Gene regulatory network inference during cell fate decisions by perturbation strategies

With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In t...

Full description

Saved in:
Bibliographic Details
Published inNPJ systems biology and applications Vol. 11; no. 1; pp. 23 - 10
Main Authors Hu, Qing, Lu, Xiaoqi, Xue, Zhuozhen, Wang, Ruiqi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In this study, we propose a general computational approach based on systematic perturbation, statistical, and differential analyses to infer network topologies and identify network differences during cell fate decisions. For each cell fate state, we first theoretically show how to calculate local response matrices based on perturbation data under systematic perturbation analysis, and we also derive the wild-type (WT) local response matrix for specific ordinary differential equations. To make the inferred network more accurate and eliminate the impact of perturbation degrees, the confidence interval (CI) of local response matrices under multiple perturbations is applied, and the redefined local response matrix is proposed in statistical analysis to determine network topologies across all cell fates. Then in differential analysis, we introduce the concept of relative local response matrix, which enables us to identify critical regulations governing each cell state and dominant cell states associated with specific regulations. The epithelial to mesenchymal transition (EMT) network is chosen as an illustrative example to verify the feasibility of the approach. Largely consistent with experimental observations, the differences of inferred networks at the three cell states can be quantitatively identified. The approach presented here can be also applied to infer other regulatory networks related to cell fate decisions.
AbstractList With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In this study, we propose a general computational approach based on systematic perturbation, statistical, and differential analyses to infer network topologies and identify network differences during cell fate decisions. For each cell fate state, we first theoretically show how to calculate local response matrices based on perturbation data under systematic perturbation analysis, and we also derive the wild-type (WT) local response matrix for specific ordinary differential equations. To make the inferred network more accurate and eliminate the impact of perturbation degrees, the confidence interval (CI) of local response matrices under multiple perturbations is applied, and the redefined local response matrix is proposed in statistical analysis to determine network topologies across all cell fates. Then in differential analysis, we introduce the concept of relative local response matrix, which enables us to identify critical regulations governing each cell state and dominant cell states associated with specific regulations. The epithelial to mesenchymal transition (EMT) network is chosen as an illustrative example to verify the feasibility of the approach. Largely consistent with experimental observations, the differences of inferred networks at the three cell states can be quantitatively identified. The approach presented here can be also applied to infer other regulatory networks related to cell fate decisions.
Abstract With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In this study, we propose a general computational approach based on systematic perturbation, statistical, and differential analyses to infer network topologies and identify network differences during cell fate decisions. For each cell fate state, we first theoretically show how to calculate local response matrices based on perturbation data under systematic perturbation analysis, and we also derive the wild-type (WT) local response matrix for specific ordinary differential equations. To make the inferred network more accurate and eliminate the impact of perturbation degrees, the confidence interval (CI) of local response matrices under multiple perturbations is applied, and the redefined local response matrix is proposed in statistical analysis to determine network topologies across all cell fates. Then in differential analysis, we introduce the concept of relative local response matrix, which enables us to identify critical regulations governing each cell state and dominant cell states associated with specific regulations. The epithelial to mesenchymal transition (EMT) network is chosen as an illustrative example to verify the feasibility of the approach. Largely consistent with experimental observations, the differences of inferred networks at the three cell states can be quantitatively identified. The approach presented here can be also applied to infer other regulatory networks related to cell fate decisions.
With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In this study, we propose a general computational approach based on systematic perturbation, statistical, and differential analyses to infer network topologies and identify network differences during cell fate decisions. For each cell fate state, we first theoretically show how to calculate local response matrices based on perturbation data under systematic perturbation analysis, and we also derive the wild-type (WT) local response matrix for specific ordinary differential equations. To make the inferred network more accurate and eliminate the impact of perturbation degrees, the confidence interval (CI) of local response matrices under multiple perturbations is applied, and the redefined local response matrix is proposed in statistical analysis to determine network topologies across all cell fates. Then in differential analysis, we introduce the concept of relative local response matrix, which enables us to identify critical regulations governing each cell state and dominant cell states associated with specific regulations. The epithelial to mesenchymal transition (EMT) network is chosen as an illustrative example to verify the feasibility of the approach. Largely consistent with experimental observations, the differences of inferred networks at the three cell states can be quantitatively identified. The approach presented here can be also applied to infer other regulatory networks related to cell fate decisions.With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In this study, we propose a general computational approach based on systematic perturbation, statistical, and differential analyses to infer network topologies and identify network differences during cell fate decisions. For each cell fate state, we first theoretically show how to calculate local response matrices based on perturbation data under systematic perturbation analysis, and we also derive the wild-type (WT) local response matrix for specific ordinary differential equations. To make the inferred network more accurate and eliminate the impact of perturbation degrees, the confidence interval (CI) of local response matrices under multiple perturbations is applied, and the redefined local response matrix is proposed in statistical analysis to determine network topologies across all cell fates. Then in differential analysis, we introduce the concept of relative local response matrix, which enables us to identify critical regulations governing each cell state and dominant cell states associated with specific regulations. The epithelial to mesenchymal transition (EMT) network is chosen as an illustrative example to verify the feasibility of the approach. Largely consistent with experimental observations, the differences of inferred networks at the three cell states can be quantitatively identified. The approach presented here can be also applied to infer other regulatory networks related to cell fate decisions.
ArticleNumber 23
Author Wang, Ruiqi
Lu, Xiaoqi
Xue, Zhuozhen
Hu, Qing
Author_xml – sequence: 1
  givenname: Qing
  surname: Hu
  fullname: Hu, Qing
  organization: Department of Mathematics, Shanghai University
– sequence: 2
  givenname: Xiaoqi
  surname: Lu
  fullname: Lu, Xiaoqi
  organization: Department of Mathematics, Shanghai University
– sequence: 3
  givenname: Zhuozhen
  surname: Xue
  fullname: Xue, Zhuozhen
  organization: Department of Mathematics, Shanghai University
– sequence: 4
  givenname: Ruiqi
  surname: Wang
  fullname: Wang, Ruiqi
  email: rqwang@shu.edu.cn
  organization: Department of Mathematics, Shanghai University, Newtouch Center for Mathematics of Shanghai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40032872$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1UREvpH-CAInHhEvBnYp8QqqBUqsQFxNHyxyR4ydqLnYD23-PdlNJy4GRr5pnX45n3KTqJKQJCzwl-TTCTbwonguMWU9FiLDBv6SN0RrHo2p5IdXLvfoouStlgjEnHOCX4CTrlGDMqe3qGvl5BhCbDuExmTnnfRJh_pfy9CXGADNFB45cc4tg4mKZmMHMNgAslpFgau292kOclWzPXQFPmXIExQHmGHg9mKnBxe56jLx_ef7782N58urq-fHfTOk7p3CpQQMmgLJCeGke8Y521XHRu4MS6miG-s1JZAoYYyWXnvZK9HIAqS5ll5-h61fXJbPQuh63Je51M0MdAyqM2eQ5uAj1QJZxUXnouOcW2ynDbccM9F0oMULXerlq7xW7BO4j1O9MD0YeZGL7pMf3UhMi-Y4JWhVe3Cjn9WKDMehvKYXAmQlqKZqRnHItedhV9-Q-6SUuOdVZHqo5DYFWpF_dbuuvlzwIrQFfA5VRKhuEOIVgfjKJXo-hqFH00ij4UsbWo7A6rhfz37f9U_QZETsC1
Cites_doi 10.1002/1873-3468.14258
10.1016/j.jtbi.2004.08.022
10.1016/j.scs.2024.105400
10.1074/jbc.M110.168625
10.1093/bioinformatics/btx792
10.1172/JCI39104
10.1091/mbc.e08-10-1076
10.1039/C7IB00198C
10.1186/1471-2121-10-94
10.1371/journal.pcbi.1006855
10.1038/s41556-018-0195-z
10.1038/s41598-021-86544-0
10.1186/s12918-018-0581-y
10.1007/s13238-019-0633-0
10.1016/j.cell.2009.11.007
10.1038/srep17379
10.1016/j.bpj.2013.07.011
10.4161/cc.10.24.18552
10.1158/0008-5472.CAN-15-0079
10.1371/journal.pone.0105216
10.1186/s12918-018-0594-6
10.1126/scisignal.2005304
10.1103/PhysRevE.102.012406
10.1186/s12864-018-4772-0
10.1073/pnas.192442699
10.1186/s12918-018-0561-2
10.1126/science.1234850
10.1016/j.isci.2022.105709
10.1073/pnas.1318192110
10.1038/npjsba.2015.14
10.1021/acsami.6b05646
10.1073/pnas.1507168112
10.1093/bioinformatics/btx194
10.3389/fonc.2015.00155
10.1038/nmeth.4150
10.1038/embor.2010.117
10.1158/0008-5472.CAN-16-2074
10.1038/s41586-022-05194-y
10.1091/mbc.e11-02-0103
10.1371/journal.pone.0012776
10.1016/j.isci.2022.105561
10.1111/febs.15062
10.1098/rsfs.2022.0002
10.1371/journal.pone.0003478
10.1098/rsif.2020.0500
10.1074/jbc.M211304200
10.1371/journal.pcbi.1005456
10.1093/nar/gkw430
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41540-025-00504-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 2056-7189
EndPage 10
ExternalDocumentID oai_doaj_org_article_f295c89d8d48420b8784b64a4d4595fe
PMC11876352
40032872
10_1038_s41540_025_00504_2
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12371497
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 12371497
GroupedDBID 0R~
5VS
7X7
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PGMZT
PHGZT
PIMPY
PQQKQ
PROAC
RNT
RPM
UKHRP
AASML
AAYXX
CITATION
PHGZM
SNYQT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c422t-9e9e21f9be172ac1dc36bb456cf41bc1f91d6b89b1ea1a8486dd9878fe29b23b3
IEDL.DBID DOA
ISSN 2056-7189
IngestDate Wed Aug 27 01:29:35 EDT 2025
Thu Aug 21 18:27:19 EDT 2025
Fri Jul 11 13:08:22 EDT 2025
Wed Aug 13 01:50:03 EDT 2025
Mon May 12 02:38:50 EDT 2025
Tue Jul 01 05:23:38 EDT 2025
Tue Mar 04 01:16:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-9e9e21f9be172ac1dc36bb456cf41bc1f91d6b89b1ea1a8486dd9878fe29b23b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/f295c89d8d48420b8784b64a4d4595fe
PMID 40032872
PQID 3173172509
PQPubID 2041915
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f295c89d8d48420b8784b64a4d4595fe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11876352
proquest_miscellaneous_3173405786
proquest_journals_3173172509
pubmed_primary_40032872
crossref_primary_10_1038_s41540_025_00504_2
springer_journals_10_1038_s41540_025_00504_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ systems biology and applications
PublicationTitleAbbrev npj Syst Biol Appl
PublicationTitleAlternate NPJ Syst Biol Appl
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References DS Huang (504_CR3) 2020; 102
M Sáez (504_CR1) 2002; 12
H Peinado (504_CR40) 2003; 278
H Matsumoto (504_CR19) 2017; 33
XN Ma (504_CR50) 2024; 106
Q Luo (504_CR15) 2022; 25
JY Zhang (504_CR31) 2014; 7
M Lu (504_CR36) 2013; 110
CH Li (504_CR46) 2015; 75
B Huang (504_CR4) 2015; 5
H Cheng (504_CR47) 2019; 11
LL Yu (504_CR5) 2017; 77
N Dave (504_CR41) 2011; 286
YJ Ye (504_CR49) 2019; 15
DQ Pei (504_CR34) 2019; 21
K Street (504_CR14) 2018; 19
S Brabletz (504_CR43) 2010; 11
JM Drake (504_CR29) 2009; 20
B Huang (504_CR48) 2020; 17
ZC Ji (504_CR11) 2016; 44
R Kalluri (504_CR35) 2009; 119
SN Steinway (504_CR39) 2015; 1
B Huang (504_CR8) 2017; 13
XJ Qiu (504_CR12) 2017; 14
G Jimenez-Dominguez (504_CR25) 2021; 11
BN Kholodenko (504_CR21) 2002; 99
TE Chan (504_CR16) 2017; 5
A Ravikrishnan (504_CR33) 2016; 8
HY Wang (504_CR37) 2022; 596
C Weinreb (504_CR13) 2018; 34
J Akhtar (504_CR7) 2022; 25
MA Nieto (504_CR30) 2013; 342
JF Jiao (504_CR6) 2018; 12
S Woodhouse (504_CR20) 2018; 12
S Das (504_CR28) 2009; 10
VA Huynh-Thu (504_CR17) 2010; 5
XJ Tian (504_CR26) 2013; 105
H Siemens (504_CR42) 2011; 10
OS Rukhlenko (504_CR23) 2022; 609
PA Gregory (504_CR44) 2011; 22
L Xu (504_CR2) 2014; 9
B Huang (504_CR10) 2018; 12
JP Thiery (504_CR32) 2009; 139
DA Silveira (504_CR27) 2020; 287
S Kim (504_CR18) 2015; 22
MK Jolly (504_CR38) 2015; 5
M Andrec (504_CR22) 2005; 232
CH Li (504_CR9) 2018; 10
T Kang (504_CR24) 2015; 112
V Chickarmane (504_CR45) 2008; 3
References_xml – volume: 596
  start-page: 338
  year: 2022
  ident: 504_CR37
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.14258
– volume: 232
  start-page: 427
  year: 2005
  ident: 504_CR22
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2004.08.022
– volume: 106
  start-page: 105400
  year: 2024
  ident: 504_CR50
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2024.105400
– volume: 286
  start-page: 12024
  year: 2011
  ident: 504_CR41
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.168625
– volume: 34
  start-page: 1246
  year: 2018
  ident: 504_CR13
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx792
– volume: 119
  start-page: 1420
  year: 2009
  ident: 504_CR35
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI39104
– volume: 20
  start-page: 2207
  year: 2009
  ident: 504_CR29
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e08-10-1076
– volume: 10
  start-page: 92
  year: 2018
  ident: 504_CR9
  publication-title: Integr. Biol.
  doi: 10.1039/C7IB00198C
– volume: 10
  start-page: 1
  year: 2009
  ident: 504_CR28
  publication-title: BMC Cell Biol.
  doi: 10.1186/1471-2121-10-94
– volume: 15
  start-page: e1006855
  year: 2019
  ident: 504_CR49
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006855
– volume: 21
  start-page: 44
  year: 2019
  ident: 504_CR34
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0195-z
– volume: 11
  year: 2021
  ident: 504_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-86544-0
– volume: 12
  year: 2018
  ident: 504_CR20
  publication-title: BMC Syst. Biol.
  doi: 10.1186/s12918-018-0581-y
– volume: 11
  start-page: 34
  year: 2019
  ident: 504_CR47
  publication-title: Protein Cell
  doi: 10.1007/s13238-019-0633-0
– volume: 139
  start-page: 871
  year: 2009
  ident: 504_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.007
– volume: 5
  year: 2015
  ident: 504_CR4
  publication-title: Sci. Rep.
  doi: 10.1038/srep17379
– volume: 5
  start-page: 251-267.e3
  year: 2017
  ident: 504_CR16
  publication-title: Cell Syst.
– volume: 105
  start-page: 1079
  year: 2013
  ident: 504_CR26
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.07.011
– volume: 10
  start-page: 4256
  year: 2011
  ident: 504_CR42
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.24.18552
– volume: 75
  start-page: 2607
  year: 2015
  ident: 504_CR46
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-0079
– volume: 9
  start-page: e105216
  year: 2014
  ident: 504_CR2
  publication-title: Plos One
  doi: 10.1371/journal.pone.0105216
– volume: 12
  year: 2018
  ident: 504_CR10
  publication-title: BMC Syst. Biol.
  doi: 10.1186/s12918-018-0594-6
– volume: 7
  start-page: ra91
  year: 2014
  ident: 504_CR31
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2005304
– volume: 102
  start-page: 012406
  year: 2020
  ident: 504_CR3
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.012406
– volume: 19
  year: 2018
  ident: 504_CR14
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4772-0
– volume: 99
  start-page: 12841
  year: 2002
  ident: 504_CR21
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.192442699
– volume: 12
  year: 2018
  ident: 504_CR6
  publication-title: BMC Syst. Biol.
  doi: 10.1186/s12918-018-0561-2
– volume: 342
  start-page: 1234850
  year: 2013
  ident: 504_CR30
  publication-title: Science
  doi: 10.1126/science.1234850
– volume: 25
  start-page: 105709
  year: 2022
  ident: 504_CR15
  publication-title: iScience
  doi: 10.1016/j.isci.2022.105709
– volume: 110
  start-page: 18144
  year: 2013
  ident: 504_CR36
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1318192110
– volume: 1
  year: 2015
  ident: 504_CR39
  publication-title: NPJ Syst. Biol. Appl.
  doi: 10.1038/npjsba.2015.14
– volume: 8
  start-page: 17915
  year: 2016
  ident: 504_CR33
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.6b05646
– volume: 22
  start-page: 665
  year: 2015
  ident: 504_CR18
  publication-title: Commun. Stat. Appl. Methods
– volume: 112
  start-page: 12893
  year: 2015
  ident: 504_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1507168112
– volume: 33
  start-page: 2314
  year: 2017
  ident: 504_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx194
– volume: 5
  start-page: 155
  year: 2015
  ident: 504_CR38
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2015.00155
– volume: 14
  start-page: 309
  year: 2017
  ident: 504_CR12
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4150
– volume: 11
  start-page: 670
  year: 2010
  ident: 504_CR43
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2010.117
– volume: 77
  start-page: 1564
  year: 2017
  ident: 504_CR5
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2074
– volume: 609
  start-page: 975
  year: 2022
  ident: 504_CR23
  publication-title: Nature
  doi: 10.1038/s41586-022-05194-y
– volume: 22
  start-page: 1686
  year: 2011
  ident: 504_CR44
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-02-0103
– volume: 5
  start-page: e12776
  year: 2010
  ident: 504_CR17
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012776
– volume: 25
  start-page: 105561
  year: 2022
  ident: 504_CR7
  publication-title: iScience
  doi: 10.1016/j.isci.2022.105561
– volume: 287
  start-page: 578
  year: 2020
  ident: 504_CR27
  publication-title: FEBS J.
  doi: 10.1111/febs.15062
– volume: 12
  start-page: 20220002
  year: 2002
  ident: 504_CR1
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2022.0002
– volume: 3
  start-page: e3478
  year: 2008
  ident: 504_CR45
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003478
– volume: 17
  start-page: 20200500
  year: 2020
  ident: 504_CR48
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2020.0500
– volume: 278
  start-page: 21113
  year: 2003
  ident: 504_CR40
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M211304200
– volume: 13
  start-page: e1005456
  year: 2017
  ident: 504_CR8
  publication-title: Plos Comput. Biol.
  doi: 10.1371/journal.pcbi.1005456
– volume: 44
  start-page: e117
  year: 2016
  ident: 504_CR11
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw430
SSID ssj0001634210
Score 2.2845469
Snippet With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate...
Abstract With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 23
SubjectTerms 631/553/2699
631/553/2711
631/553/2712
Algorithms
Bioinformatics
Biomedical and Life Sciences
Cell Differentiation - genetics
Cell fate
Cell Lineage - genetics
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Computer Simulation
Epithelial-Mesenchymal Transition - genetics
Gene Regulatory Networks
Humans
Life Sciences
Network topologies
Ordinary differential equations
Statistical analysis
Statistics
Systems Biology
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDI5gEdJeECyv2V1QkLhBtNPETZMTAsRqxYETK-YWJU0Ce2mHdvYw_x4naWc0vKSemlZ1bSd2HPszIa-bxkvbNJq1ofIMbMQpxR0wG-wSQNgq2oz2-UVeXcPnVb2aAm7jlFY5r4l5ofZ9m2LkF2jn8EKDrd-tf7LUNSqdrk4tNO6Sewm6LGl1s2r2MRYpALc0U63MUqiLEe1VymfkNUvIJ8D4gT3KsP1_8zX_TJn87dw0m6PLh-TB5EfS90Xwj8id0J2Q-6Wz5PaEHCcnsmAwPybfErY0HUrX-X7Y0q7kftObudqPlmpFmsL4NKL7Sf3Ue2ekbkvXYUDL5LIQ6biZ0SWekOvLT18_XrGpoQJrgfMN00EHXkXtAnLStpVvhXQOXag2QuVaHKm8dEq7KtjKKlDSe60aFQPXjgsnnpKjru_Cc0IlON4qsA3UGiQPLqaS3JDKYkWtZViQNzNbzbrgZph83i2UKUIwKASThWD4gnxInN89mTCv841--G6mKWQi13WrtFceFPClQ8LASbDgkYY64ifPZ7mZaSKOZq82C_JqN4xTKDHUdqG_Lc8kv1XJBXlWxLyjBJc4gZtKpFAdKMABqYcj3c2PDNOdGrmjO4evvp11ZU_Xv3lx-v_fOCPHPKuvYEs4J0eb4Ta8QL9o415m5f8FwfgLqA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUQCKmXqi1t2ZYiI3FrLTb2xLGP2wqE9tALoHKz7NhuuWRRdjnsv-_YThYthUOlnGJHGb3xx4sz84aQ06bx0jaNZm2oPAMbcUpxB8wGOwUQtoo2q33-lJc3ML-tb3cIH3NhctB-lrTMy_QYHXa2xI0mBSLymiXJEmC47O4lqXYc23uz2fxq_niyIgXgh8yQITMV6pmHt3ahLNb_HMP8N1Dyyd_SvAldvCGvB_ZIZ8Xet2QndO_IfqknuT4gv5KINO1LeflFv6ZdCfKmd2NaHy1piTSd19OIPJP6ocjOkro1vQ89guKyt-hyNcpIvCc3F-fXPy7ZUDmBtcD5iumgA6-idgH5iW0r3wrpHHKlNkLlWmypvHRKuyrYyipQ0nutGhUD144LJz6Q3W7RhUNCJTjeKrAItQbJg4sp9zak_FdRaxkm5OuIpLkvAhkm_9gWyhTcDeJuMu6GT8j3BPamZxK3zjcW_W8zONtErutWaa88KOBTh4aBk2DBow11xFceja4yw4xbGuRBeCGh0xNysmnGuZIAtV1YPJQ-iaAqOSEfi2c3luBaJvDrES1UWz7fMnW7pbv7k_W4U8V25G346LdxeDza9TIWn_6v-2fyiucRLNgUjsjuqn8IX5AQrdzxMAP-AnV9BmM
  priority: 102
  providerName: Springer Nature
Title Gene regulatory network inference during cell fate decisions by perturbation strategies
URI https://link.springer.com/article/10.1038/s41540-025-00504-2
https://www.ncbi.nlm.nih.gov/pubmed/40032872
https://www.proquest.com/docview/3173172509
https://www.proquest.com/docview/3173405786
https://pubmed.ncbi.nlm.nih.gov/PMC11876352
https://doaj.org/article/f295c89d8d48420b8784b64a4d4595fe
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0vQV57Go0FtrspbGsnTcLAlhD6G0Dd2bkCyJ5uINu5vD_vuOJHub7YNcAgaDJcPwjaX5JGu-IeRj0zhhmkaVra9cCSbgkGIWSuPNGICbKpik9nklLq9hNq_n90p9xTNhWR44A3camKpbqZx0IIGNrWwkWAEGHNSqDj7Ovhjz7i2m0u6K4ICLmT5LZszl6QojVTzJyOoyap5AyXYiURLs_xfL_Puw5B9_TFMgunhFXvYMkk6y5fvkie9ek-e5puTmDfkRhaTpMpeYXyw3tMsHvenNkNpHc2oijXv2NCDXpK4vtLOidkNv_RLDkE0eo6v1ICXxllxfnH-fXpZ99YSyBcbWpfLKsyoo65GjmLZyLRfWIl9qA1S2xZbKCSuVrbypjAQpnFOIbvBMWcYtf0f2ukXnDwgVYFkrwTQIOQjmbYj5tz7mwPJaCV-QTwOS-jaLZOj0c5tLnXHXiLtOuGtWkLMI9rZnFLhOD9Dtune7fsjtBTkeXKX7UbfSyIXwQlKnCvJh24zjJQJqOr-4y30iSZWiIO-zZ7eW4HzGcQWJFsodn--YutvS3fxMmtyxajtyN3z18_B5_Lbr_1gcPgYWR-QFS981L8dwTPbWyzt_glRpbUfkaTNvRuTZZDL7NsP72fnVl6_4dCqmozRifgG8HRRi
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFiF4QlNdCASPBCawmtuPYB4R4VVtaemrF3owdO9BLsiRbof0pvpGxnexqed0q5RQ7yWQenhmPZwahZ2XphClLRSqfO8JNDSJFLSfGm4xzZvLaxGqfJ2J6xj_OitkW-jnmwoRjleOaGBdq11Zhj3wf9BxcoLDV6_l3ErpGhejq2EIjscWRX_4Al61_dfge6Puc0oMPp--mZOgqQCpO6YIorzzNa2U9vM5UuauYsBbsiKrmua1gJHfCSmVzb3IjuRTOgWMua0-VpcwyeO8VdBUUbxacvXJWrvd0BOPgQg25ORmT-z3ox3B-khYkVFrhhG7ov9gm4G-27Z9HNH-L00b1d3AT3RjsVvwmMdottOWbXXQtdbJc7qKdYLSmms-30edQyxp3qct92y1xk86a4_MxuxCn7Egcwga4BnMXu6HXT4_tEs99B5rQRqbB_WKsZnEHnV0Kqu-i7aZt_H2EBbe0ktyUvFBcUG_rkALsQxouK5TwE_RiRKuepzodOsbXmdSJCBqIoCMRNJ2gtwHzq5mhxna80XZf9SCyuqaqqKRy0nHJaWYBMG4FN9wBDEUNn9wb6aYHwe_1mk0n6OlqGEQ2INQ0vr1Ic4KdLMUE3UtkXkECSyoDJxYglBsMsAHq5khz_i2WBQ-N48F8hEdfjryyhuvfuHjw_994gq5PTz8d6-PDk6OHaIdGVmYk43toe9Fd-Edgky3s4ygIGH25bMn7BQCrSd0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2AvWCoLwWChgJThDtxnEc-4AQpV21FK0qREVvxo5t6CVZNluh_TW-jnGc7Gp53SrlFDvJZB6eGXseAM-LwnJdFDIpXWoTpj2KFDUs0U6PGct06nVb7XPKj87Y-_P8fAt-9rkwIayyXxPbhdrWZdgjH6GewwsVthz5Lizi9GDyZvY9CR2kwklr304jssiJW_5A9615fXyAtH5B6eTw07ujpOswkJSM0kUinXQ09dI4fLUuU1tm3Bi0KUrPUlPiSGq5EdKkTqdaMMGtRSddeEeloZnJ8L3XYLsIXtEAtvcPp6cf1zs8PGPoUHWZOuNMjBrUliGakuZJqLvCErqhDdumAX-zdP8M2Pzt1LZVhpNbcLOzYsnbyHa3YctVu3A99rVc7sJOMGFjBeg78DlUtibz2PO-ni9JFSPPyUWfa0hiriQJhwjEo_FLbNf5pyFmSWZujnrRtCxEmkVf2-IunF0Jsu_BoKor9wAIZ4aWgumC5ZJx6owPCcEuJOVmueRuCC97tKpZrNqh2tP2TKhIBIVEUC0RFB3CfsD8amaouN3eqOdfVSfAylOZl0JaYZlgdGwQMGY408wiDLnHT-71dFPdMtCoNdMO4dlqGAU4IFRXrr6Mc4LVLPgQ7kcyryDBBTZDlxYhFBsMsAHq5kh18a0tEh7ayKMxiY--6nllDde_cfHw_7_xFG6g1KkPx9OTR7BDW07OkjHbg8Fifukeo4G2ME86SSDw5aqF7xf0H094
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+regulatory+network+inference+during+cell+fate+decisions+by+perturbation+strategies&rft.jtitle=NPJ+systems+biology+and+applications&rft.au=Qing+Hu&rft.au=Xiaoqi+Lu&rft.au=Zhuozhen+Xue&rft.au=Ruiqi+Wang&rft.date=2025-03-04&rft.pub=Nature+Portfolio&rft.eissn=2056-7189&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41540-025-00504-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f295c89d8d48420b8784b64a4d4595fe
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-7189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-7189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-7189&client=summon