Oncogene-like addiction to aneuploidy in human cancers
Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. U...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 381; no. 6660; p. eadg4521 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
25.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of
MDM4
and suppresses p53 signaling, and we show that
TP53
mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these “aneuploidy addictions” could be targeted as a therapeutic strategy.
Aneuploidies, which are changes in the numbers of whole chromosomes or chromosome arms, are common in cancer, but their contributions to cancer cell survival have been difficult to pinpoint. Girish
et al
. developed a chromosome-engineering tool to orchestrate the targeted loss of aneuploid chromosome arms and thereby compare isogenic cancer cell lines with and without selected trisomies. The authors discovered that trisomy of chromosome 1q in particular is advantageous to cancer cells and phenocopies the loss of tumor suppressor
TP53
signaling. Tumors with this aneuploidy are sensitive to compounds activated by an enzyme encoded on chromosome 1q, suggesting a potential therapeutic approach. —Yevgeniya Nusinovich
Specific aneuploidies benefit cancer cells and may be sensitive to treatment |
---|---|
AbstractList | Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of
and suppresses p53 signaling, and we show that
mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these "aneuploidy addictions" could be targeted as a therapeutic strategy. Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT ( Re storing D isomy in A neuploid cells using C RISPR T argeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually-exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these “aneuploidy addictions” could be targeted as a therapeutic strategy. Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these “aneuploidy addictions” could be targeted as a therapeutic strategy. Aneuploidies, which are changes in the numbers of whole chromosomes or chromosome arms, are common in cancer, but their contributions to cancer cell survival have been difficult to pinpoint. Girish et al . developed a chromosome-engineering tool to orchestrate the targeted loss of aneuploid chromosome arms and thereby compare isogenic cancer cell lines with and without selected trisomies. The authors discovered that trisomy of chromosome 1q in particular is advantageous to cancer cells and phenocopies the loss of tumor suppressor TP53 signaling. Tumors with this aneuploidy are sensitive to compounds activated by an enzyme encoded on chromosome 1q, suggesting a potential therapeutic approach. —Yevgeniya Nusinovich Specific aneuploidies benefit cancer cells and may be sensitive to treatment Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these "aneuploidy addictions" could be targeted as a therapeutic strategy.Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these "aneuploidy addictions" could be targeted as a therapeutic strategy. Editor’s summaryAneuploidies, which are changes in the numbers of whole chromosomes or chromosome arms, are common in cancer, but their contributions to cancer cell survival have been difficult to pinpoint. Girish et al. developed a chromosome-engineering tool to orchestrate the targeted loss of aneuploid chromosome arms and thereby compare isogenic cancer cell lines with and without selected trisomies. The authors discovered that trisomy of chromosome 1q in particular is advantageous to cancer cells and phenocopies the loss of tumor suppressor TP53 signaling. Tumors with this aneuploidy are sensitive to compounds activated by an enzyme encoded on chromosome 1q, suggesting a potential therapeutic approach. —Yevgeniya NusinovichINTRODUCTIONIt has been known for more than 100 years that human cancers exhibit pervasive aneuploidy, or chromosome copy number changes. For instance, about 25% of cancers exhibit gains of the q arm of chromosome 1. However, despite the prevalence of aneuploidy across cancer types, its role in tumorigenesis has remained poorly defined. Our ability to uncover the function of these large-scale copy number alterations has been hampered by our inability to experimentally manipulate chromosome dosage in cancer. Nonetheless, as aneuploidy is common across malignancies but rare in normal tissue, drugs that exhibit selective toxicity toward aneuploid cells could be useful anticancer agents.RATIONALEAlthough aneuploidies have resisted close analysis, previous research has led to the discovery of a phenomenon called “oncogene addiction.” An oncogene-addicted cancer is dependent on the expression of an individual oncogene for continued malignant growth, and loss or inhibition of that oncogene is sufficient to induce cancer regression. As specific aneuploidies such as the gain of chromosome 1q are frequent events in diverse cancer types, we hypothesized that certain aneuploidies could themselves represent oncogene-like cancer addictions. To test this hypothesis, we developed ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate individual aneuploid chromosomes from cancer genomes. Using ReDACT, we created and then characterized a panel of isogenic cells that have or lack common cancer aneuploidies.RESULTSWe found that eliminating the trisomy of chromosome 1q from cancer cell lines harboring this alteration almost completely abolished anchorage-independent growth and xenograft formation. Similarly, eliminating the 1q trisomy from a nonmalignant cell line blocked RAS-mediated transformation. Prolonged growth in vitro or in vivo after aneuploidy elimination in cancer cell lines led to karyotype evolution, and 1q-disomic cells were eventually outcompeted by cells that had recovered the 1q trisomy. In contrast, removing other trisomic chromosomes from cancer cells had variable effects on malignant growth, demonstrating that different aneuploidies have distinct phenotypic consequences for cancer development.An analysis of clinical sequencing data demonstrated that chromosome 1q gains arise early during tumorigenesis and are mutually exclusive with mutations in the tumor suppressor TP53, suggesting that 1q trisomies could represent a mutation-independent mechanism for blocking p53 signaling. Consistent with this, we demonstrated that ReDACT-mediated elimination of chromosome 1q trisomies increased the expression of p53 target genes in TP53 wild-type cell lines. We traced this suppression of p53 function to the triplication of MDM4, a p53 inhibitor encoded on chromosome 1q, and we found that deleting a single copy of MDM4 impaired the growth of 1q-trisomic cells, whereas moderate overexpression of MDM4 rescued the growth of 1q-disomic cells.Finally, we demonstrated that chromosome 1q gains result in the overexpression of UCK2, a nucleotide kinase encoded on chromosome 1q that is also required for the cytotoxicity of certain anticancer nucleotide analogs. We determined that several different 1q-trisomic cell lines displayed enhanced sensitivity to these compounds owing to the up-regulation of UCK2, revealing that 1q aneuploidy can also represent a tractable cancer vulnerability.CONCLUSIONCertain aneuploidies that are commonly found in tumor genomes play a central role in cancer development, and eliminating these aneuploidies compromises malignant growth potential. At the same time, aneuploidy causes collateral therapeutic vulnerabilities that can be targeted to selectively eliminate cells with chromosome dosage imbalances. The development of flexible chromosome engineering methodologies like ReDACT will enable additional experiments to further unravel the consequences of aneuploidy in development and disease. |
Author | Lukow, Devon A. Lee, Sophia N. Lakhani, Asad A. Thompson, Sarah L. Li, Wenxue Smith, Joan C. Stevens, Eric C. Salovska, Barbora Sun, Ruping Kandikuppa, Pranav K. Schukken, Klaske M. Vasudevan, Anand Martienssen, Robert A. Scaduto, Christine M. Sausville, Erin L. Zou, Charles Brown, Leanne M. Mendelson, Brianna E. Girish, Vishruth Akalu, Saron M. Liu, Yansheng Hagenson, Ryan A. Yuan, Monet Lou Taylor, Alison M. Sheltzer, Jason M. |
AuthorAffiliation | 1. Yale University School of Medicine, New Haven, CT 06511 5. Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 4. Columbia University School of Medicine, New York, NY 10032 2. Johns Hopkins University School of Medicine, Baltimore, MD 21205 3. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 6. Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455 |
AuthorAffiliation_xml | – name: 6. Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455 – name: 3. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 – name: 5. Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 – name: 2. Johns Hopkins University School of Medicine, Baltimore, MD 21205 – name: 1. Yale University School of Medicine, New Haven, CT 06511 – name: 4. Columbia University School of Medicine, New York, NY 10032 |
Author_xml | – sequence: 1 givenname: Vishruth orcidid: 0000-0002-3848-7374 surname: Girish fullname: Girish, Vishruth organization: Yale University School of Medicine, New Haven, CT 06511, USA., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 2 givenname: Asad A. orcidid: 0000-0001-9663-6051 surname: Lakhani fullname: Lakhani, Asad A. organization: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA – sequence: 3 givenname: Sarah L. orcidid: 0000-0002-9062-2027 surname: Thompson fullname: Thompson, Sarah L. organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 4 givenname: Christine M. surname: Scaduto fullname: Scaduto, Christine M. organization: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA – sequence: 5 givenname: Leanne M. surname: Brown fullname: Brown, Leanne M. organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 6 givenname: Ryan A. orcidid: 0000-0001-9750-1925 surname: Hagenson fullname: Hagenson, Ryan A. organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 7 givenname: Erin L. orcidid: 0000-0002-4386-703X surname: Sausville fullname: Sausville, Erin L. organization: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA – sequence: 8 givenname: Brianna E. orcidid: 0000-0002-1844-3198 surname: Mendelson fullname: Mendelson, Brianna E. organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 9 givenname: Pranav K. orcidid: 0009-0001-9069-2762 surname: Kandikuppa fullname: Kandikuppa, Pranav K. organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 10 givenname: Devon A. orcidid: 0000-0001-6642-8649 surname: Lukow fullname: Lukow, Devon A. organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 11 givenname: Monet Lou surname: Yuan fullname: Yuan, Monet Lou organization: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA – sequence: 12 givenname: Eric C. orcidid: 0009-0008-6037-756X surname: Stevens fullname: Stevens, Eric C. organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 13 givenname: Sophia N. orcidid: 0009-0004-3517-1990 surname: Lee fullname: Lee, Sophia N. organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 14 givenname: Klaske M. surname: Schukken fullname: Schukken, Klaske M. organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 15 givenname: Saron M. orcidid: 0000-0003-1430-0461 surname: Akalu fullname: Akalu, Saron M. organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 16 givenname: Anand surname: Vasudevan fullname: Vasudevan, Anand organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 17 givenname: Charles surname: Zou fullname: Zou, Charles organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 18 givenname: Barbora orcidid: 0000-0002-7093-4576 surname: Salovska fullname: Salovska, Barbora organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 19 givenname: Wenxue orcidid: 0000-0002-8902-0184 surname: Li fullname: Li, Wenxue organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 20 givenname: Joan C. surname: Smith fullname: Smith, Joan C. organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 21 givenname: Alison M. orcidid: 0000-0001-9341-535X surname: Taylor fullname: Taylor, Alison M. organization: Columbia University School of Medicine, New York, NY 10032, USA – sequence: 22 givenname: Robert A. orcidid: 0000-0003-1285-9608 surname: Martienssen fullname: Martienssen, Robert A. organization: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA., Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA – sequence: 23 givenname: Yansheng orcidid: 0000-0002-2626-3912 surname: Liu fullname: Liu, Yansheng organization: Yale University School of Medicine, New Haven, CT 06511, USA – sequence: 24 givenname: Ruping orcidid: 0000-0003-3702-9483 surname: Sun fullname: Sun, Ruping organization: Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA – sequence: 25 givenname: Jason M. orcidid: 0000-0003-1381-1323 surname: Sheltzer fullname: Sheltzer, Jason M. organization: Yale University School of Medicine, New Haven, CT 06511, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37410869$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLxTAQhYMoen2s3UnBjZtqHs2jKxHxBYIbXYdpOr1Ge5Nr0wr-eyNeRQVXWcx3TubM2SbrIQYkZJ_RY8a4OknOY3B4DO28kpytkRmjtSxrTsU6mVEqVGmolltkO6UnSvOsFptkS-iKUaPqGVF3wcU5Bix7_4wFtK13o4-hGGMBAadlH337VvhQPE4LCIWD_N2QdslGB33CvdW7Qx4uL-7Pr8vbu6ub87Pb0lWcjyVQyh1rqkaZCkGB7BoDpmUoRCfQQNcJ2VAlVYNOg64rVYPUNW2UbjrjQOyQ00_f5dQssHUYxgF6uxz8AoY3G8Hb35PgH-08vlqWU4tai-xwtHIY4suEabQLnxz2fU4Xp2S5EZJrw1SV0cM_6FOchpDzZUqqimsqVaYOfq70vcvXTTNw8gm4IaY0YPeNMGo_WrOr1uyqtayQfxTOj_BRQ87k-3917_ctn2w |
CitedBy_id | crossref_primary_10_1038_s41467_024_52554_5 crossref_primary_10_1093_pnasnexus_pgaf022 crossref_primary_10_1016_j_stemcr_2024_06_003 crossref_primary_10_1038_s41588_024_01916_2 crossref_primary_10_1007_s10577_023_09741_9 crossref_primary_10_1172_jci_insight_176743 crossref_primary_10_3390_cells13080666 crossref_primary_10_1038_s44318_025_00372_w crossref_primary_10_1002_bies_202400062 crossref_primary_10_1242_jcs_260199 crossref_primary_10_3390_cells13161397 crossref_primary_10_1016_j_devcel_2023_12_009 crossref_primary_10_1016_j_annpat_2023_07_004 crossref_primary_10_1038_s41467_024_46414_5 crossref_primary_10_1038_s41467_025_56783_0 crossref_primary_10_1038_s41467_024_47945_7 crossref_primary_10_1080_23723556_2024_2369388 crossref_primary_10_1186_s13058_024_01924_4 crossref_primary_10_1016_j_tips_2024_01_009 crossref_primary_10_1158_0008_5472_CAN_24_2248 crossref_primary_10_1016_j_heliyon_2025_e42852 crossref_primary_10_1186_s13053_024_00302_7 crossref_primary_10_1146_annurev_cancerbio_062722_021823 crossref_primary_10_3390_biomedicines12081759 crossref_primary_10_1039_D3AN01815F crossref_primary_10_1016_j_ceb_2025_102490 crossref_primary_10_1016_j_molcel_2023_11_002 crossref_primary_10_1186_s13059_024_03225_7 crossref_primary_10_1038_s41598_024_66062_5 crossref_primary_10_1038_s41392_024_01767_7 crossref_primary_10_1038_s44319_024_00252_0 crossref_primary_10_3892_or_2023_8613 crossref_primary_10_1038_s41698_023_00492_8 crossref_primary_10_1016_j_crmeth_2023_100618 crossref_primary_10_1007_s10577_023_09735_7 crossref_primary_10_1016_j_xgen_2025_100815 crossref_primary_10_1038_s41419_024_07236_x crossref_primary_10_1016_j_xgen_2024_100656 crossref_primary_10_1126_scisignal_ado2857 crossref_primary_10_1126_sciadv_adh1442 crossref_primary_10_1016_j_tig_2023_09_002 crossref_primary_10_56294_sctconf2024_697 crossref_primary_10_1038_s41467_025_56301_2 crossref_primary_10_1038_s41375_024_02494_2 crossref_primary_10_3390_ijms25136815 crossref_primary_10_1016_j_ijbiomac_2024_133944 crossref_primary_10_1053_j_gastro_2024_02_048 crossref_primary_10_1038_s41588_024_01988_0 crossref_primary_10_1002_gcc_23267 crossref_primary_10_1038_s41568_024_00706_6 crossref_primary_10_1158_0008_5472_CAN_24_0169 crossref_primary_10_1158_0008_5472_CAN_24_3599 crossref_primary_10_1016_j_molmed_2024_04_017 crossref_primary_10_1038_s41368_023_00265_w crossref_primary_10_1038_s41568_023_00608_z crossref_primary_10_1083_jcb_202311140 crossref_primary_10_1158_1078_0432_CCR_23_3156 crossref_primary_10_26508_lsa_202402927 |
Cites_doi | 10.1101/cshperspect.a031435 10.1007/s10495-021-01666-0 10.1126/science.1073096 10.1038/ncb1123 10.1038/nbt.3820 10.1242/jcs.025742 10.21873/anticanres.13508 10.1016/j.cell.2013.10.011 10.1016/j.celrep.2022.110569 10.1146/annurev-pathol-012414-040349 10.1074/mcp.M114.044305 10.1124/mol.59.5.1181 10.1016/j.cell.2018.02.052 10.1371/journal.pgen.1006853 10.1016/j.ccell.2018.03.007 10.1038/nrc2771 10.1002/cpmb.100 10.2174/1566523033347426 10.1126/science.282.5393.1497 10.1126/science.8465203 10.1200/JCO.2019.37.7_suppl.455 10.1158/0008-5472.CAN-09-0773 10.1038/nature22071 10.1016/j.ccr.2006.12.003 10.1371/journal.pone.0162901 10.1038/ng.3984 10.1073/pnas.1521145112 10.1038/s41587-019-0037-y 10.1038/22788 10.1038/nrg3123 10.1038/nature08822 10.1126/scitranslmed.aaa1408 10.1038/s41586-020-03133-3 10.1038/s41467-021-26097-y 10.1038/srep38198 10.1126/science.1235122 10.1089/crispr.2018.0014 10.1016/j.devcel.2021.07.009 10.21105/joss.01686 10.7554/eLife.37294 10.1016/j.cell.2017.05.016 10.1093/bioinformatics/btp616 10.1016/j.cell.2020.10.025 10.1101/gr.276378.121 10.21769/BioProtoc.3682 10.1038/s41568-020-00321-1 10.1158/0008-5472.CAN-18-3438 10.1093/annonc/mdx703 10.1074/mcp.RA118.001288 10.1101/078261 10.1146/annurev-cancerbio-030518-055742 10.1038/s41598-017-10418-7 10.1016/j.xinn.2021.100141 10.1002/pmic.201800438 10.1126/scitranslmed.aaw8412 10.1073/pnas.2003771117 10.1038/gim.2016.23 10.7554/eLife.19760 10.1016/j.tig.2011.07.003 10.1016/j.stem.2023.01.006 10.1038/336348a0 10.1002/emmm.201100176 10.1038/s43018-019-0018-6 10.1128/MCB.24.13.5835-5843.2004 10.1002/0471142905.hg0213s67 10.1016/j.cellbi.2005.10.001 10.1016/j.devcel.2020.01.034 10.18637/jss.v057.i11 10.1101/2022.06.14.495959 10.1038/s41467-017-00249-5 10.1016/j.ccell.2017.07.005 10.1016/j.stem.2012.08.004 10.1073/pnas.94.18.9648 10.1016/j.ccell.2016.12.004 10.1101/gr.201491.115 10.1038/onc.2016.502 10.7554/eLife.39217 10.1074/mcp.RA117.000314 10.1016/j.cell.2017.01.020 10.1016/j.cell.2022.01.003 10.1038/s41467-018-07901-8 10.1093/bioinformatics/btt546 10.1016/j.cell.2018.02.037 10.1186/s12915-023-01595-1 10.1016/j.xpro.2022.101927 10.1073/pnas.1902645116 10.1073/pnas.72.11.4435 10.1038/ng.2760 10.1038/s41586-020-03114-6 10.1038/s41576-020-0247-7 10.1080/21541248.2016.1212689 10.1093/nar/gkaa968 10.1038/nmeth.3255 |
ContentType | Journal Article |
Copyright | Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.adg4521 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Engineering |
EISSN | 1095-9203 |
EndPage | eadg4521 |
ExternalDocumentID | PMC10753973 37410869 10_1126_science_adg4521 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: NIGMS NIH HHS grantid: R01 GM137031 – fundername: NCI NIH HHS grantid: R01 CA237652 – fundername: NCI NIH HHS grantid: P30 CA016359 – fundername: NIGMS NIH HHS grantid: T32 GM136577 – fundername: NICHD NIH HHS grantid: T32 HD007149 – fundername: NCI NIH HHS grantid: R01 CA276666 – fundername: NCI NIH HHS grantid: P30 CA045508 – fundername: NIGMS NIH HHS grantid: R35 GM144206 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW RZL SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YJ6 YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c422t-a002c1b4b684ea6a5fb8a8d1e33f3e8aff35b0656bec7a79469a5790b67bf8ca3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:37:22 EDT 2025 Tue Aug 05 11:32:49 EDT 2025 Wed Aug 13 04:07:34 EDT 2025 Mon Jul 21 06:06:40 EDT 2025 Thu Apr 24 23:09:13 EDT 2025 Tue Jul 01 03:13:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6660 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c422t-a002c1b4b684ea6a5fb8a8d1e33f3e8aff35b0656bec7a79469a5790b67bf8ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author Contributions. Conceptualization: V.G., A.A.L., C.M.S., J.M.S. Methodology: V.G., A.A.L., C.M.S., S.L.T., A.M.T., Y.L., J.M.S. Software: R.A.H., J.C.S., R.S. Formal analysis: R.A.H., J.C.S., R.S. Investigation: V.G., A.A.L., C.M.S., S.L.T., L.M.B., R.A.H., E.L.S., B.E.M., D.A.L., M.L.Y., P.K.K., E.C.S., S.N.L., K.M.S., S.A.M., A.V., C.Z., B.S., W.L. Resources: A.M.T. Data Curation: R.A.H., J.C.S. Writing – original draft: V.G., A.A.L., J.M.S. Writing – review and editing: V.G., A.A.L., J.M.S. Visualization: V.G., A.A.L., S.L.T., L.B., R.A.H., R.S., J.M.S. Supervision: Y.L., R.A.M., R.S., J.M.S. Funding acquisition: J.M.S. Equal contribution |
ORCID | 0000-0002-4386-703X 0000-0002-8902-0184 0009-0001-9069-2762 0000-0001-6642-8649 0000-0003-1430-0461 0000-0002-2626-3912 0000-0002-1844-3198 0009-0004-3517-1990 0000-0001-9750-1925 0000-0002-7093-4576 0000-0002-3848-7374 0000-0003-3702-9483 0000-0002-9062-2027 0000-0003-1381-1323 0000-0003-1285-9608 0000-0001-9663-6051 0009-0008-6037-756X 0000-0001-9341-535X |
OpenAccessLink | https://www.science.org/history/13c1dfb6-857c-4222-8fb8-ebee1b9a49f9/science.adg4521.v1.pdf |
PMID | 37410869 |
PQID | 2856427056 |
PQPubID | 1256 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10753973 proquest_miscellaneous_2835278164 proquest_journals_2856427056 pubmed_primary_37410869 crossref_primary_10_1126_science_adg4521 crossref_citationtrail_10_1126_science_adg4521 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-25 20230825 |
PublicationDateYYYYMMDD | 2023-08-25 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2023 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_81_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_92_2 e_1_3_2_50_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_82_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_70_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_83_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_80_2 e_1_3_2_101_2 Zimonjic D. (e_1_3_2_12_2) 2001; 61 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_72_2 37449722 - Cancer Discov. 2023 Sep 6;13(9):1956. doi: 10.1158/2159-8290.CD-RW2023-110 36711674 - bioRxiv. 2023 Jan 10:2023.01.09.523344. doi: 10.1101/2023.01.09.523344 |
References_xml | – ident: e_1_3_2_19_2 doi: 10.1101/cshperspect.a031435 – ident: e_1_3_2_59_2 doi: 10.1007/s10495-021-01666-0 – ident: e_1_3_2_96_2 – ident: e_1_3_2_18_2 doi: 10.1126/science.1073096 – ident: e_1_3_2_50_2 doi: 10.1038/ncb1123 – ident: e_1_3_2_71_2 doi: 10.1038/nbt.3820 – ident: e_1_3_2_4_2 doi: 10.1242/jcs.025742 – ident: e_1_3_2_68_2 doi: 10.21873/anticanres.13508 – ident: e_1_3_2_10_2 doi: 10.1016/j.cell.2013.10.011 – ident: e_1_3_2_98_2 doi: 10.1016/j.celrep.2022.110569 – ident: e_1_3_2_47_2 doi: 10.1146/annurev-pathol-012414-040349 – ident: e_1_3_2_83_2 doi: 10.1074/mcp.M114.044305 – ident: e_1_3_2_53_2 doi: 10.1124/mol.59.5.1181 – ident: e_1_3_2_99_2 doi: 10.1016/j.cell.2018.02.052 – ident: e_1_3_2_92_2 doi: 10.1371/journal.pgen.1006853 – ident: e_1_3_2_2_2 doi: 10.1016/j.ccell.2018.03.007 – ident: e_1_3_2_61_2 doi: 10.1038/nrc2771 – ident: e_1_3_2_69_2 doi: 10.1002/cpmb.100 – ident: e_1_3_2_33_2 doi: 10.2174/1566523033347426 – ident: e_1_3_2_16_2 doi: 10.1126/science.282.5393.1497 – ident: e_1_3_2_17_2 doi: 10.1126/science.8465203 – ident: e_1_3_2_67_2 doi: 10.1200/JCO.2019.37.7_suppl.455 – ident: e_1_3_2_51_2 doi: 10.1158/0008-5472.CAN-09-0773 – ident: e_1_3_2_23_2 doi: 10.1038/nature22071 – ident: e_1_3_2_101_2 – ident: e_1_3_2_9_2 doi: 10.1016/j.ccr.2006.12.003 – ident: e_1_3_2_54_2 doi: 10.1371/journal.pone.0162901 – ident: e_1_3_2_91_2 doi: 10.1038/ng.3984 – ident: e_1_3_2_14_2 doi: 10.1073/pnas.1521145112 – ident: e_1_3_2_78_2 doi: 10.1038/s41587-019-0037-y – ident: e_1_3_2_40_2 doi: 10.1038/22788 – ident: e_1_3_2_3_2 doi: 10.1038/nrg3123 – ident: e_1_3_2_90_2 doi: 10.1038/nature08822 – ident: e_1_3_2_25_2 doi: 10.1126/scitranslmed.aaa1408 – ident: e_1_3_2_65_2 doi: 10.1038/s41586-020-03133-3 – ident: e_1_3_2_36_2 doi: 10.1038/s41467-021-26097-y – ident: e_1_3_2_85_2 doi: 10.1038/srep38198 – ident: e_1_3_2_100_2 doi: 10.1126/science.1235122 – ident: e_1_3_2_89_2 doi: 10.1089/crispr.2018.0014 – ident: e_1_3_2_31_2 doi: 10.1016/j.devcel.2021.07.009 – ident: e_1_3_2_73_2 doi: 10.21105/joss.01686 – ident: e_1_3_2_30_2 doi: 10.7554/eLife.37294 – ident: e_1_3_2_52_2 doi: 10.1016/j.cell.2017.05.016 – ident: e_1_3_2_75_2 doi: 10.1093/bioinformatics/btp616 – ident: e_1_3_2_35_2 doi: 10.1016/j.cell.2020.10.025 – ident: e_1_3_2_38_2 doi: 10.1101/gr.276378.121 – ident: e_1_3_2_49_2 doi: 10.21769/BioProtoc.3682 – ident: e_1_3_2_6_2 doi: 10.1038/s41568-020-00321-1 – ident: e_1_3_2_62_2 doi: 10.1158/0008-5472.CAN-18-3438 – ident: e_1_3_2_42_2 doi: 10.1093/annonc/mdx703 – ident: e_1_3_2_82_2 doi: 10.1074/mcp.RA118.001288 – ident: e_1_3_2_72_2 doi: 10.1101/078261 – volume: 61 start-page: 8838 year: 2001 ident: e_1_3_2_12_2 article-title: Derivation of human tumor cells in vitro without widespread genomic instability publication-title: Cancer Res. – ident: e_1_3_2_15_2 doi: 10.1146/annurev-cancerbio-030518-055742 – ident: e_1_3_2_34_2 doi: 10.1038/s41598-017-10418-7 – ident: e_1_3_2_77_2 doi: 10.1016/j.xinn.2021.100141 – ident: e_1_3_2_80_2 doi: 10.1002/pmic.201800438 – ident: e_1_3_2_55_2 doi: 10.1126/scitranslmed.aaw8412 – ident: e_1_3_2_24_2 doi: 10.1073/pnas.2003771117 – ident: e_1_3_2_13_2 doi: 10.1038/gim.2016.23 – ident: e_1_3_2_48_2 doi: 10.7554/eLife.19760 – ident: e_1_3_2_7_2 doi: 10.1016/j.tig.2011.07.003 – ident: e_1_3_2_64_2 doi: 10.1016/j.stem.2023.01.006 – ident: e_1_3_2_86_2 doi: 10.1038/336348a0 – ident: e_1_3_2_41_2 doi: 10.1002/emmm.201100176 – ident: e_1_3_2_58_2 doi: 10.1038/s43018-019-0018-6 – ident: e_1_3_2_63_2 doi: 10.1128/MCB.24.13.5835-5843.2004 – ident: e_1_3_2_74_2 doi: 10.1002/0471142905.hg0213s67 – ident: e_1_3_2_5_2 doi: 10.1016/j.cellbi.2005.10.001 – ident: e_1_3_2_28_2 – ident: e_1_3_2_88_2 doi: 10.1016/j.devcel.2020.01.034 – ident: e_1_3_2_95_2 doi: 10.18637/jss.v057.i11 – ident: e_1_3_2_21_2 doi: 10.1101/2022.06.14.495959 – ident: e_1_3_2_79_2 doi: 10.1038/s41467-017-00249-5 – ident: e_1_3_2_22_2 doi: 10.1016/j.ccell.2017.07.005 – ident: e_1_3_2_87_2 doi: 10.1016/j.stem.2012.08.004 – ident: e_1_3_2_45_2 doi: 10.1073/pnas.94.18.9648 – ident: e_1_3_2_8_2 doi: 10.1016/j.ccell.2016.12.004 – ident: e_1_3_2_37_2 doi: 10.1101/gr.201491.115 – ident: e_1_3_2_44_2 doi: 10.1038/onc.2016.502 – ident: e_1_3_2_97_2 doi: 10.7554/eLife.39217 – ident: e_1_3_2_81_2 doi: 10.1074/mcp.RA117.000314 – ident: e_1_3_2_43_2 doi: 10.1016/j.cell.2017.01.020 – ident: e_1_3_2_27_2 doi: 10.1016/j.cell.2022.01.003 – ident: e_1_3_2_70_2 doi: 10.1038/s41467-018-07901-8 – ident: e_1_3_2_94_2 doi: 10.1093/bioinformatics/btt546 – ident: e_1_3_2_76_2 – ident: e_1_3_2_11_2 doi: 10.1016/j.cell.2018.02.037 – ident: e_1_3_2_46_2 doi: 10.1186/s12915-023-01595-1 – ident: e_1_3_2_93_2 doi: 10.1016/j.xpro.2022.101927 – ident: e_1_3_2_29_2 doi: 10.1073/pnas.1902645116 – ident: e_1_3_2_39_2 doi: 10.1073/pnas.72.11.4435 – ident: e_1_3_2_20_2 doi: 10.1038/ng.2760 – ident: e_1_3_2_66_2 doi: 10.1038/s41586-020-03114-6 – ident: e_1_3_2_56_2 doi: 10.1038/s41576-020-0247-7 – ident: e_1_3_2_26_2 doi: 10.1080/21541248.2016.1212689 – ident: e_1_3_2_57_2 doi: 10.1093/nar/gkaa968 – ident: e_1_3_2_84_2 doi: 10.1038/nmeth.3255 – ident: e_1_3_2_32_2 – reference: 37449722 - Cancer Discov. 2023 Sep 6;13(9):1956. doi: 10.1158/2159-8290.CD-RW2023-110 – reference: 36711674 - bioRxiv. 2023 Jan 10:2023.01.09.523344. doi: 10.1101/2023.01.09.523344 |
SSID | ssj0009593 |
Score | 2.6462927 |
Snippet | Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid... Editor’s summaryAneuploidies, which are changes in the numbers of whole chromosomes or chromosome arms, are common in cancer, but their contributions to cancer... Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT ( Re storing D isomy in A... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | eadg4521 |
SubjectTerms | Addictions Aneuploidy Anticancer properties Antitumor agents Biocompatibility Cancer Carcinogenesis - genetics Cell Cycle Proteins - genetics Cell survival Chromosome 1 Chromosomes Copy number CRISPR Cytotoxicity Dosage Engineering Exhibits Gene Editing - methods Gene expression Genomes Humans In vivo methods and tests Karyotypes Kinases Malignancy Mutation Neoplasms - genetics Neoplasms - therapy Nucleotide analogs Nucleotides Oncogenes p53 Protein Proto-Oncogene Proteins - metabolism Sensitivity enhancement Substance Abuse Toxicity Trisomy Tumor cell lines Tumor suppressor genes Tumor Suppressor Protein p53 - genetics Tumorigenesis Tumors Xenotransplantation |
Title | Oncogene-like addiction to aneuploidy in human cancers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37410869 https://www.proquest.com/docview/2856427056 https://www.proquest.com/docview/2835278164 https://pubmed.ncbi.nlm.nih.gov/PMC10753973 |
Volume | 381 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELbaRJV6qZr0RZtWVOohVcRqwWDMcdNmG1Wb5NBdaW_INqZBWUGUwCH59R1jYyBJpbQXQLbBK8949pvxPBD64nMOICED3YQS5oUSw54TUuXGo3FOWJDliYp3Pjklx6vw5zpa98cFbXRJzSfi9sG4kv-hKrQBXVWU7D9Q1n4UGuAZ6AtXoDBcH0Xjs1JU0Cm9TXEhD5RrkC78DXiSlbK53FRF1sb16Up8QlHYnN4YPNptbcCZ9uxmQDHrhDjTrgKd54B5bWBG-FGoUvWt1yzcr5rampkX7OJcF46CL7OsN572vijGMH1gDdG_BMuauuqzHygsfDK0UARYmVx1NLMRqlNVDzKYakEmH2gzkhjr6i2G5UCxmg5EK7D87zDS4dT35f6gUqWcDEaOM2yfnqXz1WKRLo_Wy6doOwDVAmTj9uzw--H8bqpm-wtNQqhBqFU3wRjL3FNQ7vrZDoDL8iV6YTQOd6bZZwc9keUueqZrkN7soh1Dy2t336Qg__oKkRFnuZaz3Lpye85yi9JtOcs1nPUareZHy2_Hnqmw4YkwCGqPwf-h8HnICQ0lIyzKOWU08yXGOZaU5TmOOIBUAjs9ZqoWQcKiOJlyEvOcCobfoK2yKuU75KojZZXPiyachjjPGM8SkuWCg4IgiAwcNOnWKhUm_byqgrJJWzU0IKlZ3NQsroP27QuXOvPK34fudYufmu15nQY0At06BoDvoM-2G4SnOhGDpaoaNQb0j5j6JHTQW00rOxcGrA36fuIgOqKiHaASs497yuK8TdDuAw4HnI_fP2LiD-h5v2f20FZ91ciPgHNr_skw5h9hPa5C |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oncogene-like+addiction+to+aneuploidy+in+human+cancers&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Girish%2C+Vishruth&rft.au=Lakhani%2C+Asad+A&rft.au=Thompson%2C+Sarah+L&rft.au=Scaduto%2C+Christine+M&rft.date=2023-08-25&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=381&rft.issue=6660&rft.spage=eadg4521&rft_id=info:doi/10.1126%2Fscience.adg4521&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |