Predicting gut microbiota dynamics in obese individuals from cross-sectional data
Obesity affects approximately 39% of adults worldwide. While gut microbiota has been linked to obesity, most research has focused on static taxonomic composition rather than the dynamic interactions between microbial taxa. We applied BEEM-Static, a generalized Lotka-Volterra model, to cross-sectiona...
Saved in:
Published in | Frontiers in cellular and infection microbiology Vol. 15; p. 1485791 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
10.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Obesity affects approximately 39% of adults worldwide. While gut microbiota has been linked to obesity, most research has focused on static taxonomic composition rather than the dynamic interactions between microbial taxa.
We applied BEEM-Static, a generalized Lotka-Volterra model, to cross-sectional 16S rRNA gut microbiome data from six public datasets, comprising 2,435 profiles from lean and obese individuals.
A total of 57 significant microbial interactions were identified in obese individuals (79% negative), compared to 37 in lean individuals (92% negative). For example, Bacteroidetes showed a stronger inhibitory effect on Firmicutes in obese individuals (-0.41) than in lean ones (-0.26). Firmicutes and Proteobacteria exhibited consistently higher carrying capacities in obese populations.
These findings suggest that microbial interaction networks-not just taxonomic abundance-play a key role in obesity-related dysbiosis. Our approach enables the inference of microbiota dynamics from a single time point, paving the way for tailored dietary interventions, which we refer to as
. |
---|---|
AbstractList | IntroductionObesity affects approximately 39% of adults worldwide. While gut microbiota has been linked to obesity, most research has focused on static taxonomic composition rather than the dynamic interactions between microbial taxa.MethodsWe applied BEEM-Static, a generalized Lotka-Volterra model, to cross-sectional 16S rRNA gut microbiome data from six public datasets, comprising 2,435 profiles from lean and obese individuals.ResultsA total of 57 significant microbial interactions were identified in obese individuals (79% negative), compared to 37 in lean individuals (92% negative). For example, Bacteroidetes showed a stronger inhibitory effect on Firmicutes in obese individuals (−0.41) than in lean ones (−0.26). Firmicutes and Proteobacteria exhibited consistently higher carrying capacities in obese populations.DiscussionThese findings suggest that microbial interaction networks—not just taxonomic abundance—play a key role in obesity-related dysbiosis. Our approach enables the inference of microbiota dynamics from a single time point, paving the way for tailored dietary interventions, which we refer to as Optibiomics. Obesity affects approximately 39% of adults worldwide. While gut microbiota has been linked to obesity, most research has focused on static taxonomic composition rather than the dynamic interactions between microbial taxa. We applied BEEM-Static, a generalized Lotka-Volterra model, to cross-sectional 16S rRNA gut microbiome data from six public datasets, comprising 2,435 profiles from lean and obese individuals. A total of 57 significant microbial interactions were identified in obese individuals (79% negative), compared to 37 in lean individuals (92% negative). For example, Bacteroidetes showed a stronger inhibitory effect on Firmicutes in obese individuals (-0.41) than in lean ones (-0.26). Firmicutes and Proteobacteria exhibited consistently higher carrying capacities in obese populations. These findings suggest that microbial interaction networks-not just taxonomic abundance-play a key role in obesity-related dysbiosis. Our approach enables the inference of microbiota dynamics from a single time point, paving the way for tailored dietary interventions, which we refer to as . Obesity affects approximately 39% of adults worldwide. While gut microbiota has been linked to obesity, most research has focused on static taxonomic composition rather than the dynamic interactions between microbial taxa.IntroductionObesity affects approximately 39% of adults worldwide. While gut microbiota has been linked to obesity, most research has focused on static taxonomic composition rather than the dynamic interactions between microbial taxa.We applied BEEM-Static, a generalized Lotka-Volterra model, to cross-sectional 16S rRNA gut microbiome data from six public datasets, comprising 2,435 profiles from lean and obese individuals.MethodsWe applied BEEM-Static, a generalized Lotka-Volterra model, to cross-sectional 16S rRNA gut microbiome data from six public datasets, comprising 2,435 profiles from lean and obese individuals.A total of 57 significant microbial interactions were identified in obese individuals (79% negative), compared to 37 in lean individuals (92% negative). For example, Bacteroidetes showed a stronger inhibitory effect on Firmicutes in obese individuals (-0.41) than in lean ones (-0.26). Firmicutes and Proteobacteria exhibited consistently higher carrying capacities in obese populations.ResultsA total of 57 significant microbial interactions were identified in obese individuals (79% negative), compared to 37 in lean individuals (92% negative). For example, Bacteroidetes showed a stronger inhibitory effect on Firmicutes in obese individuals (-0.41) than in lean ones (-0.26). Firmicutes and Proteobacteria exhibited consistently higher carrying capacities in obese populations.These findings suggest that microbial interaction networks-not just taxonomic abundance-play a key role in obesity-related dysbiosis. Our approach enables the inference of microbiota dynamics from a single time point, paving the way for tailored dietary interventions, which we refer to as Optibiomics.DiscussionThese findings suggest that microbial interaction networks-not just taxonomic abundance-play a key role in obesity-related dysbiosis. Our approach enables the inference of microbiota dynamics from a single time point, paving the way for tailored dietary interventions, which we refer to as Optibiomics. |
Author | Starcevic, Antonio Soljic, Irena Vuckovic, Tea Allen, Andrew P. Melvan, Ena |
AuthorAffiliation | 3 Faculty of Food Technology and Biotechnology, University of Zagreb , Zagreb , Croatia 2 Research and Development Department , Metabelly, Split , Croatia 1 School of Natural Sciences, Macquarie University , Sydney, NSW , Australia |
AuthorAffiliation_xml | – name: 3 Faculty of Food Technology and Biotechnology, University of Zagreb , Zagreb , Croatia – name: 1 School of Natural Sciences, Macquarie University , Sydney, NSW , Australia – name: 2 Research and Development Department , Metabelly, Split , Croatia |
Author_xml | – sequence: 1 givenname: Ena surname: Melvan fullname: Melvan, Ena – sequence: 2 givenname: Andrew P. surname: Allen fullname: Allen, Andrew P. – sequence: 3 givenname: Tea surname: Vuckovic fullname: Vuckovic, Tea – sequence: 4 givenname: Irena surname: Soljic fullname: Soljic, Irena – sequence: 5 givenname: Antonio surname: Starcevic fullname: Starcevic, Antonio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40557322$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtrFjEUhoNUbK39Ay5klm7mM9fJZCVS1BYKKnQfTm6fKTNJTWYK_ffmu7S02eRy3jwHzvMenaScPEIfCd4wNqovwcbZbCimYkP4KKQib9AZpUz0VI3jyYvzKbqo9Q63JTEdFXuHTjkWQjJKz9Cf38W7aJeYtt12Xbo52pJNzAt07jFBu9Yupi4bX307uPgQ3QpT7ULJc9eytfbVt_85wdQ5WOADehtawF8c93N0--P77eVVf_Pr5_Xlt5veckqXXjnwJljJgzKDtXQYXODOkhCktcyAF8xJxYVyGCAApiYQYY2nVPld8RxdH7Auw52-L3GG8qgzRL1_yGWroSzRTl5LsIxQkEaMIzeWw8AMt4IFzwfCrWqsrwfW_Wpm76xPS4HpFfR1JcW_epsfNKFkFFzgRvh8JJT8b_V10XOs1k8TJJ_XqtusmWJNnGzRTy-bPXd5ctIC9BDYT7f48BwhWO_c6717vXOvj-7Zf70OpXk |
Cites_doi | 10.1155/2017/7585989 10.1007/s11912-016-0528-7 10.1371/journal.pcbi.1009343 10.1152/physrev.00045.2009 10.1016/j.jfma.2018.07.009 10.3389/fmicb.2023.1182460 10.1007/BF02858661 10.1016/j.humic.2016.09.001 10.3389/fendo.2022.1025706 10.1099/ijsem.0.005056 10.1111/cmi.12245 10.1038/s41467-020-17840-y 10.1038/nature12820 10.1371/journal.pbio.1002533 10.1016/j.cell.2015.11.001 10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2 10.1093/oxfordjournals.bmb.a011615 10.1016/j.ymeth.2016.02.019 10.1038/nature07540 10.1017/CBO9781139173179 10.1371/journal.pone.0061217 10.4161/gmic.20168 10.1016/j.cell.2014.09.053 10.1128/mSystems.00031-18 10.1016/j.tibtech.2015.06.011 10.1038/s41564-019-0491-9 10.1186/s40168-015-0062-y 10.3389/fmicb.2018.02494 10.1038/nature06244 10.3389/fcimb.2021.643638 10.1038/oby.2001.123 10.1016/j.febslet.2014.09.039 10.1155/2018/4095789 10.1038/ismej.2016.174 10.1210/jc.2004-0288 10.1186/s40168-019-0729-z 10.1016/j.chom.2017.10.005 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Melvan, Allen, Vuckovic, Soljic and Starcevic. Copyright © 2025 Melvan, Allen, Vuckovic, Soljic and Starcevic 2025 Melvan, Allen, Vuckovic, Soljic and Starcevic |
Copyright_xml | – notice: Copyright © 2025 Melvan, Allen, Vuckovic, Soljic and Starcevic. – notice: Copyright © 2025 Melvan, Allen, Vuckovic, Soljic and Starcevic 2025 Melvan, Allen, Vuckovic, Soljic and Starcevic |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3389/fcimb.2025.1485791 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2235-2988 |
ExternalDocumentID | oai_doaj_org_article_7ac312a7b5884bc4a63b4c53fe4614c9 PMC12185450 40557322 10_3389_fcimb_2025_1485791 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE INR KQ8 M~E OK1 PGMZT RPM CGR CUY CVF ECM EIF IPNFZ M48 NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c422t-9daebfc74f9b6cc266df4dc1ff7cc3bae53d79459d0aafa02bf15cbe229eae53 |
IEDL.DBID | DOA |
ISSN | 2235-2988 |
IngestDate | Wed Aug 27 01:30:46 EDT 2025 Thu Aug 21 18:26:29 EDT 2025 Thu Jun 26 01:29:04 EDT 2025 Fri Jun 27 02:13:14 EDT 2025 Thu Jul 03 08:25:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GLV method dietary interventions microbial interactions microbiome dynamics gut microbiota obesity personalized nutrition |
Language | English |
License | Copyright © 2025 Melvan, Allen, Vuckovic, Soljic and Starcevic. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-9daebfc74f9b6cc266df4dc1ff7cc3bae53d79459d0aafa02bf15cbe229eae53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Jinlin Zhu, Jiangnan University, China Reviewed by: Maria Gazouli, National and Kapodistrian University of Athens, Greece Amanda Carroll-Portillo, University of New Mexico, United States |
OpenAccessLink | https://doaj.org/article/7ac312a7b5884bc4a63b4c53fe4614c9 |
PMID | 40557322 |
PQID | 3223933387 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7ac312a7b5884bc4a63b4c53fe4614c9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12185450 proquest_miscellaneous_3223933387 pubmed_primary_40557322 crossref_primary_10_3389_fcimb_2025_1485791 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-10 |
PublicationDateYYYYMMDD | 2025-06-10 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in cellular and infection microbiology |
PublicationTitleAlternate | Front Cell Infect Microbiol |
PublicationYear | 2025 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Li (B19) 2021; 17 Méndez-Salazar (B26) 2018; 9 Kumar (B18) 2019; 4 Winter (B38) 2014; 16 Castaner (B2) 2018; 2018 Cheng (B6) 2022; 13 Jones (B15) 1997; 78 McDonald (B24) 2018; 3 Sender (B31) 2016; 14 Stein (B33) 2004; 89 Hou (B12) 2017; 2017 John (B14) 2016; 18 Jousset (B16) 2017; 11 Jung (B17) 1997; 53 James (B13) 2001; 9 Maruvada (B23) 2017; 22 Ross (B29) 2015; 3 Zhang (B41) 2023; 14 Goodrich (B10) 2014; 159 Hofbauer (B11) 1998 Ceprnja (B3) 2021; 11 Li (B20) 2019; 7 dos Santos (B9) 2012 Chen (B4) 2020; 11 David (B8) 2014; 505 Metz (B27) 1995 Malcolm (B22) 1966; 32 Li (B21) 2016; 102 Chen (B5) 2016 McMurdie (B25) 2013; 8 Oren (B28) 2021; 71 Alou (B1) 2016; 1 Zeevi (B40) 2015; 163 Turnbaugh (B35) 2009; 457 Sekirov (B30) 2010; 90 Tseng (B34) 2019; 118 Clarke (B7) 2012; 3 Walters (B37) 2014; 588 (B39) 2015 Turnbaugh (B36) 2007; 449 Shin (B32) 2015; 33 |
References_xml | – volume: 2017 start-page: 7585989 year: 2017 ident: B12 article-title: Human gut microbiota associated with obesity in chinese children and adolescents publication-title: BioMed. Res. Int. doi: 10.1155/2017/7585989 – volume: 18 start-page: 1 year: 2016 ident: B14 article-title: The gut microbiome and obesity publication-title: Curr. Oncol. Rep. doi: 10.1007/s11912-016-0528-7 – volume: 17 year: 2021 ident: B19 article-title: BEEM-Static: Accurate inference of ecological interactions from cross-sectional microbiome data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009343 – volume: 90 start-page: 859 year: 2010 ident: B30 article-title: Gut microbiota in health and disease publication-title: Physiol. Rev. doi: 10.1152/physrev.00045.2009 – volume: 118 start-page: S3 year: 2019 ident: B34 article-title: The gut microbiome in obesity publication-title: J. Formosan Med. Assoc. doi: 10.1016/j.jfma.2018.07.009 – volume: 14 start-page: 1182460 year: 2023 ident: B41 article-title: The gut microbiome and obesity: recent insights from population-based studies publication-title: Front. Microbiol. doi: 10.3389/fmicb.2023.1182460 – year: 1995 ident: B27 article-title: Adaptive dynamics: A geometrical study of the consequences of nearly faithful reproduction – volume: 32 start-page: 243 year: 1966 ident: B22 article-title: Biological interactions publication-title: Botanical Rev. doi: 10.1007/BF02858661 – volume: 1 start-page: pp.3 year: 2016 ident: B1 article-title: Diet influence on the gut microbiota and dysbiosis related to nutritional disorders publication-title: Hum. Microbiome J. doi: 10.1016/j.humic.2016.09.001 – volume: 13 year: 2022 ident: B6 article-title: The critical role of gut microbiota in obesity publication-title: Front. Endocrinol. doi: 10.3389/fendo.2022.1025706 – volume: 71 start-page: 005056 year: 2021 ident: B28 article-title: Valid publication of the names of forty-two phyla of prokaryotes publication-title: Int. J. Systematic Evolutionary Microbiol. doi: 10.1099/ijsem.0.005056 – volume: 16 start-page: 179 year: 2014 ident: B38 article-title: Why related bacterial species bloom simultaneously in the gut: principles underlying the ‘Like will to like’ concept publication-title: Cell. Microbiol. doi: 10.1111/cmi.12245 – volume: 11 start-page: 1 year: 2020 ident: B4 article-title: Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity publication-title: Nat. Commun. doi: 10.1038/s41467-020-17840-y – volume: 505 start-page: 559 year: 2014 ident: B8 article-title: Diet rapidly and reproducibly alters the human gut microbiome publication-title: Nature doi: 10.1038/nature12820 – volume: 14 year: 2016 ident: B31 article-title: Revised estimates for the number of human and bacteria cells in the body publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002533 – volume: 163 start-page: 1079 year: 2015 ident: B40 article-title: Personalized nutrition by prediction of glycemic responses publication-title: Cell doi: 10.1016/j.cell.2015.11.001 – start-page: pp.785 year: 2016 ident: B5 article-title: Xgboost: A scalable tree boosting system – volume: 78 start-page: 1946 year: 1997 ident: B15 article-title: Positive and negative effects of organisms as physical ecosystem engineers publication-title: Ecology doi: 10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2 – volume: 53 start-page: 307 year: 1997 ident: B17 article-title: Obesity as a disease publication-title: Br. Med. Bull. doi: 10.1093/oxfordjournals.bmb.a011615 – volume: 102 start-page: 12 year: 2016 ident: B21 article-title: Predicting microbial interactions through computational approaches publication-title: Methods doi: 10.1016/j.ymeth.2016.02.019 – volume: 457 start-page: 480 year: 2009 ident: B35 article-title: A core gut microbiome in obese and lean twins publication-title: Nature doi: 10.1038/nature07540 – volume-title: Metagenomic Analysis of the Human Gut Microbiome year: 2012 ident: B9 – volume-title: Evolutionary Games and Population Dynamics year: 1998 ident: B11 doi: 10.1017/CBO9781139173179 – volume: 8 year: 2013 ident: B25 article-title: phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data publication-title: PLoS One doi: 10.1371/journal.pone.0061217 – volume: 3 start-page: 186 year: 2012 ident: B7 article-title: The gut microbiota and its relationship to diet and obesity: new insights publication-title: Gut Microbes doi: 10.4161/gmic.20168 – volume: 159 start-page: 789 year: 2014 ident: B10 article-title: Human genetics shape the gut microbiome publication-title: Cell doi: 10.1016/j.cell.2014.09.053 – volume: 3 start-page: e00031 year: 2018 ident: B24 article-title: American Gut: an open platform for citizen science microbiome research publication-title: mSystems doi: 10.1128/mSystems.00031-18 – volume: 33 start-page: 496 year: 2015 ident: B32 article-title: Proteobacteria: microbial signature of dysbiosis in gut microbiota publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2015.06.011 – volume: 4 start-page: 1253 year: 2019 ident: B18 article-title: Modelling approaches for studying the microbiome publication-title: Nat. Microbiol. doi: 10.1038/s41564-019-0491-9 – volume-title: Obesity and Overweight [Fact Sheet No 311] year: 2015 ident: B39 – volume: 3 start-page: 7 year: 2015 ident: B29 article-title: 16S gut community of the Cameron County Hispanic Cohort publication-title: Microbiome doi: 10.1186/s40168-015-0062-y – volume: 9 start-page: 2494 year: 2018 ident: B26 article-title: Altered gut microbiota and compositional changes in Firmicutes and Proteobacteria in Mexican undernourished and obese children publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02494 – volume: 449 start-page: 804 year: 2007 ident: B36 article-title: The human microbiome project publication-title: Nature doi: 10.1038/nature06244 – volume: 11 year: 2021 ident: B3 article-title: Modeling of urinary microbiota associated with cystitis publication-title: Front. Cell. Infection Microbiol. doi: 10.3389/fcimb.2021.643638 – volume: 9 start-page: 228S year: 2001 ident: B13 article-title: The worldwide obesity epidemic publication-title: Obesity Res. doi: 10.1038/oby.2001.123 – volume: 588 start-page: 4223 year: 2014 ident: B37 article-title: Meta-analyses of human gut microbes associated with obesity and IBD publication-title: FEBS Lett. doi: 10.1016/j.febslet.2014.09.039 – volume: 2018 start-page: 1 year: 2018 ident: B2 article-title: The gut microbiome profile in obesity: a systematic review publication-title: Int. J. Endocrinol. doi: 10.1155/2018/4095789 – volume: 11 start-page: 853 year: 2017 ident: B16 article-title: Where less may be more: how the rare biosphere pulls ecosystems strings publication-title: ISME J. doi: 10.1038/ismej.2016.174 – volume: 89 start-page: 2522 year: 2004 ident: B33 article-title: The epidemic of obesity publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2004-0288 – volume: 7 start-page: 1 year: 2019 ident: B20 article-title: An expectation-maximization algorithm enables accurate ecological modeling using longitudinal microbiome sequencing data publication-title: Microbiome doi: 10.1186/s40168-019-0729-z – volume: 22 start-page: 589 year: 2017 ident: B23 article-title: The human microbiome and obesity: moving beyond associations publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.10.005 |
SSID | ssj0000702893 |
Score | 2.3662543 |
Snippet | Obesity affects approximately 39% of adults worldwide. While gut microbiota has been linked to obesity, most research has focused on static taxonomic... IntroductionObesity affects approximately 39% of adults worldwide. While gut microbiota has been linked to obesity, most research has focused on static... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1485791 |
SubjectTerms | Adult Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Bacteroidetes Cellular and Infection Microbiology Cross-Sectional Studies dietary interventions Dysbiosis - microbiology Female Firmicutes - genetics Firmicutes - isolation & purification Gastrointestinal Microbiome GLV method gut microbiota Humans Male Microbial Interactions obesity Obesity - microbiology personalized nutrition RNA, Ribosomal, 16S - genetics |
Title | Predicting gut microbiota dynamics in obese individuals from cross-sectional data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40557322 https://www.proquest.com/docview/3223933387 https://pubmed.ncbi.nlm.nih.gov/PMC12185450 https://doaj.org/article/7ac312a7b5884bc4a63b4c53fe4614c9 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlIdBLadKX26Yo0FsxsfWwVsc0ZFkKDS2kkJvQs_Uh3rD2HvrvOyNtlt1S6CUngyVbwzd6zKBvZgj5yKNKLDJfB510LaTraocsQq-tVCnp5AXGDn-97pY_xJdbebtX6gs5YSU9cAHuXFnPW2aVw4hKB1923AkveYoCThafQ_fgzNtzpvIerPAGjZcoGfDC9Hny_Z0Df5BJ2BzmMifl3DuJcsL-f1mZf5Ml906fxXPybGs20osi7jF5EocTclQKSf5-Qb5_W-OFC1KY6c_NRO_6kl9psjSUkvMj7Qe6cnGMtN_FYI0Uo0tolq8eMykLR0HW6Etys7i6uVzW22IJtReMTbUONrrklUjaIRe660ISwbcpKe-5s1HyAGtP6tBYm2zDXGqld5ExHbHxFZkNqyG-IVQ1wWsxbxIXAR5OJ_DpYDEF-Gl0tqvIpwfczH1JiWHAlUCUTUbZIMpmi3JFPiO0u56Yzjq_ACWbrZLN_5RckbMHxRiY_ninYYe42owG9iOuOYytKvK6KGo3lMD8YtChIvMDFR7Ictgy9L9yiu0WLB-wLZu3jyH9O_IUEUGCWdu8J7NpvYmnYMpM7kOetX8ALzX1ZQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+gut+microbiota+dynamics+in+obese+individuals+from+cross-sectional+data&rft.jtitle=Frontiers+in+cellular+and+infection+microbiology&rft.au=Melvan%2C+Ena&rft.au=Allen%2C+Andrew+P.&rft.au=Vuckovic%2C+Tea&rft.au=Soljic%2C+Irena&rft.date=2025-06-10&rft.issn=2235-2988&rft.eissn=2235-2988&rft.volume=15&rft_id=info:doi/10.3389%2Ffcimb.2025.1485791&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fcimb_2025_1485791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2235-2988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2235-2988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2235-2988&client=summon |