A flood resilience assessment method of green-grey-blue coupled urban drainage system considering backwater effects

[Display omitted] •The backwater effect index was introduced into the global resilience analysis method to improve accuracy.•The impact of green-grey-blue infrastructure on flood resilience has been studied.•The important role of backwater effects of blue infrastructure in flood resilience was quant...

Full description

Saved in:
Bibliographic Details
Published inEcological indicators Vol. 170; p. 113032
Main Authors Liu, Yue, Zhang, Xiang, Liu, Jie, Wang, Yao, Jia, Haifeng, Tao, Shiyong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The backwater effect index was introduced into the global resilience analysis method to improve accuracy.•The impact of green-grey-blue infrastructure on flood resilience has been studied.•The important role of backwater effects of blue infrastructure in flood resilience was quantified. Currently, the increasing frequency of urban floods—driven by extreme rainfall resulting from climate change, human-induced urbanization, and inadequacies in urban drainage systems—has heightened interest in resilient cities. Among these approaches, green-grey-blue coupling measures have emerged as one of the prominent technical solutions. Several studies have demonstrated the effectiveness of blue-green infrastructure and integrated green-grey-blue systems in mitigating flood disasters. However, a comprehensive assessment of the effectiveness of green-grey-blue infrastructure in enhancing urban flood resilience remains insufficient. This paper proposes an improved global resilience analysis (GRA) method to quantify the effectiveness of green-grey-blue infrastructure in flood resilience and the feedback relationships between influencing factors. The method offers a way to quantify the backwater effect of blue infrastructure in conditions where hydrological and hydraulic models cannot efficiently simulate the situation, by introducing the Potential Flooding Area Ratio (PFAR). The effectiveness of this method was further demonstrated in a typical watershed in Wuhan, China. The results show that green infrastructure is sufficient to handle rainfall with a return period of 5 years, with Low Impact Development (LID) facilities (green roof, permeable pavement and rain garden) outperforming Natural Green Space (NGS), but the difference decreases with increasing rain intensity. While the extension of the rainfall return period exacerbates urban flooding, even under the precipitation scenario associated with a 1,000-year return period, increasing pipe diameter can significantly enhance the flood resilience of grey infrastructure. The potential contribution of blue infrastructure to flood resilience is considerable, and optimized regulation schemes for the pre-flood water levels can enhance the adaptability of the system. It is worth noting that ignoring the backwater effect can lead to an overestimation of flood resilience assessment by up to 104 %, therefore, the introduction of PFAR has improved the accuracy of the assessment method by considering the convenience and efficiency of the model. The introduced backwater effect index incorporates the flooded area into the failure mode, filling the gap of traditional GRA method that only considers the flood volume and time, to help quantify the structural impact of green-grey-blue system on flood resilience.
AbstractList Currently, the increasing frequency of urban floods—driven by extreme rainfall resulting from climate change, human-induced urbanization, and inadequacies in urban drainage systems—has heightened interest in resilient cities. Among these approaches, green-grey-blue coupling measures have emerged as one of the prominent technical solutions. Several studies have demonstrated the effectiveness of blue-green infrastructure and integrated green-grey-blue systems in mitigating flood disasters. However, a comprehensive assessment of the effectiveness of green-grey-blue infrastructure in enhancing urban flood resilience remains insufficient. This paper proposes an improved global resilience analysis (GRA) method to quantify the effectiveness of green-grey-blue infrastructure in flood resilience and the feedback relationships between influencing factors. The method offers a way to quantify the backwater effect of blue infrastructure in conditions where hydrological and hydraulic models cannot efficiently simulate the situation, by introducing the Potential Flooding Area Ratio (PFAR). The effectiveness of this method was further demonstrated in a typical watershed in Wuhan, China. The results show that green infrastructure is sufficient to handle rainfall with a return period of 5 years, with Low Impact Development (LID) facilities (green roof, permeable pavement and rain garden) outperforming Natural Green Space (NGS), but the difference decreases with increasing rain intensity. While the extension of the rainfall return period exacerbates urban flooding, even under the precipitation scenario associated with a 1,000-year return period, increasing pipe diameter can significantly enhance the flood resilience of grey infrastructure. The potential contribution of blue infrastructure to flood resilience is considerable, and optimized regulation schemes for the pre-flood water levels can enhance the adaptability of the system. It is worth noting that ignoring the backwater effect can lead to an overestimation of flood resilience assessment by up to 104 %, therefore, the introduction of PFAR has improved the accuracy of the assessment method by considering the convenience and efficiency of the model. The introduced backwater effect index incorporates the flooded area into the failure mode, filling the gap of traditional GRA method that only considers the flood volume and time, to help quantify the structural impact of green-grey-blue system on flood resilience.
[Display omitted] •The backwater effect index was introduced into the global resilience analysis method to improve accuracy.•The impact of green-grey-blue infrastructure on flood resilience has been studied.•The important role of backwater effects of blue infrastructure in flood resilience was quantified. Currently, the increasing frequency of urban floods—driven by extreme rainfall resulting from climate change, human-induced urbanization, and inadequacies in urban drainage systems—has heightened interest in resilient cities. Among these approaches, green-grey-blue coupling measures have emerged as one of the prominent technical solutions. Several studies have demonstrated the effectiveness of blue-green infrastructure and integrated green-grey-blue systems in mitigating flood disasters. However, a comprehensive assessment of the effectiveness of green-grey-blue infrastructure in enhancing urban flood resilience remains insufficient. This paper proposes an improved global resilience analysis (GRA) method to quantify the effectiveness of green-grey-blue infrastructure in flood resilience and the feedback relationships between influencing factors. The method offers a way to quantify the backwater effect of blue infrastructure in conditions where hydrological and hydraulic models cannot efficiently simulate the situation, by introducing the Potential Flooding Area Ratio (PFAR). The effectiveness of this method was further demonstrated in a typical watershed in Wuhan, China. The results show that green infrastructure is sufficient to handle rainfall with a return period of 5 years, with Low Impact Development (LID) facilities (green roof, permeable pavement and rain garden) outperforming Natural Green Space (NGS), but the difference decreases with increasing rain intensity. While the extension of the rainfall return period exacerbates urban flooding, even under the precipitation scenario associated with a 1,000-year return period, increasing pipe diameter can significantly enhance the flood resilience of grey infrastructure. The potential contribution of blue infrastructure to flood resilience is considerable, and optimized regulation schemes for the pre-flood water levels can enhance the adaptability of the system. It is worth noting that ignoring the backwater effect can lead to an overestimation of flood resilience assessment by up to 104 %, therefore, the introduction of PFAR has improved the accuracy of the assessment method by considering the convenience and efficiency of the model. The introduced backwater effect index incorporates the flooded area into the failure mode, filling the gap of traditional GRA method that only considers the flood volume and time, to help quantify the structural impact of green-grey-blue system on flood resilience.
ArticleNumber 113032
Author Liu, Jie
Wang, Yao
Jia, Haifeng
Tao, Shiyong
Zhang, Xiang
Liu, Yue
Author_xml – sequence: 1
  givenname: Yue
  surname: Liu
  fullname: Liu, Yue
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, 430072, China
– sequence: 2
  givenname: Xiang
  orcidid: 0000-0003-0965-7298
  surname: Zhang
  fullname: Zhang, Xiang
  email: zhangxiang@whu.edu.cn
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, 430072, China
– sequence: 3
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  organization: School of Architecture and Civil Engineering, Chengdu University, 610106, China
– sequence: 4
  givenname: Yao
  surname: Wang
  fullname: Wang, Yao
  organization: College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China
– sequence: 5
  givenname: Haifeng
  surname: Jia
  fullname: Jia, Haifeng
  organization: School of Environment, Tsinghua University, Beijing 100084, China
– sequence: 6
  givenname: Shiyong
  surname: Tao
  fullname: Tao, Shiyong
  email: taoshiyong@whu.edu.cn
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, 430072, China
BookMark eNqFkc1qnCEUhl2k0Pz0EgrewDdRv7-RLkoIaRMIZNNCd3I8HqdOv9GgTsvcfU0m2WSTjYLH58X38YydxBSJsc9SrKSQ0-V2RZiWEN1KCTWspOxFr07YqRxm0clJ_PrIzkrZinZX6-mUlSvul5Qcz1TCEigicSiFStlRrHxH9XcbJs83mSh2bT10dtkTx7R_XMjxfbYQucsQImyIl0OptGvTWIKjHOKGW8A__6BS5uQ9YS0X7IOHpdCnl_2c_fx28-P6trt_-H53fXXf4aBU7TQoIWF2ymrtAP3oeus0gNZkaZinWSsLY2ui1ojUo8KhIVJPgG49ibE_Z3fHXJdgax5z2EE-mATBPB-kvDGQa8CFjKRhPcp-lkrgMGgN2q4nSyN4P-t5nlrWl2MW5lRKJm8wVKghxdqqL0YK8-TfbM2Lf_Pk3xz9N3p8Q7--5j3u65GjpulvoGwKPv-RC7mZbD3COwn_AaJxqSk
CitedBy_id crossref_primary_10_1016_j_jhydrol_2025_132976
Cites_doi 10.1016/j.jhydrol.2018.06.052
10.3390/w16060811
10.2166/wst.2024.032
10.1016/j.ecolind.2020.106810
10.3390/su10103470
10.1016/j.jenvman.2019.03.036
10.1021/acs.est.8b01193
10.1016/j.jenvman.2020.111025
10.1016/j.scitotenv.2021.145831
10.1016/j.landurbplan.2011.02.021
10.1016/j.landurbplan.2023.104804
10.1098/rsta.2019.0389
10.1016/j.jenvman.2023.119135
10.1007/s11356-021-13484-7
10.1016/j.jenvman.2021.112454
10.3390/ijgi9020094
10.3390/w15142663
10.1016/j.scs.2023.104436
10.1007/s13351-022-1166-7
10.1016/j.scitotenv.2019.134980
10.1111/jfr3.12315
10.1146/annurev.es.04.110173.000245
10.1016/j.watres.2015.05.030
10.3390/infrastructures7110153
10.1016/j.scitotenv.2018.05.199
10.1016/j.ese.2020.100010
10.1016/j.jclepro.2021.127022
10.1016/j.cities.2020.103084
10.1016/j.landurbplan.2019.103703
10.3390/land11081368
10.1016/j.jenvman.2014.07.025
10.1016/j.watres.2019.114852
10.1002/hyp.10808
10.3390/hydrology3040034
10.2166/bgs.2022.021
10.1016/j.jhydrol.2016.12.013
10.1016/j.ijdrr.2021.102045
10.1002/wat2.1613
10.1016/j.scitotenv.2020.138608
10.1016/j.jenvman.2021.112472
10.2166/bgs.2021.016
10.1016/j.landusepol.2020.105108
10.1016/j.watres.2017.07.038
10.5194/hess-26-5473-2022
10.1016/j.watres.2023.120315
10.1016/j.jhydrol.2022.128911
10.1016/j.uclim.2021.101075
10.1016/j.envsoft.2017.11.008
10.1016/j.jenvman.2019.109364
10.1080/1573062X.2016.1253754
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.ecolind.2024.113032
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
ExternalDocumentID oai_doaj_org_article_1e485137120c4499a9b86be5aff79776
10_1016_j_ecolind_2024_113032
S1470160X24014894
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
~02
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c422t-9a201a7d2b99dacf5d3bd9aa99ebe476792ba500128cce3c2c49a2196acd86053
IEDL.DBID DOA
ISSN 1470-160X
IngestDate Wed Aug 27 01:21:52 EDT 2025
Thu Apr 24 22:54:47 EDT 2025
Tue Jul 01 04:27:21 EDT 2025
Sat Feb 08 15:52:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Global resilience analysis
Drainage system
Green-grey-blue
Backwater effect
Flood resilience
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-9a201a7d2b99dacf5d3bd9aa99ebe476792ba500128cce3c2c49a2196acd86053
ORCID 0000-0003-0965-7298
OpenAccessLink https://doaj.org/article/1e485137120c4499a9b86be5aff79776
ParticipantIDs doaj_primary_oai_doaj_org_article_1e485137120c4499a9b86be5aff79776
crossref_citationtrail_10_1016_j_ecolind_2024_113032
crossref_primary_10_1016_j_ecolind_2024_113032
elsevier_sciencedirect_doi_10_1016_j_ecolind_2024_113032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Ecological indicators
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Tao, Zhang, Xu, Pan, Gu (b0225) 2021; 28
Krivtsov, Birkinshaw, Arthur, Knott, Monfries, Wilson, Christie, Chamberlain, Brownless, Kelly, Buckman, Forbes, Monteiro (b0125) 2020; 378
Holling (b0110) 1973; 4
Joyce, Chang, Harji, Ruppert (b0120) 2018; 100
Thakali, Kalra, Ahmad (b0230) 2016; 3
Dong, Guo, Zeng (b0085) 2017; 124
Wang, Meng, Liu, Zhang, Fu (b0250) 2019; 163
Zheng, Huang (b0280) 2023; 617
Leng, Jia, Chen, Zhu, Xu, Yu (b0145) 2021; 775
Kuang, Liao (b0135) 2020; 271
Bhaskar, Hogan, Archfield (b0035) 2016; 30
Fu, Zhang, Hall, Butler (b0095) 2023; 10
Murdock, de Bruijn, Gersonius (b0210) 2018; 10
Li, Uyttenhove, Vaneetvelde (b0160) 2020; 194
Wang, Liu, Zhang, Zhang, Su, Zhou, Bakhshipour, Tan (b0245) 2023; 91
Alves, Vojinovic, Kapelan, Sanchez, Gersonius (b0020) 2020; 703
Ahern (b0005) 2011; 100
Yin, Gu, Liang, Yu, Sun, Xie, Li, Wu (b0265) 2022; 36
Bakhshipour, Dittmer, Haghighi, Nowak (b0025) 2019; 249
de Oliveira, Battemarco, Barbaro, Gomes, Cabral, Bezerra, Rutigliani, Lourenco, Machado, Rezende, de Magalhaes, Verol, Miguez (b0070) 2022; 7
Mugume, Gomez, Fu, Farmani, Butler (b0195) 2015; 81
Yin, Zhang, Cheng, Jia, Jia, Yang (b0270) 2023; 242
Li, Strong, Wang, Burian (b0155) 2023; 15
Neumann, Scheid, Dittmer (b0215) 2024; 16
Rossman (2014). “Storm Water Management Model User’s Manual Version 5.1.”.
Mugume, Kibibi, Sorensen, Butler (b0200) 2024; 89
Wang, Fang, Sweetapple (b0240) 2021; 288
Birkinshaw, Krivtsov (b0040) 2022; 11
Coles, Yu, Wilby, Green, Herring (b0060) 2017; 546
Chen, Wang, Huang, Wang, Lai, Yang (b0055) 2021; 54
Yang, Bruggemann, Seguya, Ahmed, Kaeseberg, Dai, Hua, Zhang, Krebs (b0255) 2020; 1
Casal-Campos, Sadr, Fu, Butler (b0050) 2018; 52
Demuzere, Orru, Heidrich, Olazabal, Geneletti, Orru, Bhave, Mittal, Feliu, Faehnle (b0080) 2014; 146
Guptha, Swain, Al-Ansari, Taloor, Dayala (b0105) 2022; 41
Zhang, Bi, Sun, Wang, Xu, Jia (b0275) 2023; 15
Liang, Zhang, Xu, Pan, Wang (b0165) 2020; 119
Morrison, Westbrook, Noble (b0185) 2018; 11
Mei, Liu, Wang, Yang, Ding, Shao (b0175) 2018; 639
Bertilsson, Wiklund, Tebaldi, Rezende, Verol, Miguez (b0030) 2019; 573
Mugume, Butler (b0190) 2017; 14
Deely, Hynes, Barquin, Burgess, Finney, Silio, Alvarez-Martinez, Bailly, Balle-Beganton (b0075) 2020; 99
Yao, Li, Jiang, Huang (b0260) 2023; 347
Guan, Wang, Xiao (b0100) 2021; 303
Li, Huang, Wang (b0150) 2020; 9
Cao, Yi, Liu, Yang (b0045) 2020; 21
Almaaitah, Appleby, Rosenblat, Drake, Joksimovic (b0010) 2021; 3
Ioja, Badiu, Haase, Hossu, Nita (b0115) 2021; 110
Dai, Wang, Tao, Huang, Sun, Wang (b0065) 2021; 288
Krivtsov, Forbes, Birkinshaw, Olive, Chamberlain, Buckman, Yahr, Arthur, Christie, Monteiro, Diekonigin (b0130) 2022; 4
Leng, Mao, Jia, Xu, Chen, Yin, Fu (b0140) 2020; 728
Lu, Sun, Steffen (b0170) 2023; 238
Alves, Gersonius, Kapelan, Vojinovic, Sanchez (b0015) 2019; 239
UNDRR (2020). “Human Cost of Disasters, Human Cost of Disasters. An overview of the last 20 years 2000-2019.”.
Feng, Tan, Engwirda, Liao, Xu, Bisht, Zhou, Li, Leung (b0090) 2022; 26
Miguez, Verol (b0180) 2017; 44
Mugume, Nakyanzi (b0205) 2024; 29
Mei (10.1016/j.ecolind.2024.113032_b0175) 2018; 639
Yao (10.1016/j.ecolind.2024.113032_b0260) 2023; 347
Chen (10.1016/j.ecolind.2024.113032_b0055) 2021; 54
Ioja (10.1016/j.ecolind.2024.113032_b0115) 2021; 110
Wang (10.1016/j.ecolind.2024.113032_b0240) 2021; 288
Demuzere (10.1016/j.ecolind.2024.113032_b0080) 2014; 146
Casal-Campos (10.1016/j.ecolind.2024.113032_b0050) 2018; 52
Li (10.1016/j.ecolind.2024.113032_b0150) 2020; 9
Tao (10.1016/j.ecolind.2024.113032_b0225) 2021; 28
Krivtsov (10.1016/j.ecolind.2024.113032_b0125) 2020; 378
Fu (10.1016/j.ecolind.2024.113032_b0095) 2023; 10
Li (10.1016/j.ecolind.2024.113032_b0155) 2023; 15
Liang (10.1016/j.ecolind.2024.113032_b0165) 2020; 119
Alves (10.1016/j.ecolind.2024.113032_b0015) 2019; 239
Ahern (10.1016/j.ecolind.2024.113032_b0005) 2011; 100
Thakali (10.1016/j.ecolind.2024.113032_b0230) 2016; 3
Bertilsson (10.1016/j.ecolind.2024.113032_b0030) 2019; 573
Kuang (10.1016/j.ecolind.2024.113032_b0135) 2020; 271
Bhaskar (10.1016/j.ecolind.2024.113032_b0035) 2016; 30
Mugume (10.1016/j.ecolind.2024.113032_b0200) 2024; 89
Leng (10.1016/j.ecolind.2024.113032_b0140) 2020; 728
Wang (10.1016/j.ecolind.2024.113032_b0250) 2019; 163
Almaaitah (10.1016/j.ecolind.2024.113032_b0010) 2021; 3
Morrison (10.1016/j.ecolind.2024.113032_b0185) 2018; 11
Mugume (10.1016/j.ecolind.2024.113032_b0195) 2015; 81
Wang (10.1016/j.ecolind.2024.113032_b0245) 2023; 91
Deely (10.1016/j.ecolind.2024.113032_b0075) 2020; 99
10.1016/j.ecolind.2024.113032_b0235
Yang (10.1016/j.ecolind.2024.113032_b0255) 2020; 1
Krivtsov (10.1016/j.ecolind.2024.113032_b0130) 2022; 4
Mugume (10.1016/j.ecolind.2024.113032_b0190) 2017; 14
Bakhshipour (10.1016/j.ecolind.2024.113032_b0025) 2019; 249
Mugume (10.1016/j.ecolind.2024.113032_b0205) 2024; 29
Neumann (10.1016/j.ecolind.2024.113032_b0215) 2024; 16
Yin (10.1016/j.ecolind.2024.113032_b0265) 2022; 36
de Oliveira (10.1016/j.ecolind.2024.113032_b0070) 2022; 7
Guptha (10.1016/j.ecolind.2024.113032_b0105) 2022; 41
Lu (10.1016/j.ecolind.2024.113032_b0170) 2023; 238
Cao (10.1016/j.ecolind.2024.113032_b0045) 2020; 21
Birkinshaw (10.1016/j.ecolind.2024.113032_b0040) 2022; 11
Zhang (10.1016/j.ecolind.2024.113032_b0275) 2023; 15
10.1016/j.ecolind.2024.113032_b0220
Alves (10.1016/j.ecolind.2024.113032_b0020) 2020; 703
Miguez (10.1016/j.ecolind.2024.113032_b0180) 2017; 44
Feng (10.1016/j.ecolind.2024.113032_b0090) 2022; 26
Leng (10.1016/j.ecolind.2024.113032_b0145) 2021; 775
Guan (10.1016/j.ecolind.2024.113032_b0100) 2021; 303
Yin (10.1016/j.ecolind.2024.113032_b0270) 2023; 242
Dai (10.1016/j.ecolind.2024.113032_b0065) 2021; 288
Joyce (10.1016/j.ecolind.2024.113032_b0120) 2018; 100
Coles (10.1016/j.ecolind.2024.113032_b0060) 2017; 546
Zheng (10.1016/j.ecolind.2024.113032_b0280) 2023; 617
Dong (10.1016/j.ecolind.2024.113032_b0085) 2017; 124
Li (10.1016/j.ecolind.2024.113032_b0160) 2020; 194
Holling (10.1016/j.ecolind.2024.113032_b0110) 1973; 4
Murdock (10.1016/j.ecolind.2024.113032_b0210) 2018; 10
References_xml – volume: 146
  start-page: 107
  year: 2014
  end-page: 115
  ident: b0080
  article-title: Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure
  publication-title: J. Environ. Manage.
– volume: 288
  start-page: 4
  year: 2021
  ident: b0240
  article-title: Assessing flood resilience of urban drainage system based on a ?do-nothing? benchmark
  publication-title: J. Environ. Manage.
– volume: 89
  start-page: 915
  year: 2024
  end-page: 944
  ident: b0200
  article-title: Can Blue-Green Infrastructure enhance resilience in urban drainage systems during failure conditions?
  publication-title: Water Sci. Technol.
– volume: 15
  start-page: 21
  year: 2023
  ident: b0155
  article-title: An Event-Based Resilience Index to Assess the Impacts of Land Imperviousness and Climate Changes on Flooding Risks in Urban Drainage Systems
  publication-title: Water
– volume: 639
  start-page: 1394
  year: 2018
  end-page: 1407
  ident: b0175
  article-title: Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed
  publication-title: Sci. Total Environ.
– volume: 99
  start-page: 12
  year: 2020
  ident: b0075
  article-title: Barrier identification framework for the implementation of blue and green infrastructures
  publication-title: Land Use Policy
– volume: 119
  start-page: 11
  year: 2020
  ident: b0165
  article-title: An integrated framework to select resilient and sustainable sponge city design schemes for robust decision making
  publication-title: Ecol. Ind.
– volume: 573
  start-page: 970
  year: 2019
  end-page: 982
  ident: b0030
  article-title: Urban flood resilience - A multi-criteria index to integrate flood resilience into urban planning
  publication-title: J. Hydrol.
– volume: 703
  start-page: 14
  year: 2020
  ident: b0020
  article-title: Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation
  publication-title: Sci. Total Environ.
– volume: 271
  start-page: 11
  year: 2020
  ident: b0135
  article-title: Learning from Floods: Linking flood experience and flood resilience
  publication-title: J. Environ. Manage.
– volume: 44
  start-page: 925
  year: 2017
  end-page: 946
  ident: b0180
  article-title: A catchment scale Integrated Flood Resilience Index to support decision making in urban flood control design
  publication-title: Environment and Planning B-Urban Analytics and City Science
– volume: 163
  start-page: 12
  year: 2019
  ident: b0250
  article-title: Assessing catchment scale flood resilience of urban areas using a grid cell based metric
  publication-title: Water Res.
– volume: 21
  start-page: 11
  year: 2020
  ident: b0045
  article-title: Integrated ecosystem services-based calculation of ecological water demand for a macrophyte-dominated shallow lake
  publication-title: Global Ecol. Conserv.
– volume: 303
  start-page: 16
  year: 2021
  ident: b0100
  article-title: Sponge city strategy and application of pavement materials in sponge city
  publication-title: J. Clean. Prod.
– volume: 3
  start-page: 16
  year: 2016
  ident: b0230
  article-title: Understanding the Effects of Climate Change on Urban Stormwater Infrastructures in the Las Vegas Valley
  publication-title: Hydrology
– volume: 10
  start-page: 22
  year: 2018
  ident: b0210
  article-title: Assessment of Critical Infrastructure Resilience to Flooding Using a Response Curve Approach
  publication-title: Sustainability
– volume: 11
  start-page: 17
  year: 2022
  ident: b0040
  article-title: Evaluating the Effect of the Location and Design of Retention Ponds on Flooding in a Peri-Urban River Catchment
  publication-title: Land
– volume: 288
  start-page: 13
  year: 2021
  ident: b0065
  article-title: Assessing the ecological balance between supply and demand of blue-green infrastructure
  publication-title: J. Environ. Manage.
– volume: 10
  start-page: 9
  year: 2023
  ident: b0095
  article-title: Are sponge cities the solution to China's growing urban flooding problems?
  publication-title: Wiley Interdisciplinary Reviews-Water
– volume: 26
  start-page: 5473
  year: 2022
  end-page: 5491
  ident: b0090
  article-title: Investigating coastal backwater effects and flooding in the coastal zone using a global river transport model on an unstructured mesh
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 14
  start-page: 727
  year: 2017
  end-page: 736
  ident: b0190
  article-title: Evaluation of functional resilience in urban drainage and flood management systems using a global analysis approach
  publication-title: Urban Water J.
– volume: 30
  start-page: 3156
  year: 2016
  end-page: 3171
  ident: b0035
  article-title: Urban base flow with low impact development
  publication-title: Hydrol. Process.
– volume: 9
  start-page: 20
  year: 2020
  ident: b0150
  article-title: Numerical Simulation of Donghu Lake Hydrodynamics and Water Quality Based on Remote Sensing and MIKE 21
  publication-title: ISPRS Int. J. Geo Inf.
– volume: 29
  year: 2024
  ident: b0205
  article-title: Evaluation of effectiveness of Blue-Green Infrastructure for reduction of pluvial flooding under climate change and internal system failure conditions
  publication-title: Blue-Green Syst.
– volume: 36
  start-page: 6
  year: 2022
  end-page: 25
  ident: b0265
  article-title: A Possible Dynamic Mechanism for Rapid Production of the Extreme Hourly Rainfall in Zhengzhou City on 20 July 2021
  publication-title: J. Meteorolog. Res.
– volume: 54
  start-page: 11
  year: 2021
  ident: b0055
  article-title: The capacity of grey infrastructure in urban flood management: A comprehensive analysis of grey infrastructure and the green-grey approach
  publication-title: Int. J. Disaster Risk Reduct.
– volume: 194
  start-page: 12
  year: 2020
  ident: b0160
  article-title: Planning green infrastructure to mitigate urban surface water flooding risk - A methodology to identify priority areas applied in the city of Ghent
  publication-title: Landsc. Urban Plan.
– volume: 11
  start-page: 291
  year: 2018
  end-page: 304
  ident: b0185
  article-title: A review of the flood risk management governance and resilience literature
  publication-title: J. Flood Risk Manage.
– volume: 347
  start-page: 10
  year: 2023
  ident: b0260
  article-title: Evaluating the response and adaptation of urban stormwater systems to changed rainfall with the CMIP6 projections
  publication-title: J. Environ. Manage.
– volume: 81
  start-page: 15
  year: 2015
  end-page: 26
  ident: b0195
  article-title: A global analysis approach for investigating structural resilience in urban drainage systems
  publication-title: Water Res.
– volume: 4
  start-page: 1
  year: 2022
  end-page: 23
  ident: b0130
  article-title: Ecosystem services provided by urban ponds and green spaces: a detailed study of a semi-natural site with global importance for research
  publication-title: Blue-Green Syst.
– volume: 242
  start-page: 12
  year: 2023
  ident: b0270
  article-title: Can flood resilience of green-grey-blue system cope with future uncertainty?
  publication-title: Water Res.
– volume: 41
  start-page: 16
  year: 2022
  ident: b0105
  article-title: Assessing the role of SuDS in resilience enhancement of urban drainage system: A case study of Gurugram City, India
  publication-title: Urban Clim.
– volume: 16
  start-page: 21
  year: 2024
  ident: b0215
  article-title: Potential of Decentral Nature-Based Solutions for Mitigation of Pluvial Floods in Urban Areas-A Simulation Study Based on 1D/2D Coupled Modeling
  publication-title: Water
– volume: 110
  start-page: 9
  year: 2021
  ident: b0115
  article-title: How about water? Urban blue infrastructure management in Romania
  publication-title: Cities
– volume: 100
  start-page: 82
  year: 2018
  end-page: 103
  ident: b0120
  article-title: Coupling infrastructure resilience and flood risk assessment via copulas analyses for a coastal green-grey-blue drainage system under extreme weather events
  publication-title: Environ. Model. Softw.
– volume: 378
  start-page: 19
  year: 2020
  ident: b0125
  article-title: Flood resilience, amenity and biodiversity benefits of an historic urban pond
  publication-title: Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences
– volume: 91
  start-page: 14
  year: 2023
  ident: b0245
  article-title: Assessing hydrological performance for optimized integrated grey-green infrastructure in response to climate change based on shared socio-economic pathways
  publication-title: Sustain. Cities Soc.
– volume: 617
  start-page: 12
  year: 2023
  ident: b0280
  article-title: A novel grid cell-based urban flood resilience metric considering water velocity and duration of system performance being impacted
  publication-title: J. Hydrol.
– volume: 15
  start-page: 3850
  year: 2023
  ident: b0275
  article-title: “Backwater Effects in Rivers and Lakes
  publication-title: Case Study of Dongping Lake in China.“
– volume: 249
  year: 2019
  ident: b0025
  article-title: Hybrid green-blue-gray decentralized urban drainage systems design, a simulation-optimization framework
  publication-title: J. Environ. Manage.
– volume: 7
  start-page: 26
  year: 2022
  ident: b0070
  article-title: Evaluating the Role of Urban Drainage Flaws in Triggering Cascading Effects on Critical Infrastructure, Affecting Urban Resilience
  publication-title: Infrastructures
– volume: 239
  start-page: 244
  year: 2019
  end-page: 254
  ident: b0015
  article-title: Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management
  publication-title: J. Environ. Manage.
– volume: 728
  start-page: 14
  year: 2020
  ident: b0140
  article-title: Performance assessment of coupled green -grey -blue systems for Sponge City construction
  publication-title: Sci. Total Environ.
– volume: 52
  start-page: 9008
  year: 2018
  end-page: 9021
  ident: b0050
  article-title: Reliable, Resilient and Sustainable Urban Drainage Systems: An Analysis of Robustness under Deep Uncertainty
  publication-title: Environ. Sci. Tech.
– volume: 124
  start-page: 280
  year: 2017
  end-page: 289
  ident: b0085
  article-title: Enhancing future resilience in urban drainage system: Green versus grey infrastructure
  publication-title: Water Res.
– reference: UNDRR (2020). “Human Cost of Disasters, Human Cost of Disasters. An overview of the last 20 years 2000-2019.”.
– volume: 3
  start-page: 223
  year: 2021
  end-page: 248
  ident: b0010
  article-title: The potential of Blue-Green infrastructure as a climate change adaptation strategy: a systematic literature review
  publication-title: Blue-Green Syst.
– volume: 238
  start-page: 13
  year: 2023
  ident: b0170
  article-title: Scenario-based performance assessment of green-grey-blue infrastructure for flood-resilient spatial solution: A case study of Pazhou, Guangzhou, greater Bay area
  publication-title: Landsc. Urban Plan.
– volume: 775
  start-page: 10
  year: 2021
  ident: b0145
  article-title: Multi-objective optimization for green-grey infrastructures in response to external uncertainties
  publication-title: Sci. Total Environ.
– volume: 546
  start-page: 419
  year: 2017
  end-page: 436
  ident: b0060
  article-title: Beyond 'flood hotspots': Modelling emergency service accessibility during flooding in York, UK
  publication-title: J. Hydrol.
– volume: 28
  start-page: 39186
  year: 2021
  end-page: 39198
  ident: b0225
  article-title: Anthropogenic impacts on isotopic and geochemical characteristics of urban streams: a case study in Wuhan, China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 1
  start-page: 9
  year: 2020
  ident: b0255
  article-title: Measuring performance of low impact development practices for the surface runoff management
  publication-title: Environ. Sci. Ecotechnol.
– reference: Rossman (2014). “Storm Water Management Model User’s Manual Version 5.1.”.
– volume: 4
  start-page: 1
  year: 1973
  end-page: 23
  ident: b0110
  article-title: Resilience and stability of ecological systems
  publication-title: Annual Review ofEcology and Systematics
– volume: 100
  start-page: 341
  year: 2011
  end-page: 343
  ident: b0005
  article-title: From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world
  publication-title: Landsc. Urban Plan.
– volume: 573
  start-page: 970
  year: 2019
  ident: 10.1016/j.ecolind.2024.113032_b0030
  article-title: Urban flood resilience - A multi-criteria index to integrate flood resilience into urban planning
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.06.052
– volume: 16
  start-page: 21
  issue: 6
  year: 2024
  ident: 10.1016/j.ecolind.2024.113032_b0215
  article-title: Potential of Decentral Nature-Based Solutions for Mitigation of Pluvial Floods in Urban Areas-A Simulation Study Based on 1D/2D Coupled Modeling
  publication-title: Water
  doi: 10.3390/w16060811
– volume: 89
  start-page: 915
  issue: 4
  year: 2024
  ident: 10.1016/j.ecolind.2024.113032_b0200
  article-title: Can Blue-Green Infrastructure enhance resilience in urban drainage systems during failure conditions?
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2024.032
– volume: 119
  start-page: 11
  year: 2020
  ident: 10.1016/j.ecolind.2024.113032_b0165
  article-title: An integrated framework to select resilient and sustainable sponge city design schemes for robust decision making
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2020.106810
– volume: 29
  year: 2024
  ident: 10.1016/j.ecolind.2024.113032_b0205
  article-title: Evaluation of effectiveness of Blue-Green Infrastructure for reduction of pluvial flooding under climate change and internal system failure conditions
  publication-title: Blue-Green Syst.
– volume: 10
  start-page: 22
  issue: 10
  year: 2018
  ident: 10.1016/j.ecolind.2024.113032_b0210
  article-title: Assessment of Critical Infrastructure Resilience to Flooding Using a Response Curve Approach
  publication-title: Sustainability
  doi: 10.3390/su10103470
– volume: 239
  start-page: 244
  year: 2019
  ident: 10.1016/j.ecolind.2024.113032_b0015
  article-title: Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.03.036
– volume: 52
  start-page: 9008
  issue: 16
  year: 2018
  ident: 10.1016/j.ecolind.2024.113032_b0050
  article-title: Reliable, Resilient and Sustainable Urban Drainage Systems: An Analysis of Robustness under Deep Uncertainty
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.8b01193
– volume: 271
  start-page: 11
  year: 2020
  ident: 10.1016/j.ecolind.2024.113032_b0135
  article-title: Learning from Floods: Linking flood experience and flood resilience
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2020.111025
– volume: 775
  start-page: 10
  year: 2021
  ident: 10.1016/j.ecolind.2024.113032_b0145
  article-title: Multi-objective optimization for green-grey infrastructures in response to external uncertainties
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145831
– volume: 100
  start-page: 341
  issue: 4
  year: 2011
  ident: 10.1016/j.ecolind.2024.113032_b0005
  article-title: From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2011.02.021
– volume: 238
  start-page: 13
  year: 2023
  ident: 10.1016/j.ecolind.2024.113032_b0170
  article-title: Scenario-based performance assessment of green-grey-blue infrastructure for flood-resilient spatial solution: A case study of Pazhou, Guangzhou, greater Bay area
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2023.104804
– ident: 10.1016/j.ecolind.2024.113032_b0235
– volume: 378
  start-page: 19
  issue: 2168
  year: 2020
  ident: 10.1016/j.ecolind.2024.113032_b0125
  article-title: Flood resilience, amenity and biodiversity benefits of an historic urban pond
  publication-title: Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences
  doi: 10.1098/rsta.2019.0389
– volume: 347
  start-page: 10
  year: 2023
  ident: 10.1016/j.ecolind.2024.113032_b0260
  article-title: Evaluating the response and adaptation of urban stormwater systems to changed rainfall with the CMIP6 projections
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2023.119135
– volume: 28
  start-page: 39186
  issue: 29
  year: 2021
  ident: 10.1016/j.ecolind.2024.113032_b0225
  article-title: Anthropogenic impacts on isotopic and geochemical characteristics of urban streams: a case study in Wuhan, China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-13484-7
– volume: 288
  start-page: 13
  year: 2021
  ident: 10.1016/j.ecolind.2024.113032_b0065
  article-title: Assessing the ecological balance between supply and demand of blue-green infrastructure
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.112454
– ident: 10.1016/j.ecolind.2024.113032_b0220
– volume: 9
  start-page: 20
  issue: 2
  year: 2020
  ident: 10.1016/j.ecolind.2024.113032_b0150
  article-title: Numerical Simulation of Donghu Lake Hydrodynamics and Water Quality Based on Remote Sensing and MIKE 21
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi9020094
– volume: 15
  start-page: 21
  issue: 14
  year: 2023
  ident: 10.1016/j.ecolind.2024.113032_b0155
  article-title: An Event-Based Resilience Index to Assess the Impacts of Land Imperviousness and Climate Changes on Flooding Risks in Urban Drainage Systems
  publication-title: Water
  doi: 10.3390/w15142663
– volume: 91
  start-page: 14
  year: 2023
  ident: 10.1016/j.ecolind.2024.113032_b0245
  article-title: Assessing hydrological performance for optimized integrated grey-green infrastructure in response to climate change based on shared socio-economic pathways
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2023.104436
– volume: 36
  start-page: 6
  issue: 1
  year: 2022
  ident: 10.1016/j.ecolind.2024.113032_b0265
  article-title: A Possible Dynamic Mechanism for Rapid Production of the Extreme Hourly Rainfall in Zhengzhou City on 20 July 2021
  publication-title: J. Meteorolog. Res.
  doi: 10.1007/s13351-022-1166-7
– volume: 703
  start-page: 14
  year: 2020
  ident: 10.1016/j.ecolind.2024.113032_b0020
  article-title: Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134980
– volume: 11
  start-page: 291
  issue: 3
  year: 2018
  ident: 10.1016/j.ecolind.2024.113032_b0185
  article-title: A review of the flood risk management governance and resilience literature
  publication-title: J. Flood Risk Manage.
  doi: 10.1111/jfr3.12315
– volume: 4
  start-page: 1
  year: 1973
  ident: 10.1016/j.ecolind.2024.113032_b0110
  article-title: Resilience and stability of ecological systems
  publication-title: Annual Review ofEcology and Systematics
  doi: 10.1146/annurev.es.04.110173.000245
– volume: 44
  start-page: 925
  issue: 5
  year: 2017
  ident: 10.1016/j.ecolind.2024.113032_b0180
  article-title: A catchment scale Integrated Flood Resilience Index to support decision making in urban flood control design
  publication-title: Environment and Planning B-Urban Analytics and City Science
– volume: 81
  start-page: 15
  year: 2015
  ident: 10.1016/j.ecolind.2024.113032_b0195
  article-title: A global analysis approach for investigating structural resilience in urban drainage systems
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.05.030
– volume: 15
  start-page: 3850
  issue: 21
  year: 2023
  ident: 10.1016/j.ecolind.2024.113032_b0275
  article-title: “Backwater Effects in Rivers and Lakes
  publication-title: Case Study of Dongping Lake in China.“
– volume: 7
  start-page: 26
  issue: 11
  year: 2022
  ident: 10.1016/j.ecolind.2024.113032_b0070
  article-title: Evaluating the Role of Urban Drainage Flaws in Triggering Cascading Effects on Critical Infrastructure, Affecting Urban Resilience
  publication-title: Infrastructures
  doi: 10.3390/infrastructures7110153
– volume: 639
  start-page: 1394
  year: 2018
  ident: 10.1016/j.ecolind.2024.113032_b0175
  article-title: Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.199
– volume: 1
  start-page: 9
  year: 2020
  ident: 10.1016/j.ecolind.2024.113032_b0255
  article-title: Measuring performance of low impact development practices for the surface runoff management
  publication-title: Environ. Sci. Ecotechnol.
  doi: 10.1016/j.ese.2020.100010
– volume: 303
  start-page: 16
  year: 2021
  ident: 10.1016/j.ecolind.2024.113032_b0100
  article-title: Sponge city strategy and application of pavement materials in sponge city
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127022
– volume: 110
  start-page: 9
  year: 2021
  ident: 10.1016/j.ecolind.2024.113032_b0115
  article-title: How about water? Urban blue infrastructure management in Romania
  publication-title: Cities
  doi: 10.1016/j.cities.2020.103084
– volume: 194
  start-page: 12
  year: 2020
  ident: 10.1016/j.ecolind.2024.113032_b0160
  article-title: Planning green infrastructure to mitigate urban surface water flooding risk - A methodology to identify priority areas applied in the city of Ghent
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2019.103703
– volume: 11
  start-page: 17
  issue: 8
  year: 2022
  ident: 10.1016/j.ecolind.2024.113032_b0040
  article-title: Evaluating the Effect of the Location and Design of Retention Ponds on Flooding in a Peri-Urban River Catchment
  publication-title: Land
  doi: 10.3390/land11081368
– volume: 146
  start-page: 107
  year: 2014
  ident: 10.1016/j.ecolind.2024.113032_b0080
  article-title: Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2014.07.025
– volume: 163
  start-page: 12
  year: 2019
  ident: 10.1016/j.ecolind.2024.113032_b0250
  article-title: Assessing catchment scale flood resilience of urban areas using a grid cell based metric
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114852
– volume: 30
  start-page: 3156
  issue: 18
  year: 2016
  ident: 10.1016/j.ecolind.2024.113032_b0035
  article-title: Urban base flow with low impact development
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10808
– volume: 3
  start-page: 16
  issue: 4
  year: 2016
  ident: 10.1016/j.ecolind.2024.113032_b0230
  article-title: Understanding the Effects of Climate Change on Urban Stormwater Infrastructures in the Las Vegas Valley
  publication-title: Hydrology
  doi: 10.3390/hydrology3040034
– volume: 4
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.ecolind.2024.113032_b0130
  article-title: Ecosystem services provided by urban ponds and green spaces: a detailed study of a semi-natural site with global importance for research
  publication-title: Blue-Green Syst.
  doi: 10.2166/bgs.2022.021
– volume: 546
  start-page: 419
  year: 2017
  ident: 10.1016/j.ecolind.2024.113032_b0060
  article-title: Beyond 'flood hotspots': Modelling emergency service accessibility during flooding in York, UK
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.12.013
– volume: 54
  start-page: 11
  year: 2021
  ident: 10.1016/j.ecolind.2024.113032_b0055
  article-title: The capacity of grey infrastructure in urban flood management: A comprehensive analysis of grey infrastructure and the green-grey approach
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2021.102045
– volume: 10
  start-page: 9
  issue: 1
  year: 2023
  ident: 10.1016/j.ecolind.2024.113032_b0095
  article-title: Are sponge cities the solution to China's growing urban flooding problems?
  publication-title: Wiley Interdisciplinary Reviews-Water
  doi: 10.1002/wat2.1613
– volume: 728
  start-page: 14
  year: 2020
  ident: 10.1016/j.ecolind.2024.113032_b0140
  article-title: Performance assessment of coupled green -grey -blue systems for Sponge City construction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138608
– volume: 288
  start-page: 4
  year: 2021
  ident: 10.1016/j.ecolind.2024.113032_b0240
  article-title: Assessing flood resilience of urban drainage system based on a ?do-nothing? benchmark
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.112472
– volume: 3
  start-page: 223
  issue: 1
  year: 2021
  ident: 10.1016/j.ecolind.2024.113032_b0010
  article-title: The potential of Blue-Green infrastructure as a climate change adaptation strategy: a systematic literature review
  publication-title: Blue-Green Syst.
  doi: 10.2166/bgs.2021.016
– volume: 99
  start-page: 12
  year: 2020
  ident: 10.1016/j.ecolind.2024.113032_b0075
  article-title: Barrier identification framework for the implementation of blue and green infrastructures
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2020.105108
– volume: 124
  start-page: 280
  year: 2017
  ident: 10.1016/j.ecolind.2024.113032_b0085
  article-title: Enhancing future resilience in urban drainage system: Green versus grey infrastructure
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.07.038
– volume: 26
  start-page: 5473
  issue: 21
  year: 2022
  ident: 10.1016/j.ecolind.2024.113032_b0090
  article-title: Investigating coastal backwater effects and flooding in the coastal zone using a global river transport model on an unstructured mesh
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-26-5473-2022
– volume: 242
  start-page: 12
  year: 2023
  ident: 10.1016/j.ecolind.2024.113032_b0270
  article-title: Can flood resilience of green-grey-blue system cope with future uncertainty?
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.120315
– volume: 617
  start-page: 12
  year: 2023
  ident: 10.1016/j.ecolind.2024.113032_b0280
  article-title: A novel grid cell-based urban flood resilience metric considering water velocity and duration of system performance being impacted
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128911
– volume: 41
  start-page: 16
  year: 2022
  ident: 10.1016/j.ecolind.2024.113032_b0105
  article-title: Assessing the role of SuDS in resilience enhancement of urban drainage system: A case study of Gurugram City, India
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2021.101075
– volume: 21
  start-page: 11
  year: 2020
  ident: 10.1016/j.ecolind.2024.113032_b0045
  article-title: Integrated ecosystem services-based calculation of ecological water demand for a macrophyte-dominated shallow lake
  publication-title: Global Ecol. Conserv.
– volume: 100
  start-page: 82
  year: 2018
  ident: 10.1016/j.ecolind.2024.113032_b0120
  article-title: Coupling infrastructure resilience and flood risk assessment via copulas analyses for a coastal green-grey-blue drainage system under extreme weather events
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.11.008
– volume: 249
  year: 2019
  ident: 10.1016/j.ecolind.2024.113032_b0025
  article-title: Hybrid green-blue-gray decentralized urban drainage systems design, a simulation-optimization framework
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.109364
– volume: 14
  start-page: 727
  issue: 7
  year: 2017
  ident: 10.1016/j.ecolind.2024.113032_b0190
  article-title: Evaluation of functional resilience in urban drainage and flood management systems using a global analysis approach
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2016.1253754
SSID ssj0016996
Score 2.4582555
Snippet [Display omitted] •The backwater effect index was introduced into the global resilience analysis method to improve accuracy.•The impact of green-grey-blue...
Currently, the increasing frequency of urban floods—driven by extreme rainfall resulting from climate change, human-induced urbanization, and inadequacies in...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 113032
SubjectTerms Backwater effect
Drainage system
Flood resilience
Global resilience analysis
Green-grey-blue
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQEwviKcpLHljdJo5rx2NBVAgJFkDqFvmVqlXVVqUZWPjt3CXuawGJJYPjSyzf-R7W3XeE3AnJlUxcYM4nBgIUKZjmLmFdLUXOg7SJwtrhl1f59CGeB93BHnlY1cJgWmXU_Y1Or7V1HOnE3ezMR6POWyoUwqMNwCaBT68RE1QIhVLe_l6neaRS66bCSCUMZ2-qeDrjNkR44MwhYCgX2N0kyfiOfaph_LfM1Jbp6R-Rw-gz0l6zrGOyF6Yn5PxxU6IGL-MZ_Twlnz1aYjY6hUB6NKlHqVnjb9KmZTSdlXSIKTcMnl_MTqpA3ayaT4Kn1cKaKfXYOwKUDW2wnuFt09kTTB21eOkHTuqCxnSQM_LRf3x_eGKxtQJzgvMl0wYMv1GeW629cWXXZ9ZrY7QGpsImKs0t9koA6-VcyBx3AkjgtBrnc4iAsnOyP51NwwWh0gkg5dJ7HsC7yY1LM2Ezg6g3LpNpi4jVhhYu4o5j-4tJsUowGxeRDwXyoWj40CLtNdm8Ad74i-AeubWejLjZ9cBsMSyi4BRpEOBiZirliROwQKNtLm3omrJU4AnLFslXvC52xBA-Nfr9_5f_J70iBxzbCtc3O9dkf7mowg34Okt7WwvzD0EB_kY
  priority: 102
  providerName: Elsevier
Title A flood resilience assessment method of green-grey-blue coupled urban drainage system considering backwater effects
URI https://dx.doi.org/10.1016/j.ecolind.2024.113032
https://doaj.org/article/1e485137120c4499a9b86be5aff79776
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLagLCyIq6IclQdWt4njOvFYUKsCohOVukW-glpVbdVjYOG38xy7BwtdWDLYcRz52Xnfc56_D6FHxmnKI22JNpGEAIUzIqiOSEtwllHLVZS6s8Pvfd4bsNdha7gn9eVywjw9sB-4ZmwZgIIkjWmkGcBzKVTGlW3JokgBu5Rk2-DzNsFU-H_AhfDnitKIxDwa7s7uNMcNiOsAwjmaUMqcpkmU0F9eqSTv33NOew6ne47OAlLEbf-GF-jITi9RtbM7mAaVYWUur9CyjQuXg44hfB5NylIst6yb2AtF41mBP12iDYHrF1GTtcV6tp5PrMHrhZJTbJxiBHxisGd4hlqv5wkODiu31QfQdIFDEsg1GnQ7H889EgQViGaUroiQ4O5laqgSwkhdtEyijJBSCDAlS3kqqHIKCeCztLaJpppBE1ijUpsM4p6kiirT2dTeIMw1g6aUG0MtYJpM6jhhKpGO60YnPK4hthnQXAe2cSd6Mck3aWXjPNghd3bIvR1qqLFtNvd0G4caPDlrbW92bNllAcyhPMyh_NAcqqFsY-s8AA8PKOBRo7_7v_2P_u_QKXWywuXOzj2qrBZr-wBYZ6Xq6LjxHdfRSfvlrdevl5P8B3dm_nQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kztAuRZs2qNNHOGRlLFEUKY5ukMB5eWkCeBP4UuDAsA3HHvrveyfRTrK0QBcNlE4ieCTvjrr7PoATqYRWmY_ch8xigKIkN8JnvDRKViIql2mqHb4dq9G9vJqUkz0429bCUFpl2vu7Pb3drVPLII3mYDmdDn7lUhM82gRtEvr0Rr6BfUKnKnuwP7y8Ho13PxOUMV2Rkc44CTwX8gweTzHIQ3-OMEOFJIKTrBCvTFSL5P_CUr2wPhcf4H1yG9mw69lH2IvzAzg8f65Sw5tpmT59gqchayghnWEsPZ21rczuIDhZxxrNFg17oKwbjtff3M02kfnFZjmLgW1Wzs5ZIPoI3G9YB_eMdztyT7R2zNG5H_qpK5YyQj7D_cX53dmIJ3YF7qUQa24s2n6rg3DGBOubMhQuGGuNQb1KrbQRjugS0IB5HwsvvEQRXLDWhwqDoOIQevPFPH4BprxEUaFCEBEdnMr6vJCusAR84wuV90FuB7T2CXqcGDBm9TbH7LFOeqhJD3Wnhz6c7sSWHfbGvwR-krZ2DxN0dtuwWD3Uae7UeZToZRY6F5mX2EFrXKVcLG3TaHSGVR-qra7rVzMRXzX9-_eP_l_0GN6O7m5v6pvL8fVXeCeIZbg96PkGvfVqE7-j67N2P9LU_gPy9AKU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+flood+resilience+assessment+method+of+green-grey-blue+coupled+urban+drainage+system+considering+backwater+effects&rft.jtitle=Ecological+indicators&rft.au=Yue+Liu&rft.au=Xiang+Zhang&rft.au=Jie+Liu&rft.au=Yao+Wang&rft.date=2025-01-01&rft.pub=Elsevier&rft.issn=1470-160X&rft.volume=170&rft.spage=113032&rft_id=info:doi/10.1016%2Fj.ecolind.2024.113032&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1e485137120c4499a9b86be5aff79776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon