A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression

Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing th...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 121; no. 8; p. e2306132121
Main Authors Al Turkestani, Najla, Li, Tengfei, Bianchi, Jonas, Gurgel, Marcela, Prieto, Juan, Shah, Hina, Benavides, Erika, Soki, Fabiana, Mishina, Yuji, Fontana, Margherita, Rao, Arvind, Zhu, Hongtu, Cevidanes, Lucia
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 20.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.
AbstractList This study identified a comprehensive set of clinical, quantitative imaging, and biological biomarkers for precise prediction of Temporomandibular joint osteoarthritis (TMJ OA) disease progression. We developed an open-source tool based on a robust method called Ensemble via Hierarchical Predictions through Nested cross-validation (EHPN), which surpassed the performance of the 48 models tested. The EHPN model achieved an F1 score of 0.82, indicating strong performance and reliability with new, unseen data, and minimizing false positives and negatives. The use of the EHPN model may revolutionize the standards of care, providing clinicians with an accurate tool for anticipating the future status of TMJ OA patients, thereby enhancing their decision-making process. Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.
Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.
Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.
Author Benavides, Erika
Fontana, Margherita
Rao, Arvind
Al Turkestani, Najla
Mishina, Yuji
Bianchi, Jonas
Gurgel, Marcela
Shah, Hina
Soki, Fabiana
Prieto, Juan
Zhu, Hongtu
Li, Tengfei
Cevidanes, Lucia
Author_xml – sequence: 1
  givenname: Najla
  orcidid: 0000-0002-7650-3638
  surname: Al Turkestani
  fullname: Al Turkestani, Najla
  organization: Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia, Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
– sequence: 2
  givenname: Tengfei
  orcidid: 0000-0001-6142-3865
  surname: Li
  fullname: Li, Tengfei
  organization: Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
– sequence: 3
  givenname: Jonas
  surname: Bianchi
  fullname: Bianchi, Jonas
  organization: Department of Orthodontics, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA 94103
– sequence: 4
  givenname: Marcela
  surname: Gurgel
  fullname: Gurgel, Marcela
  organization: Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
– sequence: 5
  givenname: Juan
  surname: Prieto
  fullname: Prieto, Juan
  organization: Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
– sequence: 6
  givenname: Hina
  surname: Shah
  fullname: Shah, Hina
  organization: Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
– sequence: 7
  givenname: Erika
  surname: Benavides
  fullname: Benavides, Erika
  organization: Department of Periodontics & Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
– sequence: 8
  givenname: Fabiana
  surname: Soki
  fullname: Soki, Fabiana
  organization: Department of Periodontics & Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
– sequence: 9
  givenname: Yuji
  orcidid: 0000-0002-6268-4204
  surname: Mishina
  fullname: Mishina, Yuji
  organization: Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
– sequence: 10
  givenname: Margherita
  orcidid: 0000-0003-2357-7534
  surname: Fontana
  fullname: Fontana, Margherita
  organization: Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
– sequence: 11
  givenname: Arvind
  surname: Rao
  fullname: Rao, Arvind
  organization: Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, Department of Computational Medicine & Bioinformatics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
– sequence: 12
  givenname: Hongtu
  orcidid: 0000-0002-6781-2690
  surname: Zhu
  fullname: Zhu, Hongtu
  organization: Department of Radiology and Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
– sequence: 13
  givenname: Lucia
  orcidid: 0000-0001-9786-2253
  surname: Cevidanes
  fullname: Cevidanes, Lucia
  organization: Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38346188$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LHTEUxYNY6tN27a4MdNPNaD5mJsmqiFRbELrRdcgkN748ZpJpkhH875tXtR9CN8ni_s7h3HuO0WGIARA6JfiMYM7Ol6DzGWV4IIwSSg7QhmBJ2qGT-BBtMKa8FR3tjtBxzjuMsewFfouOmGDdQITYoO1FY-K8JNhCyP4BmkUXD6G0eQHjnTdNnVlvio-hmaOFqXExNQXmJaY462D9uE46NbvoQ2liLhB1Ktvki89VG-8T5FzF79Abp6cM75__E3R39eX28mt78_362-XFTWs6SkurqeEjs8yB7rngo9Od1pZICk5y6izFBLuecdzXRzKune2BMjdYMRo9GHaCPj_5Lus4gzV1l6QntSQ_6_Soovbq30nwW3UfHxTBQvaMyerw6dkhxR8r5KJmnw1Mkw4Q16yopAPmklBR0Y-v0F1cU6j7VYphQTn7RX34O9LvLC8tVKB_AkyKOSdwyvii9yevCf1Uo6l922rftvrTdtWdv9K9WP9P8RMn-LCY
CitedBy_id crossref_primary_10_1302_0301_620X_106B11_BJJ_2024_0453_R1
crossref_primary_10_1016_j_bone_2024_117263
Cites_doi 10.1177/1759720X12437354
10.1186/ar4405
10.1038/s41598-020-69328-w
10.2174/18742106-v16-e2112290
10.1016/j.joca.2014.06.014
10.1155/2017/3203027
10.1177/0022034515574770
10.1080/24740527.2019.1709163
10.1038/s41368-021-00129-1
10.3389/fphys.2022.859517
10.1007/s00784-018-2664-y
10.3390/ijms24119483
10.1016/j.bj.2016.06.003
10.3390/diagnostics11020285
10.1016/j.jot.2021.07.001
10.1259/dmfr.20160435
10.1155/2022/6863014
10.1016/j.mcpro.2022.100200
10.1007/s00330-018-5444-9
10.3389/fdmed.2022.1007011
10.1038/s41598-022-12976-x
10.1371/journal.pone.0272715
10.1111/odi.13623
10.3390/electronics12071558
10.1002/jcp.20435
10.1259/dmfr/59263880
10.1177/0022034519828731
10.1097/MD.0000000000018686
10.11607/jop.1151
10.1177/0022034516653743
10.3390/jimaging7080124
10.1259/dmfr.20190049
10.1080/08869634.2001.11746148
10.3389/fphar.2022.996668
10.1155/2022/5846255
10.1172/JCI82585
10.1111/cts.12884
10.1111/1754-9485.13054
10.1016/j.joca.2018.08.003
10.1016/j.jcjp.2022.100091
10.1038/s41598-021-92799-4
10.1177/1759720X211040300
10.1016/j.oooo.2018.12.014
10.1080/08869634.2023.2229607
10.1002/jor.23471
10.1038/s41598-020-63493-8
10.1089/ten.teb.2022.0065
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 20, 2024
Copyright © 2024 the Author(s). Published by PNAS. 2024
Copyright_xml – notice: Copyright National Academy of Sciences Feb 20, 2024
– notice: Copyright © 2024 the Author(s). Published by PNAS. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2306132121
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID PMC10895339
38346188
10_1073_pnas_2306132121
Genre Journal Article
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R01 DE024450
– fundername: ;
  grantid: R01 DE024450
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c422t-a2c7b3d3fea5787bfa4aad192ef972fd2010f53705537937afd5e23f6d8bca6c3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:31:50 EDT 2025
Fri Jul 11 04:11:30 EDT 2025
Mon Jun 30 07:54:47 EDT 2025
Mon Jul 21 06:04:11 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Tue Jul 01 02:37:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords temporomandibular joint osteoarthritis
degenerative joint disease
machine learning
prognosis
TMJ OA
Language English
License This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c422t-a2c7b3d3fea5787bfa4aad192ef972fd2010f53705537937afd5e23f6d8bca6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Donald Geman, Johns Hopkins University, Baltimore, MD; received April 17, 2023; accepted January 3, 2024
ORCID 0000-0001-6142-3865
0000-0002-6781-2690
0000-0001-9786-2253
0000-0003-2357-7534
0000-0002-7650-3638
0000-0002-6268-4204
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10895339
PMID 38346188
PQID 2930827328
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10895339
proquest_miscellaneous_2926079128
proquest_journals_2930827328
pubmed_primary_38346188
crossref_citationtrail_10_1073_pnas_2306132121
crossref_primary_10_1073_pnas_2306132121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-20
PublicationDateYYYYMMDD 2024-02-20
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2024
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
Aoun Y. (e_1_3_3_26_2) 2023
e_1_3_3_18_2
e_1_3_3_12_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
Tao Y. (e_1_3_3_45_2) 2015; 8
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
dos S. Conceição H. N. (e_1_3_3_39_2) 2022; 5
e_1_3_3_17_2
Basu A. (e_1_3_3_37_2) 2019; 3
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_15_2
  doi: 10.1177/1759720X12437354
– ident: e_1_3_3_14_2
  doi: 10.1186/ar4405
– ident: e_1_3_3_28_2
  doi: 10.1038/s41598-020-69328-w
– ident: e_1_3_3_12_2
  doi: 10.2174/18742106-v16-e2112290
– ident: e_1_3_3_29_2
  doi: 10.1016/j.joca.2014.06.014
– volume: 3
  year: 2019
  ident: e_1_3_3_37_2
  article-title: Call for data standardization: Lessons learned and recommendations in an imaging study
  publication-title: JCO Clin. Cancer Inform.
– ident: e_1_3_3_40_2
  doi: 10.1155/2017/3203027
– ident: e_1_3_3_43_2
  doi: 10.1177/0022034515574770
– ident: e_1_3_3_27_2
  doi: 10.1080/24740527.2019.1709163
– ident: e_1_3_3_22_2
  doi: 10.1038/s41368-021-00129-1
– volume: 5
  start-page: 56
  year: 2022
  ident: e_1_3_3_39_2
  article-title: Comorbidities associated with temporomandibular joint disorders and the role of central sensitization: Literature review
  publication-title: Braz. J. Pain
– ident: e_1_3_3_8_2
  doi: 10.3389/fphys.2022.859517
– ident: e_1_3_3_7_2
  doi: 10.1007/s00784-018-2664-y
– ident: e_1_3_3_23_2
  doi: 10.3390/ijms24119483
– ident: e_1_3_3_18_2
  doi: 10.1016/j.bj.2016.06.003
– ident: e_1_3_3_10_2
  doi: 10.3390/diagnostics11020285
– ident: e_1_3_3_46_2
  doi: 10.1016/j.jot.2021.07.001
– ident: e_1_3_3_16_2
  doi: 10.1259/dmfr.20160435
– ident: e_1_3_3_47_2
  doi: 10.1155/2022/6863014
– ident: e_1_3_3_24_2
  doi: 10.1016/j.mcpro.2022.100200
– ident: e_1_3_3_20_2
  doi: 10.1007/s00330-018-5444-9
– ident: e_1_3_3_31_2
  doi: 10.3389/fdmed.2022.1007011
– ident: e_1_3_3_41_2
  doi: 10.1038/s41598-022-12976-x
– ident: e_1_3_3_9_2
  doi: 10.1371/journal.pone.0272715
– ident: e_1_3_3_44_2
  doi: 10.1111/odi.13623
– ident: e_1_3_3_1_2
  doi: 10.3390/electronics12071558
– ident: e_1_3_3_50_2
  doi: 10.1002/jcp.20435
– ident: e_1_3_3_32_2
  doi: 10.1259/dmfr/59263880
– ident: e_1_3_3_34_2
  doi: 10.1177/0022034519828731
– ident: e_1_3_3_42_2
  doi: 10.1097/MD.0000000000018686
– ident: e_1_3_3_11_2
  doi: 10.11607/jop.1151
– ident: e_1_3_3_36_2
  doi: 10.1177/0022034516653743
– ident: e_1_3_3_17_2
  doi: 10.3390/jimaging7080124
– ident: e_1_3_3_38_2
  doi: 10.1259/dmfr.20190049
– ident: e_1_3_3_35_2
  doi: 10.1080/08869634.2001.11746148
– ident: e_1_3_3_33_2
  doi: 10.3389/fphar.2022.996668
– volume: 8
  start-page: 9112
  year: 2015
  ident: e_1_3_3_45_2
  article-title: Expression and correlation of matrix metalloproteinase-7 and interleukin-15 in human osteoarthritis
  publication-title: Int. J. Clin. Exp. Pathol.
– ident: e_1_3_3_19_2
  doi: 10.1155/2022/5846255
– ident: e_1_3_3_49_2
  doi: 10.1172/JCI82585
– ident: e_1_3_3_2_2
  doi: 10.1111/cts.12884
– ident: e_1_3_3_13_2
  doi: 10.1111/1754-9485.13054
– ident: e_1_3_3_21_2
  doi: 10.1016/j.joca.2018.08.003
– ident: e_1_3_3_25_2
  doi: 10.1016/j.jcjp.2022.100091
– ident: e_1_3_3_3_2
  doi: 10.1038/s41598-021-92799-4
– ident: e_1_3_3_30_2
  doi: 10.1177/1759720X211040300
– ident: e_1_3_3_5_2
  doi: 10.1016/j.oooo.2018.12.014
– start-page: 1
  year: 2023
  ident: e_1_3_3_26_2
  article-title: Salivary biomarkers as potential diagnostic tool for temporomandibular disorders: A comprehensive review
  publication-title: CRANIO®
  doi: 10.1080/08869634.2023.2229607
– ident: e_1_3_3_48_2
  doi: 10.1002/jor.23471
– ident: e_1_3_3_6_2
  doi: 10.1038/s41598-020-63493-8
– ident: e_1_3_3_4_2
  doi: 10.1089/ten.teb.2022.0065
SSID ssj0009580
Score 2.4755673
Snippet Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of...
This study identified a comprehensive set of clinical, quantitative imaging, and biological biomarkers for precise prediction of Temporomandibular joint...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2306132121
SubjectTerms Arthritis
Back pain
Biological Sciences
Chronic pain
Customization
Decision making
Endothelium
Headache
Humans
Jaw
Leukocytes (neutrophilic)
Low back pain
Machine learning
Matrix metalloproteinase
Matrix metalloproteinases
Metalloproteinase
Nonuniformity
Osteoarthritis
Osteoarthritis - therapy
Pain
Patients
Precision medicine
Prediction models
Predictions
Prospective Studies
Research Design
Saliva
Temporomandibular Joint
Temporomandibular joint disorders
Temporomandibular Joint Disorders - therapy
Title A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression
URI https://www.ncbi.nlm.nih.gov/pubmed/38346188
https://www.proquest.com/docview/2930827328
https://www.proquest.com/docview/2926079128
https://pubmed.ncbi.nlm.nih.gov/PMC10895339
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKcuGCWD7LLshIHBZVKW3ixsmxQrusUCl7SKXeIjuxaZeSrrrthX_BP2bGdr7aRVq4RJXtJlHfZDLjvnlDyPtMQGoSc-Vp5muP5VrDM8eFl-t8qEPhMz7AQuGv0_Byxr7MR_NO53eDtbTbyn726866kv9BFcYAV6yS_Qdkq5PCAHwGfOEICMPxXhiPDSN8oxaOhe5EUj0sn0QKECoA5EvbDNy0vLGkQqNGtf6JBS3SsFCv10tkBADga7jKwugcWeaWVe1oRrBX1RvvtuQXTMsNxXFdnuJ8xm3P611N62bH41Uv2W1-KIxJl9a7X6-qN8PEDCWq-K7Vst6-B8M0rYfNVn-VA3zGgu6VqzfKlDuL28DwmSkIHzR8LoQsXshs19C-umOsdNS2ltpZZNRwuwoTKcir3YqD1wL4MexlDPfYb69sC3BPv6UXs8kkTc7nyQPy0IfMwy83gCod58gKXLj7K9WiePBx7_TtQOcge9kn4TaimuQJeezSETq2tnVMOqp4So5L8OiZUyX_8IwsxrRlbHTf2GhtbNQYGwVjowfGRo2x0bax0YaxPSezi_Pk06Xn2nR4GfP9rSf8jMsgD7QS6P6lFkyIHDIHpWPu6xz5FnoUoGxTgGqMQucjAEyHeSQzEWbBC3JUrAv1itARCtwNFZcSIkvOZCzkQIZMZFwHURaJLumXv2maOQ17bKWySg2XggcpgpDWIHTJWfWFGyvf8velpyVIqXvGYTpGOScUtOqSd9U0eGD8W00Uar3DNXDXPB7impcW0-paQRSwcBjBTNRCu1qA6u7tmWK5MCrvw0GE1O_49T0ufEIe1U_WKTnabnbqDQTLW_nWmO8fh7vITQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+patient-specific+prediction+model+for+temporomandibular+joint+osteoarthritis+progression&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Al+Turkestani%2C+Najla&rft.au=Li%2C+Tengfei&rft.au=Bianchi%2C+Jonas&rft.au=Gurgel%2C+Marcela&rft.date=2024-02-20&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=121&rft.issue=8&rft.spage=e2306132121&rft_id=info:doi/10.1073%2Fpnas.2306132121&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon