Gene regulatory network inference during cell fate decisions by perturbation strategies
With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In t...
Saved in:
Published in | NPJ systems biology and applications Vol. 11; no. 1; pp. 23 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In this study, we propose a general computational approach based on systematic perturbation, statistical, and differential analyses to infer network topologies and identify network differences during cell fate decisions. For each cell fate state, we first theoretically show how to calculate local response matrices based on perturbation data under systematic perturbation analysis, and we also derive the wild-type (WT) local response matrix for specific ordinary differential equations. To make the inferred network more accurate and eliminate the impact of perturbation degrees, the confidence interval (CI) of local response matrices under multiple perturbations is applied, and the redefined local response matrix is proposed in statistical analysis to determine network topologies across all cell fates. Then in differential analysis, we introduce the concept of relative local response matrix, which enables us to identify critical regulations governing each cell state and dominant cell states associated with specific regulations. The epithelial to mesenchymal transition (EMT) network is chosen as an illustrative example to verify the feasibility of the approach. Largely consistent with experimental observations, the differences of inferred networks at the three cell states can be quantitatively identified. The approach presented here can be also applied to infer other regulatory networks related to cell fate decisions. |
---|---|
AbstractList | With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In this study, we propose a general computational approach based on systematic perturbation, statistical, and differential analyses to infer network topologies and identify network differences during cell fate decisions. For each cell fate state, we first theoretically show how to calculate local response matrices based on perturbation data under systematic perturbation analysis, and we also derive the wild-type (WT) local response matrix for specific ordinary differential equations. To make the inferred network more accurate and eliminate the impact of perturbation degrees, the confidence interval (CI) of local response matrices under multiple perturbations is applied, and the redefined local response matrix is proposed in statistical analysis to determine network topologies across all cell fates. Then in differential analysis, we introduce the concept of relative local response matrix, which enables us to identify critical regulations governing each cell state and dominant cell states associated with specific regulations. The epithelial to mesenchymal transition (EMT) network is chosen as an illustrative example to verify the feasibility of the approach. Largely consistent with experimental observations, the differences of inferred networks at the three cell states can be quantitatively identified. The approach presented here can be also applied to infer other regulatory networks related to cell fate decisions. Abstract With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In this study, we propose a general computational approach based on systematic perturbation, statistical, and differential analyses to infer network topologies and identify network differences during cell fate decisions. For each cell fate state, we first theoretically show how to calculate local response matrices based on perturbation data under systematic perturbation analysis, and we also derive the wild-type (WT) local response matrix for specific ordinary differential equations. To make the inferred network more accurate and eliminate the impact of perturbation degrees, the confidence interval (CI) of local response matrices under multiple perturbations is applied, and the redefined local response matrix is proposed in statistical analysis to determine network topologies across all cell fates. Then in differential analysis, we introduce the concept of relative local response matrix, which enables us to identify critical regulations governing each cell state and dominant cell states associated with specific regulations. The epithelial to mesenchymal transition (EMT) network is chosen as an illustrative example to verify the feasibility of the approach. Largely consistent with experimental observations, the differences of inferred networks at the three cell states can be quantitatively identified. The approach presented here can be also applied to infer other regulatory networks related to cell fate decisions. With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In this study, we propose a general computational approach based on systematic perturbation, statistical, and differential analyses to infer network topologies and identify network differences during cell fate decisions. For each cell fate state, we first theoretically show how to calculate local response matrices based on perturbation data under systematic perturbation analysis, and we also derive the wild-type (WT) local response matrix for specific ordinary differential equations. To make the inferred network more accurate and eliminate the impact of perturbation degrees, the confidence interval (CI) of local response matrices under multiple perturbations is applied, and the redefined local response matrix is proposed in statistical analysis to determine network topologies across all cell fates. Then in differential analysis, we introduce the concept of relative local response matrix, which enables us to identify critical regulations governing each cell state and dominant cell states associated with specific regulations. The epithelial to mesenchymal transition (EMT) network is chosen as an illustrative example to verify the feasibility of the approach. Largely consistent with experimental observations, the differences of inferred networks at the three cell states can be quantitatively identified. The approach presented here can be also applied to infer other regulatory networks related to cell fate decisions.With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In this study, we propose a general computational approach based on systematic perturbation, statistical, and differential analyses to infer network topologies and identify network differences during cell fate decisions. For each cell fate state, we first theoretically show how to calculate local response matrices based on perturbation data under systematic perturbation analysis, and we also derive the wild-type (WT) local response matrix for specific ordinary differential equations. To make the inferred network more accurate and eliminate the impact of perturbation degrees, the confidence interval (CI) of local response matrices under multiple perturbations is applied, and the redefined local response matrix is proposed in statistical analysis to determine network topologies across all cell fates. Then in differential analysis, we introduce the concept of relative local response matrix, which enables us to identify critical regulations governing each cell state and dominant cell states associated with specific regulations. The epithelial to mesenchymal transition (EMT) network is chosen as an illustrative example to verify the feasibility of the approach. Largely consistent with experimental observations, the differences of inferred networks at the three cell states can be quantitatively identified. The approach presented here can be also applied to infer other regulatory networks related to cell fate decisions. |
ArticleNumber | 23 |
Author | Wang, Ruiqi Lu, Xiaoqi Xue, Zhuozhen Hu, Qing |
Author_xml | – sequence: 1 givenname: Qing surname: Hu fullname: Hu, Qing organization: Department of Mathematics, Shanghai University – sequence: 2 givenname: Xiaoqi surname: Lu fullname: Lu, Xiaoqi organization: Department of Mathematics, Shanghai University – sequence: 3 givenname: Zhuozhen surname: Xue fullname: Xue, Zhuozhen organization: Department of Mathematics, Shanghai University – sequence: 4 givenname: Ruiqi surname: Wang fullname: Wang, Ruiqi email: rqwang@shu.edu.cn organization: Department of Mathematics, Shanghai University, Newtouch Center for Mathematics of Shanghai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40032872$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1UREvpH-CAInHhEvBnYp8QqqBUqsQFxNHyxyR4ydqLnYD23-PdlNJy4GRr5pnX45n3KTqJKQJCzwl-TTCTbwonguMWU9FiLDBv6SN0RrHo2p5IdXLvfoouStlgjEnHOCX4CTrlGDMqe3qGvl5BhCbDuExmTnnfRJh_pfy9CXGADNFB45cc4tg4mKZmMHMNgAslpFgau292kOclWzPXQFPmXIExQHmGHg9mKnBxe56jLx_ef7782N58urq-fHfTOk7p3CpQQMmgLJCeGke8Y521XHRu4MS6miG-s1JZAoYYyWXnvZK9HIAqS5ll5-h61fXJbPQuh63Je51M0MdAyqM2eQ5uAj1QJZxUXnouOcW2ynDbccM9F0oMULXerlq7xW7BO4j1O9MD0YeZGL7pMf3UhMi-Y4JWhVe3Cjn9WKDMehvKYXAmQlqKZqRnHItedhV9-Q-6SUuOdVZHqo5DYFWpF_dbuuvlzwIrQFfA5VRKhuEOIVgfjKJXo-hqFH00ij4UsbWo7A6rhfz37f9U_QZETsC1 |
Cites_doi | 10.1002/1873-3468.14258 10.1016/j.jtbi.2004.08.022 10.1016/j.scs.2024.105400 10.1074/jbc.M110.168625 10.1093/bioinformatics/btx792 10.1172/JCI39104 10.1091/mbc.e08-10-1076 10.1039/C7IB00198C 10.1186/1471-2121-10-94 10.1371/journal.pcbi.1006855 10.1038/s41556-018-0195-z 10.1038/s41598-021-86544-0 10.1186/s12918-018-0581-y 10.1007/s13238-019-0633-0 10.1016/j.cell.2009.11.007 10.1038/srep17379 10.1016/j.bpj.2013.07.011 10.4161/cc.10.24.18552 10.1158/0008-5472.CAN-15-0079 10.1371/journal.pone.0105216 10.1186/s12918-018-0594-6 10.1126/scisignal.2005304 10.1103/PhysRevE.102.012406 10.1186/s12864-018-4772-0 10.1073/pnas.192442699 10.1186/s12918-018-0561-2 10.1126/science.1234850 10.1016/j.isci.2022.105709 10.1073/pnas.1318192110 10.1038/npjsba.2015.14 10.1021/acsami.6b05646 10.1073/pnas.1507168112 10.1093/bioinformatics/btx194 10.3389/fonc.2015.00155 10.1038/nmeth.4150 10.1038/embor.2010.117 10.1158/0008-5472.CAN-16-2074 10.1038/s41586-022-05194-y 10.1091/mbc.e11-02-0103 10.1371/journal.pone.0012776 10.1016/j.isci.2022.105561 10.1111/febs.15062 10.1098/rsfs.2022.0002 10.1371/journal.pone.0003478 10.1098/rsif.2020.0500 10.1074/jbc.M211304200 10.1371/journal.pcbi.1005456 10.1093/nar/gkw430 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41540-025-00504-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Statistics |
EISSN | 2056-7189 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_f295c89d8d48420b8784b64a4d4595fe PMC11876352 40032872 10_1038_s41540_025_00504_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12371497 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 12371497 |
GroupedDBID | 0R~ 5VS 7X7 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M7P M~E NAO NO~ OK1 PGMZT PHGZT PIMPY PQQKQ PROAC RNT RPM UKHRP AASML AAYXX CITATION PHGZM SNYQT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c422t-9e9e21f9be172ac1dc36bb456cf41bc1f91d6b89b1ea1a8486dd9878fe29b23b3 |
IEDL.DBID | DOA |
ISSN | 2056-7189 |
IngestDate | Wed Aug 27 01:29:35 EDT 2025 Thu Aug 21 18:27:19 EDT 2025 Fri Jul 11 13:08:22 EDT 2025 Wed Aug 13 01:50:03 EDT 2025 Mon May 12 02:38:50 EDT 2025 Tue Jul 01 05:23:38 EDT 2025 Tue Mar 04 01:16:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-9e9e21f9be172ac1dc36bb456cf41bc1f91d6b89b1ea1a8486dd9878fe29b23b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/f295c89d8d48420b8784b64a4d4595fe |
PMID | 40032872 |
PQID | 3173172509 |
PQPubID | 2041915 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f295c89d8d48420b8784b64a4d4595fe pubmedcentral_primary_oai_pubmedcentral_nih_gov_11876352 proquest_miscellaneous_3173405786 proquest_journals_3173172509 pubmed_primary_40032872 crossref_primary_10_1038_s41540_025_00504_2 springer_journals_10_1038_s41540_025_00504_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-04 |
PublicationDateYYYYMMDD | 2025-03-04 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | NPJ systems biology and applications |
PublicationTitleAbbrev | npj Syst Biol Appl |
PublicationTitleAlternate | NPJ Syst Biol Appl |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | DS Huang (504_CR3) 2020; 102 M Sáez (504_CR1) 2002; 12 H Peinado (504_CR40) 2003; 278 H Matsumoto (504_CR19) 2017; 33 XN Ma (504_CR50) 2024; 106 Q Luo (504_CR15) 2022; 25 JY Zhang (504_CR31) 2014; 7 M Lu (504_CR36) 2013; 110 CH Li (504_CR46) 2015; 75 B Huang (504_CR4) 2015; 5 H Cheng (504_CR47) 2019; 11 LL Yu (504_CR5) 2017; 77 N Dave (504_CR41) 2011; 286 YJ Ye (504_CR49) 2019; 15 DQ Pei (504_CR34) 2019; 21 K Street (504_CR14) 2018; 19 S Brabletz (504_CR43) 2010; 11 JM Drake (504_CR29) 2009; 20 B Huang (504_CR48) 2020; 17 ZC Ji (504_CR11) 2016; 44 R Kalluri (504_CR35) 2009; 119 SN Steinway (504_CR39) 2015; 1 B Huang (504_CR8) 2017; 13 XJ Qiu (504_CR12) 2017; 14 G Jimenez-Dominguez (504_CR25) 2021; 11 BN Kholodenko (504_CR21) 2002; 99 TE Chan (504_CR16) 2017; 5 A Ravikrishnan (504_CR33) 2016; 8 HY Wang (504_CR37) 2022; 596 C Weinreb (504_CR13) 2018; 34 J Akhtar (504_CR7) 2022; 25 MA Nieto (504_CR30) 2013; 342 JF Jiao (504_CR6) 2018; 12 S Woodhouse (504_CR20) 2018; 12 S Das (504_CR28) 2009; 10 VA Huynh-Thu (504_CR17) 2010; 5 XJ Tian (504_CR26) 2013; 105 H Siemens (504_CR42) 2011; 10 OS Rukhlenko (504_CR23) 2022; 609 PA Gregory (504_CR44) 2011; 22 L Xu (504_CR2) 2014; 9 B Huang (504_CR10) 2018; 12 JP Thiery (504_CR32) 2009; 139 DA Silveira (504_CR27) 2020; 287 S Kim (504_CR18) 2015; 22 MK Jolly (504_CR38) 2015; 5 M Andrec (504_CR22) 2005; 232 CH Li (504_CR9) 2018; 10 T Kang (504_CR24) 2015; 112 V Chickarmane (504_CR45) 2008; 3 |
References_xml | – volume: 596 start-page: 338 year: 2022 ident: 504_CR37 publication-title: FEBS Lett. doi: 10.1002/1873-3468.14258 – volume: 232 start-page: 427 year: 2005 ident: 504_CR22 publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2004.08.022 – volume: 106 start-page: 105400 year: 2024 ident: 504_CR50 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2024.105400 – volume: 286 start-page: 12024 year: 2011 ident: 504_CR41 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.168625 – volume: 34 start-page: 1246 year: 2018 ident: 504_CR13 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx792 – volume: 119 start-page: 1420 year: 2009 ident: 504_CR35 publication-title: J. Clin. Invest. doi: 10.1172/JCI39104 – volume: 20 start-page: 2207 year: 2009 ident: 504_CR29 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e08-10-1076 – volume: 10 start-page: 92 year: 2018 ident: 504_CR9 publication-title: Integr. Biol. doi: 10.1039/C7IB00198C – volume: 10 start-page: 1 year: 2009 ident: 504_CR28 publication-title: BMC Cell Biol. doi: 10.1186/1471-2121-10-94 – volume: 15 start-page: e1006855 year: 2019 ident: 504_CR49 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006855 – volume: 21 start-page: 44 year: 2019 ident: 504_CR34 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0195-z – volume: 11 year: 2021 ident: 504_CR25 publication-title: Sci. Rep. doi: 10.1038/s41598-021-86544-0 – volume: 12 year: 2018 ident: 504_CR20 publication-title: BMC Syst. Biol. doi: 10.1186/s12918-018-0581-y – volume: 11 start-page: 34 year: 2019 ident: 504_CR47 publication-title: Protein Cell doi: 10.1007/s13238-019-0633-0 – volume: 139 start-page: 871 year: 2009 ident: 504_CR32 publication-title: Cell doi: 10.1016/j.cell.2009.11.007 – volume: 5 year: 2015 ident: 504_CR4 publication-title: Sci. Rep. doi: 10.1038/srep17379 – volume: 5 start-page: 251-267.e3 year: 2017 ident: 504_CR16 publication-title: Cell Syst. – volume: 105 start-page: 1079 year: 2013 ident: 504_CR26 publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.07.011 – volume: 10 start-page: 4256 year: 2011 ident: 504_CR42 publication-title: Cell Cycle doi: 10.4161/cc.10.24.18552 – volume: 75 start-page: 2607 year: 2015 ident: 504_CR46 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-0079 – volume: 9 start-page: e105216 year: 2014 ident: 504_CR2 publication-title: Plos One doi: 10.1371/journal.pone.0105216 – volume: 12 year: 2018 ident: 504_CR10 publication-title: BMC Syst. Biol. doi: 10.1186/s12918-018-0594-6 – volume: 7 start-page: ra91 year: 2014 ident: 504_CR31 publication-title: Sci. Signal. doi: 10.1126/scisignal.2005304 – volume: 102 start-page: 012406 year: 2020 ident: 504_CR3 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.102.012406 – volume: 19 year: 2018 ident: 504_CR14 publication-title: BMC Genomics doi: 10.1186/s12864-018-4772-0 – volume: 99 start-page: 12841 year: 2002 ident: 504_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.192442699 – volume: 12 year: 2018 ident: 504_CR6 publication-title: BMC Syst. Biol. doi: 10.1186/s12918-018-0561-2 – volume: 342 start-page: 1234850 year: 2013 ident: 504_CR30 publication-title: Science doi: 10.1126/science.1234850 – volume: 25 start-page: 105709 year: 2022 ident: 504_CR15 publication-title: iScience doi: 10.1016/j.isci.2022.105709 – volume: 110 start-page: 18144 year: 2013 ident: 504_CR36 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1318192110 – volume: 1 year: 2015 ident: 504_CR39 publication-title: NPJ Syst. Biol. Appl. doi: 10.1038/npjsba.2015.14 – volume: 8 start-page: 17915 year: 2016 ident: 504_CR33 publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.6b05646 – volume: 22 start-page: 665 year: 2015 ident: 504_CR18 publication-title: Commun. Stat. Appl. Methods – volume: 112 start-page: 12893 year: 2015 ident: 504_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1507168112 – volume: 33 start-page: 2314 year: 2017 ident: 504_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx194 – volume: 5 start-page: 155 year: 2015 ident: 504_CR38 publication-title: Front. Oncol. doi: 10.3389/fonc.2015.00155 – volume: 14 start-page: 309 year: 2017 ident: 504_CR12 publication-title: Nat. Methods doi: 10.1038/nmeth.4150 – volume: 11 start-page: 670 year: 2010 ident: 504_CR43 publication-title: EMBO Rep. doi: 10.1038/embor.2010.117 – volume: 77 start-page: 1564 year: 2017 ident: 504_CR5 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-2074 – volume: 609 start-page: 975 year: 2022 ident: 504_CR23 publication-title: Nature doi: 10.1038/s41586-022-05194-y – volume: 22 start-page: 1686 year: 2011 ident: 504_CR44 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-02-0103 – volume: 5 start-page: e12776 year: 2010 ident: 504_CR17 publication-title: PLoS One doi: 10.1371/journal.pone.0012776 – volume: 25 start-page: 105561 year: 2022 ident: 504_CR7 publication-title: iScience doi: 10.1016/j.isci.2022.105561 – volume: 287 start-page: 578 year: 2020 ident: 504_CR27 publication-title: FEBS J. doi: 10.1111/febs.15062 – volume: 12 start-page: 20220002 year: 2002 ident: 504_CR1 publication-title: Interface Focus doi: 10.1098/rsfs.2022.0002 – volume: 3 start-page: e3478 year: 2008 ident: 504_CR45 publication-title: PLoS One doi: 10.1371/journal.pone.0003478 – volume: 17 start-page: 20200500 year: 2020 ident: 504_CR48 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2020.0500 – volume: 278 start-page: 21113 year: 2003 ident: 504_CR40 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M211304200 – volume: 13 start-page: e1005456 year: 2017 ident: 504_CR8 publication-title: Plos Comput. Biol. doi: 10.1371/journal.pcbi.1005456 – volume: 44 start-page: e117 year: 2016 ident: 504_CR11 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw430 |
SSID | ssj0001634210 |
Score | 2.2845469 |
Snippet | With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate... Abstract With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 23 |
SubjectTerms | 631/553/2699 631/553/2711 631/553/2712 Algorithms Bioinformatics Biomedical and Life Sciences Cell Differentiation - genetics Cell fate Cell Lineage - genetics Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Computer Simulation Epithelial-Mesenchymal Transition - genetics Gene Regulatory Networks Humans Life Sciences Network topologies Ordinary differential equations Statistical analysis Statistics Systems Biology |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDI5gEdJeECyv2V1QkLhBtNPETZMTAsRqxYETK-YWJU0Ce2mHdvYw_x4naWc0vKSemlZ1bSd2HPszIa-bxkvbNJq1ofIMbMQpxR0wG-wSQNgq2oz2-UVeXcPnVb2aAm7jlFY5r4l5ofZ9m2LkF2jn8EKDrd-tf7LUNSqdrk4tNO6Sewm6LGl1s2r2MRYpALc0U63MUqiLEe1VymfkNUvIJ8D4gT3KsP1_8zX_TJn87dw0m6PLh-TB5EfS90Xwj8id0J2Q-6Wz5PaEHCcnsmAwPybfErY0HUrX-X7Y0q7kftObudqPlmpFmsL4NKL7Sf3Ue2ekbkvXYUDL5LIQ6biZ0SWekOvLT18_XrGpoQJrgfMN00EHXkXtAnLStpVvhXQOXag2QuVaHKm8dEq7KtjKKlDSe60aFQPXjgsnnpKjru_Cc0IlON4qsA3UGiQPLqaS3JDKYkWtZViQNzNbzbrgZph83i2UKUIwKASThWD4gnxInN89mTCv841--G6mKWQi13WrtFceFPClQ8LASbDgkYY64ifPZ7mZaSKOZq82C_JqN4xTKDHUdqG_Lc8kv1XJBXlWxLyjBJc4gZtKpFAdKMABqYcj3c2PDNOdGrmjO4evvp11ZU_Xv3lx-v_fOCPHPKuvYEs4J0eb4Ta8QL9o415m5f8FwfgLqA priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUQCKmXqi1t2ZYiI3FrLTb2xLGP2wqE9tALoHKz7NhuuWRRdjnsv-_YThYthUOlnGJHGb3xx4sz84aQ06bx0jaNZm2oPAMbcUpxB8wGOwUQtoo2q33-lJc3ML-tb3cIH3NhctB-lrTMy_QYHXa2xI0mBSLymiXJEmC47O4lqXYc23uz2fxq_niyIgXgh8yQITMV6pmHt3ahLNb_HMP8N1Dyyd_SvAldvCGvB_ZIZ8Xet2QndO_IfqknuT4gv5KINO1LeflFv6ZdCfKmd2NaHy1piTSd19OIPJP6ocjOkro1vQ89guKyt-hyNcpIvCc3F-fXPy7ZUDmBtcD5iumgA6-idgH5iW0r3wrpHHKlNkLlWmypvHRKuyrYyipQ0nutGhUD144LJz6Q3W7RhUNCJTjeKrAItQbJg4sp9zak_FdRaxkm5OuIpLkvAhkm_9gWyhTcDeJuMu6GT8j3BPamZxK3zjcW_W8zONtErutWaa88KOBTh4aBk2DBow11xFceja4yw4xbGuRBeCGh0xNysmnGuZIAtV1YPJQ-iaAqOSEfi2c3luBaJvDrES1UWz7fMnW7pbv7k_W4U8V25G346LdxeDza9TIWn_6v-2fyiucRLNgUjsjuqn8IX5AQrdzxMAP-AnV9BmM priority: 102 providerName: Springer Nature |
Title | Gene regulatory network inference during cell fate decisions by perturbation strategies |
URI | https://link.springer.com/article/10.1038/s41540-025-00504-2 https://www.ncbi.nlm.nih.gov/pubmed/40032872 https://www.proquest.com/docview/3173172509 https://www.proquest.com/docview/3173405786 https://pubmed.ncbi.nlm.nih.gov/PMC11876352 https://doaj.org/article/f295c89d8d48420b8784b64a4d4595fe |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0vQV57Go0FtrspbGsnTcLAlhD6G0Dd2bkCyJ5uINu5vD_vuOJHub7YNcAgaDJcPwjaX5JGu-IeRj0zhhmkaVra9cCSbgkGIWSuPNGICbKpik9nklLq9hNq_n90p9xTNhWR44A3camKpbqZx0IIGNrWwkWAEGHNSqDj7Ovhjz7i2m0u6K4ICLmT5LZszl6QojVTzJyOoyap5AyXYiURLs_xfL_Puw5B9_TFMgunhFXvYMkk6y5fvkie9ek-e5puTmDfkRhaTpMpeYXyw3tMsHvenNkNpHc2oijXv2NCDXpK4vtLOidkNv_RLDkE0eo6v1ICXxllxfnH-fXpZ99YSyBcbWpfLKsyoo65GjmLZyLRfWIl9qA1S2xZbKCSuVrbypjAQpnFOIbvBMWcYtf0f2ukXnDwgVYFkrwTQIOQjmbYj5tz7mwPJaCV-QTwOS-jaLZOj0c5tLnXHXiLtOuGtWkLMI9rZnFLhOD9Dtune7fsjtBTkeXKX7UbfSyIXwQlKnCvJh24zjJQJqOr-4y30iSZWiIO-zZ7eW4HzGcQWJFsodn--YutvS3fxMmtyxajtyN3z18_B5_Lbr_1gcPgYWR-QFS981L8dwTPbWyzt_glRpbUfkaTNvRuTZZDL7NsP72fnVl6_4dCqmozRifgG8HRRi |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFiF4QlNdCASPBCawmtuPYB4R4VVtaemrF3owdO9BLsiRbof0pvpGxnexqed0q5RQ7yWQenhmPZwahZ2XphClLRSqfO8JNDSJFLSfGm4xzZvLaxGqfJ2J6xj_OitkW-jnmwoRjleOaGBdq11Zhj3wf9BxcoLDV6_l3ErpGhejq2EIjscWRX_4Al61_dfge6Puc0oMPp--mZOgqQCpO6YIorzzNa2U9vM5UuauYsBbsiKrmua1gJHfCSmVzb3IjuRTOgWMua0-VpcwyeO8VdBUUbxacvXJWrvd0BOPgQg25ORmT-z3ox3B-khYkVFrhhG7ov9gm4G-27Z9HNH-L00b1d3AT3RjsVvwmMdottOWbXXQtdbJc7qKdYLSmms-30edQyxp3qct92y1xk86a4_MxuxCn7Egcwga4BnMXu6HXT4_tEs99B5rQRqbB_WKsZnEHnV0Kqu-i7aZt_H2EBbe0ktyUvFBcUG_rkALsQxouK5TwE_RiRKuepzodOsbXmdSJCBqIoCMRNJ2gtwHzq5mhxna80XZf9SCyuqaqqKRy0nHJaWYBMG4FN9wBDEUNn9wb6aYHwe_1mk0n6OlqGEQ2INQ0vr1Ic4KdLMUE3UtkXkECSyoDJxYglBsMsAHq5khz_i2WBQ-N48F8hEdfjryyhuvfuHjw_994gq5PTz8d6-PDk6OHaIdGVmYk43toe9Fd-Edgky3s4ygIGH25bMn7BQCrSd0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2AvWCoLwWChgJThDtxnEc-4AQpV21FK0qREVvxo5t6CVZNluh_TW-jnGc7Gp53SrlFDvJZB6eGXseAM-LwnJdFDIpXWoTpj2KFDUs0U6PGct06nVb7XPKj87Y-_P8fAt-9rkwIayyXxPbhdrWZdgjH6GewwsVthz5Lizi9GDyZvY9CR2kwklr304jssiJW_5A9615fXyAtH5B6eTw07ujpOswkJSM0kUinXQ09dI4fLUuU1tm3Bi0KUrPUlPiSGq5EdKkTqdaMMGtRSddeEeloZnJ8L3XYLsIXtEAtvcPp6cf1zs8PGPoUHWZOuNMjBrUliGakuZJqLvCErqhDdumAX-zdP8M2Pzt1LZVhpNbcLOzYsnbyHa3YctVu3A99rVc7sJOMGFjBeg78DlUtibz2PO-ni9JFSPPyUWfa0hiriQJhwjEo_FLbNf5pyFmSWZujnrRtCxEmkVf2-IunF0Jsu_BoKor9wAIZ4aWgumC5ZJx6owPCcEuJOVmueRuCC97tKpZrNqh2tP2TKhIBIVEUC0RFB3CfsD8amaouN3eqOdfVSfAylOZl0JaYZlgdGwQMGY408wiDLnHT-71dFPdMtCoNdMO4dlqGAU4IFRXrr6Mc4LVLPgQ7kcyryDBBTZDlxYhFBsMsAHq5kh18a0tEh7ayKMxiY--6nllDde_cfHw_7_xFG6g1KkPx9OTR7BDW07OkjHbg8Fifukeo4G2ME86SSDw5aqF7xf0H094 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+regulatory+network+inference+during+cell+fate+decisions+by+perturbation+strategies&rft.jtitle=NPJ+systems+biology+and+applications&rft.au=Qing+Hu&rft.au=Xiaoqi+Lu&rft.au=Zhuozhen+Xue&rft.au=Ruiqi+Wang&rft.date=2025-03-04&rft.pub=Nature+Portfolio&rft.eissn=2056-7189&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41540-025-00504-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f295c89d8d48420b8784b64a4d4595fe |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-7189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-7189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-7189&client=summon |