2 doi: 10.1002/jcp.20435 – ident: e_1_3_3_32_2 doi: 10.1259/dmfr/59263880 – ident: e_1_3_3_34_2 doi: 10.1177/0022034519828731 – ident: e_1_3_3_42_2 doi: 10.1097/MD.0000000000018686 – ident: e_1_3_3_11_2 doi: 10.11607/jop.1151 – ident: e_1_3_3_36_2 doi: 10.1177/0022034516653743 – ident: e_1_3_3_17_2 doi: 10.3390/jimaging7080124 – ident: e_1_3_3_38_2 doi: 10.1259/dmfr.20190049 – ident: e_1_3_3_35_2 doi: 10.1080/08869634.2001.11746148 – ident: e_1_3_3_33_2 doi: 10.3389/fphar.2022.996668 – volume: 8 start-page: 9112 year: 2015 ident: e_1_3_3_45_2 article-title: Expression and correlation of matrix metalloproteinase-7 and interleukin-15 in human osteoarthritis publication-title: Int. J. Clin. Exp. Pathol. – ident: e_1_3_3_19_2 doi: 10.1155/2022/5846255 – ident: e_1_3_3_49_2 doi: 10.1172/JCI82585 – ident: e_1_3_3_2_2 doi: 10.1111/cts.12884 – ident: e_1_3_3_13_2 doi: 10.1111/1754-9485.13054 – ident: e_1_3_3_21_2 doi: 10.1016/j.joca.2018.08.003 – ident: e_1_3_3_25_2 doi: 10.1016/j.jcjp.2022.100091 – ident: e_1_3_3_3_2 doi: 10.1038/s41598-021-92799-4 – ident: e_1_3_3_30_2 doi: 10.1177/1759720X211040300 – ident: e_1_3_3_5_2 doi: 10.1016/j.oooo.2018.12.014 – start-page: 1 year: 2023 ident: e_1_3_3_26_2 article-title: Salivary biomarkers as potential diagnostic tool for temporomandibular disorders: A comprehensive review publication-title: CRANIO® doi: 10.1080/08869634.2023.2229607 – ident: e_1_3_3_48_2 doi: 10.1002/jor.23471 – ident: e_1_3_3_6_2 doi: 10.1038/s41598-020-63493-8 – ident: e_1_3_3_4_2 doi: 10.1089/ten.teb.2022.0065 |
SSID | ssj0009580 |
Score | 2.4755673 |
Snippet | Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of... This study identified a comprehensive set of clinical, quantitative imaging, and biological biomarkers for precise prediction of Temporomandibular joint... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2306132121 |
SubjectTerms | Arthritis Back pain Biological Sciences Chronic pain Customization Decision making Endothelium Headache Humans Jaw Leukocytes (neutrophilic) Low back pain Machine learning Matrix metalloproteinase Matrix metalloproteinases Metalloproteinase Nonuniformity Osteoarthritis Osteoarthritis - therapy Pain Patients Precision medicine Prediction models Predictions Prospective Studies Research Design Saliva Temporomandibular Joint Temporomandibular joint disorders Temporomandibular Joint Disorders - therapy |
Title | A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38346188 https://www.proquest.com/docview/2930827328 https://www.proquest.com/docview/2926079128 https://pubmed.ncbi.nlm.nih.gov/PMC10895339 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKcuGCWD7LLshIHBZVKW3ixsmxQrusUCl7SKXeIjuxaZeSrrrthX_BP2bGdr7aRVq4RJXtJlHfZDLjvnlDyPtMQGoSc-Vp5muP5VrDM8eFl-t8qEPhMz7AQuGv0_Byxr7MR_NO53eDtbTbyn726866kv9BFcYAV6yS_Qdkq5PCAHwGfOEICMPxXhiPDSN8oxaOhe5EUj0sn0QKECoA5EvbDNy0vLGkQqNGtf6JBS3SsFCv10tkBADga7jKwugcWeaWVe1oRrBX1RvvtuQXTMsNxXFdnuJ8xm3P611N62bH41Uv2W1-KIxJl9a7X6-qN8PEDCWq-K7Vst6-B8M0rYfNVn-VA3zGgu6VqzfKlDuL28DwmSkIHzR8LoQsXshs19C-umOsdNS2ltpZZNRwuwoTKcir3YqD1wL4MexlDPfYb69sC3BPv6UXs8kkTc7nyQPy0IfMwy83gCod58gKXLj7K9WiePBx7_TtQOcge9kn4TaimuQJeezSETq2tnVMOqp4So5L8OiZUyX_8IwsxrRlbHTf2GhtbNQYGwVjowfGRo2x0bax0YaxPSezi_Pk06Xn2nR4GfP9rSf8jMsgD7QS6P6lFkyIHDIHpWPu6xz5FnoUoGxTgGqMQucjAEyHeSQzEWbBC3JUrAv1itARCtwNFZcSIkvOZCzkQIZMZFwHURaJLumXv2maOQ17bKWySg2XggcpgpDWIHTJWfWFGyvf8velpyVIqXvGYTpGOScUtOqSd9U0eGD8W00Uar3DNXDXPB7impcW0-paQRSwcBjBTNRCu1qA6u7tmWK5MCrvw0GE1O_49T0ufEIe1U_WKTnabnbqDQTLW_nWmO8fh7vITQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+patient-specific+prediction+model+for+temporomandibular+joint+osteoarthritis+progression&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Al+Turkestani%2C+Najla&rft.au=Li%2C+Tengfei&rft.au=Bianchi%2C+Jonas&rft.au=Gurgel%2C+Marcela&rft.date=2024-02-20&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=121&rft.issue=8&rft.spage=e2306132121&rft_id=info:doi/10.1073%2Fpnas.2306132121&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |