Oncogene-like addiction to aneuploidy in human cancers

Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. U...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 381; no. 6660; p. eadg4521
Main Authors Girish, Vishruth, Lakhani, Asad A., Thompson, Sarah L., Scaduto, Christine M., Brown, Leanne M., Hagenson, Ryan A., Sausville, Erin L., Mendelson, Brianna E., Kandikuppa, Pranav K., Lukow, Devon A., Yuan, Monet Lou, Stevens, Eric C., Lee, Sophia N., Schukken, Klaske M., Akalu, Saron M., Vasudevan, Anand, Zou, Charles, Salovska, Barbora, Li, Wenxue, Smith, Joan C., Taylor, Alison M., Martienssen, Robert A., Liu, Yansheng, Sun, Ruping, Sheltzer, Jason M.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 25.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these “aneuploidy addictions” could be targeted as a therapeutic strategy. Aneuploidies, which are changes in the numbers of whole chromosomes or chromosome arms, are common in cancer, but their contributions to cancer cell survival have been difficult to pinpoint. Girish et al . developed a chromosome-engineering tool to orchestrate the targeted loss of aneuploid chromosome arms and thereby compare isogenic cancer cell lines with and without selected trisomies. The authors discovered that trisomy of chromosome 1q in particular is advantageous to cancer cells and phenocopies the loss of tumor suppressor TP53 signaling. Tumors with this aneuploidy are sensitive to compounds activated by an enzyme encoded on chromosome 1q, suggesting a potential therapeutic approach. —Yevgeniya Nusinovich Specific aneuploidies benefit cancer cells and may be sensitive to treatment
AbstractList Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of and suppresses p53 signaling, and we show that mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these "aneuploidy addictions" could be targeted as a therapeutic strategy.
Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT ( Re storing D isomy in A neuploid cells using C RISPR T argeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually-exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these “aneuploidy addictions” could be targeted as a therapeutic strategy.
Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these “aneuploidy addictions” could be targeted as a therapeutic strategy. Aneuploidies, which are changes in the numbers of whole chromosomes or chromosome arms, are common in cancer, but their contributions to cancer cell survival have been difficult to pinpoint. Girish et al . developed a chromosome-engineering tool to orchestrate the targeted loss of aneuploid chromosome arms and thereby compare isogenic cancer cell lines with and without selected trisomies. The authors discovered that trisomy of chromosome 1q in particular is advantageous to cancer cells and phenocopies the loss of tumor suppressor TP53 signaling. Tumors with this aneuploidy are sensitive to compounds activated by an enzyme encoded on chromosome 1q, suggesting a potential therapeutic approach. —Yevgeniya Nusinovich Specific aneuploidies benefit cancer cells and may be sensitive to treatment
Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these "aneuploidy addictions" could be targeted as a therapeutic strategy.Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these "aneuploidy addictions" could be targeted as a therapeutic strategy.
Editor’s summaryAneuploidies, which are changes in the numbers of whole chromosomes or chromosome arms, are common in cancer, but their contributions to cancer cell survival have been difficult to pinpoint. Girish et al. developed a chromosome-engineering tool to orchestrate the targeted loss of aneuploid chromosome arms and thereby compare isogenic cancer cell lines with and without selected trisomies. The authors discovered that trisomy of chromosome 1q in particular is advantageous to cancer cells and phenocopies the loss of tumor suppressor TP53 signaling. Tumors with this aneuploidy are sensitive to compounds activated by an enzyme encoded on chromosome 1q, suggesting a potential therapeutic approach. —Yevgeniya NusinovichINTRODUCTIONIt has been known for more than 100 years that human cancers exhibit pervasive aneuploidy, or chromosome copy number changes. For instance, about 25% of cancers exhibit gains of the q arm of chromosome 1. However, despite the prevalence of aneuploidy across cancer types, its role in tumorigenesis has remained poorly defined. Our ability to uncover the function of these large-scale copy number alterations has been hampered by our inability to experimentally manipulate chromosome dosage in cancer. Nonetheless, as aneuploidy is common across malignancies but rare in normal tissue, drugs that exhibit selective toxicity toward aneuploid cells could be useful anticancer agents.RATIONALEAlthough aneuploidies have resisted close analysis, previous research has led to the discovery of a phenomenon called “oncogene addiction.” An oncogene-addicted cancer is dependent on the expression of an individual oncogene for continued malignant growth, and loss or inhibition of that oncogene is sufficient to induce cancer regression. As specific aneuploidies such as the gain of chromosome 1q are frequent events in diverse cancer types, we hypothesized that certain aneuploidies could themselves represent oncogene-like cancer addictions. To test this hypothesis, we developed ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate individual aneuploid chromosomes from cancer genomes. Using ReDACT, we created and then characterized a panel of isogenic cells that have or lack common cancer aneuploidies.RESULTSWe found that eliminating the trisomy of chromosome 1q from cancer cell lines harboring this alteration almost completely abolished anchorage-independent growth and xenograft formation. Similarly, eliminating the 1q trisomy from a nonmalignant cell line blocked RAS-mediated transformation. Prolonged growth in vitro or in vivo after aneuploidy elimination in cancer cell lines led to karyotype evolution, and 1q-disomic cells were eventually outcompeted by cells that had recovered the 1q trisomy. In contrast, removing other trisomic chromosomes from cancer cells had variable effects on malignant growth, demonstrating that different aneuploidies have distinct phenotypic consequences for cancer development.An analysis of clinical sequencing data demonstrated that chromosome 1q gains arise early during tumorigenesis and are mutually exclusive with mutations in the tumor suppressor TP53, suggesting that 1q trisomies could represent a mutation-independent mechanism for blocking p53 signaling. Consistent with this, we demonstrated that ReDACT-mediated elimination of chromosome 1q trisomies increased the expression of p53 target genes in TP53 wild-type cell lines. We traced this suppression of p53 function to the triplication of MDM4, a p53 inhibitor encoded on chromosome 1q, and we found that deleting a single copy of MDM4 impaired the growth of 1q-trisomic cells, whereas moderate overexpression of MDM4 rescued the growth of 1q-disomic cells.Finally, we demonstrated that chromosome 1q gains result in the overexpression of UCK2, a nucleotide kinase encoded on chromosome 1q that is also required for the cytotoxicity of certain anticancer nucleotide analogs. We determined that several different 1q-trisomic cell lines displayed enhanced sensitivity to these compounds owing to the up-regulation of UCK2, revealing that 1q aneuploidy can also represent a tractable cancer vulnerability.CONCLUSIONCertain aneuploidies that are commonly found in tumor genomes play a central role in cancer development, and eliminating these aneuploidies compromises malignant growth potential. At the same time, aneuploidy causes collateral therapeutic vulnerabilities that can be targeted to selectively eliminate cells with chromosome dosage imbalances. The development of flexible chromosome engineering methodologies like ReDACT will enable additional experiments to further unravel the consequences of aneuploidy in development and disease.
Author Lukow, Devon A.
Lee, Sophia N.
Lakhani, Asad A.
Thompson, Sarah L.
Li, Wenxue
Smith, Joan C.
Stevens, Eric C.
Salovska, Barbora
Sun, Ruping
Kandikuppa, Pranav K.
Schukken, Klaske M.
Vasudevan, Anand
Martienssen, Robert A.
Scaduto, Christine M.
Sausville, Erin L.
Zou, Charles
Brown, Leanne M.
Mendelson, Brianna E.
Girish, Vishruth
Akalu, Saron M.
Liu, Yansheng
Hagenson, Ryan A.
Yuan, Monet Lou
Taylor, Alison M.
Sheltzer, Jason M.
AuthorAffiliation 1. Yale University School of Medicine, New Haven, CT 06511
5. Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
4. Columbia University School of Medicine, New York, NY 10032
2. Johns Hopkins University School of Medicine, Baltimore, MD 21205
3. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
6. Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
AuthorAffiliation_xml – name: 6. Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
– name: 3. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
– name: 5. Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
– name: 2. Johns Hopkins University School of Medicine, Baltimore, MD 21205
– name: 1. Yale University School of Medicine, New Haven, CT 06511
– name: 4. Columbia University School of Medicine, New York, NY 10032
Author_xml – sequence: 1
  givenname: Vishruth
  orcidid: 0000-0002-3848-7374
  surname: Girish
  fullname: Girish, Vishruth
  organization: Yale University School of Medicine, New Haven, CT 06511, USA., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 2
  givenname: Asad A.
  orcidid: 0000-0001-9663-6051
  surname: Lakhani
  fullname: Lakhani, Asad A.
  organization: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
– sequence: 3
  givenname: Sarah L.
  orcidid: 0000-0002-9062-2027
  surname: Thompson
  fullname: Thompson, Sarah L.
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 4
  givenname: Christine M.
  surname: Scaduto
  fullname: Scaduto, Christine M.
  organization: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
– sequence: 5
  givenname: Leanne M.
  surname: Brown
  fullname: Brown, Leanne M.
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 6
  givenname: Ryan A.
  orcidid: 0000-0001-9750-1925
  surname: Hagenson
  fullname: Hagenson, Ryan A.
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 7
  givenname: Erin L.
  orcidid: 0000-0002-4386-703X
  surname: Sausville
  fullname: Sausville, Erin L.
  organization: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
– sequence: 8
  givenname: Brianna E.
  orcidid: 0000-0002-1844-3198
  surname: Mendelson
  fullname: Mendelson, Brianna E.
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 9
  givenname: Pranav K.
  orcidid: 0009-0001-9069-2762
  surname: Kandikuppa
  fullname: Kandikuppa, Pranav K.
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 10
  givenname: Devon A.
  orcidid: 0000-0001-6642-8649
  surname: Lukow
  fullname: Lukow, Devon A.
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 11
  givenname: Monet Lou
  surname: Yuan
  fullname: Yuan, Monet Lou
  organization: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
– sequence: 12
  givenname: Eric C.
  orcidid: 0009-0008-6037-756X
  surname: Stevens
  fullname: Stevens, Eric C.
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 13
  givenname: Sophia N.
  orcidid: 0009-0004-3517-1990
  surname: Lee
  fullname: Lee, Sophia N.
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 14
  givenname: Klaske M.
  surname: Schukken
  fullname: Schukken, Klaske M.
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 15
  givenname: Saron M.
  orcidid: 0000-0003-1430-0461
  surname: Akalu
  fullname: Akalu, Saron M.
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 16
  givenname: Anand
  surname: Vasudevan
  fullname: Vasudevan, Anand
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 17
  givenname: Charles
  surname: Zou
  fullname: Zou, Charles
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 18
  givenname: Barbora
  orcidid: 0000-0002-7093-4576
  surname: Salovska
  fullname: Salovska, Barbora
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 19
  givenname: Wenxue
  orcidid: 0000-0002-8902-0184
  surname: Li
  fullname: Li, Wenxue
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 20
  givenname: Joan C.
  surname: Smith
  fullname: Smith, Joan C.
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 21
  givenname: Alison M.
  orcidid: 0000-0001-9341-535X
  surname: Taylor
  fullname: Taylor, Alison M.
  organization: Columbia University School of Medicine, New York, NY 10032, USA
– sequence: 22
  givenname: Robert A.
  orcidid: 0000-0003-1285-9608
  surname: Martienssen
  fullname: Martienssen, Robert A.
  organization: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA., Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
– sequence: 23
  givenname: Yansheng
  orcidid: 0000-0002-2626-3912
  surname: Liu
  fullname: Liu, Yansheng
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
– sequence: 24
  givenname: Ruping
  orcidid: 0000-0003-3702-9483
  surname: Sun
  fullname: Sun, Ruping
  organization: Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
– sequence: 25
  givenname: Jason M.
  orcidid: 0000-0003-1381-1323
  surname: Sheltzer
  fullname: Sheltzer, Jason M.
  organization: Yale University School of Medicine, New Haven, CT 06511, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37410869$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLxTAQhYMoen2s3UnBjZtqHs2jKxHxBYIbXYdpOr1Ge5Nr0wr-eyNeRQVXWcx3TubM2SbrIQYkZJ_RY8a4OknOY3B4DO28kpytkRmjtSxrTsU6mVEqVGmolltkO6UnSvOsFptkS-iKUaPqGVF3wcU5Bix7_4wFtK13o4-hGGMBAadlH337VvhQPE4LCIWD_N2QdslGB33CvdW7Qx4uL-7Pr8vbu6ub87Pb0lWcjyVQyh1rqkaZCkGB7BoDpmUoRCfQQNcJ2VAlVYNOg64rVYPUNW2UbjrjQOyQ00_f5dQssHUYxgF6uxz8AoY3G8Hb35PgH-08vlqWU4tai-xwtHIY4suEabQLnxz2fU4Xp2S5EZJrw1SV0cM_6FOchpDzZUqqimsqVaYOfq70vcvXTTNw8gm4IaY0YPeNMGo_WrOr1uyqtayQfxTOj_BRQ87k-3917_ctn2w
CitedBy_id crossref_primary_10_1038_s41467_024_52554_5
crossref_primary_10_1093_pnasnexus_pgaf022
crossref_primary_10_1016_j_stemcr_2024_06_003
crossref_primary_10_1038_s41588_024_01916_2
crossref_primary_10_1007_s10577_023_09741_9
crossref_primary_10_1172_jci_insight_176743
crossref_primary_10_3390_cells13080666
crossref_primary_10_1038_s44318_025_00372_w
crossref_primary_10_1002_bies_202400062
crossref_primary_10_1242_jcs_260199
crossref_primary_10_3390_cells13161397
crossref_primary_10_1016_j_devcel_2023_12_009
crossref_primary_10_1016_j_annpat_2023_07_004
crossref_primary_10_1038_s41467_024_46414_5
crossref_primary_10_1038_s41467_025_56783_0
crossref_primary_10_1038_s41467_024_47945_7
crossref_primary_10_1080_23723556_2024_2369388
crossref_primary_10_1186_s13058_024_01924_4
crossref_primary_10_1016_j_tips_2024_01_009
crossref_primary_10_1158_0008_5472_CAN_24_2248
crossref_primary_10_1016_j_heliyon_2025_e42852
crossref_primary_10_1186_s13053_024_00302_7
crossref_primary_10_1146_annurev_cancerbio_062722_021823
crossref_primary_10_3390_biomedicines12081759
crossref_primary_10_1039_D3AN01815F
crossref_primary_10_1016_j_ceb_2025_102490
crossref_primary_10_1016_j_molcel_2023_11_002
crossref_primary_10_1186_s13059_024_03225_7
crossref_primary_10_1038_s41598_024_66062_5
crossref_primary_10_1038_s41392_024_01767_7
crossref_primary_10_1038_s44319_024_00252_0
crossref_primary_10_3892_or_2023_8613
crossref_primary_10_1038_s41698_023_00492_8
crossref_primary_10_1016_j_crmeth_2023_100618
crossref_primary_10_1007_s10577_023_09735_7
crossref_primary_10_1016_j_xgen_2025_100815
crossref_primary_10_1038_s41419_024_07236_x
crossref_primary_10_1016_j_xgen_2024_100656
crossref_primary_10_1126_scisignal_ado2857
crossref_primary_10_1126_sciadv_adh1442
crossref_primary_10_1016_j_tig_2023_09_002
crossref_primary_10_56294_sctconf2024_697
crossref_primary_10_1038_s41467_025_56301_2
crossref_primary_10_1038_s41375_024_02494_2
crossref_primary_10_3390_ijms25136815
crossref_primary_10_1016_j_ijbiomac_2024_133944
crossref_primary_10_1053_j_gastro_2024_02_048
crossref_primary_10_1038_s41588_024_01988_0
crossref_primary_10_1002_gcc_23267
crossref_primary_10_1038_s41568_024_00706_6
crossref_primary_10_1158_0008_5472_CAN_24_0169
crossref_primary_10_1158_0008_5472_CAN_24_3599
crossref_primary_10_1016_j_molmed_2024_04_017
crossref_primary_10_1038_s41368_023_00265_w
crossref_primary_10_1038_s41568_023_00608_z
crossref_primary_10_1083_jcb_202311140
crossref_primary_10_1158_1078_0432_CCR_23_3156
crossref_primary_10_26508_lsa_202402927
Cites_doi 10.1101/cshperspect.a031435
10.1007/s10495-021-01666-0
10.1126/science.1073096
10.1038/ncb1123
10.1038/nbt.3820
10.1242/jcs.025742
10.21873/anticanres.13508
10.1016/j.cell.2013.10.011
10.1016/j.celrep.2022.110569
10.1146/annurev-pathol-012414-040349
10.1074/mcp.M114.044305
10.1124/mol.59.5.1181
10.1016/j.cell.2018.02.052
10.1371/journal.pgen.1006853
10.1016/j.ccell.2018.03.007
10.1038/nrc2771
10.1002/cpmb.100
10.2174/1566523033347426
10.1126/science.282.5393.1497
10.1126/science.8465203
10.1200/JCO.2019.37.7_suppl.455
10.1158/0008-5472.CAN-09-0773
10.1038/nature22071
10.1016/j.ccr.2006.12.003
10.1371/journal.pone.0162901
10.1038/ng.3984
10.1073/pnas.1521145112
10.1038/s41587-019-0037-y
10.1038/22788
10.1038/nrg3123
10.1038/nature08822
10.1126/scitranslmed.aaa1408
10.1038/s41586-020-03133-3
10.1038/s41467-021-26097-y
10.1038/srep38198
10.1126/science.1235122
10.1089/crispr.2018.0014
10.1016/j.devcel.2021.07.009
10.21105/joss.01686
10.7554/eLife.37294
10.1016/j.cell.2017.05.016
10.1093/bioinformatics/btp616
10.1016/j.cell.2020.10.025
10.1101/gr.276378.121
10.21769/BioProtoc.3682
10.1038/s41568-020-00321-1
10.1158/0008-5472.CAN-18-3438
10.1093/annonc/mdx703
10.1074/mcp.RA118.001288
10.1101/078261
10.1146/annurev-cancerbio-030518-055742
10.1038/s41598-017-10418-7
10.1016/j.xinn.2021.100141
10.1002/pmic.201800438
10.1126/scitranslmed.aaw8412
10.1073/pnas.2003771117
10.1038/gim.2016.23
10.7554/eLife.19760
10.1016/j.tig.2011.07.003
10.1016/j.stem.2023.01.006
10.1038/336348a0
10.1002/emmm.201100176
10.1038/s43018-019-0018-6
10.1128/MCB.24.13.5835-5843.2004
10.1002/0471142905.hg0213s67
10.1016/j.cellbi.2005.10.001
10.1016/j.devcel.2020.01.034
10.18637/jss.v057.i11
10.1101/2022.06.14.495959
10.1038/s41467-017-00249-5
10.1016/j.ccell.2017.07.005
10.1016/j.stem.2012.08.004
10.1073/pnas.94.18.9648
10.1016/j.ccell.2016.12.004
10.1101/gr.201491.115
10.1038/onc.2016.502
10.7554/eLife.39217
10.1074/mcp.RA117.000314
10.1016/j.cell.2017.01.020
10.1016/j.cell.2022.01.003
10.1038/s41467-018-07901-8
10.1093/bioinformatics/btt546
10.1016/j.cell.2018.02.037
10.1186/s12915-023-01595-1
10.1016/j.xpro.2022.101927
10.1073/pnas.1902645116
10.1073/pnas.72.11.4435
10.1038/ng.2760
10.1038/s41586-020-03114-6
10.1038/s41576-020-0247-7
10.1080/21541248.2016.1212689
10.1093/nar/gkaa968
10.1038/nmeth.3255
ContentType Journal Article
Copyright Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.adg4521
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Engineering
EISSN 1095-9203
EndPage eadg4521
ExternalDocumentID PMC10753973
37410869
10_1126_science_adg4521
Genre Journal Article
GrantInformation_xml – fundername: Wellcome Trust
– fundername: NIGMS NIH HHS
  grantid: R01 GM137031
– fundername: NCI NIH HHS
  grantid: R01 CA237652
– fundername: NCI NIH HHS
  grantid: P30 CA016359
– fundername: NIGMS NIH HHS
  grantid: T32 GM136577
– fundername: NICHD NIH HHS
  grantid: T32 HD007149
– fundername: NCI NIH HHS
  grantid: R01 CA276666
– fundername: NCI NIH HHS
  grantid: P30 CA045508
– fundername: NIGMS NIH HHS
  grantid: R35 GM144206
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
RZL
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YJ6
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c422t-a002c1b4b684ea6a5fb8a8d1e33f3e8aff35b0656bec7a79469a5790b67bf8ca3
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:37:22 EDT 2025
Tue Aug 05 11:32:49 EDT 2025
Wed Aug 13 04:07:34 EDT 2025
Mon Jul 21 06:06:40 EDT 2025
Thu Apr 24 23:09:13 EDT 2025
Tue Jul 01 03:13:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6660
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c422t-a002c1b4b684ea6a5fb8a8d1e33f3e8aff35b0656bec7a79469a5790b67bf8ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author Contributions. Conceptualization: V.G., A.A.L., C.M.S., J.M.S. Methodology: V.G., A.A.L., C.M.S., S.L.T., A.M.T., Y.L., J.M.S. Software: R.A.H., J.C.S., R.S. Formal analysis: R.A.H., J.C.S., R.S. Investigation: V.G., A.A.L., C.M.S., S.L.T., L.M.B., R.A.H., E.L.S., B.E.M., D.A.L., M.L.Y., P.K.K., E.C.S., S.N.L., K.M.S., S.A.M., A.V., C.Z., B.S., W.L. Resources: A.M.T. Data Curation: R.A.H., J.C.S. Writing – original draft: V.G., A.A.L., J.M.S. Writing – review and editing: V.G., A.A.L., J.M.S. Visualization: V.G., A.A.L., S.L.T., L.B., R.A.H., R.S., J.M.S. Supervision: Y.L., R.A.M., R.S., J.M.S. Funding acquisition: J.M.S.
Equal contribution
ORCID 0000-0002-4386-703X
0000-0002-8902-0184
0009-0001-9069-2762
0000-0001-6642-8649
0000-0003-1430-0461
0000-0002-2626-3912
0000-0002-1844-3198
0009-0004-3517-1990
0000-0001-9750-1925
0000-0002-7093-4576
0000-0002-3848-7374
0000-0003-3702-9483
0000-0002-9062-2027
0000-0003-1381-1323
0000-0003-1285-9608
0000-0001-9663-6051
0009-0008-6037-756X
0000-0001-9341-535X
OpenAccessLink https://www.science.org/history/13c1dfb6-857c-4222-8fb8-ebee1b9a49f9/science.adg4521.v1.pdf
PMID 37410869
PQID 2856427056
PQPubID 1256
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10753973
proquest_miscellaneous_2835278164
proquest_journals_2856427056
pubmed_primary_37410869
crossref_primary_10_1126_science_adg4521
crossref_citationtrail_10_1126_science_adg4521
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-25
20230825
PublicationDateYYYYMMDD 2023-08-25
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2023
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_81_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_82_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_70_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_83_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_80_2
e_1_3_2_101_2
Zimonjic D. (e_1_3_2_12_2) 2001; 61
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_72_2
37449722 - Cancer Discov. 2023 Sep 6;13(9):1956. doi: 10.1158/2159-8290.CD-RW2023-110
36711674 - bioRxiv. 2023 Jan 10:2023.01.09.523344. doi: 10.1101/2023.01.09.523344
References_xml – ident: e_1_3_2_19_2
  doi: 10.1101/cshperspect.a031435
– ident: e_1_3_2_59_2
  doi: 10.1007/s10495-021-01666-0
– ident: e_1_3_2_96_2
– ident: e_1_3_2_18_2
  doi: 10.1126/science.1073096
– ident: e_1_3_2_50_2
  doi: 10.1038/ncb1123
– ident: e_1_3_2_71_2
  doi: 10.1038/nbt.3820
– ident: e_1_3_2_4_2
  doi: 10.1242/jcs.025742
– ident: e_1_3_2_68_2
  doi: 10.21873/anticanres.13508
– ident: e_1_3_2_10_2
  doi: 10.1016/j.cell.2013.10.011
– ident: e_1_3_2_98_2
  doi: 10.1016/j.celrep.2022.110569
– ident: e_1_3_2_47_2
  doi: 10.1146/annurev-pathol-012414-040349
– ident: e_1_3_2_83_2
  doi: 10.1074/mcp.M114.044305
– ident: e_1_3_2_53_2
  doi: 10.1124/mol.59.5.1181
– ident: e_1_3_2_99_2
  doi: 10.1016/j.cell.2018.02.052
– ident: e_1_3_2_92_2
  doi: 10.1371/journal.pgen.1006853
– ident: e_1_3_2_2_2
  doi: 10.1016/j.ccell.2018.03.007
– ident: e_1_3_2_61_2
  doi: 10.1038/nrc2771
– ident: e_1_3_2_69_2
  doi: 10.1002/cpmb.100
– ident: e_1_3_2_33_2
  doi: 10.2174/1566523033347426
– ident: e_1_3_2_16_2
  doi: 10.1126/science.282.5393.1497
– ident: e_1_3_2_17_2
  doi: 10.1126/science.8465203
– ident: e_1_3_2_67_2
  doi: 10.1200/JCO.2019.37.7_suppl.455
– ident: e_1_3_2_51_2
  doi: 10.1158/0008-5472.CAN-09-0773
– ident: e_1_3_2_23_2
  doi: 10.1038/nature22071
– ident: e_1_3_2_101_2
– ident: e_1_3_2_9_2
  doi: 10.1016/j.ccr.2006.12.003
– ident: e_1_3_2_54_2
  doi: 10.1371/journal.pone.0162901
– ident: e_1_3_2_91_2
  doi: 10.1038/ng.3984
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.1521145112
– ident: e_1_3_2_78_2
  doi: 10.1038/s41587-019-0037-y
– ident: e_1_3_2_40_2
  doi: 10.1038/22788
– ident: e_1_3_2_3_2
  doi: 10.1038/nrg3123
– ident: e_1_3_2_90_2
  doi: 10.1038/nature08822
– ident: e_1_3_2_25_2
  doi: 10.1126/scitranslmed.aaa1408
– ident: e_1_3_2_65_2
  doi: 10.1038/s41586-020-03133-3
– ident: e_1_3_2_36_2
  doi: 10.1038/s41467-021-26097-y
– ident: e_1_3_2_85_2
  doi: 10.1038/srep38198
– ident: e_1_3_2_100_2
  doi: 10.1126/science.1235122
– ident: e_1_3_2_89_2
  doi: 10.1089/crispr.2018.0014
– ident: e_1_3_2_31_2
  doi: 10.1016/j.devcel.2021.07.009
– ident: e_1_3_2_73_2
  doi: 10.21105/joss.01686
– ident: e_1_3_2_30_2
  doi: 10.7554/eLife.37294
– ident: e_1_3_2_52_2
  doi: 10.1016/j.cell.2017.05.016
– ident: e_1_3_2_75_2
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_3_2_35_2
  doi: 10.1016/j.cell.2020.10.025
– ident: e_1_3_2_38_2
  doi: 10.1101/gr.276378.121
– ident: e_1_3_2_49_2
  doi: 10.21769/BioProtoc.3682
– ident: e_1_3_2_6_2
  doi: 10.1038/s41568-020-00321-1
– ident: e_1_3_2_62_2
  doi: 10.1158/0008-5472.CAN-18-3438
– ident: e_1_3_2_42_2
  doi: 10.1093/annonc/mdx703
– ident: e_1_3_2_82_2
  doi: 10.1074/mcp.RA118.001288
– ident: e_1_3_2_72_2
  doi: 10.1101/078261
– volume: 61
  start-page: 8838
  year: 2001
  ident: e_1_3_2_12_2
  article-title: Derivation of human tumor cells in vitro without widespread genomic instability
  publication-title: Cancer Res.
– ident: e_1_3_2_15_2
  doi: 10.1146/annurev-cancerbio-030518-055742
– ident: e_1_3_2_34_2
  doi: 10.1038/s41598-017-10418-7
– ident: e_1_3_2_77_2
  doi: 10.1016/j.xinn.2021.100141
– ident: e_1_3_2_80_2
  doi: 10.1002/pmic.201800438
– ident: e_1_3_2_55_2
  doi: 10.1126/scitranslmed.aaw8412
– ident: e_1_3_2_24_2
  doi: 10.1073/pnas.2003771117
– ident: e_1_3_2_13_2
  doi: 10.1038/gim.2016.23
– ident: e_1_3_2_48_2
  doi: 10.7554/eLife.19760
– ident: e_1_3_2_7_2
  doi: 10.1016/j.tig.2011.07.003
– ident: e_1_3_2_64_2
  doi: 10.1016/j.stem.2023.01.006
– ident: e_1_3_2_86_2
  doi: 10.1038/336348a0
– ident: e_1_3_2_41_2
  doi: 10.1002/emmm.201100176
– ident: e_1_3_2_58_2
  doi: 10.1038/s43018-019-0018-6
– ident: e_1_3_2_63_2
  doi: 10.1128/MCB.24.13.5835-5843.2004
– ident: e_1_3_2_74_2
  doi: 10.1002/0471142905.hg0213s67
– ident: e_1_3_2_5_2
  doi: 10.1016/j.cellbi.2005.10.001
– ident: e_1_3_2_28_2
– ident: e_1_3_2_88_2
  doi: 10.1016/j.devcel.2020.01.034
– ident: e_1_3_2_95_2
  doi: 10.18637/jss.v057.i11
– ident: e_1_3_2_21_2
  doi: 10.1101/2022.06.14.495959
– ident: e_1_3_2_79_2
  doi: 10.1038/s41467-017-00249-5
– ident: e_1_3_2_22_2
  doi: 10.1016/j.ccell.2017.07.005
– ident: e_1_3_2_87_2
  doi: 10.1016/j.stem.2012.08.004
– ident: e_1_3_2_45_2
  doi: 10.1073/pnas.94.18.9648
– ident: e_1_3_2_8_2
  doi: 10.1016/j.ccell.2016.12.004
– ident: e_1_3_2_37_2
  doi: 10.1101/gr.201491.115
– ident: e_1_3_2_44_2
  doi: 10.1038/onc.2016.502
– ident: e_1_3_2_97_2
  doi: 10.7554/eLife.39217
– ident: e_1_3_2_81_2
  doi: 10.1074/mcp.RA117.000314
– ident: e_1_3_2_43_2
  doi: 10.1016/j.cell.2017.01.020
– ident: e_1_3_2_27_2
  doi: 10.1016/j.cell.2022.01.003
– ident: e_1_3_2_70_2
  doi: 10.1038/s41467-018-07901-8
– ident: e_1_3_2_94_2
  doi: 10.1093/bioinformatics/btt546
– ident: e_1_3_2_76_2
– ident: e_1_3_2_11_2
  doi: 10.1016/j.cell.2018.02.037
– ident: e_1_3_2_46_2
  doi: 10.1186/s12915-023-01595-1
– ident: e_1_3_2_93_2
  doi: 10.1016/j.xpro.2022.101927
– ident: e_1_3_2_29_2
  doi: 10.1073/pnas.1902645116
– ident: e_1_3_2_39_2
  doi: 10.1073/pnas.72.11.4435
– ident: e_1_3_2_20_2
  doi: 10.1038/ng.2760
– ident: e_1_3_2_66_2
  doi: 10.1038/s41586-020-03114-6
– ident: e_1_3_2_56_2
  doi: 10.1038/s41576-020-0247-7
– ident: e_1_3_2_26_2
  doi: 10.1080/21541248.2016.1212689
– ident: e_1_3_2_57_2
  doi: 10.1093/nar/gkaa968
– ident: e_1_3_2_84_2
  doi: 10.1038/nmeth.3255
– ident: e_1_3_2_32_2
– reference: 37449722 - Cancer Discov. 2023 Sep 6;13(9):1956. doi: 10.1158/2159-8290.CD-RW2023-110
– reference: 36711674 - bioRxiv. 2023 Jan 10:2023.01.09.523344. doi: 10.1101/2023.01.09.523344
SSID ssj0009593
Score 2.6462927
Snippet Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid...
Editor’s summaryAneuploidies, which are changes in the numbers of whole chromosomes or chromosome arms, are common in cancer, but their contributions to cancer...
Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT ( Re storing D isomy in A...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage eadg4521
SubjectTerms Addictions
Aneuploidy
Anticancer properties
Antitumor agents
Biocompatibility
Cancer
Carcinogenesis - genetics
Cell Cycle Proteins - genetics
Cell survival
Chromosome 1
Chromosomes
Copy number
CRISPR
Cytotoxicity
Dosage
Engineering
Exhibits
Gene Editing - methods
Gene expression
Genomes
Humans
In vivo methods and tests
Karyotypes
Kinases
Malignancy
Mutation
Neoplasms - genetics
Neoplasms - therapy
Nucleotide analogs
Nucleotides
Oncogenes
p53 Protein
Proto-Oncogene Proteins - metabolism
Sensitivity enhancement
Substance Abuse
Toxicity
Trisomy
Tumor cell lines
Tumor suppressor genes
Tumor Suppressor Protein p53 - genetics
Tumorigenesis
Tumors
Xenotransplantation
Title Oncogene-like addiction to aneuploidy in human cancers
URI https://www.ncbi.nlm.nih.gov/pubmed/37410869
https://www.proquest.com/docview/2856427056
https://www.proquest.com/docview/2835278164
https://pubmed.ncbi.nlm.nih.gov/PMC10753973
Volume 381
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELbaRJV6qZr0RZtWVOohVcRqwWDMcdNmG1Wb5NBdaW_INqZBWUGUwCH59R1jYyBJpbQXQLbBK8949pvxPBD64nMOICED3YQS5oUSw54TUuXGo3FOWJDliYp3Pjklx6vw5zpa98cFbXRJzSfi9sG4kv-hKrQBXVWU7D9Q1n4UGuAZ6AtXoDBcH0Xjs1JU0Cm9TXEhD5RrkC78DXiSlbK53FRF1sb16Up8QlHYnN4YPNptbcCZ9uxmQDHrhDjTrgKd54B5bWBG-FGoUvWt1yzcr5rampkX7OJcF46CL7OsN572vijGMH1gDdG_BMuauuqzHygsfDK0UARYmVx1NLMRqlNVDzKYakEmH2gzkhjr6i2G5UCxmg5EK7D87zDS4dT35f6gUqWcDEaOM2yfnqXz1WKRLo_Wy6doOwDVAmTj9uzw--H8bqpm-wtNQqhBqFU3wRjL3FNQ7vrZDoDL8iV6YTQOd6bZZwc9keUueqZrkN7soh1Dy2t336Qg__oKkRFnuZaz3Lpye85yi9JtOcs1nPUareZHy2_Hnqmw4YkwCGqPwf-h8HnICQ0lIyzKOWU08yXGOZaU5TmOOIBUAjs9ZqoWQcKiOJlyEvOcCobfoK2yKuU75KojZZXPiyachjjPGM8SkuWCg4IgiAwcNOnWKhUm_byqgrJJWzU0IKlZ3NQsroP27QuXOvPK34fudYufmu15nQY0At06BoDvoM-2G4SnOhGDpaoaNQb0j5j6JHTQW00rOxcGrA36fuIgOqKiHaASs497yuK8TdDuAw4HnI_fP2LiD-h5v2f20FZ91ciPgHNr_skw5h9hPa5C
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oncogene-like+addiction+to+aneuploidy+in+human+cancers&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Girish%2C+Vishruth&rft.au=Lakhani%2C+Asad+A&rft.au=Thompson%2C+Sarah+L&rft.au=Scaduto%2C+Christine+M&rft.date=2023-08-25&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=381&rft.issue=6660&rft.spage=eadg4521&rft_id=info:doi/10.1126%2Fscience.adg4521&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon